Python Reference Manual
Release 2.1

Guido van Rossum
Fred L. Drake, Jr., editor

April 15, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(©) 2000 BeOpen.com. All rights reserved.

Copyright(©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue, Santa Clara,
CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this software in source or binary
form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee a non-
exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative version, provided, however, that the BeOpen
Python License is retained in the Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO
AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR ANY IN-
CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of California, excluding
conflict of law provisions. Nothing in this License Agreement shall be deemed to create any relationship of agency, part-
nership, or joint venture between BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services of Licensee, or any third party.
As an exception, the “BeOpen Python” logos available at http://www.pythonlabs.com/logos.html may be used according to
the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions of this
License Agreement.

CNRI OPEN SOURCE GPL-COMPATIBLE LICENSE AGREEMENT

Python 1.6.1 is made available subject to the terms and conditions in CNRI's License Agreement. This Agreement to-
gether with Python 1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a han-
dle): 1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1013.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright(©) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING
MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for rapid applica-
tion development, as well as for use as a scripting or glue language to connect existing components together. Python’s
simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python
supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and
the extensive standard library are available in source or binary form without charge for all major platforms, and can be
freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are
described in th@ython Library Referencd-or an informal introduction to the language, seeRlthon Tutorial For

C or C++ programmers, two additional manuals exBxtending and Embedding the Python Interpratescribes the
high-level picture of how to write a Python extension module, andPytaon/C API Reference Manudéscribes the
interfaces available to CAS- programmers in detail.

CONTENTS

Introduction 1
1.1 Notation 1
Lexical analysis 3
2.1 LINeSIUCIUre o e e e 3
2.2 Othertokens. e 5
2.3 ldentifiersand keywords L e e 6
2.4 Literals. e e e 6
2.5 OPerators e e 9
2.6 Delimiters e e 10
Data model 11
3.1 Objects,valuesandtypes e 11
3.2 Thestandardtype hierarchy. 12
3.3 Specialmethodnames. e 17
Execution model 25
4.1 Code blocks, execution frames, and namespaces. o i e 25
4.2 EXCEPLiONS. e e e e e 26
Expressions 29
5.1 Arithmetic CONVersions e e e 29
5.2 AIOMS . . . o e e 29
5.3 Primaries. 32
5.4 The power operator. o o i i i i e 34
5.5 Unary arithmeticoperations 35
5.6 Binary arithmeticoperations. e 35
5.7 Shiftingoperations e e 36
5.8 Binary bit-wise operations e e e e 36
5.9 COMPAriSONS. . . . v v vt e e e 36
5.10 Boolean operations. e e e 37
5.11 Expressionlists. e 38
5.2 SUMMATY. o e e e e e e e e e e e e 38
Simple statements 41
6.1 Expressionstatements. e 41
6.2 Assertstatements. e e 41
6.3 Assignmentstatements. e e e 42
6.4 Thepass statement. e 44
6.5 Thedel statement e e 44

6.6 Theprint statement. e e e e 45
6.7 Thereturn statement. e e e e e e 45
6.8 Theraise statement. e 46
6.9 Thebreak statement. e 46
6.10 Thecontinue statement e e e e e e 46
6.11 Theimport statement. e e e e a7
6.12 Theglobal statement. e 48
6.13 Theexec statement. e e e e e 48
7 Compound statements 49
7.1 Theif statement e e 50
7.2 Thewhile statement. e 50
7.3 Thefor statement e e e e e e 50
7.4 Thetry statement e 51
7.5 Functiondefinitions. e e e e 52
7.6 Classdefinitions. e e 53
8 Top-level components 55
8.1 Complete Python programs o 0 i i e e e e e e 55
8.2 Fileinput. e 55
8.3 Interactive input. 56
8.4 EXPressioninpuL e 56
A Future statements and nested scopes 57
Al Future statements. L e e e e 57
A.2 __future __ — Future statementdefinitions oo 58
A.3 Nested SCOPES. v e e e 59
Index 61

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While | am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently
only one Python implementation in widespread use (although a second one now exists!), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore,
you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not documented here,
but in the separatython Library Referencdocument. A few built-in modules are mentioned when they interact in a
significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name: Ic_letter (Ic_letter | "_")*

Ic_letter: "a".."z

The first line says that aameis anlc _letter followed by a sequence of zero or mdee_letter s and under-
scores. Aric _letter in turn is any of the single charactew through ‘z’. (This rule is actually adhered to for
the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A verti¢glibarsed to separate
alternatives; it is the least binding operator in this notation. A gtameans zero or more repetitions of the preceding

item; likewise, a plus<€) means one or more repetitions, and a phrase enclosed in square bradkétméans zero

or one occurrences (in other words, the enclosed phrase is optional. drte+ operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) rargecafcharacters. A phrase between angular
brackets €...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion
of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read bygarser. Input to the parser is a streamtokens generated by thiexical analyzer This
chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bitscii character set for program text and string literals. 8-bit characters may be used in string
literals and comments but their interpretation is platform dependent; the proper way to insert 8-bit characters in string
literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is generally a supenset of

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(anAscli superset that covers most western languages that use the Latin alphabet), but it is possible that in the future
Unicode text editors will become common. These generally use the UTF-8 encoding, which is asnissuperset,

but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it
is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This
applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlobical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or mophysical linesby following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. NOr, this is the
Ascll LF (linefeed) character. On DOS/Windows, it is thecil sequence CR LF (return followed by linefeed). On
Macintosh, it is theascii CR (return) character.

2.1.3 Comments

A comment starts with a hash charactéy that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charagteas {ollows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = [Januari’, 'Februari’, 'Maart’, # These are the
"April’, 'Mer’, "Juni’, # Dutch names
"Juli’, ‘Augustus’, 'September’, # for the months

'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.6 Blanklines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as usedxj)y The total

number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be
split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may

4 Chapter 2. Lexical analysis

reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smalteusitbe one of the numbers occurring on

the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |
if len(l) <= 1:
return [l]
r=1]
for i in range(len(l)):
s = I[:i] + I[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + Xx)
return r

The following example shows various indentation errors:

def perm(l): # error; first line indented
for i in range(len(l)): # error: not indented
s = I[:i] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(I[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation offeturn r does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is heeded between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens eidgntifiers keywordsliterals,
operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.2. Other tokens 5

2.3 Identifiers and keywords

Identifiers (also referred to amme$ are described by the following lexical definitions:

identifier: (letter|"_") (letter|digit|"_")*
letter: lowercase | uppercase
lowercase: "a"."z"
uppercase: "A.Z"
digit: "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved wordkeywordsof the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass

def finally in print

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Form | Meaning | Notes
_* Not imported by from module import * * | (1)
__*__ | System-defined nhame

_* Class-private name mangling

(XXX need section references here.)
Note:

(1) The special identifier_*’ is used in the interactive interpreter to store the result of the last evaluation; it is stored
inthe __builtin ~ __ module. When not in interactive mode, ‘has no special meaning and is not defined.

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

6 Chapter 2. Lexical analysis

stringliteral: shortstring | longstring

shortstring: """ shortstringitem* | ™ shortstringitem* ™

longstring: "™ longstringitem* "™ | longstringitem* ™"
shortstringitem: shortstringchar | escapeseq

longstringitem: longstringchar | escapeseq

shortstringchar: <any ASCIl character except "\" or newline or the quote>
longstringchar: <any ASCIl character except "\">

escapeseq: "\" <any ASCIl character>

In plain English: String literals can be enclosed in matching single qub)es double quotes’(). They can also be
enclosed in matching groups of three single or double quotes (these are generally refertegl®@soted strings

The backslash\() character is used to escape characters that otherwise have a special meaning, such as newline,
backslash itself, or the quote character. String literals may optionally be prefixed with a letter ‘r’ or ‘R’; such strings
are calledaw stringsand use different rules for backslash escape sequences. A prefix of 'u’ or 'U’ makes the string a
Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and 1SO 10646.
Some additional escape sequences, described below, are available in Unicode strings.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.€’. @ithie)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning

\ newline Ignored

\ Backslash\()

\V Single quote’()

\" Double quote'()

\a Ascli Bell (BEL)

\b Ascll Backspace (BS)

\f Ascll Formfeed (FF)

\n Ascll Linefeed (LF)

\N{ namé Character namedamein the Unicode database (Unicode only)
\r Ascll Carriage Return (CR)

\t Ascll Horizontal Tab (TAB)

\U XxXxx Character with 16-bit hex valuexxx(Unicode only)

AU XXXXXXXX Character with 32-bit hex valuexxxxxUnicode only)
\v AscCIl Vertical Tab (VT)

\ 000 Ascll character with octal valueoo

\x hh AsclI character with hex valuleh

As in Standard C, up to three octal digits are accepted. However, exactly two hex digits are taken in hex escapes.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangjes piaekslash is left in the

string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When an ‘r’ or ‘R’ prefix is present, a character following a backslash is included in the string without chang#, and
backslashes are left in the stringror example, the string litera\n" consists of two characters: a backslash and

a lowercase ‘n’. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is avalid string literal consisting of two characters: a backslash and a double dilotejs not a value string

literal (even a raw string cannot end in an odd number of backslashes). Specifically, string cannot end in a

single backslaslfsince the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the stitag, a line continuation.

2.4. Literals 7

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed,
and their meaning is the same as their concatenation. Theis" 'world’ is equivalent td'helloworld"

This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long
lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles
for each component (even mixing raw strings and triple quoted strings).

2.4.3 Unicode literals

XXX explain more here...

2.4.4 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase-ikds actually an expression composed of the unary
operator * " and the literall.

2.4.5 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger: integer ("I"|"L")

integer: decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | "0"

octinteger: "0" octdigit+

hexinteger: "0" ("X"['X™) hexdigit+

nonzerodigit: "1

octdigit: "o

hexdigit: digit|"a"..."f"|"A"..."F"

Although both lower case ‘I' and upper case ‘L’ are allowed as sulffix for long integers, it is strongly recommended to
always use ‘L, since the letter ‘I’ looks too much like the digit ‘1’.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, using 32-bit arithmetic).
Plain octal and hexadecimal literals may be as large as 4294967295, but values larger than 2147483647 are converted
to a negative value by subtracting 4294967296. There is no limit for long integer literals apart from what can be stored

in available memory.

Some examples of plain and long integer literals:

8 Chapter 2. Lexical analysis

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber: pointfloat | exponentfloat

pointfloat: [intpart] fraction | intpart "."
exponentfloat: (nonzerodigit digit* | pointfloat) exponent
intpart: nonzerodigit digit* | "0"

fraction: " digit+

exponent: ("e"|"E") ["+"|"-"] digit+

Note that the integer part of a floating point number cannot look like an octal integer, though the exponent may look
like an octal literal but will always be interpreted using radix 10. For exampk010 ' is legal, while ‘07.1 ’ is

a syntax error. The allowed range of floating point literals is implementation-dependent. Some examples of floating
point literals:

3.14 10. .001 1e100 3.14e-10

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the operator
and the literall.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber: (floatnumber | intpart) ("j"|"J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.(8+4j) . Some examples of imaginary literals:

3.14j 10, 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ _ * *% / %
<< >> & | - -
< > <= >= == 1= <>

The comparison operatoss and!= are alternate spellings of the same operdtoris the preferred spellings> is
obsolescent.

2.5. Operators 9

2.6 Delimiters

The following tokens serve as delimiters in the grammar:;

() [] { }
;—: -= - *= = _%: ’ *k—
&= = = >>= <<=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

The following printingascii characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

@ $?

10 Chapter 2. Lexical analysis

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.)

Every object has an identity, a type and a value. An objedésatity never changes once it has been created; you

may think of it as the object’s address in memory. Tise'‘operator compares the identity of two objects; i@

function returns an integer representing its identity (currently implemented as its address). An tjgedssalso
unchangeable. It determines the operations that an object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. Tiyge() function returns an object’s type (which is an object itself).
Thevalueof some objects can change. Objects whose value can change are saidutable objects whose value is
unchangeable once they are created are cafletlitable (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object's mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable. (Imple-
mentation note: the current implementation uses a reference-counting scheme with (optional) delayed detection of
cyclicly linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. SedPiftbon Library Referenctor information on controlling the
collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception wittnya *...except ' statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, ustiag@ method. Programs are

strongly recommended to explicitly close such objects. The . finally ' statement provides a convenient way

to do this.

Some objects contain references to other objects; these are catitdners Examples of containers are tuples, lists

and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like

a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:

11

for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g.,afterl; b = 1 ', a andb may

or may not refer to the same object with the value one, depending on the implementation, bat aft¢;‘d =

[1 ', c andd are guaranteed to refer to two different, unique, newly created empty lists. (Note tkatd = [] ’

assigns the same object to batlandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define additional types.
Future versions of Python may add types to the type hierarchy (e.g., rational numbers, efficiently stored arrays of
integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future. There
are also some ‘generic’ special attributes, not listed with the individual objectaethods __ is a list of the method

names of a built-in object, if it has any;_members__ is a list of the data attribute names of a built-in object, if it

has any.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don't explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in nameNotimplemented . Numeric methods and rich comparison methods may return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . Itis used to indicate the presence of the ‘' syntax in a slice. Its truth value is
true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in
functions. Numeric objects are immutable; once created their value never changes. Python numbers are of
course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

Python distinguishes between integers and floating point numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are two types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the excepti@verflowError is raised. For the purpose of shift and
mask operations, integers are assumed to have a binary, 2's complement notation using 32 or more
bits, and hiding no bits from the user (i.e., all 4294967296 different bit patterns correspond to different
values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative hum-
bers are represented in a variant of 2's complement which gives the illusion of an infinite string of
sign bits extending to the left.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers and the least surprises when switching between the plain and
long integer domains. For any operation except left shift, if it yields a result in the plain integer domain
without causing overflow, it will yield the same result in the long integer domain or when using mixed
operands.

12 Chapter 3. Data model

Floating point numbers These represent machine-level double precision floating point numbers. You are at the
mercy of the underlying machine architecture and C implementation for the accepted range and handling
of overflow. Python does not support single-precision floating point numbers; the savings in CPU and
memory usage that are usually the reason for using these is dwarfed by the overhead of using objects in
Python, so there is no reason to complicate the language with two kinds of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision floating point
numbers. The same caveats apply as for floating point numbers. The real and imaginary value of a complex
numberz can be retrieved through the attributereal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in fiem)ionreturns
the number of items of a sequence. When the length of a sequemadbésindex set contains the numbers 0, 1,
...,n-1. Itemi of sequenca is selected by i] .

Sequences also support slicing:i: j] selects all items with indek such that <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts
at 0.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in fundhighs and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0-127 usually represent the correspondg®w! values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file.

(On systems whose native character set isasatil, strings may use EBCDIC in their internal rep-
resentation, provided the functiomtr() andord() implement a mapping betweexscil and
EBCDIC, and string comparison preservesAlseil order. Or perhaps someone can propose a better
rule?)

Unicode The items of a Unicode object are Unicode characters. A Unicode character is represented by a
Unicode object of one item and can hold a 16-bit value representing a Unicode ordinal. The built-in
functionsunichr() andord() convert between characters and nonnegative integers representing
the Unicode ordinals as defined in the Unicode Standard 3.0. Conversion from and to other encodings
are possible through the Unicode metlettode and the built-in functiorunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmendeinddelete) statements.
There is currently a single mutable sequence type:
Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list
of expressions in square brackets. (Note that there are no special cases needed to form lists of length
Oorl)

The extension modularray provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript afthticselects
the item indexed bk from the mapping; this can be used in expressions and as the target of assignments or
del statements. The built-in functidan() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

3.2. The standard type hierarchy 13

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values

not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared
by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for nu-
meric comparison: if two numbers compare equal (d.gnd1.0) then they can be used interchangeably

to index the same dictionary entry.

Dictionaries are mutable; they are created by {hé notation (see section 5.2.5, “Dictionary Dis-
plays”).

The extension moduletbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section 7.5,

“Function definitions”). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributesfunc _doc or __doc __ is the function’s documentation string, or None if unavail-
able;func _nameor __name__is the function's namdunc _defaults is atuple containing default
argument values for those arguments that have defaultdpoe if no arguments have a default value;
func _code is the code object representing the compiled function béalyc _globals is (a refer-

ence to) the dictionary that holds the function’s global variables — it defines the global namespace of the
module in which the function was definddnc _dict or __dict __ contains the namespace support-

ing arbitrary function attributesunc _closure is None or a tuple of cells that contain binding for the
function’s free variables.

Of these, func _code, func _defaults , func _closure , func _doc/__doc__, and

func _dict /__dict __ may be writable; the others can never be changed. Additional informa-
tion about a function’s definition can be retrieved from its code object; see the description of internal types
below.

In Python 2.1, thdunc _closure slot is alwaysNone unless nested scopes are enabled. (See the
appendix.)

User-defined methodsA user-defined method object combines a class, a class instander{e) and a user-

defined function.

Special read-only attributesm _self is the class instance objedtm _func is the function object;

im _class is the class that defined the method (which may be a base class of the class dhwhsettf

is an instance);._doc __ is the method’s documentation (sameims_func. __doc __); __name__

is the method name (sameias_func. __name__).

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

User-defined method objects are created in two ways: when getting an attribute of a class that is a user-
defined function object, or when getting an attribute of a class instance that is a user-defined function
object defined by the class of the instance. In the former case (class attribuie), thelf attribute is

None, and the method object is said to be unbound; in the latter case (instance attiibutsg)f is

the instance, and the method object is said to be bound. For instance Gafienclass which contains

a definition for a functiorf() , C.f does not yield the function objeét, rather, it yields an unbound
method objectnwherem.im _class is C, m.im _func isf() , andm.im _self is None. Whenx is
aCinstancex.f yields a bound method objentwherem.im _class is C, m.im _func isf() , and

m.im _self isx.

When an unbound user-defined method object is called, the underlying furiotiofufic) is called, with

the restriction that the first argument must be an instance of the properiotassdss) or of a derived

class thereof.

When a bound user-defined method object is called, the underlying funictiafi(nc) is called, inserting

the class instancéng _self) in front of the argument list. For instance, wh@is a class which contains

a definition for a functiori() , andx is an instance of, callingx.f(1) is equivalent to calling.f(x,

1).

14

Chapter 3. Data model

Note that the transformation from function object to (unbound or bound) method object happens each time
the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the
attribute to a local variable and call that local variable. Also notice that this transformation only happens

for user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; thwidy happens when the function is an attribute of the class.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tions arelen() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributetoc __ is the function’s
documentation string, dlone if unavailable;__name__ is the function’s name; _self __is setto
None (but see the next item).

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in methdidtiappend() ,
assumingist is a list object. In this case, the special read-only attributeelf __ is set to the object
denoted byist

ClassesClass objects are described below. When a class object is called, a new class instance (also described
below) is created and returned. This implies a call to the classisit __() method if it has one. Any
arguments are passed on to theinit __() method. If there is na_init __() method, the class
must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has a
__call __() methodxx(arguments) is a shorthand fox. __call __(arguments)

Modules Modules are imported by thienport statement (see section 6.11, “Tingport statement”). A module
object has a namespace implemented by a dictionary object (this is the dictionary referenced by ifjie s
attribute of functions defined in the module). Attribute references are translated to lookups in this dictionary,
e.g.,m.x is equivalent tan. __dict __["x"] . A module object does not contain the code object used to
initialize the module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’'s namespace dictionary, eagx, = 1’ is equivalent to
‘m.__dict __['x] =1 "

Special read-only attribute:_dict __ is the module’s namespace as a dictionary object.

Predefined (writable) attributes:_name__ is the module’s name;_doc __ is the module’s documentation
string, orNone if unavailable;__file __ is the pathname of the file from which the module was loaded, if

it was loaded from a file. The_file __ attribute is not present for C modules that are statically linked into

the interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared
library file.

ClassesClass objects are created by class definitions (see section 7.6, “Class definitions”). A class has a nhamespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g.,
‘C.xistranslated toC. __dict __["x"] ’. When the attribute name is not found there, the attribute search
continues in the base classes. The search is depth-first, left-to-right in the order of occurrence in the base
class list. When a class attribute reference would yield a user-defined function object, it is transformed into an
unbound user-defined method object (see above)inihelass attribute of this method object is the class in
which the function object was found, not necessarily the class for which the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes:_name__ is the class name;_module __ is the module name in which the class was
defined;__dict __isthe dictionary containing the class’s namespacdyases __is a tuple (possibly empty
or a singleton) containing the base classes, in the order of their occurrence in the base clasddist;_ is
the class’s documentation string, or None if undefined.

3.2. The standard type hierarchy 15

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace

Files

implemented as a dictionary which is the first place in which attribute references are searched. When an at-
tribute is not found there, and the instance’s class has an attribute by that name, the search continues with the
class attributes. If a class attribute is found that is a user-defined function object (and in no other case), it is
transformed into an unbound user-defined method object (see abovejn Thiass attribute of this method

object is the class in which the function object was found, not necessarily the class of the instance for which the
attribute reference was initiated. If no class attribute is found, and the object’s class hgetattr ()

method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr __ () or__delattr __() method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section 3.3, “Special method names.”

Special attributes: _dict __ is the attribute dictionary; class __ is the instance’s class.

A file object represents an open file. File objects are created bgpbe() built-in function, and also by
os.popen() ,os.fdopen() , and themakefile() method of socket objects (and perhaps by other func-
tions or methods provided by extension modules). The obggststdin ~ , sys.stdout andsys.stderr

are initialized to file objects corresponding to the interpreter’s standard input, output and error streams. See the
Python Library Referencir complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change

with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represehyte-compilecexecutable Python code, bytecode The difference be-
tween a code object and a function object is that the function object contains an explicit reference to the
function’s globals (the module in which it was defined), while a code object contains no context; also the
default argument values are stored in the function object, not in the code object (because they represent val-
ues calculated at run-time). Unlike function objects, code objects are immutable and contain no references
(directly or indirectly) to mutable objects.

Special read-only attributeso _name gives the function nameso _argcount is the number of posi-
tional arguments (including arguments with default values);nlocals is the number of local variables
used by the function (including argumentsy;_varnames is a tuple containing the names of the local
variables (starting with the argument names);_cellvars is a tuple containing the names of local
variables that are referenced by nested functioas;freevars is a tuple containing the names of local
variables that are neither local nor globaf _code is a string representing the sequence of bytecode
instructions;co _consts is a tuple containing the literals used by the bytecame; names is a tuple
containing the names used by the bytecode; filename s the filename from which the code was
compiled;co _firstlineno is the first line number of the functioep _Inotab is a string encoding
the mapping from byte code offsets to line numbers (for details see the source code of the interpreter);
co _stacksize s the required stack size (including local variables);_flags is an integer encoding

a number of flags for the interpreter.

Theco_cellvars andco_freevars are present in Python 2.1 when nested scopes are not enabled,
but the code itself does not use or create cells.

The following flag bits are defined fao _flags : bit 0x04 is set if the function uses th&drguments '

syntax to accept an arbitrary number of positional arguments)X8i8 is set if the function uses the
‘**keywords ' syntax to accept arbitrary keyword arguments; other bits are used internally or reserved
for future use; biDx10 is set if the function was compiled with nested scopes enabled. If a code object
represents a function, the first itemdn _consts is the documentation string of the function,done

if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).

Special read-only attribute$:_back is to the previous stack frame (towards the caller)None if this
is the bottom stack framd;_code is the code object being executed in this frarhejocals is the

16

Chapter 3. Data model

dictionary used to look up local variables;_globals is used for global variabled; _builtins is
used for built-in (intrinsic) name$;_restricted is a flag indicating whether the function is executing
in restricted execution modg;_lineno gives the line number arfd_lasti gives the precise instruction
(this is an index into the bytecode string of the code object).

Special writable attributed: _trace , if not None, is a function called at the start of each source code
line (this is used by the debuggef); exc _type ,f _exc _value ,f _exc _traceback representthe
most recent exception caught in this frame.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section 7ify “Tdtate-
ment.”) It is accessible asys.exc _traceback , and also as the third item of the tuple returned by
sys.exc _info() . The latter is the preferred interface, since it works correctly when the program is
using multiple threads. When the program contains no suitable handler, the stack trace is written (nicely
formatted) to the standard error stream; if the interpreter is interactive, it is also made available to the user
assys.last _traceback
Special read-only attributesb _next is the next level in the stack trace (towards the frame where the
exception occurred), ddone if there is no next leveltb _frame points to the execution frame of the
current leveltb _lineno gives the line number where the exception occurtied;lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number
of its frame object if the exception occurred itrg statement with no matching except clause or with a

finally clause.

Slice objects Slice objects are used to represent slices wheaended slice syntax used. This is a slice using
two colons, or multiple slices or ellipses separated by commasafi:gstep] ,afizj, kil , or
al..., iij]) . They are also created by the builtslice() ~ function.

Special read-only attributestart is the lower boundstop is the upper boundstep is the step value;
each isNone if omitted. These attributes can have any type.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. For instance, if a class defines a method named
__getitem __() , andx is an instance of this class, th&f] is equivalent tox. __getitem __(i) . (The re-

verse is not true — ik is a list objectx. __getitem __(i) is not equivalent tx[i] .) Except where mentioned,
attempts to execute an operation raise an exception when no appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of thiNdsl&hést

interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

__init __(self[, args...])
Called when the instance is created. The arguments are those passed to the class constructor expression. If

a base class has aninit __() method the derived classs_init __() method must explicitly call it
to ensure proper initialization of the base class part of the instance, BageClass. __init __(self,
[args..])

__del __(self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a
__del __() method, the derived class’s del __() method must explicitly call it to ensure proper deletion

3.3. Special method names 17

of the base class part of the instance. Note that it is possible (though not recommended!) fadehe ()

method to postpone destruction of the instance by creating a new reference to it. It may then be called at a later
time when this new reference is deleted. It is not guaranteed thdgl __() methods are called for objects

that still exist when the interpreter exits.

Programmer’s note: ‘del x ’doesn't directly callx. __del __() — the former decrements the reference
count forx by one, and the latter is only called when its reference count reaches zero. Some common situations
that may prevent the reference count of an object to go to zero include: circular references between objects (e.g.,
a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack
frame of a function that caught an exception (the traceback storggsiexc _traceback keeps the stack

frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive
mode (the traceback storedsgs.last _traceback keeps the stack frame alive). The first situation can

only be remedied by explicitly breaking the cycles; the latter two situations can be resolved by storing None in
sys.exc _traceback orsys.last _traceback

Warning: due to the precarious circumstances under whickdel __() methods are invoked, exceptions

that occur during their execution are ignored, and a warning is printesy/scstderr instead. Also,

when __del __() is invoked is response to a module being deleted (e.g., when execution of the program

is done), other globals referenced by thedel __() method may already have been deleted. For this rea-
son,__del __() methods should do the absolute minimum needed to maintain external invariants. Python 1.5
guarantees that globals whose name begins with a single underscore are deleted from their module before other
globals are deleted,; if no other references to such globals exist, this may help in assuring that imported modules
are still available at the time when thedel __() method is called.

__repr __(self)
Called by therepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that could
be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a
string of the form «...some useful descriptiorr’..should be returned. The return value must be a string object.

This is typically used for debugging, so it is important that the representation is information-rich and unambigu-
ous.

__str __(self)
Called by thestr() built-in function and by theprint statement to compute the “informal” string represen-
tation of an object. This differs from_repr __() in that it does not have to be a valid Python expression: a
more convenient or concise representation may be used instead. The return value must be a string object.

__It __(self, othe}

__le __(self, othe}

__eq__(self, othe}y

__ne__(self, othe}

__gt __(self, othey

__ge__(self, othe}
New inversion 2.1. These are the so-called “rich comparison” methods, and are called for comparison operators
in preference ta._cmp__() below. The correspondence between operator symbols and method names is as
follows: x<y callsx. __It __(y), x<=ycallsx. __le __(y), x==ycallsx. __eq__(y), xI=y andx<>y
callx. __ne__(y),x>ycallsx. __gt __(y), andx>=ycallsx. __ge__(y). These methods can return any
value, but if the comparison operator is used in a Boolean context, the return value should be interpretable as a
Boolean value, else BypeError will be raised. By convention) is used for false andl for true.

There are no reflected (swapped-argument) versions of these methods (to be used when the left argument does
not support the operation but the right argument does); rathdt, __() and__gt __() are each other’s
reflection,__le __() and__ge__() are each other’s reflection, andeq__() and__ne__() are their

own reflection.

Arguments to rich comparison methods are never coerced. A rich comparison method makotitonple-
mented if it does not implement the operation for a given pair of arguments.

__cmp__(self, othe}

18 Chapter 3. Data model

Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other , zero ifself == other , a positive integer ikelf > other . If no __cmp__()

operation is defined, class instances are compared by object identity (“address”). (Note: the restriction that
exceptions are not propagated bycmp__() has been removed in Python 1.5.)

__rcmp __(self, othe)
Changed in version 2.1: No longer supported.

__hash __(self)
Called for the key object for dictionary operations, and by the built-in fundtiash() . Should return a 32-
bit integer usable as a hash value for dictionary operations. The only required property is that objects which
compare equal have the same hash value; it is advised to somehow mix together (e.g., using exclusive or)
the hash values for the components of the object that also play a part in comparison of objects. If a class
does not define a_cmp__() method it should not define a_hash __() operation either; if it defines
__cmp__() butnot__hash __() itsinstances will not be usable as dictionary keys. If a class defines mutable
objects and implements.a_cmp__() method it should not implement_hash __() , since the dictionary
implementation requires that a key’s hash value is immutable (if the object’s hash value changes, it will be in
the wrong hash bucket).

__nonzero __(self)
Called to implement truth value testing; should retQrar 1. When this method is not defined, len __()
is called, if it is defined (see below). If a class defines neithden __() nor __nonzero __() , all its
instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances. For performance reasons, these methods are cached in the class object at class
definition time; therefore, they cannot be changed after the class definition is executed.

__getattr __(self, namg
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree feelf). nameis the attribute name. This method should return the (computed)

attribute value or raise afsttributeError exception.

Note that if the attribute is found through the normal mechanisngetattr __() is not called. (This is an
intentional asymmetry between getattr __() and__setattr __() .) This is done both for efficiency
reasons and because otherwisssetattr __() would have no way to access other attributes of the instance.

Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object).

__setattr __(self, name, valye
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary)ameis the attribute namesalueis the value to be assigned to it.

If __setattr __() wants to assign to an instance attribute, it should not simply exeseale ‘* name =
value ' — this would cause a recursive call to itself. Instead, it should insert the value in the dictionary of
instance attributes, e.gself. __dict __[namég = value '’

__delattr __(self, namg
Like __setattr __() but for attribute deletion instead of assignment. This should only be implemented if
‘del obj. naméis meaningful for the object.

3.3.3 Emulating callable objects

_call __(self[, args...])
Called when the instance is “called” as a function; if this method is defix@dgl, arg2, ...) is a

3.3. Special method names 19

shorthand fox. __call __(argl, arg2, ...)

3.3.4 Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set of methods is used
either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should
be the integerk for which 0 <= k < N whereN is the length of the sequence, or slice objects, which define

a range of items. (For backwards compatibility, the methadetslice __() (see below) can also be defined

to handle simple, but not extended slices.) It is also recommended that mappings provide the kethQds,

values() ,items() ,has_key() ,get() ,clear() ,copy() ,andupdate() behaving similar to those for
Python’s standard dictionary objects; mutable sequences should provide megpipedsl() , count() ,index()

insert() , pop() , remove() ,reverse() andsort() , like Python standard list objects. Finally, sequence
types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the
methods__add __() , __radd __() , __iadd __() , ——mul__() , _—_rmul __() and__imul __() described

below; they should not define_coerce __() or other numerical operators.

__len __(self)
Called to implement the built-in functiolen() . Should return the length of the object, an integerO.
Also, an object that doesn't define.anonzero __() method and whose_len __() method returns zero
is considered to be false in a Boolean context.

__getitem __(self, key
Called to implement evaluation eélf[key] . For sequence types, the accepted keys should be integers and slice
objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is
uptothe__getitem __() method. Ifkeyis of an inappropriate typ&ypeError may be raised,; if of a value
outside the set of indexes for the sequence (after any special interpretation of negative adeggyror
should be raisedNote: for loops expect that aindexError will be raised for illegal indexes to allow
proper detection of the end of the sequence.

__setitem __(self, key, valug
Called to implement assignment $elf| key} . Same note as for_getitem __() . This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for kepvahezs as for
the__getitem __() method.

__delitem __(self, key
Called to implement deletion cfelf[key] . Same note as far_getitem __() . This should only be im-
plemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for imgeypaiues as for the _getitem __()
method.

3.3.5 Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. Immutable sequences methods should
only define__getslice __() ; mutable sequences, should define all three three methods.

__getslice __(self,i,)
Deprecated since release 2.@&upport slice objects as parameters to_thgetitem __() method.

Called to implement evaluation sElff i: j] . The returned object should be of the same typsedfs Note that
missingi or j in the slice expression are replaced by zergy®.maxint , respectively. If negative indexes
are used in the slice, the length of the sequence is added to that index. If the instance does not implement

the __len __() method, amttributeError is raised. No guarantee is made that indexes adjusted this
way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice __() isfound, a slice object is created instead, and passedgetitem __() instead.

20 Chapter 3. Data model

__setslice __(self, i, j, sequenge

Called to implement assignmentdelf] i: j] . Same notes fdarandj as for__getslice __() .
This method is deprecated. If no setslice __() is found, a slice object is created instead, and passed to
__setitem __() instead.

__delslice __(self,i,)
Called to implement deletion ofelf[i: j]. Same notes for andj as for __getslice __() . This
method is deprecated. If no_delslice __() is found, a slice object is created instead, and passed to

__delitem __() instead.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is avail-
able. For slice operations involving extended slice notation, or in absence of the slice methgettem __() ,

__setitem __() or__delitem __() is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods getitem __() , __setitem __() and__delitem __() support slice objects as ar-
guments):

class MyClass:
def _ getitem__(self, index):
def __ setitem__(self, index, value):

def __ delitem__(self, index):

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def __ getslice__ (self, i,)):

return selffmax(0, i):max(0, j):]
def __ setslice__(self, i, j, seq):

selffmax(0, i):max(0, j):] = seq
def __ delslice__(self, i, j):

del selffmax(0, i):max(0, j)]

Note the calls tomax() ; these are actually necessary due to the handling of negative indices before the
__*slice __() methods are called. When negative indexes are used, thtem __() methods receive them as
provided, but the__*slice __() methods get a “cooked” form of the index values. For each negative index value,

the length of the sequence is added to the index before calling the method (which may still result in a negative index);
this is the customary handling of negative indexes by the built-in sequence types, andiiteen __() methods

are expected to do this as well. However, since they should already be doing that, negative indexes cannot be passed
in; they must be be constrained to the bounds of the sequence before being passed titehe __() methods.
Callingmax(0, i) conveniently returns the proper value.

The membership test operatons (andnot in) are normally implemented as iteration loop through the sequence.
However, sequence objects can supply the following special method with a more efficient implementation:

__contains __(self, iten)
Called to implement membership test operators. Should return titeenfs in self, false otherwise.

3.3. Special method names 21

3.3.6 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

__add __(self, othe}

__sub __(self, othe}

__mul __(self, othe)

__div __(self, othe}

__mod__(self, othe}

__divmod __(self, othe}

__pow__(self, othe[, modulo])

__lIshift __(self, othe}

__rshift __(self, othe}

__and __(self, othe}

__Xxor __(self, othe}

__or __(self, othe}
These functions are called to implement the binary arithmetic operatigns ¢, / , % divmod() , pow() ,
<<, >> & 7, |). Forinstance, to evaluate the expressien, wherex is an instance of a class that has
an__add__() method,x. __add__(y) is called. Note that _pow__() should be defined to accept an
optional third argument if the ternary version of the builpiow() function is to be supported.

__radd __(self, othe}

__rsub __(self, othe}

__rmul __(self, othe}

__rdiv __(self, othe}

__rmod __(self, othe)

__rdivmod __(self, othe}

__rpow __(self, othe}

__rlshift __(self, othe}

__rrshift __(self, othe}

__rand __(self, othe}

__rxor __(self, othe}

__ror __(self, othe}
These functions are called to implement the binary arithmetic operations ¢, / , % divmod() , pow() ,
<<, >> &, 7, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation. For instance, to evaluate the expressiherey is an instance of
a class that has an rsub __() method,y. __rsub __(x) is called. Note that ternargow() will not try
calling __rpow __() (the coercion rules would become too complicated).

__iadd __(self, othe}

__isub __(self, othe)

__imul __(self, othe}

__idiv __(self, othe}

__imod __(self, othe

__ipow __(self, othe{, modulo])

__ilshift __(self, othe}

__irshift __(self, othey

__iand __(self, othe}

__ixor __(self, othe)

__ior __(self, othe}
These methods are called to implement the augmented arithmetic operations (*=, /=, %= **= |, <<=,
>>= &=, "=, |=). These methods should attempt to do the operation in-place (mod#gifigand return the
result (which could be, but does not have togmdf). If a specific method is not defined, the augmented operation

22 Chapter 3. Data model

falls back to the normal methods. For instance, to evaluate the expressigrnwherex is an instance of a class
thathasan _iadd __() methodx. __iadd __(y) is called. Ifxis an instance of a class that does not define
a__iadd() methodx. __add__(y) andy. __radd __(x) are considered, as with the evaluatiorxef.

__neg__(self)
__pos __(self)
__abs __(self)
__invert __(self)

Called to implement the unary arithmetic operations#, abs() and™).

__complex __(self)

__int __(self)

__long __(self)

__float __(self)
Called to implement the built-in functiomomplex() ,int() ,long() , andfloat() . Should return a
value of the appropriate type.

__oct __(self)

__hex __(self)

Called to implement the built-in functiorct() andhex() . Should return a string value.

__coerce __(self, othe}

Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple contaglfrapdother
converted to a common numeric type,Mone if conversion is impossible. When the common type would be

the type ofother , it is sufficient to returrNone, since the interpreter will also ask the other object to attempt

a coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the
conversion to the other type here).

Coercion rules to evaluatex op y, the following steps are taken (whereop__() and__rop__() are the method

names corresponding tmp, e.g., ifopis ‘+’, __add__() and__radd __() are used). If an exception occurs at
any point, the evaluation is abandoned and exception handling takes over.

0. If x is a string object andp is the modulo operator (%), the string formatting operation is invoked and the
remaining steps are skipped.

1. If xis a class instance:

la. Ifxhas a__coerce __() method: replac& andy with the 2-tuple returned by. __coerce __(y);
skip to step 2 if the coercion returivone.

1b. If neitherx nory is a class instance after coercion, go to step 3.
lc. If xhas a method _op__() , returnx. __op__(y) ; otherwise, restorg andy to their value before step
la.
2. Ifyis a class instance:

2a. Ifyhas a__coerce __() method: replacg andx with the 2-tuple returned by. __coerce __(X);
skip to step 3 if the coercion returidne.

2b. If neitherx nory is a class instance after coercion, go to step 3.
2b. If y has a method _rop__() , returny. __r op__(X) ; otherwise, restor& andy to their value before
step 2a.
3. We only get here if neithectnory is a class instance.

3a. Ifopis ‘+' andxis a sequence, sequence concatenation is invoked.
3b. Ifopis **’ and one operand is a sequence and the other an integer, sequence repetition is invoked.

3c. Otherwise, both operands must be numbers; they are coerced to a common type if possible, and the numeric
operation is invoked for that type.

3.3. Special method names 23

24

CHAPTER
FOUR

Execution model

4.1 Code blocks, execution frames, and namespaces

A code blockis a piece of Python program text that can be executed as a unit, such as a module, a class definition or
a function body. Some code blocks (like modules) are normally executed only once, others (like function bodies) may
be executed many times. Code blocks may textually contain other code blocks. Code blocks may invoke other code
blocks (that may or may not be textually contained in them) as part of their execution, e.g., by invoking (calling) a
function.

The following are code blocks: A module is a code block. A function body is a code block. A class definition is a
code block. Each command typed interactively is a separate code block; a script file (a file given as standard input to
the interpreter or specified on the interpreter command line the first argument) is a code block; a script command (a
command specified on the interpreter command line with-ti@ption) is a code block. The file read by the built-in
functionexecfile() is a code block. The string argument passed to the built-in funetrai{) and to theexec
statement is a code block. And finally, the expression read and evaluated by the built-in fimutig is a code

block.

A code block is executed in an execution frame. éxecution frameontains some administrative information (used

for debugging), determines where and how execution continues after the code block’s execution has completed, and
(perhaps most importantly) defines two namespaces, the local and the global namespace, that affect execution of the
code block.

A namespacés a mapping from names (identifiers) to objects. A particular namespace may be referenced by more
than one execution frame, and from other places as well. Adding a name to a namespace Endilgch name

(to an object); changing the mapping of a name is cakdihding removing a name ianbinding Namespaces are
functionally equivalent to dictionaries (and often implemented as dictionaries).

Thelocal namespacef an execution frame determines the default place where names are defined and searched. The
global namespaceetermines the place where names listeglitbal statements are defined and searched, and where
names that are not bound anywhere in the current code block are searched.

Whether a name is local or global in a code block is determined by static inspection of the source text for the code
block: in the absence aflobal statements, a name that is bound anywhere in the code block is local in the entire
code block; all other names are considered global. dibbal statement forces global interpretation of selected
names throughout the code block. The following constructs bind names: formal parameters to fuimsports,
statements, class and function definitions (these bind the class or function name in the defining block), and targets that
are identifiers if occurring in an assignmeiat; loop header, or in the second position ofextept clause header.

Local names are searched only on the local namespace; global nhames are searched only in the global and built-in
namespaceé.

A target occurring in ael statement is also considered bound for this purpose (though the actual semantics are to

1If the code block containexec statements or the construcfrdm ...import * ™ the semantics of local names change: local name
lookup first searches the local namespace, then the global namespace and the built-in namespace.

25

“unbind” the name).

When a global name is not found in the global namespace, it is searched in the built-in namespace (which is actually
the global namespace of the modulebuiltin -~ __). The built-in namespace associated with the execution of a code
block is actually found by looking up the namebuiltins __ is its global namespace; this should be a dictionary

or a module (in the latter case its dictionary is used). Normally, thieuiltins ~ __ namespace is the dictionary of

the built-in module__builtin ~ __ (note: no ‘'s"); if it isn’t, restricted execution mode is in effect. When a name is

not found at all, &NameError exception is raised.

The following table lists the meaning of the local and global namespace for various types of code blocks. The names-
pace for a particular module is automatically created when the module is first imported (i.e., when it is loaded). Note
that in almost all cases, the global namespace is the namespace of the containing module — scopes in Python do not
nest!

Code block type Global namespace Local namespace Notes
Module n.s. for this module same as global
Script (file or command) n.s. for__main __ same as global (2)
Interactive command n.s. for__main __ same as global
Class definition global n.s. of containing block new n.s.
Function body global n.s. of containing block new n.s. (2)
String passed texec statement| global n.s. of containing block local n.s. of containing block (2), (3)
String passed teval() global n.s. of caller local n.s. of caller (2), (3)
File read byexecfile() global n.s. of caller local n.s. of caller (2), (3)
Expression read binput() global n.s. of caller local n.s. of caller

Notes:

n.s. meannamespace
(1) The main module for a script is always calledmain __; “the filename don'’t enter into it.”
(2) The global and local namespace for these can be overridden with optional extra arguments.

(3) Theexec statementand theval() andexecfile() functions have optional arguments to override the global
and local namespace. If only one namespace is specified, it is used for both.

The built-in functionsglobals() andlocals() returns a dictionary representing the current global and local
namespace, respectively. The effect of modifications to this dictionary on the namespace are uhdefined.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exceptionréggsedat the point where the error is detected; it mayhaedledby

the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with thise statement. Exception handlers are specified with the

try ... except statement. Thery ... finally statement specifies cleanup code which does not handle the
exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-
entering the offending piece of code from the top).

2The current implementations return the dictionary actually used to implement the namesgagp#for functions, where the optimizer may
cause the local namespace to be implemented differentlyipaats() returns a read-only dictionary.

26 Chapter 4. Execution model

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exceBigstasnExit

Exceptions are identified by string objects or class instances. Selection of a matching except clause is based on object
identity (i.e., two different string objects with the same value represent different exceptions!) For string exceptions,

theexcept clause must reference the same string object. For class exceptioesctp clause must reference
the same class or a base class of it.

When an exception is raised, an object (maiome) is passed as the exception’s “parameter” or “value”; this object
does not affect the selection of an exception handler, but is passed to the selected exception handler as additional
information. For class exceptions, this object must be an instance of the exception class being raised.

See also the description of thy statement in section 7.4 angise statement in section 6.8.

4.2. Exceptions 27

28

CHAPTER
FIVE

EXxpressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes:In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name: othername

and no semantics are given, the semantics of this formaofe are the same as fathername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules listed at the end of chapter 3. If both arguments are standard
numeric types, the following coercions are applied:

e If either argument is a complex number, the other is converted to complex;

e otherwise, if either argument is a floating point number, the other is converted to floating point;

e otherwise, if either argument is a long integer, the other is converted to long integer;

e otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms
is:

atom: identifier | literal | enclosure
enclosure: parenth_form|list_display|dict_display|string_conversion

29

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a name is assigned to
anywhere in a code block (even in unreachable code), and is not mentionglbbad statement in that code block,

then it refers to a local name throughout that code block. When it is not assigned to anywhere in the block, or when it
is assigned to but also explicitly listed irgbobal statement, it refers to a global name if one exists, else to a built-in
name (and this binding may dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raisesidameError exception.

Private name manglingwhen an identifier that textually occurs in a class definition begins with two or more under-
score characters and does not end in two or more underscores, it is consigenateanameof that class. Private

names are transformed to a longer form before code is generated for them. The transformation inserts the class name in
front of the name, with leading underscores removed, and a single underscore inserted in front of the class name. For
example, the identifier _spam occurring in a class namedéamwill be transformed ta Ham__spam. This transfor-

mation is independent of the syntactical context in which the identifier is used. If the transformed name is extremely
long (longer than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section 2.4 for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form: "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the
empty tuple, for which parenthesage required — allowing unparenthesized “nothing” in expressions would cause
ambiguities and allow common typos to pass uncaught.

1The Python interpreter provides a useful set of predefined built-in functions. Itis not recommended to reuse (hide) these names with self defined
objects. See thBython Library Referencir the descriptions of built-in functions and methods.

30 Chapter 5. Expressions

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display: "[" [listmaker] ""

listmaker: expression (list_for | ("," expression)* [*,"])
list_iter: list_for | list_if

list_for: "for" expression_list "in" testlist [list_iter]

list_if: "if* test [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and placed into the list object in that order. When a list comprehension is supplied, it consists of a single expression
followed by at least onéor clause and zero or mofer orif clauses. In this case, the elements of the new list

are those that would be produced by considering each dbtheor if clauses a block, nesting from left to right, and
evaluating the expression to produce a list element each time the innermost block is reached.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display: "{" [key_datum_list] "}"
key datum_list: key_datum ("," key_datum)* [","]
key_datum: expression ™" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used as a
key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in section 3.2. (To summarize,the key type should be hash-
able, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last datum (textually
rightmost in the display) stored for a given key value prevails.

5.2.6 String conversions
A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

mn nn

string_conversion: expression_list

A string conversion evaluates the contained expression list and converts the resulting object into a string according to
rules specific to its type.

If the object is a string, a numbeXone, or a tuple, list or dictionary containing only objects whose type is one of
these, the resulting string is a valid Python expression which can be passed to the built-in femalfpn to yield
an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that are
safe to print.)

It is illegal to attempt to convert recursive objects (e.g., lists or dictionaries that contain a reference to themselves,
directly or indirectly.)

5.2. Atoms 31

The built-in functionrepr() performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in funct&tn) performs a similar but more user-friendly conversion.

5.3 Primaries
Primaries represent the most tightly bound operations of the language. Their syntax is:

primary: atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref: primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance.
This object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the
exceptionAttributeError is raised. Otherwise, the type and value of the object produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription: primary "“[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a
tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the length of
the sequence is added to it (so that, xgl] selects the last item of.) The resulting value must be a nonnegative
integer less than the number of items in the sequence, and the subscription selects the item whose index is that value
(counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or del statements. The syntax for a slicing:

32 Chapter 5. Expressions

slicing: simple_slicing | extended_slicing
simple_slicing: primary "“[" short_slice "]"
extended_slicing: primary "“[" slice_list "]"

slice_list: slice_item ()" slice_item)* [","]
slice_item: expression | proper_slice | ellipsis
proper_slice: short_slice | long_slice
short_slice: [lower_bound] ™" [upper_bound]
long_slice: short_slice ":" [stride]
lower_bound: expression

upper_bound: expression

stride: expression

ellipsis: "L

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by
defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is
the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice
and no trailing comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zerogysittaxint , respectively. If

either bound is negative, the sequence’s length is added to it. The slicing now selects all items wiksinclexhai

<= k < jwherei andj are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i orj lie outside the range of valid indexes (such items don't exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is

a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in
Ellipsis object. The conversion of a proper slice is a slice object (see section 3.2) stadse, stop andstep

attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting
None for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call: primary "(" [argument_list [","]] ")"

argument_list: positional_arguments ["," keyword_arguments]
| keyword_arguments

positional_arguments: expression ("," expression)*

keyword_arguments: keyword_item ("," keyword_item)*

keyword_item: identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and certain class instances themselves are callable; extensions may define
additional callable object types). All argument expressions are evaluated before the call is attempted. Please refer to
section 7.5 for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as

5.3. Primaries 33

the first formal parameter name, the first slot is used, and so on). If the slot is already fillgukEBrror exception

is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expredéioreist fills the

slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is
specified, aypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter gigpeBrror exception is raised, unless
a formal parameter using the syntaidentifier "is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter ndiygeBrror exception is raised, unless a

formal parameter using the syntaxitientifier " is present; in this case, that formal parameter receives a dictio-

nary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

Formal parameters using the syntaiiéntifier " or ‘**jdentifier " cannot be used as positional argument

slots or as keyword argument names. Formal parameters using the Sguotalist) ' cannot be used as keyword
argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is
assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possiblgne, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—
a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the

code block will do is bind the formal parameters to the arguments; this is described in section 7.5. When the
code block executesraturn statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see fyhon Library Referenctor the descrip-
tions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance:The class must define a call __() method; the effect is then the same as if that method was
called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power: primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands).

The power operator has the same semantics as the bpittai) function, when called with two arguments: it yields

its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion; if the result is not expressible in that type (as in raising
an integer to a negative power, or a negative floating point number to a broken povgpe&rror exception is

raised.

34 Chapter 5. Expressions

5.5 Unary arithmetic operations
All unary arithmetic (and bit-wise) operations have the same priority:

u_expr: power | "-" u_expr | "+" u_expr | "™ u_expr

The unary- (minus) operator yields the negation of its numeric argument.
The unary+ (plus) operator yields its numeric argument unchanged.

The unary” (invert) operator yields the bit-wise inversion of its plain or long integer argument. The bit-wise inversion
of x is defined as(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper typygekrror exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr: u_expr | m_expr " u_expr
| m_expr "/" u_expr | m_expr "%" u_expr
a_expr: m_expr | aexpr "+" m_expr | aexpr "-" m_expr

The* (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers
are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a
negative repetition factor yields an empty sequence.

The/ (division) operator yields the quotient of its arguments. The numeric arguments are first converted to a common
type. Plain or long integer division yields an integer of the same type; the result is that of mathematical division with
the ‘floor’ function applied to the result. Division by zero raises ZieeoDivisionError exception.

The %(modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raisésr tiizivisionError exception.

The arguments may be floating point numbers, 8.44%0.7 equal€.34 (since3.14 equalsA*0.7 + 0.34)

The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of
the result is strictly smaller than the second operand.

The integer division and modulo operators are connected by the following identity: (X/y)*y + (x%y) . In-

teger division and modulo are also connected with the built-in funaiemod() : divmod(x, y) == (x/y,

x%y). These identities don't hold for floating point and complex numbers; there similar identities hold approxi-
mately wherex/y is replaced byfloor(x/y)) or floor(xly) - 1 (for floats)? or floor((x/y).real)

(for complex).

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

2|f x is very close to an exact integer multiple of y, it's possible floor(x/y) to be one larger thafx-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preservditmod(x,y)[0] * v + x % y be very close t.

5.5. Unary arithmetic operations 35

5.7 Shifting operations
The shifting operations have lower priority than the arithmetic operations:

shift_expr: a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument.

A right shift by n bits is defined as division bgow(2, n). A left shift by n bits is defined as multiplication with
pow(2, n); for plain integers there is no overflow check so in that case the operation drops bits and flips the sign if
the result is not less thggow(2,31) in absolute value. Negative shift counts raiséadueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and_expr: shift_expr | and_expr "&" shift_expr
XOr_expr: and_expr | xor_expr "™ and_expr
or_expr: xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.

The™ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The| operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions Bke< b < ¢ have the interpretation that is conventional
in mathematics:

comparison: or_expr (comp_operator or_expr)*
COmp_OperatOr: ll<ll|ll>ll|ll==ll|II>:II|II<=II|II<>H|H!=ll|llisll [llnotll]l[llnotn] llinll

Comparisons yield integer valuekfor true, 0 for false.

Comparisons can be chained arbitrarily, exgs y <= z isequivalenttx < y and y <= z , exceptthay is
evaluated only once (but in both cages not evaluated at all when < vy is found to be false).

Formally, ifa, b, ¢, ...,y, zare expressions arapa, oph, ...,opyare comparison operators, thempa b opb c..y
opy zis equivalent ta opa band b opb cand ...y opy z except that each expression is evaluated at most once.

Note thata opa b opb aoesn’t imply any kind of comparison betwegandc, so that, e.gx < y > z is perfectly
legal (though perhaps not pretty).

36 Chapter 5. Expressions

The forms<> and!= are equivalent; for consistency with &, is preferred; wheré= is mentioned below> is also
accepted. The> spelling is considered obsolescent.

The operators;, >, ==, >=, <=, and!= compare the values of two objects. The objects need not have the same type. If
both are numbers, they are coverted to a common type. Otherwise, objects of differeaitwgpesompare unequal,
and are ordered consistently but arbitrarily.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and &mel
not in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

e Numbers are compared arithmetically.

e Strings are compared lexicographically using the numeric equivalents (the result of the built-in fond{lon)
of their characters. Unicode and 8-bit strings are fully interoperable in this behavior.

e Tuples and lists are compared lexicographically using comparison of corresponding items.
e Mappings (dictionaries) are compared through lexicographic comparison of their sorted (key, valde) lists.
e Most other types compare unequal unless they are the same object; the choice whether one object is considered

smaller or larger than another one is made arbitrarily but consistently within one execution of a program.

The operatorén andnot in test for set membershipx in s evaluates to true ik is a member of the se and

false otherwisex not in sreturns the negation of in s. The set membership test has traditionally been bound

to sequences; an object is a member of a set if the set is a sequence and contains an element equal to that object.
However, it is possible for an object to support membership tests without being a sequence.

For the list and tuple typeg, in yis true if and only if there exists an indésuch thax == y[i] is true.

For the Unicode and string types,in yis true if and only if there exists an indésuch thak == y[i] is true. If

X is not a string or Unicode object of length aTypeError exception is raised.

For user-defined classes which define thecontains __() method, x in y is true if and only if
y. __contains __(X) istrue.

For user-defined classes which do not defineontains __() and do define__getitem __() ,x in yistrue

if and only if there is a non-negative integer indesuch thatx == y[i] , and all lower integer indices do not raise

IndexError exception. (If any other exception is raised, it is agmifraised that exception).
The operatonot in is defined to have the inverse true valuérof

The operatorss andis not test for object identityx is Yy is true if and only ifx andy are the same objeck
is not yyields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression: or_test | lambda_form

or_test: and_test | or_test "or" and_test
and_test: not_test | and_test "and" not_test
not_test: comparison | "not" not_test

lambda_form: "lambda" [parameter_list]: expression

3This is expensive since it requires sorting the keys first, but it is about the only sensible definition. An earlier version of Python compared
dictionaries by identity only, but this caused surprises because people expected to be able to test a dictionary for emptiness by corfiparing it to

5.10. Boolean operations 37

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as fal$¢one, numeric zero of all types, empty sequences (strings, tuples and lists), and empty
mappings (dictionaries). All other values are interpreted as true.

The operatonot yields1 if its argument is false) otherwise.

The expressiorn and Yy first evaluates; if x is false, its value is returned; otherwisggs evaluated and the resulting
value is returned.

The expressiont or Y first evaluates; if x is true, its value is returned; otherwiseis evaluated and the resulting
value is returned.

(Note that neitheand nor or restrict the value and type they returnGandl, but rather return the last evaluated
argument. This is sometimes useful, e.gs i6 a string that should be replaced by a default value if it is empty, the
expressiors or 'foo’ vyields the desired value. Becausat has to invent a value anyway, it does not bother to
return a value of the same type as its argument, soreg.,foo’ yieldsO, not” .)

Lambda forms (lambda expressions) have the same syntac