Music Box Programmer’s Guide

l' r_ -

Music Box Programmer’s Guide

Version 1.03.00 - 24/05/99 - 26/02/01
(C) Black Box <http://blackbox.r esour ce.cx/> 2001

Music Box Programmer’s Guide

Table of Contents

MUSIC BOX PROGRAMMER’S GUIDE......ccoooooooeceeeeessecceeeessssceeesssssseeeesssssseeesssssssesesssssscsssssssssessesssssseseesssssseeeses 1
=TI =0 = oT0) NG = N OO 2
INTRODUGCTION .eosseeeeeeeeeseeeesessssesesessseeesssssssesessessssessssessssessssessssessssessssesssssssssssssssssssssssssssesssssssssssessessssssesssssssssseess 3
(0@ 1Y 1 = 1= =S TSR 3
INCLUDING THE PLAYER AND MUSIC ..ooooooooeoeeeeeeessecessessssceessssssseesssssssseessssssssessssssssssssssssssesessesssssessssssssssses 3
INCBIN WITH RGBDS...... .ottt sttt s ete et e st e st s st s s te s assete s st s sesasesasesaeesseesseeaseeasessesasesasesatesaseeaeesaseeseesbsanseessesbesssesaresars 4
LIBBIN WITH FSAS ..ottt ettt e et s e e st e st e s te e s bessaessbesae st e sasesasesasesseesaeeaseesbesasesasessesasesasesatesaseeasesesesaessbsanseessesabessesaresares 4
MEMCOPY WITH RGBDS....... oottt ettt e s te s e te s e s tesas s aesatesaeesbesssessbesasesabesaesatesasesabesasesaeesessssessbssbeessesabessesaresars 5
IMIEMCOPY WITH ISAS ... oo cteiteeeiteet st st st st st st st e st e st sssessessesbesbesaesaesae s s et e st eseeseesseasesresaesas et et ansenbesbesbesbesresae e e ebeseeseesrsereereenean 5
INITIALIZATION (PLAYER # $0000)oosccceerreseseeereesseceessssssceeessssssceeesssssseeessessssessssssssceessssssseeeesssssscseessssssceeesesn 6
INITIALIZATIONWITH RGBDS...... oo ci ettt sttt e st e stesta s e s e sbesaesaesaestsssestestesassssssessesas st st antanbasbesbesbesbessesas st esteseeseesssarssseeneen 7
INITIALIZATIONWITH FSAS ..ottt sttt st s st s s ba s e s b e s bt sbesae st e e s s teseesaesbesbesbesaesassnsantanbasbesbesbesbesbesaesaeebeseeseesbseresbeeneen 7
STOP FUNCTION (PLAYER + $0003)
STOPWITH RGBDS
STOPWITH LSA S .ottt ettt ettt et e st e et easeeasesasesasesasessesasesseeasesaseeasesaseeasesasesasesaseaneeseeaase e sesaseeeesaseeasenesanneeseenaneensenareeres
PLAY FUNCTION (PLAYER + $000B)......cocccccrrressserersssssseesseesssesssssssssesssssssssssesssssssssssessssssssssssssssssesssssesssssssessssess 8
PLAY WITH RGBDS....oooseseeveseeeseeeeseessseesssssssseessssssssesssessssesss s sessessssssessss st sesess et sessssssssesssssssssessssssssesssessssssessesssse 8
L I T I o T ST N TR 8
DOUBLE AND QUATTRO PLAYER w..coooooooeseeeeeesssoeeeeesssssessssssssesssssssscesssesssseessessssessssssssesssssssseeessssssssesssssssesseess 9
DOUBLE PLAYERWITH RGBDS...... oottt ettt ettt sttt st s st s s e s s e e s bessae s sbesaesatesabesabesatassnesresesessbssabeessesabessesaresnrs
DOUBLE PLAYERWITH ISAS...............
QUATTRO PLAYERWITH RGBDS.
QUATTRO L I VY T TN T
SOUNDEFFECT PLAYER FUNCTION (PLAYER + $0000)........osssocerssseesssssesessseeessssesesssessesssessesssessessseesesses 12
SOUNDEFFECTSWITH RGBDS.......o ottt s s ae st e st et ssassbssbssbe s bt s besaesas et et e sbesbesbesbesaesae s st e sesaesbssbesbesresneenean 13
SOUNDEFFECTSWITH ISAS ...ttt sttt te e te st s b s b s e et e s b e s b s s b e s beebe s bt sae s Rt e st et e s besbesbesbesaesRe e st ebeseessssbesbeeresneenean 13
HOW TO BUY MUSIC BOX ooooseeeereessseesssssssessssssssesesssssessssessssssssessssssssessssesssssssssessssssssssesssssssesesssssssssessssssssesseen 14
[010) =24 =T 1 = SO 14

Music Box Programmer’s Guide

Introduction

First, before you start implementing the Music Box music and soundeffect player into your own
program, read carefully the Music Box User’s Guide. (Severa timesiif it is necessary.) You need
a good overview about its possibilities and nothing will be repeated in this booklet what is
already written in that one.

You will learn the pattern, frequency and other limits of the GameBoy and the musicsystem.
Together with the following possibilities. With Music Box player you can start the music at any
pattern, stop at the end or loop to a given pattern position (what isn’'t always the beginning), this
way as many subsongs can also be done as many the musician can squeeze into a Music Box file,
the music also can be stopped manually any time (and continued too, but only with the Music
Box 2 player) and soundeffects can be played any time on any given channel with any given
instrument and on any given frequency (with halfnote accuracy) with arpeggio, vibrato and
portamento.

Compilers

You also need a good programming knowledge and experience, especially about GameBoy.
Even if beginners can use this system eadily, it is really recommended. Also it is recommended
to study the examples available in this package and to have RGBDS, ISAS or GBDK compiler
with a good knowledge about it. GBDK is working with RGBDS perfectly and other compilers
aren't really recommended, so in this documentation we mostly refer to the RGBDS and ISAS
solutions (these are the best and most common GameBoy compilers). Anyway after
understanding this booklet and the examples, everybody can use the player in higher favourite
compiler too if it is different from these and if he/she knows it well. There are only minor
differences between different GameBoy compiler formats, brackets, label styles, org/section
usage, formats and limitations of hexadecimal, decimal and binary bytes, access of the hardware
registers and the format and possibility to include binary files or anything. (Only the worst
compilers are really strange with too many limitations.) So if you are programming in your own
compiler, you sure can convert the few lines into it, if you aren’t, let us recommend you the
freely available RGBDS, can be downloaded from <http://hjem.get2net.dk/surfsmurf/>.

Including The Player and Music

The Music Box 1 player available in this package is a precompiler binary program. There are
many reasons for this, the main reason is that this way the player can be used with absolutely
every GameBoy compiler, including the ones will be done in the future. (The package before
version 1.03 only had an RGBDS library, what wasn't useful with other compilers.)

The Music Box 2 package customers get when they purchase the system of course including the
possibility for the developers to compile the player to a similiar binary file everywhere into the
memory (ROM, SRAM, WRAM) and to set the player's memory usage everywhere (SRAM,
WRAM).

Anyway, the precompiled PLAYER.BIN can be found in the freely spreaded package is also
realy useful. It was compiled into the WRAM, into $d000, also using the memory immediately
after the player in the same area. It is extremely useful for the hobby programmers, it doesn’t
take memory from the home ROM bank as the player was available in the packages before

Music Box Programmer’s Guide

version 1.03. It is only using WRAM and that area where the WRAM has severa banks in the
GameBoy Color (especially useful with GameBoy Color), the WRAM bank with the player have
to be enabled only when the player functions are caled and the other times the whole WRAM
area can be used for anything else. When the player is precompiled into a ROM areg, it has to be
included to the original area where it is starting (for example if it was compiled into $3000, it
have to be included there with org or section), when the player is precompiled into RAM as in
this case, it can be included everywhere, but before using it, the program has to copy it manually
into its final place into the SRAM/WRAM.

Both RGBDS and ISAS can include binary files, therefore can include the player too, easily.
Some older compilers can only include sources. In these cases the binary files (player, music,
etc) have to be recompiled into a byte list what can be included into the assembler source (and
some assemblers can’t include, so cut and paste is needed into one source file) and can be
compiled later back into binary. In these cases you have to watch out, some compilers are
accepting only decima byte lists or strange hexadecimal prefixes and postfixes. There are
millions and millions of these bin2asm and bin2c tools available freely, every programmer has
some and can be programmed in a couple of minutes too, so probably it will not be a problem to
use the player with such alimited compilers. And if it is, we are recommending the free RGBDS.

Inchin with RGBDS

With RGBDS the binary include is redly easy. The following example is including the binary
player and the binary music file (XAYNE.SAV), directly taken from a card's SRAM,
demonstrating how easy this process is. Just the incbin command followed by the binary
filename in quotes. In this example both files get alabel too, so later we can refer to these.

pl ayer: i nchin "player. bin" ; the player as binary data

nmusi c: i nchin "xayne. sav" ; the nusic as binary data
; this is a sinple 8K file directly
; fromthe editor card's SRAM or
; saved by an enul ator as

;. musi cbox. sav

Libbin with ISAS

The same isn't more compicated with ISAS either. The only difference is the libbin command
and it is simply followed by the binary filename without any extras.

Music Box Programmer’s Guide

pl ayer: I'i bbi n pl ayer. bin

musi c: |'i bbi n xayne. sav

the player as binary data

the nmusic as binary data

this is a sinple 8K file directly
fromthe editor card s SRAM or
saved by an enul ator as

nmusi chox. sav

Memcopy with RGBDS

As it was stated above, to use the precompiled player available in this package, running at $d000
in WRAM, first you have to move it into its fina area before using it. This is an easy process
isn't needed in versions compiled into ROM with Music Box 2 available for customers. Anyway
for beginners here is the RGBDS solution to move the binary included player from anywhere to
$d000 into the WRAM. (If you want to use a different WRAM bank, set the bank before this.)
This routine is referring to the player label mentioned in the previous section, the destination
address ($d000) and the size of the player to move ($0421).

Id
Id
Id

upl oadl oop: I d

or

jr

hl , pl ayer
de, $d000
bc, $0421
a, [hl +]
[de], a
de

bc

a, b

c

nz, upl oadl oop

this routine will upload the $0421
| arge nusi cpl ayer into the WRAM
from $d000

note: you can use several WRAM
banks on GBC in this area, so
theorically this will not waste
menory, but always switch on the
pl ayer's WRAM bank before calling

pl ayer functions

Memcopy with ISAS

And the same for ISAS. The only differences are the bracket styles.

Music Box Programmer’s Guide

I d hl , pl ayer ; this routine will upload the $0421
I d de, $d000 ; large nusicplayer into the WRAM
Id bc, $0421 ; from $d000

upl oadl oop: I d a, (hl +) ; hote: you can use several WRAM
o] (de), a ; banks on GBC in this area, so
i nc de ; theorically this will not waste
dec bc ; menory, but always switch on the
I d a, b ; player's WRAM bank before calling
or c ; player functions
jr nz, upl oadl oop

Initialization (player + $0000)

When the music and the player are in their right places in ROM/SRAM/WRAM, the player isin
its right place where it was compiled to and the music anywhere, the player have to be initialized
first, of course as every player. Don't call any other player functions before doing this and do
this for every new music file!

This is aredly easy method. The Initialization function have to be called with three parameters.
The Initidization function is always the player + $0000 offset, in the case of the origina
example, $d000. (And before calling this or any other player function, the CPU needs an access
to both the music and player, so if any of these are on different ROM/SRAM/WRAM banks, the
player and music banks have to be switched on.)

The following parameters are needed in the following registers, before calling the player's
Initialization function at $d000:

HL = address of the music
A = beginning pattern position
B = pattern position to loop to after the end ($ff) command

HL is the music address, in our example smply the music label. A is the beginning pattern
position, what is usualy $00, but this way many short musics can be stored into one music file
and the second one can start for example at $10 and for that $10 can be stored here. B is the
pattern position to jump to when the pattern order sequencer is reaching an $ff command in the
first column, what is the loop/restart command ($fe can be aso used, what is the stop command,
in this case B register is ignored), this is usually the same as the A register, usualy the music is
looping back to its start, but composers can loop back to the main part of a music too, not to play
along intro part, etc.

Also note that this function is destroying the A, B and HL registers.

Music Box Programmer’s Guide

Initialization with RGBDS

As the whole process was mentioned in the previous lines, the initialization is really easy. In this
case both A and B are $00, this can be changed. The music label from the previous examples is
stored in HL asthat is the label of the music, $d000 is the place where the player is.

Id hl, nusi c ; load nusic address to hl

xor a ; |l oad begi nning pattern pos to a (0)
I d b, a ; load restart pattern pos to b (0)
cal | $d000 ; initialize the nusic

Initialization with ISAS
Thistime it is absolutely the same as the RGBDS version, anyway here it is.

Id hl, musi c ; load nusic address to hl

xor a ; | oad begi nning pattern pos to a (0)
I d b, a ; load restart pattern pos to b (0)
cal l $d000 ; initialize the nusic

Stop Function (player + $0003)

This function will stop the player, the music and the audio output immediately when it is called.
In the player available in the Music Box 1 package there is no Continue function, what can
continue the music after this. In the case of this player version, after the Stop function only the
Initialization function works from the player functions. So that is needed to restart the music,
maybe a different submusic or at a different position.

This is a redly easy to use function too. The Stop function have to be called without any
parameters. The Stop function is always the player + $0003 offset, in the case of the origina
example, $d003. (And before calling this or any other player function, the CPU needs an access
to both the music and player, so if any of these are on different ROM/SRAM/WRAM banks, the
player and music banks have to be switched on.)

Also note that this function is destroying the A register.

Stop with RGBDS

Asit was stated above, it is areally smple function, does only one thing, stopping the player, the
music, the soundeffects and the whole audio output. Only a function call, nothing more.

cal | $d003 ; stop the nusic

Stop with ISAS
Of course it istotally the same with ISAS too, see below.

cal | $d003 ; stop the nusic

Music Box Programmer’s Guide

Play Function (player + $0006)

This function is the soul of the system. Have to be called most often and does the rea playing.
After the initialization process, this function have to be caled periodically to update the music
and soundeffects. The period also depends on the player type (single/double/quattro =
1X/2X/4X). As most of the similiar systems, this is also tied to the screen refresh and the usual
musics are the singleplayer ones (using less CPU time per frame). Singleplayer means the Play
function have to be called only once at each screen refresh. It absolutely isn’t important where
the raster is when this is called, but that is important to be at the same position in every frame,
otherwise the timing wouldn’t be exact (sometimes faster, sometimes sower). A good method is
to tie a routine to the VBLANK interrupt what is calling the Play function every time the
VBLANK interrupt is generated and the music is playing. (This state can be stored in a byte for
the reason not to call the Play function when a music isn't initiaized.) As the VBLANK is an
important area, it’s better to use all the VBLANK time on VRAM and OAM transfers, another
good possihility is to use the player with the LYC interrupt. (What can be out from the
VBLANK too, the only important thing is to call the music at the same raster position what can
be reached easily with this.) Of course there is a less elegant method which doesn’t use interrupts
and wasting the battery, but it is the smallest and easiest to understand by the beginners, that’s
why this method is used in al the Music Box 1-2 examples, aso in this documentation. The
routine is checking the LY register ($ff44) and when it is indicating that the raster is in the given
ling, it is calling the Play function.

Thisis areally easy to use function too, even if its calling time is more critical and does a lot of
things, only a call command without any parameters, nothing more. The Play function is always
the player + $0006 offset, in the case of the original example, $d006. (And before calling this or
any other player function, the CPU needs an access to both the music and player, so if any of
these are on different ROM/SRAM/WRAM banks, the player and music banks have to be
switched on.)

Also note that this function is destroying the AF, BC, DE and HL registers.

Play with RGBDS

Thisis a possible (quick and dirty, battery eater) mainloop to play and update single speed music
and soundeffects. The most important part is the call $d006 part, the others are just timing.

mei nl oop: I d a, [$ff 44] ; wait for a raster position, in this
cp $00 ; case for the 000th position, but
jr nz, mai nl oop ; can be changed
cal | $d006 ; update the nusic in every frame at

; the same raster position

jr mai nl oop ; junp back to the main | oop

Play with ISAS
And the same with ISAS. The only differences are the bracket styles.

Music Box Programmer’s Guide

mai nl oop: I d a, ($ff44) ; wait for a raster position, in this
cp $00 ; case for the 000th position, but
jr nz, mai nl oop ; can be changed
cal | $d006 ; update the nusic in every frame at

; the same raster position

jr mai nl oop ; junmp back to the main | oop

Double and Quattro Player

This is another method for playing music, still using the same Play function. Double and Quattro
playing is useful to reach smoother and faster music, a common method on Commodore 64. Also
it is possible to make better timing in the music. It is nothing else than calling the music more
than once per screen refresh. Therefore it needs twice or four times as much CPU time as the
normal Single player caling method and using the CPU at many different areas on the screen.
These methods have too many disadvantages with these, not too many rastertricks and others can
be used and a really lot of CPU time is being wasted for the music, that’s why these methods are
really not recommended for games and demos, only mostly for standalone music presentations or
titlescreens and similiar areas when needed. When a music is composed with the 1X setting in
the Extra Menu of the Music Box tracker (and using .1X extension usually), that is singleplayer,
the 2X setting (and .2X extension) means double player and the 4X setting (and .4X extension)
means quattro player.

Double player works the same as the single (same initiaization, etc), but have to be called
exactly at every haf screen, quattro player have to be called exactly at every quarter screen.
(Both including VBLANK.) Always at the same raster position. Therefore VBLANK interrupt
cannot be used with these, only LYC with changing LYC destinations. Also the LY register
checking loop works here too, so we demonstrate this method. Still it isn't recommended as not
an elegant solution and wasting the battery, but it is the fastest, smallest and most easy to
understand method for the beginners.

And again, double and quattro players aren’t really recommended in games and demos, only
where CPU time and timing isn’'t an issue. Single speed is usually enough, so that is better.

Double Player with RGBDS

This is a possible (quick and dirty, battery eater) mainloop to play and update double speed
music and soundeffects.

Music Box Programmer’s Guide

Double Player with ISAS
And the same with ISAS. The only differences are the bracket styles.

Quattro Player with RGBDS

This is a possible (quick and dirty, battery eater) mainloop to play and update quattro speed
music and soundeffects.

10

Music Box Programmer’s Guide

Quattro Player with ISAS
And the same with ISAS. The only differences are the bracket styles.

11

Music Box Programmer’s Guide

mai nl oop: I d a, ($ff44) wait for a raster position, in this
cp $00 case for the 000th position, but
jr nz, mai nl oop can be changed
cal | $d006 updat e the nusic

subl oopl: o] a, ($ff44) wait for a raster position, in this
cp $27 case for the 039th position, but
jr nz, subl oopl can be changed
cal | $d006 updat e the nusic

subl oop2: I d a, ($ff44) wait for a raster position, in this
cp $4d case for the 077th position, but
jr nz, subl oop2 can be changed
cal | $d006 updat e the nusic

subl oop3: Id a, ($ff44) wait for a raster position, in this
cp $73 case for the 115th position, but
jr nz, subl oop3 can be changed
cal | $d006 updat e the nusic
jr mai nl oop ; junp back to the main | oop

Soundeffect Player Function (player + $0009)

Nor the Soundeffect Player function isn't really complicated, even if it has the most parameters
and a few things to keep in mind. This function can be called any time after the initialization,
while the music is playing with the Play function. When it is called with the right parameters, the
soundeffect will start to play. Soundeffects are the same as the instruments and are also using the
arpeggio, vibrato and portamento effects. It is recommended to play the soundeffects on an
empty channel what the music doesn’t use (otherwise soundeffects could interrupt some lead
parts and also some notes in the music could shut down longer looping soundeffects earlier than
it is needed). It is also recommended to have a null instrument to shut down the looping
soundeffects. Also note that if you aren't using any music and only soundeffects only on the
fourth channel (what doesn’'t have frequency, therefore no arpeggio, vibrato and portamento
effects and notes), the Play function isn’'t needed, in this (and only in this) case the Soundeffect
Player function can be used without the Play function.

The Soundeffect Player function have to be called with three parameters. The Soundeffect Player
function is aways the player + $0009 offset, in the case of the original example, $d009. (And
before calling this or any other player function, the CPU needs an access to both the music and
player, so if any of these are on different ROM/SRAM/WRAM banks, the player and music
banks have to be switched on.)

The following parameters are needed in the following registers, before calling the player's

12

Music Box Programmer’s Guide

Soundeffect Player function at $d009:

A = instrument number ($00 isthefirst, what is $01 in the tracker)
B = frequency (with half note accuracy: $00 = C-3, $01 = C#3)

C = channél number ($00 = channel 1, $01 = channel 2)

The above lines are speaking for themselves. It is really important to keep in mind that $00 is the
first instrument, what is numbered as $01 in the Music Box tracker and this way the instruments
from the tracker have to be subtracted in A register by one. The frequency is halfnote based
starting from C-3, what is $00, and increasing by one at every hafnote, these can be easily
looked up in the Music Box tracker. And the channel number is ranging from $00 to $03, where
$00 is the first channel, $01 is the second, etc. Also keep in mind here too (not just in the tracker)
to play back instruments designed for channel 3 only on channel 3, etc.

Also note that this function is destroying the AF, BC, DE and HL registers.

Soundeffects with RGBDS

The following example will play a D#5 ($1b) note (so will play on the frequency can be
caculated from this) with the instrument number $09 (what is $0a in the tracker) on the second
channel ($01). The Play function calling isn't demonstrated here, but of course that must be
called at every frame (or more often depending on the replay speed the music and soundeffects
were designed to), also the Initialization function is needed first, as aways.

Id a, $09 ; a = $09, instrument $0a
Id b, $1b ; b = $1b, note d#5

Id c, $01 ; € = $01, channel 2

cal | $d009 ; play the soundeffect

Soundeffects with ISAS
Of course it istotally the same with ISAS too, see below.

Id a, $09 ; a = $09, instrunent $0a
Id b, $1b ; b = $1b, note d#5

Id c, $01 ; ¢ = $01, channel 2

cal | $d009 ; play the soundeffect

13

Music Box Programmer’s Guide

How to Buy Music Box

Music Box 1 can be freely used in any non-commercia projects, including mp3 music, live
performance and free GameBoy demos and games. (In these cases al we need is your free work,
the credit for us and a donation if you can afford and you think we deserve for our work.)

It also can be licensed into commercia projects (games, demos and tools), now available only
together with Music Box 2. (So the package is including two trackers for one price, one of them
is running on the GameBoy, one of them on the PC, with many tools, converters, examples, etc.
Also with full and fast customer support and help. We answer every questions, make more
examples and help out with every problems on request. We even make minor modifications and
customizations to the system if some customers need these.) For details, contact us.

Another licensing possibility into commercia projects (games, demos and tools) is, to license
only the musicplayer for a lower price and hire us to make al the audio works in the project
including musics and soundeffects. Also contact us for details.

Copyright

Music Box, Music Box 1 and Music Box 2 trackers, players, fileformats, documentations and
additional related tools were done by, copyrighted by and property of Zsolt Minier and Ray
Nemes. All other mentioned names, copyrights and trademarks referred in this document are still
the property of their respective owners (including but not limited to Nintendo, GameBoy,
GameBoy Color, Super GameBoy, Wide Boy, GameBoy El Blacklight, Fasttracker 1, etc).
Modifying, reselling, disassembling of Music Box, Music Box 1, Music Box 2 trackers, players,
fileformats and additional related tools are forbidden without a special written agreement from
the authors. Music Box 1 package can be spreaded for free in (and only in) its original, unodified
form as it is available at our website: <http://blackbox.resource.cx/> in a zip file. Music Box 1
system can be freely used for noncommercia purposes in noncommercial projects until credit is
given to the authors. Other licenses are available from the authors.

Thanks to Adam Abraham, Akos Balézs, David S. Berkompas, Mr EMP, Collin van Ginkel,
Jukka-Pekka Luukkonen, Baldzs Oszvald, Martijn Reuvers, Attila Szoke, Péter Tihanyi and all
the forgotten people for their help.

Ray Nemes and Zsolt Minier, <blackbox@resource.cx>

14

