The Input Method Protocol

Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Masahiko Narita

FUJITSU Limited.

Hideki Hiura
SunSoft, Inc.

ABSTRACT

This specifies a protocol between IM library and IM (Input Method) Server for
internationalized text input, which is independent from any specific language,
any specific input method and the transport layer used in communication between
the IM library and the IM Server, and uses a client-server model. This protocol
allows user to use his/her favorite input method for all applications within the
stand-alone distributed environment.

X Window System is a trademark of X Consortium, Inc.

Copyright © 1993, 1994 by X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1993, 1994 by FUJITSU LIMITED

Copyright © 1993, 1994 by Sun Microsystems, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Fujitsu and Sun Microsystems
make no representations about the suitability for any purpose of the information in this document. This documentation
is provided as is without express or implied warranty.

1. Introduction

1.1. Scope

The internationalization in the X Window System Version 11, Release 5 (X11R5) provides a
common API which application developers can use to create portable internationalized programs
and to adapt them to the requirements of different native languages, local customs, and character
string encodings (this is called ‘““localization’). As one of its internationalization mechanisms
X11RS5 has defined a functional interface for internationalized text input, called XIM (X Input
Method).

When a client-server model is used with an IM (Input Method) implementation, a protocol must
be established between the client and the server. However, the protocol used to interface Input
Method Servers (IM Servers) with the Input Method libraries (IM libraries) to which applications
are linked was not addressed in X11R5. This led application developers to depend on vendor-
specific input methods, decreased the user’s choice of available input methods, and made it more
difficult for developers to create portable applications. This paper describes the Input Method Pro-
tocol developed for X11R6 to resolve the above problems and to address the requirements of
existing and future input methods.

The Input Method Protocol is independent from the transport layer used in communication
between the IM library and the IM Server. Thus, the input method protocol can be built on any
inter-process communication mechanism, such as TCP/IP or the X protocol.

In addition, the protocol provides for future extensions such as differing input model types.

1.2. Background

Text input is much more simple for some languages than others. English, for instance, uses an
alphabet of a manageable size, and input consists of pressing the corresponding key on a
keyboard, perhaps in combination with a shift key for capital letters or special characters.

Some languages have larger alphabets, or modifiers such as accents, which require the addition of
special key combinations in order to enter text. These input methods may require ‘‘dead-keys’ or
“compose-keys’ which, when followed by different combinations of key strokes, generate differ-
ent characters.

Text input for ideographic languages is much less simple. In these languages, characters repre-
sent actual objects rather than phonetic sounds used in pronouncing a word, and the number of
characters in these languages may continue to grow. In Japanese, for instance, most text input
methods involve entering characters in a phonetic alphabet, after which the input method searches
a dictionary for possible ideographic equivalents (of which there may be many). The input
method then presents the candidate characters for the user to choose from.

In Japanese, either Kana (phonetic symbols) or Roman letters are typed and then a region is
selected for conversion to Kanji. Several Kanji characters may have the same phonetic representa-
tion. If that is the case with the string entered, a menu of characters is presented and the user must
choose the appropriate one. If no choice is necessary or a preference has been established, the
input method does the substitution directly.

These complicated input methods must present state information (Status Area), text entry and edit
space (Preedit Area), and menu/choice presentations (Auxiliary Area). Much of the protocol
between the IM library and the IM Server involves managing these IM areas. Because of the size
and complexity of these input methods, and because of how widely they vary from one language
or locale to another, they are usually implemented as separate processes which can serve many
client processes on the same computer or network.

X Input Method Protocol X11, Release 6.1

1.3. Input Method Styles
X11 internationalization support includes the following four types of input method:

- on-the-spot: The client application is directed by the IM Server to display all
pre-edit data at the site of text insertion. The client registers call-
backs invoked by the input method during pre-editing.

- off-the-spot: The client application provides display windows for the pre-edit
data to the input method which displays into them directly.

- over-the-spot: The input method displays pre-edit data in a window which it
brings up directly over the text insertion position.

- root-window: The input method displays all pre-edit data in a separate area of
the screen in a window specific to the input method.

Client applications must choose from the available input methods supported by the IM Server and
provide the display areas and callbacks required by the input method.

2. Architecture

2.1. Implementation Model

Within the X Window System environment, the following two typical architectural models can be
used as an input method’s implementation model.

- Client/Server model: A separate process, the IM Server, processes input and handles
preediting, converting, and committing. The IM library within the
application, acting as client to the IM Server, simply receives the
committed string from the IM Server.

- Library model: All input is handled by the IM library within the application. The
event process is closed within the IM library and a separate IM
Server process may not be required.

Most languages which need complex preediting, such as Asian languages, are implemented using
the Client/Server IM model. Other languages which need only dead key or compose key process-
ing, such as European languages, are implemented using the Library model.

In this paper, we discuss mainly the Client/Server IM model and the protocol used in communica-
tion between the IM library (client) and the IM Server.

2.2. Structure of IM

When the client connects or disconnects to the IM Server, an open or close operation occurs
between the client and the IM Server.

The IM can be specified at the time of XOpenIM() by setting the locale of the client and a locale
modifier. Since the IM remembers the locale at the time of creation XOpenIM() can be called
multiple times (with the setting for the locale and the locale modifier changed) to support multiple
languages.

In addition, the supported IM type can be obtained using XGetIM Values().

The client usually holds multiple input (text) fields. Xlib provides a value type called the “Input
Context” (IC) to manage each individual input field. An IC can be created by specifying XIM
using XCreateIC(), and it can be destroyed using XDestroyIC().

The IC can specify the type of IM which is supported by XIM for each input field, so each input
field can handle a different type of IM.

X Input Method Protocol X11, Release 6.1

Most importantly information such as the committed string sent from the IM Server to the client,
is exchanged based on each IC.

Since each IC corresponds to an input field, the focused input field should be announced to the
IM Server using XSetICFocus(). (XUnsetICFocus() can also be used to change the focus.)

2.3. Event Handling Model

Existing input methods support either the FrontEnd method, the BackEnd method, or both. This
protocol specifically supports the BackEnd method as the default method, but also supports the
FrontEnd method as an optional IM Server extension.

The difference between the FrontEnd and BackEnd methods is in how events are delivered to the
IM Server. (Fig. 1)

2.3.1. BackEnd Method

In the BackEnd method, client window input events are always delivered to the IM library, which
then passes them to the IM Server. Events are handled serially in the order delivered, and there-
fore there is no synchronization problem between the IM library and the IM Server.

Using this method, the IM library forwards all KeyPress and KeyRelease events to the IM Server
(as required by the Event Flow Control model described in section 2.4. “Event Flow Control”),
and synchronizes with the IM Server (as described in section 4.16. “Filtering Events”).

2.3.2. FrontEnd Method

In the FrontEnd method, client window input events are delivered by the X server directly to both
the IM Server and the IM library. Therefore this method provides much better interactive perfor-
mance while preediting (particularly in cases such as when the IM Server is running locally on
the user’s workstation and the client application is running on another workstation over a rela-
tively slow network).

However, the FrontEnd model may have synchronization problems between the key events han-
dled in the IM Server and other events handled in the client, and these problems could possibly
cause the loss or duplication of key events. For this reason, the BackEnd method is the core
method supported, and the FrontEnd method is made available as an extension for performance
purposes. (Refer to Appendix A for more information.)

X Input Method Protocol X11, Release 6.1

... 0.056.513 4.737 10.45 ... 0.000i 3.9371 4.6871 0.000i

Application

Library

IM Server

BackEnd Method (Core) FrontEnd Method (Extension)

X Server

Fig.1 The Flow of Events

2.4. Event Flow Control

This protocol supports two event flow models for communication between the IM library and the
IM Server (Static and Dynamic).

Static Event Flow requires that input events always be sent to the IM Server from the client.

Dynamic Event Flow, however, requires only that those input events which need to be processed
(converted) be sent to the IM Server from the client.

For instance, in the case of inputing a combination of ASCII characters and Chinese characters,
ASCII characters do not need to be processed in the IM Server, so their key events do not have to
be sent to the IM Server. On the other hand, key events necessary for composing Chinese charac-
ters must be sent to the IM Server.

Thus, by adopting the Dynamic Event Flow, the number of requests among the X Server, the
client, and the IM Server is significantly reduced, and the number of context switches is also
reduced, resulting in improved performance. The IM Server can send XIM_REGIS-
TER_TRIGGERKEYS message in order to switch the event flow in the Dynamic Event Flow.

The protocol for this process is described in section 4.5. “Event Flow Control™.

3. Default Preconnection Convention

IM Servers are strongly encouraged to register their symbolic names as the ATOM names into the
IM Server directory property, XIM_SERVERS, on the root window of the screen_number 0.

X Input Method Protocol X11, Release 6.1

This property can contain a list of ATOMs, and the each ATOM represents each possible IM
Server. IM Server names are restricted to POSIX Portable Filename Character Set. To discover if
the IM Server is active, see if there is an owner for the selection with that atom name. To learn
the address of that IM Server, convert the selection target TRANSPORT, which will return a
string form of the transport address(es). To learn the supported locales of that IM Server, convert
the selection target LOCALES, which will return a set of names of the supported locales in the
syntax X/Open defines.

The basic semantics to determine the IM Server if there are multiple ATOMs are found in
XIM_SERVERS property, is first fit if the IM Server name is not given as a X modifier’s cate-
gory im.

The address information retrievable from the TRANSPORT target is a transport-specific name.

The preregistered formats for transport-specific names are listed in Appendix B. Additional
transport-specific names may be registered with X Consortium.

For environments that lack X connections, or for IM Servers which do not use the X Window
System, the preconnection convention with IM Server may be given outside the X Window sys-
tem (e.g. using a Name Service).

4. Protocol

The protocol described below uses the bi-directional synchronous/asynchronous
request/reply/error model and is specified using the same conventions outlined in Section 2 of the
core X Window System protocol [1]:

4.1. Basic Requests Packet Format
This section describes the requests that may be exchanged between the client and the IM Server.

The basic request packet header format is as follows.

major-opcode: CARDS8
minor-opcode: CARDS
length: CARDI16

The MAJOR-OPCODE specifies which core request or extension package this packet represents.
If the MAJOR-OPCODE corresponds to a core request, the MINOR-OPCODE contains 8 bits of
request-specific data. (If the MINOR-OPCODE is not used, it is 0.) Otherwise, the MAJOR-
OPCODE and the MINOR-OPCODE are specified by XIM_QUERY_EXTENSION message.
(Refer to 4.7. Query the supported extension protocol list.) The LENGTH field specifies the
number of 4 bytes elements following the header. If no additional data is followed by the header,
the LENGTH field will be 0.

4.2. Data Types
The following data types are used in the core X IM Server protocol:

BITMASKI16
CARDI6

BITMASK32
CARD32

PADDING FORMAT
Where N is some expression, and Pad(N) is the number of bytes needed to round N up to a

X Input Method Protocol X11, Release 6.1

multiple of four.
Pad(N) = (4 - (N mod 4)) mod 4

LPCE
1 A character from the4 X Portable Character Set in Latin Portable
Character Encoding

X Input Method Protocol
STRING
2 n length of string in bytes
n LISTofLPCE string
p unused, p=Pad(2+n)
STR
1 n length of name in bytes
n STRING8 name
XIMATTR
2 CARDI6 attribute ID (*1)
2 CARDI16 type of the value (*2)
2 n length of im-attribute
n STRING8 im-attribute
P unused, p = Pad(2+n)

The im-attribute argument specifies XIM values such as XNQueryInputStyle.

XICATTR
2 CARDI6 attribute ID (*1)
2 CARDI6 type of the value (*2)
2 n length of ic-attribute
n STRING8 ic-attribute
p unused, p = Pad(2+n)

X11, Release 6.1

(*1) XIMATTR and XICATTR are used during the setup stage and XIMATTRIBUTE and
XICATTRIBUTE are used after each attribute ID has been recognized by the IM Server

and the IM library.

(*2) The value types are defined as follows:

values data format
#0 Separator of NestedList — ----- (*3)
#1 byte data CARDS
#2 word data CARDI16
#3 long data CARD32
#4 char data STRINGS
#5 Window CARD32
#10 XIMStyles 2 n number of XIMStyle list
2 unused
n CARD32 XIMStyle list
#11 XRectangle 2 INT16 X
2 INT16 Y
2 CARDI16 width
2 CARDI16 height
#12 XPoint 2 INT16 X
2 INT16 Y
#13 XFontSet 2 n length of Base font name

X Input Method Protocol

X11, Release 6.1

values data format

n STRINGS Base font name list

p unused, p = Pad(2+n)
#15 XIMHotKeyTriggers 4 n number of XIMTRIG-

GERKEY list (*4)

n XIMTRIGGERKEY XIMHotkeyTrigger list
#16 XIMHotKeyState XIMHOTKEYSTATE HotKey processing state
#17 XIMStringConversion XIMSTRCONVTEXT
#18 XIMPreeditState XIMPREEDITSTATE
#19 XIMResetState XIMRESETSTATE

#x7fff NestedList

(*3) The IC value for the separator of NestedList is defined as follows,
#define XNSeparatorofNestedList ‘‘separatorofNestedList”
, which is registered in X Consortium and cannot be used for any other purpose.

(*4) LISTofFOO

A Type name of the form LISTof FOO means a counted list of elements of type
FOO. The size of the length field may vary (it is not necessarily the same size as a
FOO), and in some cases, it may be implicit.

XIMTRIGGERKEY
4 CARD32
4 CARD32
4 CARD32
ENCODINGINFO
2 n
n STRINGS
p
EXT
1 CARDS8
1 CARDS8
2 n
n STRINGS
p
XIMATTRIBUTE
2 CARDI16
2 n
n
p
XICATTRIBUTE
2 CARDI16
2 n

keysym
modifier
modifier mask

length of encoding info
encoding info
unused, p=Pad(2+n)

extension major-opcode
extension minor-opcode
length of extension name
extension name

unused, p = Pad(n)

attribute ID

value length

value

unused, p = Pad(n)

attribute ID
value length

X Input Method Protocol X11, Release 6.1

n value
p unused, p = Pad(n)

X Input Method Protocol

XIMSTRCONVTEXT
2 CARDI6

#x0000001

#x0000002

#x0000004

#x0000008

#x0000010

#x0000020

n

STRING8

NT BN

m
2

m LISTofXIMSTRCONVFEEDBACK

X11, Release 6.1

XIMStringConversionFeedback
XIMStringConversionLeftEdge
XIMStringConversionRightEdge
XIMStringConversionTopEdge
XIMStringConversionBottomEdge
XIMStringConversionConvealed
XIMStringConversionWrapped
byte length of the retrieved string
retrieved string

unused, p = Pad(n)

byte length of feedback array
unused

feedback array(*1)

(*1) This field is reserved for future use.

XIMFEEDBACK
4 CARD32
#x000001
#x000002
#x000004
#x000008
#x000010
#x000020
#x000040
#x000080
#x000100

XIMHOTKEYSTATE
4 CARD32
#x0000001
#x0000002

XIMPREEDITSTATE
4 CARD32
#x0000001
#x0000002

XIMRESETSTATE
4 CARD32
#x0000001
#x0000002

4.3. Error Notification

XIMFeedback
XIMReverse
XIMUnderline
XIMHighlight
XIMPrimary
XIMSecondary
XIMTertiary
XIMVisibleToForward
XIMVisibleToBackward
XIMVisibleCenter

XIMHotKeyState
XIMHotKeyStateON
XIMHotKeyStateOFF

XIMPreeditState
XIMPreeditEnable
XIMPreeditDisable

XIMResetState
XIMlInitialState
XIMPreserveState

Both the IM Server and the IM library return XIM_ERROR messages instead of the correspond-
ing reply messages if any errors occur during data processing.

At most one error is generated per request. If more than one error condition is encountered in pro-
cessing a request, the choice of which error is returned is implementation-dependent.

10

X Input Method Protocol

XIM_ERROR (IM Server «<— IM library)

2 CARDI16

2 CARDI6

2 BITMASK16
#0000
#0001
#0002

2 CARDI16

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#999

n

CARDI6

STRING8

T B NN

X11, Release 6.1

input-method-ID
input-context-ID

flag (*1)

Both Input-Method-ID and Input-Context-ID are invalid
Input-Method-ID is valid
Input-Context-ID is valid
Error Code

BadAlloc

BadStyle
BadClientWindow
BadFocusWindow
BadArea
BadSpotLocation
BadColormap

BadAtom

BadPixel

BadPixmap

BadName

BadCursor

BadProtocol
BadForeground
BadBackground
LocaleNotSupported
BadSomething (*2)

byte length of error detail.
type of error detail (*3)
error detail (*4)

unused, p = Pad(n)

(*1) Before an IM is created, both Input-Method-ID and Input-Context-ID are invalid.
Before an IC is created, only Input-Method-ID is valid. After that, both of Input-
Method-ID and Input-Context-ID are valid.

(*2) Unspecific error, for example ‘““language engine died”

(*3) This field is reserved for future use.

(*4) Vendor defined detail error message

4.4. Connection Establishment

XIM_CONNECT message requests to establish a connection over a mutually-understood virtual

stream.

XIM_CONNECT (IM library — IM Server)

1
#x42 MSB first
#x6¢ LSB first
1
2 CARD16

11

byte order

unused
client-major-protocol-version (*1)

X Input Method Protocol X11, Release 6.1

2 CARDI16 client-minor-protocol-version (*1)
2 CARD16 number of client-auth-protocol-names
n LISTofSTRING client-auth-protocol-names

(*1) Specify the version of IM Protocol that the client supports.

A client must send XIM_CONNECT message as the first message on the connection. The list
specifies the names of authentication protocols the sending IM Server is willing to perform. (If
the client need not authenticate, the list may be omited.)

XIM_AUTH_REQUIRED message is used to send the authentication protocol name and proto-
col-specific data.

XIM_AUTH_REQUIRED (IM library <—— IM Server)

1 CARDS8 auth-protocol-index

3 unused

2 n length of authentication data
2 unused

n <varies> data

P unused, p = Pad(n)

The auth-protocol is specified by an index into the list of names given in the XIM_CONNECT
or XIM_AUTH_SETUP message. Any protocol-specific data that might be required is also sent.

The IM library sends XIM_AUTH_REPLY message as the reply to XIM_AUTH_REQUIRED
message, if the IM Server is authenticated.

XIM_AUTH_REPLY (IM library — IM Server)

2 n length of authentication data
2 unused

2 n length of authentication data
2 unused

n <varies> data

p unused, p = Pad(n)

The auth data is specific to the authentication protocol in use.
XIM_AUTH_NEXT message requests to send more auth data.

XIM_AUTH_NEXT (IM library «<— IM Server)

2 n length of authentication data
2 unused

n <varies> data

p unused, p = Pad(n)

The auth data is specific to the authentication protocol in use.
The IM Server sends XIM_AUTH_SETUP message to authenticate the client.

XIM_AUTH_SETUP (IM Server — IM library)

2 CARD16 number of client-auth-protocol-names
2 unused

12

X Input Method Protocol X11, Release 6.1

n LISTofSTRING server-auth-protocol-names

The list specifies the names of authentication protocols the client is willing to perform.

XIM_AUTH_NG message requests to give up the connection.
XIM_AUTH_NG (IM library «<— IM Server)

The IM Server sends XIM_CONNECT_REPLY message as the reply to XIM_CONNECT or
XIM_AUTH_REQUIRED message.

XIM_CONNECT_REPLY (IM Server — IM library)

2 CARDI16 server-major-protocol-version (*1)
2 CARDI16 server-minor-protocol-version (*1)

(*1) Specify the version of IM Protocol that the IM Server supports. This document spec-
ifies major version one, minor version zero.

Here are the state diagrams for the client and the IM Server.

State transitions for the client

init_status:
Use authorization function — client_ask
Not use authorization function — client_no_check

start.
Send XIM_CONNECT
If client_ask — client_waitl
If client_no_check, client-auth-protocol-names may be omited — client_wait2

client_waitl:
Receive XIM_AUTH_REQUIRED — client_check
Receive <other> — client_ NG

client_check:
If no more auth needed, send XIM_AUTH_REPLY — client wait2
If good auth data, send XIM_AUTH_NEXT — client_waitl
If bad auth data, send XIM_AUTH_NG — give up on this protocol

client_wait2:
Receive XIM_CONNECT_REPLY — connect
Receive XIM_AUTH_SETUP — client_more
Receive XIM_AUTH_NEXT — client_more
Receive XIM_AUTH_NG — give up on this protocol
Receive <other> — client NG

client_more:
Send XIM_AUTH_REQUIRED — client_wait2

13

X Input Method Protocol X11, Release 6.1

client_NG:
Send XIM_AUTH_NG — give up on this protocol

State transitions for the IM Server

init-status:
Use authorization function — server_ask
Not use authorization function — server _no_check

start:
Receive XIM_CONNECT — start2
Receive <other> — server NG

start2:
If client_ask, send XIM_AUTH_REQUIRED — server_waitl
If client_no_check and server_ask, send XIM_AUTH_SETUP — server_wait2
If client_no_check and server_no_check, send XIM_CONNECT_REPLY — con-
nect

server_waitl:
Receive XIM_AUTH_REPLY — server2
Receive XIM_AUTH_NEXT — server_more
Receive <other> — server_ NG

server_more
Send XIM_AUTH_REQUIRED — server_waitl

server2
If server_ask, send XIM_AUTH_SETUP — server_wait2
If server_no_check, send XIM_CONNECT_REPLY — connect

server_wait2
Receive XIM_AUTH_REQUIRED — server_check
Receive <other> — server_ NG

server_check
If no more auth data, send XIM_CONNECT_REPLY — connect
If bad auth data, send XIM_AUTH_NG — give up on this protocol
If good auth data, send XIM_AUTH_NEXT — server_wait2

server_NG
Send XIM_AUTH_NG — give up on this protocol

XIM_DISCONNECT message requests to shutdown the connection over a mutually-understood

virtual stream.

XIM_DISCONNECT (IM library — IM Server)

14

X Input Method Protocol X11, Release 6.1

XIM_DISCONNECT is a synchronous request. The IM library should wait until it receives
either an XIM_DISCONNECT_REPLY packet or an XIM_ERROR packet.

XIM_DISCONNECT_REPLY (IM Server — IM library)
XIM_OPEN requests to establish a logical connection between the IM library and the IM Server.

XIM_OPEN (IM library — IM Server)

n STR locale name
p unused, p = Pad(n)

XIM_OPEN is a synchronous request. The IM library should wait until receiving either an
XIM_OPEN_REPLY packet or an XIM_ERROR packet.

XIM_OPEN_REPLY (IM Server — IM library)

2 CARDI16 input-method-1D

2 n byte length of IM attributes supported
n LISTofXIMATTR IM attributes supported

2 m byte length of IC attributes supported
2 CARD16 unused

m LISTofXICATTR IC attributes supported

XIM_OPEN_REPLY message returns all supported IM and IC attributes in LISTofXIMATTR
and LISTof XICATTR. These IM and IC attribute IDs are used to reduce the amount of data
which must be transferred via the network. In addition, this indicates to the IM library what kinds
of IM/IC attributes can be used in this session, and what types of data will be exchanged. This
allows the IM Server provider and application writer to support IM system enhancements with
new IM/IC attributes, without modifying Xlib. The IC value for the separator of NestedList must
be included in the LISTofXICATTR.

XIM_CLOSE message requests to shutdown the logical connection between the IM library and
the IM Server.

XIM_CLOSE (IM library — IM Server)

2 CARD16 input-method-ID
2 unused

XIM_CLOSE is a synchronous request. The IM library should wait until receiving either an
XIM_CLOSE_REPLY packet or an XIM_ERROR packet.

XIM_CLOSE_REPLY (IM Server — IM library)

2 CARDI16 input-method-ID
2 unused

4.5. Event Flow Control

An IM Server must send XIM_SET_EVENT_MASK message to the IM library in order for
events to be forwarded to the IM Server, since the IM library initially doesn’t forward any events
to the IM Server. In the protocol, the IM Server will specify masks of X events to be forwarded
and which need to be synchronized by the IM library.

15

X Input Method Protocol X11, Release 6.1

XIM_SET_EVENT_MASK (IM Server — IM library)

2 CARDI16 input-method-ID

2 CARDI16 input-context-ID

4 EVENTMASK forward-event-mask (*1)

4 EVENTMASK synchronous-event-mask (*2)

(*1) Specify all the events to be forwarded to the IM Server by the IM library.
(*2) Specify the events to be forwarded with synchronous flag on by the IM library.

XIM_SET_EVENT_MASK is an asynchronous request. The event masks are valid immedi-
ately after they are set until changed by another XIM_SET_EVENT_MASK message. If input-
context-ID is set to zero, the default value of the input-method-ID will be changed to the event
masks specified in the request. That value will be used for the IC’s which have no individual val-
ues.

Using the Dynamic Event Flow model, an IM Server sends XIM_REGISTER_TRIG-
GERKEYS message to the IM library before sending XIM_OPEN_REPLY message. Or the
IM library may suppose that the IM Server uses the Static Event Flow model.

XIM_REGISTER_TRIGGERKEYS (IM Server — IM library)

2 CARDI16 input-method-ID

2 unused

4 n byte length of on-keys
n LISTofXIMTRIGGERKEY on-keys list

4 m byte length of off-keys
m LISTofXIMTRIGGERKEY off-keys list

XIM_REGISTER_TRIGGERKEYS is an asynchronous request. The IM Server notifys the
IM library of on-keys and off-keys lists with this message.

The IM library notifys the IM Server with XIM_TRIGGER_NOTIFY message that a key event
matching either on-keys or off-keys has been occurred.

XIM_TRIGGER_NOTIFY (IM library — IM Server)

2 CARD16 input-method-ID
2 CARDI16 input-context-1D
4 CARD32 flag
#0 on-keys list
#1 off-keys list
4 CARD32 index of keys list
4 EVENTMASK client-select-event-mask (*1)

(*1) Specify the events currently selected by the IM library with XSelectInput.

XIM_TRIGGER_NOTIFY is a synchronous request. The IM library should wait until receiv-
ing either an XIM_TRIGGER_NOTIFY_REPLY packet or an XIM_ERROR packet.

XIM_TRIGGER_NOTIFY_REPLY (IM Server — IM library)
2 CARDI16 input-method-ID

16

X Input Method Protocol X11, Release 6.1

2 CARD16 input-context-ID

4.6. Encoding Negotiation

XIM_ENCODING_NEGOTIATION message requests to decide which encoding to be sent
across the wire. When the negotiation fails, the fallback default encoding is Portable Character
Encoding.

XIM_ENCODING_NEGOTIATION (IM library — IM Server).sp 6p

2 CARD16 input-method-ID

2 n byte length of encodings listed by name

n LISTofSTR list of encodings supported in the IM library.

p unused, p = Pad(n)

2 m byte length of encodings listed by detailed data
2 unused

m LISTofENCODINGINFO list of encordings supported in the IM library

The IM Server must choose one encoding from the list sent by the IM library. If index of the
encording determined is -1 to indicate that the negotiation is failed, the fallback default encoding
is used. The message must be issued after sending XIM_OPEN message via XOpenIM(). The
name of encoding may be registered with X Consortium.

XIM_ENCODING_NEGOTIATION is a synchronous request. The IM library should wait
until receiving either an XIM_ENCODING_NEGOTIATION_REPLY packet or an
XIM_ERROR packet.

XIM_ENCODING_NEGOTIATION_REPLY (IM Server — IM library)

2 CARDI16 input-method-ID
2 CARDI16 category of the encoding determined.
#0 name
#1 detailed data
2 INTI16 index of the encoding determinated.
2 unused

4.7. Query the supported extension protocol list

XIM_QUERY_EXTENSION message requests to query the IM extensions supported by the IM
Server to which the client is being connected.

XIM_QUERY_EXTENSION (IM library — IM Server)

2 CARD16 input-method-ID

2 n byte length of extensions supported by the IM library
n LISTofSTR extensions supported by the IM library

p unused, p = Pad(n)

An example of a supported extension is FrontEnd. The message must be issued after sending
XIM_OPEN message via XOpenIM().

If nis O, the IM library queries the IM Server for all extensions.

If n is not O, the IM library queries whether the IM Server supports the contents specified in the
list.

17

X Input Method Protocol X11, Release 6.1

If a client uses an extension request without previously having issued a XIM_QUERY_EXTEN-
SION message for that extension, the IM Server responds with a BadProtocol error. If the IM
Server encounters a request with an unknown MAJOR-OPCODE or MINOR-OPCODE, it
responds with a BadProtocol error.

XIM_QUERY_EXTENSION is a synchronous request. The IM library should wait until
receiving either an XIM_QUERY_EXTENSION_REPLY packet or an XIM_ERROR packet.

XIM_QUERY_EXTENSION_REPLY (IM Server — IM library)

2 CARD16 input-method-ID

2 n byte length of extensions supported by both the IM
library and the IM Server

n LISTofEXT list of extensions supported by both the IM library and
the IM Server

XIM_QUERY_EXTENSION_REPLY message returns the list of extensions supported by both
the IM library and the IM Server. If the list passed in XIM_QUERY_EXTENSION message is
NULL, the IM Server returns the full list of extensions supported by the IM Server. If the list is
not NULL, the IM Server returns the extensions in the list that are supported by the IM Server.

A zero-length string is not a valid extension name. The IM library should disregard any zero-
length strings that are returned in the extension list. The IM library does not use the requests
which are not supported by the IM Server.

4.8. Setting IM Values
XIM_SET_IM_VALUES requests to set attributes to the IM.

XIM_SET_IM_VALUES (IM library — IM Server)

2 CARD16 input-method-ID
2 n byte length of im-attribute
n LISTofXIMATTRIBUTE im-attributes

The im-attributes in XIM_SET IM_VALUES message are specified as a LISTofXIMAT-
TRIBUTE, specifying the attributes to be set. Attributes other than the ones returned by
XIM_OPEN_REPLY message should not be specified.

XIM_SET_IM_VALUES is a synchronous request. The IM library should wait until receiving
either an XIM_SET_IM_VALUES_REPLY packet or an XIM_ERROR packet, because it
must receive the error attribute if XIM_ERROR message is returned.

XIM_SET_IM_VALUES_REPLY (IM Server — IM library)

2 CARD16 input-method-ID
2 unused

XIM_SET_IM_VALUES_REPLY message returns the input-method-ID to distinguish replies
from multiple IMs.

4.9. Getting IM Values

XIM_GET_IM_VALUES requests to query IM values supported by the IM Server currently
being connected.

18

X Input Method Protocol X11, Release 6.1

XIM_GET_IM_VALUES (IM library — IM Server)

2 CARDI16 input-method-ID

2 n byte length of im-attribute-id
n LISTofCARD16 im-attribute-id

p unused, p=Pad(n)

XIM_GET_IM_VALUES is a synchronous request. The IM library should wait until it receives
either an XIM_GET_IM_VALUES_REPLY packet or an XIM_ERROR packet.

XIM_GET_IM_VALUES_REPLY (IM Server — IM library)

2 CARD16 input-method-ID
2 n byte length of im-attributes returned
n LISTofXIMATTRIBUTE im-attributes returned

The IM Server returns IM values with XIM_GET_IM_VALUES_REPLY message. The order
of the returned im-attribute values corresponds directly to that of the list passed with the
XIM_GET_IM_VALUES message.

4.10. Creating an IC
XIM_CREATE_IC message requests to create an IC.

XIM_CREATE_IC (IM library — IM Server)

2 CARDI16 input-method-ID
2 n byte length of ic-attributes
n LISTofXICATTRIBUTE ic-attributes

The input-context-id is specified by the IM Server to identify the client (IC). (It is not specified
by the client in XIM_CREATE_IC message.), and it should not be set to zero.

XIM_CREATE_IC is a synchronous request which returns the input-context-ID. The IM
library should wait until it receives either an XIM_CREATE_IC_REPLY packet or an
XIM_ERROR packet.

XIM_CREATE_IC_REPLY (IM Server — IM library)

2 CARD16 input-method-ID
2 CARD16 input-context-ID

4.11. Destroying the IC
XIM_DESTROY_IC message requests to destroy the IC.

XIM_DESTROY_IC (IM library — IM Server)

2 CARDI16 input-method-ID
2 CARDI16 input-context-ID

XIM_DESTROY_IC is a synchronous request. The IM library should not free its resources until
it receives an XIM_DESTROY_IC_REPLY message because XIM_DESTROY_IC message
may result in Callback packets such as XIM_PREEDIT_DRAW and XIM_PREEDIT_DONE.

XIM_DESTROY_IC_REPLY (IM Server — IM library)

19

X Input Method Protocol X11, Release 6.1

2 CARD16 input-method-ID
2 CARDI16 input-context-1D

4.12. Setting IC Values
XIM_SET_IC_VALUES messages requests to set attributes to the IC.

XIM_SET_IC_VALUES (IM library — IM Server)

2 CARD16 input-method-ID

2 CARD16 input-context-ID

2 n byte length of ic-attributes
2 unused

n LISTofXICATTRIBUTE ic-attributes

The ic-attributes in XIM_SET_IC_VALUES message are specified as a LISTofXICAT-
TRIBUTE, specifying the attributes to be set. Attributes other than the ones returned by
XIM_OPEN_REPLY message should not be specified.

XIM_SET _IC_VALUES is a synchronous request. The IM library should wait until receiving
either an XIM_SET_IC_VALUES_REPLY packet or an XIM_ERROR packet, because it
must receive the error attribute if XIM_ERROR message is returned.

XIM_SET_IC_VALUES_REPLY (IM Server — IM library)

2 CARDI16 input-method-1D
2 CARDI16 input-context-ID

4.13. Getting IC Values

XIM_GET_IC_VALUES message requests to query IC values supported by the IM Server cur-
rently being connected.

XIM_GET_IC_VALUES (IM library — IM Server)

2 CARDI16 input-method-ID

2 CARDI16 input-context-ID

2 n byte length of ic-attribute-id
n LISTofCARD16 ic-attribute-id

p unused, p=Pad(2+n)

In LISTofCARDI16, the appearance of the ic-attribute-id for the separator of NestedList shows the
end of the heading nested list.

XIM_GET_IC_VALUES is a synchronous request and returns each attribute with its values to
show the correspondence. The IM library should wait until receiving either an
XIM_GET