// -*- c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t -*- // Copyright (c) 2001-2009 XORP, Inc. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License, Version // 2.1, June 1999 as published by the Free Software Foundation. // Redistribution and/or modification of this program under the terms of // any other version of the GNU Lesser General Public License is not // permitted. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more details, // see the GNU Lesser General Public License, Version 2.1, a copy of // which can be found in the XORP LICENSE.lgpl file. // // XORP, Inc, 2953 Bunker Hill Lane, Suite 204, Santa Clara, CA 95054, USA; // http://xorp.net // $XORP: xorp/libxorp/ipv4.hh,v 1.43 2009/01/05 18:30:58 jtc Exp $ #ifndef __LIBXORP_IPV4_HH__ #define __LIBXORP_IPV4_HH__ #include "libxorp/xorp.h" #include "libxorp/exceptions.hh" #include "libxorp/range.hh" #include "libxorp/utils.hh" struct in_addr; /** * @short IPv4 address class * * The IPv4 address class is a trivial class for handling IPv4 * addresses and for performing operations on them such as printing * and masking. */ class IPv4 { public: typedef in_addr InAddrType; typedef sockaddr_in SockAddrType; public: /** * Default constructor * * The address value is initialized to INADDR_ANY. */ IPv4() { _addr = 0; } /** * Constructor from another IPv4 address. * * @param ipv4 the IPv4 address to assign the address value from. */ IPv4(const IPv4& ipv4) : _addr(ipv4._addr) {} /** * Constructor from an integer value. * * @param value 32-bit unsigned integer to assign to the address. */ explicit IPv4(uint32_t value) { _addr = value; } /** * Constructor from a (uint8_t *) memory pointer. * * @param from_uint8 the pointer to the memory to copy the address value * from. */ explicit IPv4(const uint8_t *from_uint8); /** * Constructor from in_addr structure. * * @param from_in_addr the storage to copy the address value from. */ IPv4(const in_addr& from_in_addr); /** * Constructor from sockaddr structure. * * @param sa sockaddr to construct IPv4 addr from. */ IPv4(const sockaddr& sa) throw (InvalidFamily); /** * Constructor from sockaddr_storage structure. * * @param ss sockaddr_storage to construct IPv4 addr from. */ IPv4(const sockaddr_storage& ss) throw (InvalidFamily); /** * Constructor from sockaddr_in structure. * * @param sin sockaddr_in to construct IPv4 addr from. */ IPv4(const sockaddr_in& sin) throw (InvalidFamily); /** * Constructor from a string. * * @param from_cstring C-style string in the IPv4 dotted decimal * human-readable format used for initialization. */ IPv4(const char *from_string) throw (InvalidString); /** * Copy the IPv4 raw address to specified memory location. * * @param: to_uint8 the pointer to the memory to copy the address to. * @return the number of copied octets. */ size_t copy_out(uint8_t *to_uint8) const; /** * Copy the IP4 raw address to an in_addr structure. * * @param to_in_addr the storage to copy the address to. * @return the number of copied octets. */ size_t copy_out(in_addr& to_in_addr) const; /** * Copy the IPv4 raw address to a sockaddr structure. * * Copy the raw address held within an IPv4 instance to an sockaddr * structure and assign appropriately and set fields within sockaddr * appropriately. * * @param to_sockaddr the storage to copy the address to. * @return the number of copied octets. */ size_t copy_out(sockaddr& to_sockaddr) const; /** * Copy the IPv4 raw address to a sockaddr_storage structure. * * Copy the raw address held within an IPv4 instance to an sockaddr_storage * structure and assign appropriately and set fields within * sockaddr_storage appropriately. * * @param to_sockaddr_storage the storage to copy the address to. * @return the number of copied octets. */ size_t copy_out(sockaddr_storage& to_sockaddr_storage) const; /** * Copy the IPv4 raw address to a sockaddr_in structure. * * Copy the raw address held within an IPv4 instance to an sockaddr_in * structure and assign appropriately and set fields within sockaddr_in * appropriately. * * @param to_sockaddr_in the storage to copy the address to. * @return the number of copied octets. */ size_t copy_out(sockaddr_in& to_sockaddr_in) const; /** * Copy a raw IPv4 address from specified memory location into IPv4 * structure. * * @param from_uint8 the memory address to copy the address from. * @return the number of copied octets. */ size_t copy_in(const uint8_t *from_uint8); /** * Copy a raw IPv4 address from a in_addr structure into IPv4 structure. * * @param from_in_addr the storage to copy the address from. * @return the number of copied octets. */ size_t copy_in(const in_addr& from_in_addr); /** * Copy a raw address from a sockaddr structure into IPv4 structure. * * Note that the address in the sockaddr structure must be of IPv4 address * family. * * @param from_sockaddr the storage to copy the address from. * @return the number of copied octets. */ size_t copy_in(const sockaddr& from_sockaddr) throw (InvalidFamily); /** * Copy a raw address from a sockaddr_storage structure into IPv4 * structure. * * Note that the address in the sockaddr_storage structure must be of * IPv4 address family. * * @param from_sockaddr_storage the storage to copy the address from. * @return the number of copied octets. */ size_t copy_in(const sockaddr_storage& from_sockaddr_storage) throw (InvalidFamily); /** * Copy a raw address from a sockaddr_in structure into IPv4 structure. * * Note that the address in the sockaddr structure must be of IPv4 address * family. * * @param from_sockaddr_in the storage to copy the address from. * @return the number of copied octets. */ size_t copy_in(const sockaddr_in& from_sockaddr_in) throw (InvalidFamily); /** * Bitwise-Negation Operator * * @return address complement (i.e., all 0s become 1s, and vice-versa). */ IPv4 operator~() const { return IPv4(~_addr); } /** * OR Operator * * @param other the right-hand operand to OR with. * @return bitwise OR of two addresses. */ IPv4 operator|(const IPv4& other) const { return IPv4(_addr | other._addr); } /** * AND Operator * * @param other the right-hand operand to AND with. * @return bitwise AND of two addresses. */ IPv4 operator&(const IPv4& other) const { return IPv4(_addr & other._addr); } /** * XOR Operator * * @return eXclusive-OR of two addresses. */ IPv4 operator^(const IPv4& other) const { return IPv4(_addr ^ other._addr); } /** * Operator << * * @param left_shift the number of bits to shift to the left. * @return IPv4 address that is shift bitwise to the left. */ IPv4 operator<<(uint32_t left_shift) const; /** * Operator >> * * @param right_shift the number of bits to shift to the right. * @return IPv4 address that is shift bitwise to the right. */ IPv4 operator>>(uint32_t right_shift) const; /** * Less-Than Operator * * @param other the right-hand operand to compare against. * @return true if the left-hand operand is numerically smaller than the * right-hand operand. */ bool operator<(const IPv4& other) const; /** * Equality Operator * * @param other the right-hand operand to compare against. * @return true if the left-hand operand is numerically same as the * right-hand operand. */ bool operator==(const IPv4& other) const { return (_addr == other._addr); } /** * Not-Equal Operator * * @param other the right-hand operand to compare against. * @return true if the left-hand operand is numerically not same as the * right-hand operand. */ bool operator!=(const IPv4& other) const { return (_addr != other._addr); } /** * Equality Operator for @ref IPv4 against @ref IPv4Range operand. * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand falls inside * the range defined by the right-hand operand. */ bool operator==(const IPv4Range& rhs) const { return (_addr >= rhs.low().addr() && _addr <= rhs.high().addr()); } /** * Not-equal Operator for @ref IPv4 against @ref IPv4Range operand. * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand falls outside * the range defined by the right-hand operand. */ bool operator!=(const IPv4Range& rhs) const { return (_addr < rhs.low().addr() || _addr > rhs.high().addr()); } /** * Less-than comparison for @ref IPv4 against @ref IPv4Range operand. * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand is bellow * the range defined by the right-hand operand. */ bool operator<(const IPv4Range& rhs) const { return (_addr < rhs.low().addr()); } /** * Less-than or equal comparison for @ref IPv4 against @ref IPv4Range * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand is bellow or within * the range defined by the right-hand operand. */ bool operator<=(const IPv4Range& rhs) const { return (_addr <= rhs.high().addr()); } /** * Greater-than comparison for @ref IPv4 against @ref IPv4Range operand. * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand is above * the range defined by the right-hand operand. */ bool operator>(const IPv4Range& rhs) const { return (_addr > rhs.high().addr()); } /** * Greater-than or equal comparison for @ref IPv4 against @ref IPv4Range * * @param rhs the right-hand @ref IPv4Range operand. * @return true if the value of the left-hand operand is above or within * the range defined by the right-hand operand. */ bool operator>=(const IPv4Range& rhs) const { return (_addr >= rhs.low().addr()); } /** * Decrement Operator * * The numerical value of this address is decremented by one. * However, if the address value before the decrement was all-0s, * after the decrement its value would be all-1s (i.e., it will * wrap-around). * * @return a reference to this address after it was decremented by one. */ IPv4& operator--(); /** * Increment Operator * * The numerical value of this address is incremented by one. * However, if the address value before the increment was all-1s, * after the increment its value would be all-0s (i.e., it will * wrap-around). * * @return a reference to this address after it was incremented by one. */ IPv4& operator++(); /** * Convert this address from binary form to presentation format. * * @return C++ string with the human-readable ASCII representation * of the address. */ string str() const; /** * Test if this address is numerically zero. * * @return true if the address is numerically zero. */ bool is_zero() const { return (_addr == 0); } /** * Test if this address is a valid unicast address. * * Note that the numerically zero address is excluded. * * @return true if the address is a valid unicast address. */ bool is_unicast() const; /** * Test if this address is a valid multicast address. * * @return true if the address is a valid multicast address. */ bool is_multicast() const; /** * Test if this address belongs to the IPv4 Class A * address space (0.0.0.0/1). * * @return true if the address is a valid Class A address. */ bool is_class_a() const; /** * Test if this address belongs to the IPv4 Class B * address space (128.0.0.0/2). * * @return true if the address is a valid Class B address. */ bool is_class_b() const; /** * Test if this address belongs to the IPv4 Class C * address space (192.0.0.0/3). * * @return true if the address is a valid Class C address. */ bool is_class_c() const; /** * Test if this address belongs to the IPv4 experimental Class E * address space (240.0.0.0/4). * * @return true if the address is a valid experimental address. */ bool is_experimental() const; /** * Test if this address is a valid link-local unicast address. * * @return true if the address is a valid unicast address, * and the scope of the address is link-local. */ bool is_linklocal_unicast() const; /** * Test if this address is a valid interface-local multicast address. * * Note that "node-local" multicast addresses were renamed * to "interface-local" by RFC-3513. * * @return true if the address is a valid multicast address, * and the scope of the address is interface-local. * XXX: in IPv4 there is no interface-local multicast scope, therefore * the return value is always false. */ bool is_interfacelocal_multicast() const; /** * Test if this address is a valid node-local multicast address. * * Note that "node-local" multicast addresses were renamed * to "interface-local" by RFC-3513. * This method is kept for backward compatibility. * * @return true if the address is a valid multicast address, * and the scope of the address is node-local. * XXX: in IPv4 there is no node-local multicast scope, therefore * the return value is always false. */ bool is_nodelocal_multicast() const { return is_interfacelocal_multicast(); } /** * Test if this address is a valid link-local multicast address. * * @return true if the address is a valid multicast address, * and the scope of the address is link-local. */ bool is_linklocal_multicast() const; /** * Test if this address is a valid loopback address. * * @return true if the address is a valid loopback address. */ bool is_loopback() const; /** * Get the address octet-size. * * Note that this is a static function and can be used without * a particular object. Example: * size_t my_size = IPv4::addr_bytelen(); * size_t my_size = ipv4.addr_bytelen(); * * @return address size in number of octets. */ static size_t addr_bytelen() { static_assert(sizeof(IPv4) == sizeof(uint32_t)); return sizeof(IPv4); } /** * Get the address bit-length. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_bitlen = IPv4::addr_bitlen(); * uint32_t my_bitlen = ipv4.addr_bitlen(); * * @return address size in number of bits. */ static uint32_t addr_bitlen() { return uint32_t(8 * sizeof(uint8_t) * addr_bytelen()); } /** * Get the mask length for the multicast base address. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_len = IPv4::ip_multicast_base_address_mask_len(); * uint32_t my_len = ipv4.ip_multicast_base_address_mask_len(); * * @return the multicast base address mask length for family AF_INET. */ static uint32_t ip_multicast_base_address_mask_len() { #define IP_MULTICAST_BASE_ADDRESS_MASK_LEN_IPV4 4 return (IP_MULTICAST_BASE_ADDRESS_MASK_LEN_IPV4); #undef IP_MULTICAST_BASE_ADDRESS_MASK_LEN_IPV4 } /** * Get the mask length for the Class A base address. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_len = IPv4::ip_class_a_base_address_mask_len(); * uint32_t my_len = ipv4.ip_class_a_base_address_mask_len(); * * @return the Class A base address mask length for family AF_INET. */ static uint32_t ip_class_a_base_address_mask_len() { #define IP_CLASS_A_BASE_ADDRESS_MASK_LEN_IPV4 1 return (IP_CLASS_A_BASE_ADDRESS_MASK_LEN_IPV4); #undef IP_CLASS_A_BASE_ADDRESS_MASK_LEN_IPV4 } /** * Get the mask length for the Class B base address. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_len = IPv4::ip_class_b_base_address_mask_len(); * uint32_t my_len = ipv4.ip_class_b_base_address_mask_len(); * * @return the Class B base address mask length for family AF_INET. */ static uint32_t ip_class_b_base_address_mask_len() { #define IP_CLASS_B_BASE_ADDRESS_MASK_LEN_IPV4 2 return (IP_CLASS_B_BASE_ADDRESS_MASK_LEN_IPV4); #undef IP_CLASS_B_BASE_ADDRESS_MASK_LEN_IPV4 } /** * Get the mask length for the Class C base address. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_len = IPv4::ip_class_c_base_address_mask_len(); * uint32_t my_len = ipv4.ip_class_c_base_address_mask_len(); * * @return the Class C base address mask length for family AF_INET. */ static uint32_t ip_class_c_base_address_mask_len() { #define IP_CLASS_C_BASE_ADDRESS_MASK_LEN_IPV4 3 return (IP_CLASS_C_BASE_ADDRESS_MASK_LEN_IPV4); #undef IP_CLASS_C_BASE_ADDRESS_MASK_LEN_IPV4 } /** * Get the mask length for the experimental base address. * * Note that this is a static function and can be used without * a particular object. Example: * uint32_t my_len = IPv4::ip_experimental_base_address_mask_len(); * uint32_t my_len = ipv4.ip_experimental_base_address_mask_len(); * * @return the experimental base address mask length for family AF_INET. */ static uint32_t ip_experimental_base_address_mask_len() { #define IP_EXPERIMENTAL_BASE_ADDRESS_MASK_LEN_IPV4 4 return (IP_EXPERIMENTAL_BASE_ADDRESS_MASK_LEN_IPV4); #undef IP_EXPERIMENTAL_BASE_ADDRESS_MASK_LEN_IPV4 } /** * Make an IPv4 mask prefix. * * @param mask_len the length of the mask to create. * @return a new IPv4 address that contains a mask of length @ref mask_len. */ static IPv4 make_prefix(uint32_t mask_len) throw (InvalidNetmaskLength); /** * Make an IPv4 address prefix. * * @param prefix_len the length of the mask of the prefix to create. * @return a new IPv4 address created by masking this address with a mask * of length @ref prefix_len. */ IPv4 mask_by_prefix_len(uint32_t mask_len) const throw (InvalidNetmaskLength) { return (*this) & make_prefix(mask_len); } /** * Get the mask length. * * @return the prefix length of the contiguous mask presumably stored * as an IPv4 address. */ uint32_t mask_len() const; /** * Get the uint32_t raw value of this address. * * @return the value of this IPv4 address as an unsigned 32-bit integer. */ uint32_t addr() const { return _addr; } /** * Set the address value. * * @param value unsigned 32-bit integer value to set the address to. */ void set_addr(uint32_t value) { _addr = value; } /** * Constant for address family */ enum { AF = AF_INET }; /** * Constant for IP protocol version */ enum { IPV = 4 }; /** * Get the address family. * * @return the address family of this address. */ static int af() { return AF; } /** * Get the IP protocol version. * * @return the IP protocol version of this address. */ static uint32_t ip_version() { return IPV; } /** * Get the human-readable string with the IP protocol version. * * @return the human-readable string with the IP protocol version of * this address. */ static const string& ip_version_str(); /** * Extract bits from an address. * * @param lsb starting bit position (from the right) to extract. * @param len number of bits to extract. The maximum value is 32. * @return the first @ref len bits starting from the rightmost * position @ref lsb. The returned bits are in host order. */ uint32_t bits(uint32_t lsb, uint32_t len) const; /** * Count the number of bits that are set in this address. * * @return the number of bits that are set in this address. */ uint32_t bit_count() const; /** * Count the number of leading zeroes in this address. * * @return the number of leading zeroes in this address. */ uint32_t leading_zero_count() const; /** * Pre-defined IPv4 address constants. */ static const IPv4& ZERO(int af = AF_INET); static const IPv4& ANY(int af = AF_INET); static const IPv4& ALL_ONES(int af = AF_INET); static const IPv4& LOOPBACK(int af = AF_INET); static const IPv4& MULTICAST_BASE(int af = AF_INET); static const IPv4& MULTICAST_ALL_SYSTEMS(int af = AF_INET); static const IPv4& MULTICAST_ALL_ROUTERS(int af = AF_INET); static const IPv4& DVMRP_ROUTERS(int af = AF_INET); static const IPv4& OSPFIGP_ROUTERS(int af = AF_INET); static const IPv4& OSPFIGP_DESIGNATED_ROUTERS(int af = AF_INET); static const IPv4& RIP2_ROUTERS(int af = AF_INET); static const IPv4& PIM_ROUTERS(int af = AF_INET); static const IPv4& SSM_ROUTERS(int af = AF_INET); static const IPv4& CLASS_A_BASE(int af = AF_INET); static const IPv4& CLASS_B_BASE(int af = AF_INET); static const IPv4& CLASS_C_BASE(int af = AF_INET); static const IPv4& EXPERIMENTAL_BASE(int af = AF_INET); /** * Number of bits in address as a constant. */ static const uint32_t ADDR_BITLEN = 32; /** * Number of bytes in address as a constant. */ static const uint32_t ADDR_BYTELEN = ADDR_BITLEN / 8; private: uint32_t _addr; // The address value (in network-order) }; inline uint32_t IPv4::bits(uint32_t lsb, uint32_t len) const { uint32_t mask = ~(0xffffffffU << len); if (len >= 32) mask = 0xffffffffU; // XXX: shifting with >= 32 bits is undefined return (ntohl(_addr) >> lsb) & mask; } inline uint32_t IPv4::bit_count() const { // XXX: no need for ntohl() return (xorp_bit_count_uint32(_addr)); } inline uint32_t IPv4::leading_zero_count() const { return (xorp_leading_zero_count_uint32(ntohl(_addr))); } struct IPv4Constants { static const IPv4 zero, any, all_ones, loopback, multicast_base, multicast_all_systems, multicast_all_routers, dvmrp_routers, ospfigp_routers, ospfigp_designated_routers, rip2_routers, pim_routers, ssm_routers, class_a_base, class_b_base, class_c_base, experimental_base; }; inline const IPv4& IPv4::ZERO(int) { return IPv4Constants::zero; } inline const IPv4& IPv4::ANY(int) { return IPv4Constants::any; } inline const IPv4& IPv4::ALL_ONES(int) { return IPv4Constants::all_ones; } inline const IPv4& IPv4::LOOPBACK(int) { return IPv4Constants::loopback; } inline const IPv4& IPv4::MULTICAST_BASE(int) { return IPv4Constants::multicast_base; } inline const IPv4& IPv4::MULTICAST_ALL_SYSTEMS(int) { return IPv4Constants::multicast_all_systems; } inline const IPv4& IPv4::MULTICAST_ALL_ROUTERS(int) { return IPv4Constants::multicast_all_routers; } inline const IPv4& IPv4::DVMRP_ROUTERS(int) { return IPv4Constants::dvmrp_routers; } inline const IPv4& IPv4::OSPFIGP_ROUTERS(int) { return IPv4Constants::ospfigp_routers; } inline const IPv4& IPv4::OSPFIGP_DESIGNATED_ROUTERS(int) { return IPv4Constants::ospfigp_designated_routers; } inline const IPv4& IPv4::RIP2_ROUTERS(int) { return IPv4Constants::rip2_routers; } inline const IPv4& IPv4::PIM_ROUTERS(int) { return IPv4Constants::pim_routers; } inline const IPv4& IPv4::SSM_ROUTERS(int) { return IPv4Constants::ssm_routers; } inline const IPv4& IPv4::CLASS_A_BASE(int) { return IPv4Constants::class_a_base; } inline const IPv4& IPv4::CLASS_B_BASE(int) { return IPv4Constants::class_b_base; } inline const IPv4& IPv4::CLASS_C_BASE(int) { return IPv4Constants::class_c_base; } inline const IPv4& IPv4::EXPERIMENTAL_BASE(int) { return IPv4Constants::experimental_base; } #endif // __LIBXORP_IPV4_HH__