
i

Manual for hyText 1.0: a hypertext library for wxWindows

Julian Smart
Artificial Intelligence Applications Institute

University of Edinburgh
EH1 1HN

April 1993

i

Contents

1. Introduction ...1
1.1. What is hyText?...1

1.2. Description ..1

1.3. File format ...1

2. hyText Class Reference..3
2.1. wxHTMappingStructure: wxObject ...3

2.2. wxHyperTextMapping: wxList...3

2.3. wxHyperTextWindow: wxCanvas ...4

2.4. wxTextChunk: wxObject...13

ii

Copyright notice

Copyright (c) 1993 Artificial Intelligence Applications Institute, The University of Edinburgh.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE
UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1

1. Introduction

1.1. What is hyText?

This manual describes in detail the operation of the hyText library. hyText is a general-purpose
hypertext library capable of displaying text with arbitrary blocks highlighted using different fonts
and colours; an example of a hyText application is wxHelp.

This document is incomplete at present, but will be expanded when time permits. Most
information is contained in the class reference section. The best way to use this library is to play
with wxHelp, browse through the class reference (also available on-line as hytext.xlp) and then
examine the wxHelp source (wxhelp.h and wxhelp.cc).

1.2. Description

The hyText class library is intended for wxWindows programmers who need hypertext
functionality, that is, the ability to display text with highlighted words and phrases, with the ability
to associate functionality with these blocks (such as viewing further information). A high-level API
(Application Programming Interface) is provided to make these kinds of application easy to write.

wxHelp is one such application. Other possible applications include transcript editors and text
output facilities within larger programs.

The main class in this library is wxHyperTextWindow, which is a type of canvas handles
repainting, stores text, and supplies most of the API for manipulating hypertext files.

Before files may be displayed, the programmer must define a mapping between the integer block
types and the font and colour styles which characterise text blocks. See the class reference for
details, and wxhelp.cc for examples.

1.3. File format

An hyText file (usual extension .xlp) consists of plain ASCII text, with blocks marked with codes
as in the following:

 \hy-X{Y}{Text}

where X is the block type and Y is the block identifier (unique within a file). The block type
indicates the style of the block (font, colour, section), where the mapping between type and style
is defined in a table (an instance of wxHyperTextMapping).

Note that blocks may be nested, in which case any styles in an inner block which have been the
assigned 'default' characteristic will inherit the style from the outer block.

At the end of a file there is an optional index section, for example:

\hyindex{
"wxWindows Help"
101 102 "wx.xlp"
114 115
117 118
120 121
123 124

CHAPTER 1

2

}

The first line indicates the start of the index, the second line is a title for the help file, subsequent
lines (until a closing curly bracket) indicate the link between two block identifiers, with an optional
filename after each pair of (long) integers.

This index is only stored and read by hyText, and must be accessed by the application in order to
allow the user to actually traverse links.

3

2. hyText Class Reference

The member functions are given in alphabetical order except for the constructors and destructors
which appear first.

2.1. wxHTMappingStructure: wxObject

This class is used for storing mapping information for a block type.

wxHTMappingStructure::wxHTMappingStructure

void wxHTMappingStructure(int blockType, int textSize, int textFamily, int textStyle,
int textWeight, char *textColour, char *name, int attribute = wxHYPER_NONE,
int visibility = TRUE)

Constructor.

wxHTMappingStructure::~wxHTMappingStructure

void ~wxHTMappingStructure(void)

Destructor.

wxHTMappingStructure::Copy

wxHTMappingStructure * Copy(void)

Copies the structure.

wxHTMappingStructure::GetFont

wxFont * GetFont(void)

Finds or creates a font matching the characteristics stored in this structure.

2.2. wxHyperTextMapping: wxList

An object of this class stores a list of block mapping structures. The programmer needs to call
wxHyperTextWindow::SetMapping with an object of this class, to specify how blocks are
interpreted; several instances of wxHyperTextWindow could make use of the same
wxHyperTextMapping.

wxHyperTextMapping::wxHyperTextMapping

void wxHyperTextMapping(void)

Constructor.

CHAPTER 2

4

wxHyperTextMapping::~wxHyperTextMapping

void ~wxHyperTextMapping(void)

Destructor.

wxHyperTextMapping::AddMapping

void AddMapping(int blockType, int textSize, int textFamily, int textStyle,
int textWeight, char * textColour, char *name, int attribute = -1,
int visibility = TRUE)

Adds a mapping for a block type. blockType must be unique, and any parameters which have the
default value (-1 for integers, NULL for strings) will be instantiated according to the context of the
block. That is, if a block is nested with another block, the outer block's characteristics are used to
fill in the default values.

See wxhelp.cc for examples.

wxHyperTextMapping::ClearMapping

void ClearMapping(void)

Deletes all members of the mapping list.

wxHyperTextMapping::FindByName

void FindByName(char *name)

Finds a mapping structure by name.

wxHyperTextMapping::GetMapping

Bool GetMapping(int blockType, int * textSize, int *textFamily, int *textStyle,
int *textWeight, char **textColour, char **name, int *attribute,
int *visibility)

Gets mapping values for a given block, returning FALSE if not found.

2.3. wxHyperTextWindow: wxCanvas

Objects of this class represent a canvas on which hypertext files are drawn. Most of the
functionality of the library is accessed through this class.

Note that the class defines behaviour for OnEvent and OnPaint.

wxHyperTextWindow::wxHyperTextWindow

CHAPTER 2

5

void wxHyperTextWindow(wxFrame *parent, int x, int y,int w, int h, int style)

Constructor; for details see wxCanvas in the wxWindows class reference.

wxHyperTextWindow::~wxHyperTextWindow

void ~wxHyperTextWindow(void)

Destructor.

wxHyperTextWindow::AddBlock

Bool AddBlock(int xStart, int yStart, int xEnd, int yEnd, int blockType, int blockId)

Adds a block from the first row/column to the second row/column, with given type and unique
identifier. The display will not change until the functions Compile and DisplayFileAt are called.

wxHyperTextWindow::ClearBlock

Bool ClearBlock(int blockId)

Clears the given block. The display will not change until the functions Compile and
DisplayFileAt are called.

wxHyperTextWindow::ClearFile

void ClearFile(void)

Clears the current hypertext file.

wxHyperTextWindow::Compile

void Compile(void)

Compiles the current hypertext file, that is, traverses the block structure of the file associating
actual fonts and other attributes to text chunks. This must be done before a file may be displayed,
and may also require the functions SaveSection and RestoreSectionto be called in order to
save and restore the current position in the file, since compilation destroys section pointers.

After a Compile (which is necessary after marking up or any operation which affects the display)
the file must be displayed withDisplayFileAt or RestoreSection.

wxHyperTextWindow::DiscardEdits

void DiscardEdits(void)

Discards any edits (just sets the internal modified flag to FALSE).

CHAPTER 2

6

wxHyperTextWindow::DisplayFile

void DisplayFile(void)

Draw the text at the point found by DisplayFileAt.

wxHyperTextWindow::DisplayFileAt

void DisplayFileAt(long blockId, Bool refresh = TRUE)

Positions the file at the given block, drawing the text only if refresh is TRUE. If blockId is -1, the
file is displayed at the top.

wxHyperTextWindow::DisplayFileAtTop

void DisplayFileAtTop(void)

Displays the file at the top (first section).

wxHyperTextWindow::DisplayNextSection

void DisplayNextSection(void)

Finds and displays the next section.

wxHyperTextWindow::DisplayPreviousSection

void DisplayPreviousSection(void)

Finds and displays the previous section.

wxHyperTextWindow::DrawOutline

void DrawOutline(float x1, float y1, float x2, float y2)

Draws a rectangular outline for rubber-banding using the given top-left and bottom-right
coordinates

wxHyperTextWindow::FindBlock

wxTextChunk * FindBlock(long blockId)

For a given block id, returns the text chunk at the start of the block.

wxHyperTextWindow::FindBlockForSection

CHAPTER 2

7

long FindBlockForSection(wxNode *sectionNode)

Pointers to blocks which mark sections are stored in the data membersections. This function
takes a node which is known to point to a text chunk marking a block, and returns the block id.
This is a fairly trivial function since it just gets the wxTextChunkfrom the node and returns its
block_id.

wxHyperTextWindow::FindChunkAtBlock

wxNode * FindChunkAtBlock(long blockId)

For a given block id, returns the position in the text chunks list of the first CHUNK_START_LINE
chunk before the block. A wxNodepointer is returned to allow the programmer to efficiently
traverse the text chunks list from this point. The data stored in this node is a wxTextChunk
object.

This function may not be very useful for programmers; it is mainly for internal use. Normally
functions returning and taking block ids are used for manipulating blocks.

wxHyperTextWindow::FindChunkAtLine

wxNode * FindChunkAtLine(long blockId)

For a given block id, returns the position in the text chunks list of the first chunk on the given line.
A wxNode pointer is returned to allow the programmer to efficiently traverse the text chunks list
from this point. The data stored in this node is a wxTextChunkobject.

This function may not be very useful for programmers; it is mainly for internal use. Normally
functions returning and taking block ids are used for manipulating blocks.

wxHyperTextWindow::FindPosition

Bool FindPosition(float mouseX, float mouseY, int *charPos, int *linePos, long *blockId)

Finds the character and line position of the given point, plus the id of the block found. Returns
FALSE if no character was found at this position.

wxHyperTextWindow::GenerateId

long GenerateId(void)

Generates a unique identifier for a block; may be overridden to supply a different generator.

wxHyperTextWindow::GetBlockText

void GetBlockText(char *buffer, int maxSize, long blockId)

void GetBlockText(char *buffer, int maxSize, wxNode *node, long blockId)

Gets the plain text bounded by the given block, stripping out any block codes. The second form

CHAPTER 2

8

is more efficient since it takes a node containing a pointer to the wxTextChunk, and doesn't have
to search for the block.

wxHyperTextWindow::GetBlockType

int GetBlockType(long blockId)

Gets the type of the given block.

wxHyperTextWindow::GetCurrentSectionNumber

int GetCurrentSectionNumber(void)

Gets the number of the currently-displayed section, starting from 1. Zero is returned if there are
no section markers.

wxHyperTextWindow::GetEditMode

Bool GetEditMode(void)

Returns TRUE if the hypertext window is editable.

wxHyperTextWindow::GetFirstSelection

long GetFirstSelection(void)

Gets the first block selected. Use GetNextSelection for subsequent blocks. Returns -1 if no more
selections.

wxHyperTextWindow::GetLinkTable

wxHashTable * GetLinkTable(void)

Returns the hypertext window's hash table used for storing links between blocks. Objects of type
HypertextItem are stored in the table, containing a destination filename and destination block id;
these objects must be indexed by the source block id, to store a link between a source block and
destination block.

This is only relevant if using the built-in index facility, rather than implementing your own index.
You need to put and get explicitly, and writing to a file will use this table for saving the index. For
example:

 if (GetLinkTable()->Get(block_id))
 MainFrame->SetStatusText("This block already linked!");
 else if (hySelection->block_id > -1)
 {
 GetLinkTable()->Put(block_id,
 new HypertextItem(hySelection->filename, hySelection->block_id));
 modified = TRUE;
 SelectBlock(hySelection->block_id, FALSE);

CHAPTER 2

9

 Compile();
 DisplayFile();
 }

wxHyperTextWindow::GetNextSelection

long GetNextSelection(void)

Gets the next block selected (use GetFirstSelection to start. Returns -1 if no more selections.

wxHyperTextWindow::GetOffsetPosition

Bool GetOffsetPosition(int line1, int char1,
 int offset, int *line2, int *char2)

Gets the line number and character position of the point which is offsetnumber of characters from
the given point. The position is returned in line2and char2.

Returns FALSE if it failed for any reason.

wxHyperTextWindow::GetTitle

char * GetTitle(void)

Returns NULL or the title (pointer to the hypertext window's local memory).

wxHyperTextWindow::GetSpanText

void GetSpanText(char *buffer, int maxSize,
 int line1, int char1, int line2, int char2,
 Bool convertNewLinesToSpaces = FALSE)

Gets the plain text bounded by two line/character positions, stripping out any block codes. The
final parameter allows the user to get text in a form that can be matched against a string with no
newlines; the newlines are converted to spaces. If this is FALSE, a ASCII code 10 will be inserted
for each newline.

wxHyperTextWindow::LineLength

int LineLength(intlineNo)

Returns the length of the specified line, or -1 if there is no such line.

wxHyperTextWindow::LoadFile

Bool LoadFile(char *file)

Loads the named file.

CHAPTER 2

10

wxHyperTextWindow::Modified

Bool Modified(void)

Returns true if the user has modified the text.

wxHyperTextWindow::NoLines

int NoLines(void)

Returns the current number of lines in the window.

wxHyperTextWindow::OnBeginDragLeft

void OnBeginDragLeft(float x, float y, long blockId, int keys)

Called when the user starts to left-drag. Overrideable.

wxHyperTextWindow::OnBeginDragRight

void OnBeginDragRight(float x, float y, long blockId, int keys)

Called when the user starts to right-drag. Overrideable.

wxHyperTextWindow::OnDragLeft

void OnDragLeft(Bool draw, float x, float y, long blockId, int keys)

Called when the user is in the middle of a drag operation; called once with draw equal to FALSE
and with x and y equal to the old values, then again with draw equal to TRUE and updatedx and y
(to allow erase/draw operations).

wxHyperTextWindow::OnDragRight

void OnDragRight(Bool draw, float x, float y, long blockId, int keys)

Called when the user is in the middle of a drag operation; called once with draw equal to FALSE
and with x and y equal to the old values, then again with draw equal to TRUE and updatedx and y
(to allow erase/draw operations).

wxHyperTextWindow::OnEndDragLeft

void OnEndDragLeft(float x, float y, long blockId, int keys)

Called when the user finishes left-dragging. Overrideable.

CHAPTER 2

11

wxHyperTextWindow::OnEndDragRight

void OnEndDragRight(float x, float y, long blockId, int keys)

Called when the user finishes right-dragging. Overrideable.

wxHyperTextWindow::OnLeftClick

void OnLeftClick(float x, float y, int charPos, int linePos, long blockId, int keys)

Called when the user left-clicks. Overrideable. The default behaviour when SHIFT is held down is
to select or deselect the mouse-over block.

wxHyperTextWindow::OnRightClick

void OnRightClick(float x, float y, int charPos, int linePos, long blockId, int keys)

Called when the user right-clicks. Overrideable.

wxHyperTextWindow::OnSelectBlock

void OnSelectBlock(long blockId, Bool select)

Called whenever a block is selected or deselected. Overridable.

wxHyperTextWindow::RestoreSection

void RestoreSection(void)

When a call is made to Compile, the current pointer to the current section becomes invalid, since
all sections are recalculated. You need to SaveSection before Compile, followed by
RestoreSection after the Compile, in order to restore the display to the previous state.

wxHyperTextWindow::SaveFile

Bool SaveFile(char *file)

Saves the hypertext file and index.

wxHyperTextWindow::SaveSection

void SaveSection(void)

When a call is made to Compile, the current pointer to the current section becomes invalid, since
all sections are recalculated. You need to call this before Compile, followed by RestoreSection
after the Compile, in order to restore the display to the previous state.

CHAPTER 2

12

wxHyperTextWindow::SelectBlock

void SelectBlock(wxTextChunk * block, Bool select = TRUE)

void SelectBlock(long blockId, Bool select = TRUE)

If select is TRUE, select the existing block, marking it in cyan (colour screens) or in inverse video
(monochrome screens). If select is FALSE, deselect the block. The first form is more efficient
since no search need be done for the block.

Note that Compile must be called before this call has any visible effect.

wxHyperTextWindow::SetBlockType

void SetBlockType(long blockId, int blockType)

Set the specified block to have the given type.

wxHyperTextWindow::SetEditMode

void SetEditMode(Bool editable)

Specifies whether the user should be able to mark up the text or not.

wxHyperTextWindow::SetIndexWriting

void SetIndexWriting(Bool indexWriting)

Specifies whether the built-in index and title should be written whenSaveFile is called. The
default is FALSE.

wxHyperTextWindow::SetMapping

void SetMapping(wxHyperTextMapping *mapping)

Specify the set of block mappings for this window; this must be called.

wxHyperTextWindow::SetMargins

void SetMargins(int left, int top)

Sets the margins to leave to the left and top of the canvas when displaying text.

wxHyperTextWindow::SetTitle

void SetTitle(char *title)

Sets the title of the hypertext window (allocates its own memory), to be written to the index file if

CHAPTER 2

13

index writing mode is on.

wxHyperTextWindow::StringSearch

Bool StringSearch(char *searchString, int *linePos,
 int *charPos, Bool ignoreCase = TRUE)

Search for a string from the given position. If the search matches, the values of the linePos and
charPos arguments will be set to the start of the matching string, and the function returns TRUE.

If there are no (more) matches, the functions returns FALSE.

If ignoreCase is TRUE, case is ignored, otherwise an exact match is required.

In this function, newlines in the hypertext are converted to spaces, increasing the chance of
matching a phrase across newline boundaries.

2.4. wxTextChunk: wxObject

This class is used for storing a text string which has all the same font and colour attributes. The
entire hypertext file is broken up into a list of these fragments, and the Compile function assigns
actual font and colour attributes to each chunk. A text chunk may also mark the start of a line
(each line has a special start line text chunk).

If a chunk represents the start of a block, the block_id is this block. For chunks within a block,
the block_id is always the id of the block currently in scope. A text chunk which marks the end of
a block has block_id set to the next block's id, but end_block set to the ending block's id. This is
because a text chunk contains the next fragment of text, and an end block chunk has two
purposes: to end one block, and continue another.

wxTextChunk::wxTextChunk

void wxTextChunk(int chunkType, int lineNumber, char *text, wxFont *font,
wxColour *colour, int blockType, long blockId, int attribute, Bool visibility)

Constructor. Used only internally.

wxTextChunk::~wxTextChunk

void ~wxTextChunk(void)

Destructor. Used only internally.

wxTextChunk::background_colour

wxColour * background_colour

The background colour allocated for the chunk by Compile.

wxTextChunk::block_id

CHAPTER 2

14

long block_id

Id of the block associated with the text in the chunk.

wxTextChunk::block_type

int block_type

Block type, an integer defined by the application using a wxHyperTextMappingobject.

wxTextChunk::chunk_type

int chunk_type

The chunk_type data member may be one of:

• CHUNK_START_BLOCK

• CHUNK_START_UNRECOGNIZED_BLOCK

• CHUNK_END_BLOCK

• CHUNK_START_BLOCK

wxTextChunk::colour

wxColour * colour

The foreground colour allocated for the chunk by Compile.

wxTextChunk::end_id

long end_id

Id of the block which has just ended, if the type of this chunk is CHUNK_END_BLOCK.block_id
is the id of block which has come into scope, and which starts with the text stored in the chunk.

wxTextChunk::font

wxFont * font

The font allocated for the chunk by Compile.

wxTextChunk::line_no

int line_no

CHAPTER 2

15

The line number for this chunk.

wxTextChunk::logical_op

int logical_op

The logical operator for this chunk.

wxTextChunk::selected

Bool selected

For chunks which start a block, TRUE if the block is currently selected.

wxTextChunk::special_attribute

int special_attribute

For a block-starting chunk, specifies one or more special attributes ORed together. There is
currently only one such attribute, wxHYPER_SECTION, which if present indicates that the block
starts a new section.

wxTextChunk::text

char * text

The actual text in the chunk.

wxTextChunk::visibility

Bool visibility

For a block-starting chunk, determines whether the chunk is visible.

