
Macintosh Library Modules
Release 1.5.2

Guido van Rossum

April 30, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names
of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not
be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN AC-
TION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

This library reference manual documents Python’s extensions for the Macintosh. It should be used in
conjunction with the Python Library Reference, which documents the standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

Contents

1 Introduction 2

2 mac — Implementations for the os module 3

3 macpath — MacOS path manipulation functions 3

4 ctb — Interface to the Communications Tool Box 4
4.1 Connection Objects . 4

5 macconsole — Think C’s console package 5
5.1 macconsole options object . 6
5.2 console window object . 6

6 macdnr — Interface to the Macintosh Domain Name Resolver 7
6.1 DNR Result Objects . 7

7 macfs — Various file system services 8
7.1 FSSpec objects . 9
7.2 Alias Objects . 10
7.3 FInfo Objects . 10

8 ic — Access to Internet Config 10
8.1 IC Objects . 11

9 MacOS — Access to MacOS interpreter features 12

10 macostools — Convenience routines for file manipulation 13

11 findertools — The finder’s Apple Events interface 14

12 mactcp — The MacTCP interfaces 14
12.1 TCP Stream Objects . 15
12.2 TCP Status Objects . 15
12.3 UDP Stream Objects . 16

13 macspeech — Interface to the Macintosh Speech Manager 16
13.1 Voice Objects . 16
13.2 Speech Channel Objects . 17

14 EasyDialogs — Basic Macintosh dialogs 17

15 FrameWork — Interactive application framework 18
15.1 Application Objects . 19
15.2 Window Objects . 20
15.3 ControlsWindow Object . 20
15.4 ScrolledWindow Object . 20
15.5 DialogWindow Objects . 21

16 MiniAEFrame — Open Scripting Architecture server support 21
16.1 AEServer Objects . 21

Module Index 23

Index 24

1 Introduction

The modules in this manual are available on the Apple Macintosh only.

2 1 Introduction

Aside from the modules described here there are also interfaces to various MacOS toolboxes, which are
currently not extensively described. The toolboxes for which modules exist are: AE (Apple Events), Cm
(Component Manager), Ctl (Control Manager), Dlg (Dialog Manager), Evt (Event Manager), Fm (Font
Manager), List (List Manager), Menu (Moenu Manager), Qd (QuickDraw), Qt (QuickTime), Res (Resource
Manager and Handles), Scrap (Scrap Manager), Snd (Sound Manager), TE (TextEdit), Waste (non-Apple
TextEdit replacement) and Win (Window Manager).

If applicable the module will define a number of Python objects for the various structures declared by the
toolbox, and operations will be implemented as methods of the object. Other operations will be implemented
as functions in the module. Not all operations possible in C will also be possible in Python (callbacks are often
a problem), and parameters will occasionally be different in Python (input and output buffers, especially).
All methods and functions have a doc string describing their arguments and return values, and for
additional description you are referred to Inside Macintosh or similar works.

The following modules are documented here:

mac Implementations for the os module.
macpath MacOS path manipulation functions.
ctb Interfaces to the Communications Tool Box. Only the Connection Manager is supported.
macconsole Think C’s console package.
macdnr Interfaces to the Macintosh Domain Name Resolver.
macfs Support for FSSpec, the Alias Manager, finder aliases, and the Standard File package.
ic Access to Internet Config.
MacOS Access to MacOS specific interpreter features.
macostools Convenience routines for file manipulation.
findertools Wrappers around the finder’s Apple Events interface.
mactcp The MacTCP interfaces.
macspeech Interface to the Macintosh Speech Manager.
EasyDialogs Basic Macintosh dialogs.
FrameWork Interactive application framework.
MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).
MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).

2 mac — Implementations for the os module

This module implements the operating system dependent functionality provided by the standard module os.
It is best accessed through the os module.

The following functions are available in this module: chdir(), close(), dup(), fdopen(), getcwd(),
lseek(), listdir(), mkdir(), open(), read(), rename(), rmdir(), stat(), sync(), unlink(), write(),
as well as the exception error. Note that the times returned by stat() are floating-point values, like all
time values in MacPython.

One additional function is available:

xstat(path)
This function returns the same information as stat(), but with three additional values appended: the
size of the resource fork of the file and its 4-character creator and type.

3 macpath — MacOS path manipulation functions

This module is the Macintosh implementation of the os.path module. It is most portably accessed as
os.path. Refer to the Python Library Reference for documentation of os.path.

3

The following functions are available in this module: normcase(), normpath(), isabs(), join(), split(),
isdir(), isfile(), walk(), exists(). For other functions available in os.path dummy counterparts are
available.

4 ctb — Interface to the Communications Tool Box

This module provides a partial interface to the Macintosh Communications Toolbox. Currently, only Con-
nection Manager tools are supported. It may not be available in all Mac Python versions.

error
The exception raised on errors.

cmData
cmCntl
cmAttn

Flags for the channel argument of the Read() and Write() methods.

cmFlagsEOM
End-of-message flag for Read() and Write().

choose*
Values returned by Choose().

cmStatus*
Bits in the status as returned by Status().

available()
Return 1 if the Communication Toolbox is available, zero otherwise.

CMNew(name, sizes)
Create a connection object using the connection tool named name. sizes is a 6-tuple given buffer sizes
for data in, data out, control in, control out, attention in and attention out. Alternatively, passing
None for sizes will result in default buffer sizes.

4.1 Connection Objects

For all connection methods that take a timeout argument, a value of -1 is indefinite, meaning that the
command runs to completion.

callback
If this member is set to a value other than None it should point to a function accepting a single
argument (the connection object). This will make all connection object methods work asynchronously,
with the callback routine being called upon completion.

Note: for reasons beyond my understanding the callback routine is currently never called. You are
advised against using asynchronous calls for the time being.

Open(timeout)
Open an outgoing connection, waiting at most timeout seconds for the connection to be established.

Listen(timeout)
Wait for an incoming connection. Stop waiting after timeout seconds. This call is only meaningful to
some tools.

accept(yesno)
Accept (when yesno is non-zero) or reject an incoming call after Listen() returned.

Close(timeout, now)
Close a connection. When now is zero, the close is orderly (i.e. outstanding output is flushed, etc.)

4 4 ctb — Interface to the Communications Tool Box

with a timeout of timeout seconds. When now is non-zero the close is immediate, discarding output.

Read(len, chan, timeout)
Read len bytes, or until timeout seconds have passed, from the channel chan (which is one of cmData,
cmCntl or cmAttn). Return a 2-tuple: the data read and the end-of-message flag, cmFlagsEOM.

Write(buf, chan, timeout, eom)
Write buf to channel chan, aborting after timeout seconds. When eom has the value cmFlagsEOM,
an end-of-message indicator will be written after the data (if this concept has a meaning for this
communication tool). The method returns the number of bytes written.

Status()
Return connection status as the 2-tuple (sizes, flags). sizes is a 6-tuple giving the actual buffer sizes
used (see CMNew()), flags is a set of bits describing the state of the connection.

GetConfig()
Return the configuration string of the communication tool. These configuration strings are tool-
dependent, but usually easily parsed and modified.

SetConfig(str)
Set the configuration string for the tool. The strings are parsed left-to-right, with later values taking
precedence. This means individual configuration parameters can be modified by simply appending
something like ’baud 4800’ to the end of the string returned by GetConfig() and passing that to
this method. The method returns the number of characters actually parsed by the tool before it
encountered an error (or completed successfully).

Choose()
Present the user with a dialog to choose a communication tool and configure it. If there is an outstand-
ing connection some choices (like selecting a different tool) may cause the connection to be aborted.
The return value (one of the choose* constants) will indicate this.

Idle()
Give the tool a chance to use the processor. You should call this method regularly.

Abort()
Abort an outstanding asynchronous Open() or Listen().

Reset()
Reset a connection. Exact meaning depends on the tool.

Break(length)
Send a break. Whether this means anything, what it means and interpretation of the length parameter
depends on the tool in use.

5 macconsole — Think C’s console package

This module is available on the Macintosh, provided Python has been built using the Think C compiler. It
provides an interface to the Think console package, with which basic text windows can be created.

options
An object allowing you to set various options when creating windows, see below.

C ECHO
C NOECHO
C CBREAK
C RAW

Options for the setmode method. C ECHO and C CBREAK enable character echo, the other two disable
it, C ECHO and C NOECHO enable line-oriented input (erase/kill processing, etc).

5

copen()
Open a new console window. Return a console window object.

fopen(fp)
Return the console window object corresponding with the given file object. fp should be one of
sys.stdin, sys.stdout or sys.stderr.

5.1 macconsole options object

These options are examined when a window is created:

top
left

The origin of the window.

nrows
ncols

The size of the window.

txFont
txSize
txStyle

The font, fontsize and fontstyle to be used in the window.

title
The title of the window.

pause atexit
If set non-zero, the window will wait for user action before closing.

5.2 console window object

file
The file object corresponding to this console window. If the file is buffered, you should call file.flush()
between write() and read() calls.

setmode(mode)
Set the input mode of the console to C ECHO, etc.

settabs(n)
Set the tabsize to n spaces.

cleos()
Clear to end-of-screen.

cleol()
Clear to end-of-line.

inverse(onoff)
Enable inverse-video mode: characters with the high bit set are displayed in inverse video (this disables
the upper half of a non-ascii character set).

gotoxy(x, y)
Set the cursor to position (x, y).

hide()
Hide the window, remembering the contents.

show()
Show the window again.

6 5 macconsole — Think C’s console package

echo2printer()
Copy everything written to the window to the printer as well.

6 macdnr — Interface to the Macintosh Domain Name Resolver

This module provides an interface to the Macintosh Domain Name Resolver. It is usually used in conjunction
with the mactcp module, to map hostnames to IP addresses. It may not be available in all Mac Python
versions.

The macdnr module defines the following functions:

Open([filename])
Open the domain name resolver extension. If filename is given it should be the pathname of the
extension, otherwise a default is used. Normally, this call is not needed since the other calls will open
the extension automatically.

Close()
Close the resolver extension. Again, not needed for normal use.

StrToAddr(hostname)
Look up the IP address for hostname. This call returns a dnr result object of the “address” variation.

AddrToName(addr)
Do a reverse lookup on the 32-bit integer IP-address addr . Returns a dnr result object of the “address”
variation.

AddrToStr(addr)
Convert the 32-bit integer IP-address addr to a dotted-decimal string. Returns the string.

HInfo(hostname)
Query the nameservers for a HInfo record for host hostname. These records contain hardware and
software information about the machine in question (if they are available in the first place). Returns
a dnr result object of the “hinfo” variety.

MXInfo(domain)
Query the nameservers for a mail exchanger for domain. This is the hostname of a host willing to
accept SMTP mail for the given domain. Returns a dnr result object of the “mx” variety.

6.1 DNR Result Objects

Since the DNR calls all execute asynchronously you do not get the results back immediately. Instead, you
get a dnr result object. You can check this object to see whether the query is complete, and access its
attributes to obtain the information when it is.

Alternatively, you can also reference the result attributes directly, this will result in an implicit wait for the
query to complete.

The rtnCode and cname attributes are always available, the others depend on the type of query (address,
hinfo or mx).

wait()
Wait for the query to complete.

isdone()
Return 1 if the query is complete.

rtnCode
The error code returned by the query.

7

cname
The canonical name of the host that was queried.

ip0
ip1
ip2
ip3

At most four integer IP addresses for this host. Unused entries are zero. Valid only for address queries.

cpuType
osType

Textual strings giving the machine type an OS name. Valid for “hinfo” queries.

exchange
The name of a mail-exchanger host. Valid for “mx” queries.

preference
The preference of this mx record. Not too useful, since the Macintosh will only return a single mx
record. Valid for “mx” queries only.

The simplest way to use the module to convert names to dotted-decimal strings, without worrying about
idle time, etc:

>>> def gethostname(name):

... import macdnr

... dnrr = macdnr.StrToAddr(name)

... return macdnr.AddrToStr(dnrr.ip0)

7 macfs — Various file system services

This module provides access to Macintosh FSSpec handling, the Alias Manager, finder aliases and the
Standard File package.

Whenever a function or method expects a file argument, this argument can be one of three things: (1) a
full or partial Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple (wdRefNum, parID, name) as
described in Inside Macintosh: Files. A description of aliases and the Standard File package can also be
found there.

FSSpec(file)
Create an FSSpec object for the specified file.

RawFSSpec(data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. This is
mainly useful if you have obtained an FSSpec structure over a network.

RawAlias(data)
Create an Alias object given the raw data for the C structure for the alias as a string. This is mainly
useful if you have obtained an FSSpec structure over a network.

FInfo()
Create a zero-filled FInfo object.

ResolveAliasFile(file)
Resolve an alias file. Returns a 3-tuple (fsspec, isfolder, aliased) where fsspec is the resulting FSSpec
object, isfolder is true if fsspec points to a folder and aliased is true if the file was an alias in the first
place (otherwise the FSSpec object for the file itself is returned).

8 7 macfs — Various file system services

StandardGetFile([type, ...])
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four 4-
character file types to limit the files the user can choose from. The function returns an FSSpec object
and a flag indicating that the user completed the dialog without cancelling.

PromptGetFile(prompt[, type, ...])
Similar to StandardGetFile() but allows you to specify a prompt.

StandardPutFile(prompt, [default])
Present the user with a standard “open output file” dialog. prompt is the prompt string, and the
optional default argument initializes the output file name. The function returns an FSSpec object and
a flag indicating that the user completed the dialog without cancelling.

GetDirectory([prompt])
Present the user with a non-standard “select a directory” dialog. prompt is the prompt string, and the
optional. Return an FSSpec object and a success-indicator.

SetFolder([fsspec])
Set the folder that is initially presented to the user when one of the file selection dialogs is presented.
fsspec should point to a file in the folder, not the folder itself (the file need not exist, though). If no
argument is passed the folder will be set to the current directory, i.e. what os.getcwd() returns.

Note that starting with system 7.5 the user can change Standard File behaviour with the “general
controls” controlpanel, thereby making this call inoperative.

FindFolder(where, which, create)
Locates one of the “special” folders that MacOS knows about, such as the trash or the Preferences
folder. where is the disk to search, which is the 4-character string specifying which folder to locate.
Setting create causes the folder to be created if it does not exist. Returns a (vrefnum, dirid) tuple.

NewAliasMinimalFromFullPath(pathname)
Return a minimal alias object that points to the given file, which must be specified as a full pathname.
This is the only way to create an Alias pointing to a non-existing file.

The constants for where and which can be obtained from the standard module MACFS .

FindApplication(creator)
Locate the application with 4-char creator code creator . The function returns an FSSpec object
pointing to the application.

7.1 FSSpec objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as pathname()
Return the full pathname of the file described by the FSSpec object.

as tuple()
Return the (wdRefNum, parID, name) tuple of the file described by the FSSpec object.

NewAlias([file])
Create an Alias object pointing to the file described by this FSSpec. If the optional file parameter is
present the alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal()
Create a minimal alias pointing to this file.

GetCreatorType()
Return the 4-character creator and type of the file.

7.1 FSSpec objects 9

SetCreatorType(creator, type)
Set the 4-character creator and type of the file.

GetFInfo()
Return a FInfo object describing the finder info for the file.

SetFInfo(finfo)
Set the finder info for the file to the values given as finfo (an FInfo object).

GetDates()
Return a tuple with three floating point values representing the creation date, modification date and
backup date of the file.

SetDates(crdate, moddate, backupdate)
Set the creation, modification and backup date of the file. The values are in the standard floating point
format used for times throughout Python.

7.2 Alias Objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to other programs.

Resolve([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file relative to which it
is. Return the FSSpec for the file pointed to and a flag indicating whether the Alias object itself was
modified during the search process. If the file does not exist but the path leading up to it does exist a
valid fsspec is returned.

GetInfo(num)
An interface to the C routine GetAliasInfo().

Update(file, [file2])
Update the alias to point to the file given. If file2 is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource as an Alias object. Hence, after
calling Update() or after Resolve() indicates that the alias has changed the Python program is responsible
for getting the data value from the Alias object and modifying the resource.

7.3 FInfo Objects

See Inside Macintosh: Files for a complete description of what the various fields mean.

Creator
The 4-character creator code of the file.

Type
The 4-character type code of the file.

Flags
The finder flags for the file as 16-bit integer. The bit values in Flags are defined in standard module
MACFS.

Location
A Point giving the position of the file’s icon in its folder.

Fldr
The folder the file is in (as an integer).

10 7 macfs — Various file system services

8 ic — Access to Internet Config

This module provides access to Macintosh Internet Config package, which stores preferences for Internet
programs such as mail address, default homepage, etc. Also, Internet Config contains an elaborate set of
mappings from Macintosh creator/type codes to foreign filename extensions plus information on how to
transfer files (binary, ascii, etc).

There is a low-level companion module icglue which provides the basic Internet Config access functionality.
This low-level module is not documented, but the docstrings of the routines document the parameters and the
routine names are the same as for the Pascal or C API to Internet Config, so the standard IC programmers’
documentation can be used if this module is needed.

The ic module defines the error exception and symbolic names for all error codes Internet Config can
produce; see the source for details.

error
Exception raised on errors in the ic module.

The ic module defines the following class and function:

IC([signature[, ic]])
Create an internet config object. The signature is a 4-character creator code of the current application
(default ’Pyth’) which may influence some of ICs settings. The optional ic argument is a low-level
icglue.icinstance created beforehand, this may be useful if you want to get preferences from a
different config file, etc.

launchurl(url[, hint])
parseurl(data[, start[, end[, hint]]])
mapfile(file)
maptypecreator(type, creator[, filename])
settypecreator(file)

These functions are “shortcuts” to the methods of the same name, described below.

8.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simply get ic[’MailAddress’].
Assignment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical” Python
data structure. Running the ic module standalone will run a test program that lists all keys and values in
your IC database, this will have to server as documentation.

If the module does not know how to represent the data it returns an instance of the ICOpaqueData type,
with the raw data in its data attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interface, IC objects have the following methods:

launchurl(url[, hint])
Parse the given URL, lauch the correct application and pass it the URL. The optional hint can be a
scheme name such as ’mailto:’, in which case incomplete URLs are completed with this scheme. If
hint is not provided, incomplete URLs are invalid.

parseurl(data[, start[, end[, hint]]])
Find an URL somewhere in data and return start position, end position and the URL. The optional
start and end can be used to limit the search, so for instance if a user clicks in a long textfield you can
pass the whole textfield and the click-position in start and this routine will return the whole URL in
which the user clicked. As above, hint is an optional scheme used to complete incomplete URLs.

11

mapfile(file)
Return the mapping entry for the given file, which can be passed as either a filename or an
macfs.FSSpec() result, and which need not exist.

The mapping entry is returned as a tuple (version, type, creator, postcreator, flags, extension,
appname, postappname, mimetype, entryname), where version is the entry version number, type is
the 4-character filetype, creator is the 4-character creator type, postcreator is the 4-character creator
code of an optional application to post-process the file after downloading, flags are various bits spec-
ifying whether to transfer in binary or ascii and such, extension is the filename extension for this file
type, appname is the printable name of the application to which this file belongs, postappname is the
name of the postprocessing application, mimetype is the MIME type of this file and entryname is the
name of this entry.

maptypecreator(type, creator[, filename])
Return the mapping entry for files with given 4-character type and creator codes. The optional filename
may be specified to further help finding the correct entry (if the creator code is ’????’, for instance).

The mapping entry is returned in the same format as for mapfile.

settypecreator(file)
Given an existing file, specified either as a filename or as an macfs.FSSpec() result, set its creator
and type correctly based on its extension. The finder is told about the change, so the finder icon will
be updated quickly.

9 MacOS — Access to MacOS interpreter features

This module provides access to MacOS specific functionality in the Python interpreter, such as how the
interpreter eventloop functions and the like. Use with care.

Note the capitalisation of the module name, this is a historical artifact.

Error
This exception is raised on MacOS generated errors, either from functions in this module or from other
mac-specific modules like the toolbox interfaces. The arguments are the integer error code (the OSErr
value) and a textual description of the error code. Symbolic names for all known error codes are defined
in the standard module macerrors.

SetEventHandler(handler)
In the inner interpreter loop Python will occasionally check for events, unless disabled with
ScheduleParams(). With this function you can pass a Python event-handler function that will be
called if an event is available. The event is passed as parameter and the function should return non-
zero if the event has been fully processed, otherwise event processing continues (by passing the event
to the console window package, for instance).

Call SetEventHandler() without a parameter to clear the event handler. Setting an event handler
while one is already set is an error.

SchedParams([doint[, evtmask[, besocial[, interval[, bgyield]]]]])
Influence the interpreter inner loop event handling. Interval specifies how often (in seconds, floating
point) the interpreter should enter the event processing code. When true, doint causes interrupt
(command-dot) checking to be done. evtmask tells the interpreter to do event processing for events
in the mask (redraws, mouseclicks to switch to other applications, etc). The besocial flag gives other
processes a chance to run. They are granted minimal runtime when Python is in the foreground and
bgyield seconds per interval when Python runs in the background.

All parameters are optional, and default to the current value. The return value of this function is a
tuple with the old values of these options. Initial defaults are that all processing is enabled, checking
is done every quarter second and the CPU is given up for a quarter second when in the background.

12 9 MacOS — Access to MacOS interpreter features

HandleEvent(ev)
Pass the event record ev back to the Python event loop, or possibly to the handler for the sys.stdout
window (based on the compiler used to build Python). This allows Python programs that do their own
event handling to still have some command-period and window-switching capability.

If you attempt to call this function from an event handler set through SetEventHandler() you will
get an exception.

GetErrorString(errno)
Return the textual description of MacOS error code errno.

splash(resid)
This function will put a splash window on-screen, with the contents of the DLOG resource specified by
resid . Calling with a zero argument will remove the splash screen. This function is useful if you want
an applet to post a splash screen early in initialization without first having to load numerous extension
modules.

DebugStr(message [, object])
Drop to the low-level debugger with message message. The optional object argument is not used, but
can easily be inspected from the debugger.

Note that you should use this function with extreme care: if no low-level debugger like MacsBug is
installed this call will crash your system. It is intended mainly for developers of Python extension
modules.

openrf(name [, mode])
Open the resource fork of a file. Arguments are the same as for the built-in function open(). The object
returned has file-like semantics, but it is not a Python file object, so there may be subtle differences.

10 macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the Macintosh.

The macostools module defines the following functions:

copy(src, dst[, createpath[, copytimes]])
Copy file src to dst . The files can be specified as pathnames or FSSpec objects. If createpath is non-
zero dst must be a pathname and the folders leading to the destination are created if necessary. The
method copies data and resource fork and some finder information (creator, type, flags) and optionally
the creation, modification and backup times (default is to copy them). Custom icons, comments and
icon position are not copied.

If the source is an alias the original to which the alias points is copied, not the aliasfile.

copytree(src, dst)
Recursively copy a file tree from src to dst , creating folders as needed. src and dst should be specified
as pathnames.

mkalias(src, dst)
Create a finder alias dst pointing to src. Both may be specified as pathnames or FSSpec objects.

touched(dst)
Tell the finder that some bits of finder-information such as creator or type for file dst has changed.
The file can be specified by pathname or fsspec. This call should prod the finder into redrawing the
files icon.

BUFSIZ
The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases

13

created with mkalias() could conceivably have incompatible behaviour in some cases.

11 findertools — The finder’s Apple Events interface

This module contains routines that give Python programs access to some functionality provided by the
finder. They are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames or as FSSpec objects.

The findertools module defines the following functions:

launch(file)
Tell the finder to launch file. What launching means depends on the file: applications are started,
folders are opened and documents are opened in the correct application.

Print(file)
Tell the finder to print a file (again specified by full pathname or FSSpec). The behaviour is identical
to selecting the file and using the print command in the finder.

copy(file, destdir)
Tell the finder to copy a file or folder file to folder destdir . The function returns an Alias object
pointing to the new file.

move(file, destdir)
Tell the finder to move a file or folder file to folder destdir . The function returns an Alias object
pointing to the new file.

sleep()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart()
Tell the finder to perform an orderly restart of the machine.

shutdown()
Tell the finder to perform an orderly shutdown of the machine.

12 mactcp — The MacTCP interfaces

This module provides an interface to the Macintosh TCP/IP driver MacTCP. There is an accompanying
module, macdnr, which provides an interface to the name-server (allowing you to translate hostnames to
IP addresses), a module MACTCPconst which has symbolic names for constants constants used by MacTCP.
Since the built-in module socket is also available on the Macintosh it is usually easier to use sockets instead
of the Macintosh-specific MacTCP API.

A complete description of the MacTCP interface can be found in the Apple MacTCP API documentation.

MTU()
Return the Maximum Transmit Unit (the packet size) of the network interface.

IPAddr()
Return the 32-bit integer IP address of the network interface.

NetMask()
Return the 32-bit integer network mask of the interface.

TCPCreate(size)
Create a TCP Stream object. size is the size of the receive buffer, 4096 is suggested by various sources.

UDPCreate(size, port)

14 12 mactcp — The MacTCP interfaces

Create a UDP Stream object. size is the size of the receive buffer (and, hence, the size of the biggest
datagram you can receive on this port). port is the UDP port number you want to receive datagrams
on, a value of zero will make MacTCP select a free port.

12.1 TCP Stream Objects

asr
When set to a value different than None this should refer to a function with two integer parameters:
an event code and a detail. This function will be called upon network-generated events such as urgent
data arrival. Macintosh documentation calls this the asynchronous service routine. In addition, it is
called with eventcode MACTCP.PassiveOpenDone when a PassiveOpen() completes. This is a Python
addition to the MacTCP semantics. It is safe to do further calls from asr .

PassiveOpen(port)
Wait for an incoming connection on TCP port port (zero makes the system pick a free port). The
call returns immediately, and you should use wait() to wait for completion. You should not issue any
method calls other than wait(), isdone() or GetSockName() before the call completes.

wait()
Wait for PassiveOpen() to complete.

isdone()
Return 1 if a PassiveOpen() has completed.

GetSockName()
Return the TCP address of this side of a connection as a 2-tuple (host, port), both integers.

ActiveOpen(lport, host, rport)
Open an outgoing connection to TCP address (host, rport). Use local port lport (zero makes the
system pick a free port). This call blocks until the connection has been established.

Send(buf, push, urgent)
Send data buf over the connection. push and urgent are flags as specified by the TCP standard.

Rcv(timeout)
Receive data. The call returns when timeout seconds have passed or when (according to the MacTCP
documentation) “a reasonable amount of data has been received”. The return value is a 3-tuple (data,
urgent, mark). If urgent data is outstanding Rcv will always return that before looking at any normal
data. The first call returning urgent data will have the urgent flag set, the last will have the mark flag
set.

Close()
Tell MacTCP that no more data will be transmitted on this connection. The call returns when all
data has been acknowledged by the receiving side.

Abort()
Forcibly close both sides of a connection, ignoring outstanding data.

Status()
Return a TCP status object for this stream giving the current status (see below).

12.2 TCP Status Objects

This object has no methods, only some members holding information on the connection. A complete de-
scription of all fields in this objects can be found in the Apple documentation. The most interesting ones
are:

localHost

12.1 TCP Stream Objects 15

localPort
remoteHost
remotePort

The integer IP-addresses and port numbers of both endpoints of the connection.

sendWindow
The current window size.

amtUnackedData
The number of bytes sent but not yet acknowledged. sendWindow - amtUnackedData is what you can
pass to Send() without blocking.

amtUnreadData
The number of bytes received but not yet read (what you can Recv() without blocking).

12.3 UDP Stream Objects

Note that, unlike the name suggests, there is nothing stream-like about UDP.

asr
The asynchronous service routine to be called on events such as datagram arrival without outstanding
Read call. The asr has a single argument, the event code.

port
A read-only member giving the port number of this UDP Stream.

Read(timeout)
Read a datagram, waiting at most timeout seconds (-1 is infinite). Return the data.

Write(host, port, buf)
Send buf as a datagram to IP-address host , port port .

13 macspeech — Interface to the Macintosh Speech Manager

This module provides an interface to the Macintosh Speech Manager, allowing you to let the Macintosh
utter phrases. You need a version of the Speech Manager extension (version 1 and 2 have been tested) in
your ‘Extensions’ folder for this to work. The module does not provide full access to all features of the Speech
Manager yet. It may not be available in all Mac Python versions.

Available()
Test availability of the Speech Manager extension (and, on the PowerPC, the Speech Manager shared
library). Return 0 or 1.

Version()
Return the (integer) version number of the Speech Manager.

SpeakString(str)
Utter the string str using the default voice, asynchronously. This aborts any speech that may still be
active from prior SpeakString() invocations.

Busy()
Return the number of speech channels busy, system-wide.

CountVoices()
Return the number of different voices available.

GetIndVoice(num)
Return a Voice object for voice number num.

16 13 macspeech — Interface to the Macintosh Speech Manager

13.1 Voice Objects

Voice objects contain the description of a voice. It is currently not yet possible to access the parameters of
a voice.

GetGender()
Return the gender of the voice: 0 for male, 1 for female and -1 for neuter.

NewChannel()
Return a new Speech Channel object using this voice.

13.2 Speech Channel Objects

A Speech Channel object allows you to speak strings with slightly more control than SpeakString(), and
allows you to use multiple speakers at the same time. Please note that channel pitch and rate are interrelated
in some way, so that to make your Macintosh sing you will have to adjust both.

SpeakText(str)
Start uttering the given string.

Stop()
Stop babbling.

GetPitch()
Return the current pitch of the channel, as a floating-point number.

SetPitch(pitch)
Set the pitch of the channel.

GetRate()
Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate(rate)
Set the speech rate of the channel.

14 EasyDialogs — Basic Macintosh dialogs

The EasyDialogs module contains some simple dialogs for the Macintosh, modelled after the stdwin dialogs
with similar names. All routines have an optional parameter id with which you can override the DLOG
resource used for the dialog, as long as the item numbers correspond. See the source for details.

The EasyDialogs module defines the following functions:

Message(str)
A modal dialog with the message text str , which should be at most 255 characters long, is displayed.
Control is returned when the user clicks “OK”.

AskString(prompt[, default])
Ask the user to input a string value, in a modal dialog. prompt is the promt message, the optional
default arg is the initial value for the string. All strings can be at most 255 bytes long. AskString()
returns the string entered or None in case the user cancelled.

AskYesNoCancel(question[, default])
Present a dialog with text question and three buttons labelled “yes”, “no” and “cancel”. Return 1 for
yes, 0 for no and -1 for cancel. The default return value chosen by hitting return is 0. This can be
changed with the optional default argument.

ProgressBar([label[, maxval]])

13.1 Voice Objects 17

Display a modeless progress dialog with a thermometer bar. label is the text string displayed (default
“Working...”), maxval is the value at which progress is complete (default 100). The returned object
has one method, set(value), which sets the value of the progress bar. The bar remains visible until
the object returned is discarded.

The progress bar has a “cancel” button, but it is currently non-functional.

Note that EasyDialogs does not currently use the notification manager. This means that displaying dialogs
while the program is in the background will lead to unexpected results and possibly crashes. Also, all dialogs
are modeless and hence expect to be at the top of the stacking order. This is true when the dialogs are
created, but windows that pop-up later (like a console window) may also result in crashes.

15 FrameWork — Interactive application framework

The FrameWork module contains classes that together provide a framework for an interactive Macintosh
application. The programmer builds an application by creating subclasses that override various methods
of the bases classes, thereby implementing the functionality wanted. Overriding functionality can often be
done on various different levels, i.e. to handle clicks in a single dialog window in a non-standard way it is
not necessary to override the complete event handling.

The FrameWork is still very much work-in-progress, and the documentation describes only the most important
functionality, and not in the most logical manner at that. Examine the source or the examples for more
details.

The FrameWork module defines the following functions:

Application()
An object representing the complete application. See below for a description of the methods. The
default init () routine creates an empty window dictionary and a menu bar with an apple menu.

MenuBar()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title[, after])
An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the title
string and a position (1-based) after where the menu should appear (default: at the end).

MenuItem(menu, title[, shortcut, callback])
Create a menu item object. The arguments are the menu to crate the item it, the item title string and
optionally the keyboard shortcut and a callback routine. The callback is called with the arguments
menu-id, item number within menu (1-based), current front window and the event record.

In stead of a callable object the callback can also be a string. In this case menu selection causes the
lookup of a method in the topmost window and the application. The method name is the callback
string with ’domenu ’ prepended.

Calling the MenuBar fixmenudimstate() method sets the correct dimming for all menu items based
on the current front window.

Separator(menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu named label under menu menu. The menu object is returned.

Window(parent)
Creates a (modeless) window. Parent is the application object to which the window belongs. The
window is not displayed until later.

DialogWindow(parent)

18 15 FrameWork — Interactive application framework

Creates a modeless dialog window.

windowbounds(width, height)
Return a (left, top, right, bottom) tuple suitable for creation of a window of given width and height.
The window will be staggered with respect to previous windows, and an attempt is made to keep the
whole window on-screen. The window will however always be exact the size given, so parts may be
offscreen.

setwatchcursor()
Set the mouse cursor to a watch.

setarrowcursor()
Set the mouse cursor to an arrow.

15.1 Application Objects

Application objects have the following methods, among others:

makeusermenus()
Override this method if you need menus in your application. Append the menus to the attribute
menubar.

getabouttext()
Override this method to return a text string describing your application. Alternatively, override the
do about() method for more elaborate “about” messages.

mainloop([mask[, wait]])
This routine is the main event loop, call it to set your application rolling. Mask is the mask of events you
want to handle, wait is the number of ticks you want to leave to other concurrent application (default
0, which is probably not a good idea). While raising self to exit the mainloop is still supported it is
not recommended: call self. quit() instead.

The event loop is split into many small parts, each of which can be overridden. The default methods
take care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events,
events for non-FrameWork windows, etc.

In general, all event handlers should return 1 if the event is fully handled and 0 otherwise (because the
front window was not a FrameWork window, for instance). This is needed so that update events and
such can be passed on to other windows like the Sioux console window. Calling MacOS.HandleEvent()
is not allowed within our dispatch or its callees, since this may result in an infinite loop if the code is
called through the Python inner-loop event handler.

asyncevents(onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell
the inner interpreter loop to call the application event handler async dispatch whenever events are
available. This will cause FrameWork window updates and the user interface to remain working during
long computations, but will slow the interpreter down and may cause surprising results in non-reentrant
code (such as FrameWork itself). By default async dispatch will immedeately call our dispatch but
you may override this to handle only certain events asynchronously. Events you do not handle will be
passed to Sioux and such.

The old on/off value is returned.

quit()
Terminate the running mainloop() call at the next convenient moment.

do char(c, event)
The user typed character c. The complete details of the event can be found in the event structure.
This method can also be provided in a Window object, which overrides the application-wide handler if
the window is frontmost.

15.1 Application Objects 19

do dialogevent(event)
Called early in the event loop to handle modeless dialog events. The default method simply dispatches
the event to the relevant dialog (not through the the DialogWindow object involved). Override if you
need special handling of dialog events (keyboard shortcuts, etc).

idle(event)
Called by the main event loop when no events are available. The null-event is passed (so you can look
at mouse position, etc).

15.2 Window Objects

Window objects have the following methods, among others:

open()
Override this method to open a window. Store the MacOS window-id in self.wid and call the
do postopen() method to register the window with the parent application.

close()
Override this method to do any special processing on window close. Call the do postclose() method
to cleanup the parent state.

do postresize(width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than calling InvalRect.

do contentclick(local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates (window-relative),
the key modifiers and the raw event.

do update(macoswindowid, event)
An update event for the window was received. Redraw the window.

do activate(activate, event)
The window was activated (activate == 1) or deactivated (activate == 0). Handle things like focus
highlighting, etc.

15.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those of Window objects:

do controlhit(window, control, pcode, event)
Part pcode of control control was hit by the user. Tracking and such has already been taken care of.

15.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars([wantx [, wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default:
both). The scrollbars always have minimum 0 and maximum 32767.

getscrollbarvalues()
You must supply this method. It should return a tuple (x, y) giving the current position of the
scrollbars (between 0 and 32767). You can return None for either to indicate the whole document is
visible in that direction.

updatescrollbars()
Call this method when the document has changed. It will call getscrollbarvalues() and update the

20 15 FrameWork — Interactive application framework

scrollbars.

scrollbar callback(which, what, value)
Supplied by you and called after user interaction. which will be ’x’ or ’y’, what will be ’-’, ’--’,
’set’, ’++’ or ’+’. For ’set’, value will contain the new scrollbar position.

scalebarvalues(absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return from getscrollbarvalues(). You pass
document minimum and maximum value and topmost (leftmost) and bottommost (rightmost) visible
values and it returns the correct number or None.

do activate(onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost vv. If you override
this method call this one at the end of your method.

do postresize(width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

do controlhit(window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value indicates
the hit was in the scrollbars and has been handled.

15.5 DialogWindow Objects

DialogWindow objects have the following methods besides those of Window objects:

open(resid)
Create the dialog window, from the DLOG resource with id resid . The dialog object is stored in
self.wid.

do itemhit(item, event)
Item number item was hit. You are responsible for redrawing toggle buttons, etc.

16 MiniAEFrame — Open Scripting Architecture server support

The module MiniAEFrame provides a framework for an application that can function as an Open Script-
ing Architecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunction with
FrameWork or standalone.

This module is temporary, it will eventually be replaced by a module that handles argument names better
and possibly automates making your application scriptable.

The MiniAEFrame module defines the following classes:

AEServer()
A class that handles AppleEvent dispatch. Your application should subclass this class together with
either MiniApplication or FrameWork.Application. Your init () method should call the

init () method for both classes.

MiniApplication()
A class that is more or less compatible with FrameWork.Application but with less functionality. Its
event loop supports the apple menu, command-dot and AppleEvents; other events are passed on to
the Python interpreter and/or Sioux. Useful if your application wants to use AEServer but does not
provide its own windows, etc.

15.5 DialogWindow Objects 21

16.1 AEServer Objects

installaehandler(classe, type, callback)
Installs an AppleEvent handler. classe and type are the four-character OSA Class and Type designators,
’****’ wildcards are allowed. When a matching AppleEvent is received the parameters are decoded
and your callback is invoked.

callback(object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter. The other parameters
are passed as keyword arguments, with the 4-character designator as name. Three extra keyword
parameters are passed: class and type are the Class and Type designators and attributes is a
dictionary with the AppleEvent attributes.

The return value of your method is packed with aetools.packevent() and sent as reply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier
4-character designators for arguments are not implementable, and it is not possible to return an error to the
originator. This will be addressed in a future release.

22 16 MiniAEFrame — Open Scripting Architecture server support

Module Index

C
ctb, 4

E
EasyDialogs, 17

F
findertools, 14
FrameWork, 18

I
ic, 10

M
mac, 3
macconsole, 5
macdnr, 7
macfs, 8
MacOS, 12
macostools, 13
macpath, 3
macspeech, 16
mactcp, 14
MiniAEFrame, 21

23

Index

Symbols
quit() (Application method), 19

A
Abort() (TCP Stream method), 15
Abort() (connection method), 5
accept() (connection method), 4
ActiveOpen() (TCP Stream method), 15
AddrToName() (in module macdnr), 7
AddrToStr() (in module macdnr), 7
AEServer (class in MiniAEFrame), 21
Alias Manager, Macintosh, 8
amtUnackedData (TCP Status attribute), 16
amtUnreadData (TCP Status attribute), 16
AppleEvents, 14, 21
Application() (in module FrameWork), 18
as pathname() (FSSpec method), 9
as tuple() (FSSpec method), 9
AskString() (in module EasyDialogs), 17
AskYesNoCancel() (in module EasyDialogs), 17
asr (TCP Stream attribute), 15
asr (UDP Stream attribute), 16
asyncevents() (Application method), 19
asynchronous service routine, 15, 16
Available() (in module macspeech), 16
available() (in module ctb), 4

B
Break() (connection method), 5
BUFSIZ (in module macostools), 13
Busy() (in module macspeech), 16

C
C CBREAK (in module macconsole), 5
C ECHO (in module macconsole), 5
C NOECHO (in module macconsole), 5
C RAW (in module macconsole), 5
callback (connection attribute), 4
callback() (AEServer method), 22
Choose() (connection method), 5
choose* (in module ctb), 4
cleol() (console window method), 6
cleos() (console window method), 6
Close() (TCP Stream method), 15
Close() (connection method), 4
Close() (in module macdnr), 7
close() (Window method), 20
cmAttn (in module ctb), 4
cmCntl (in module ctb), 4
cmData (in module ctb), 4

cmFlagsEOM (in module ctb), 4
CMNew() (in module ctb), 4
cmStatus* (in module ctb), 4
cname (dnr result attribute), 7
Communications Toolbox, Macintosh, 4
Connection Manager, 4
copen() (in module macconsole), 5
copy() (in module findertools), 14
copy() (in module macostools), 13
copytree() (in module macostools), 13
CountVoices() (in module macspeech), 16
cpuType (dnr result attribute), 8
Creator (FInfo attribute), 10
ctb (built-in module), 4

D
data (Alias attribute), 10
data (FSSpec attribute), 9
DebugStr() (in module MacOS), 13
DialogWindow() (in module FrameWork), 18
do activate() (ScrolledWindow method), 21
do activate() (method), 20
do char() (Application method), 19
do contentclick() (Window method), 20
do controlhit() (ControlsWindow method), 20
do controlhit() (ScrolledWindow method), 21
do dialogevent() (Application method), 19
do itemhit() (DialogWindow method), 21
do postresize() (ScrolledWindow method), 21
do postresize() (Window method), 20
do update() (Window method), 20
Domain Name Resolver, Macintosh, 7

E
EasyDialogs (standard module), 17
echo2printer() (console window method), 6
Error (in module MacOS), 12
error (in module ctb), 4
error (in module ic), 11
exchange (dnr result attribute), 8

F
file (console window attribute), 6
FindApplication() (in module macfs), 9
findertools (standard module), 14
FindFolder() (in module macfs), 9
FInfo() (in module macfs), 8
Flags (FInfo attribute), 10
Fldr (FInfo attribute), 10
fopen() (in module macconsole), 6
FrameWork (standard module), 18, 21

24

FSSpec() (in module macfs), 8

G
getabouttext() (Application method), 19
GetConfig() (connection method), 5
GetCreatorType() (FSSpec method), 9
GetDates() (FSSpec method), 10
GetDirectory() (in module macfs), 9
GetErrorString() (in module MacOS), 13
GetFInfo() (FSSpec method), 9
GetGender() (Voice method), 17
GetIndVoice() (in module macspeech), 16
GetInfo() (Alias method), 10
GetPitch() (Speech Channel method), 17
GetRate() (Speech Channel method), 17
getscrollbarvalues() (ScrolledWindow

method), 20
GetSockName() (TCP Stream method), 15
gotoxy() (console window method), 6

H
HandleEvent() (in module MacOS), 12
hide() (console window method), 6
HInfo() (in module macdnr), 7

I
IC (class in ic), 11
ic (built-in module), 10
icglue (built-in module), 11
Idle() (connection method), 5
idle() (Application method), 20
installaehandler() (AEServer method), 21
Internet Config, 10
inverse() (console window method), 6
ip0 (dnr result attribute), 7
ip1 (dnr result attribute), 7
ip2 (dnr result attribute), 8
ip3 (dnr result attribute), 8
IPAddr() (in module mactcp), 14
isdone() (TCP Stream method), 15
isdone() (dnr result method), 7

L
launch() (in module findertools), 14
launchurl() (IC method), 11
launchurl() (in module ic), 11
left (macconsole option), 6
Listen() (connection method), 4
localHost (TCP Status attribute), 15
localPort (TCP Status attribute), 15
Location (FInfo attribute), 10

M
mac (built-in module), 3

macconsole (built-in module), 5
macdnr (built-in module), 7, 14
macerrors (standard module), 12
macfs (built-in module), 8
Macintosh Alias Manager, 8
Macintosh Communications Toolbox, 4
Macintosh Domain Name Resolver, 7
Macintosh Speech Manager, 16
MacOS (built-in module), 12
macostools (standard module), 13
macpath (standard module), 3
macspeech (built-in module), 16
MacTCP, 14
mactcp (built-in module), 14
MACTCPconst (standard module), 14
mainloop() (Application method), 19
makeusermenus() (Application method), 19
mapfile() (IC method), 11
mapfile() (in module ic), 11
maptypecreator() (IC method), 12
maptypecreator() (in module ic), 11
Maximum Transmit Unit, 14
Menu() (in module FrameWork), 18
MenuBar() (in module FrameWork), 18
MenuItem() (in module FrameWork), 18
Message() (in module EasyDialogs), 17
MiniAEFrame (standard module), 21
MiniApplication (class in MiniAEFrame), 21
mkalias() (in module macostools), 13
move() (in module findertools), 14
MTU() (in module mactcp), 14
MXInfo() (in module macdnr), 7

N
ncols (macconsole option), 6
NetMask() (in module mactcp), 14
NewAlias() (FSSpec method), 9
NewAliasMinimal() (FSSpec method), 9
NewAliasMinimalFromFullPath() (in module

macfs), 9
NewChannel() (Voice method), 17
nrows (macconsole option), 6

O
Open Scripting Architecture, 21
Open() (connection method), 4
Open() (in module macdnr), 7
open() (DialogWindow method), 21
open() (Window method), 20
openrf() (in module MacOS), 13
options (in module macconsole), 5
os (standard module), 3
os.path (standard module), 3
osType (dnr result attribute), 8

Index 25

P
parseurl() (IC method), 11
parseurl() (in module ic), 11
PassiveOpen() (TCP Stream method), 15
pause atexit (macconsole option), 6
port (UDP Stream attribute), 16
preference (dnr result attribute), 8
Print() (in module findertools), 14
ProgressBar() (in module EasyDialogs), 17
PromptGetFile() (in module macfs), 9

R
RawAlias() (in module macfs), 8
RawFSSpec() (in module macfs), 8
Rcv() (TCP Stream method), 15
Read() (UDP Stream method), 16
Read() (connection method), 5
remoteHost (TCP Status attribute), 15
remotePort (TCP Status attribute), 15
Reset() (connection method), 5
Resolve() (Alias method), 10
ResolveAliasFile() (in module macfs), 8
restart() (in module findertools), 14
rtnCode (dnr result attribute), 7

S
scalebarvalues() (ScrolledWindow method), 21
SchedParams() (in module MacOS), 12
scrollbar callback() (ScrolledWindow

method), 20
scrollbars() (ScrolledWindow method), 20
Send() (TCP Stream method), 15
sendWindow (TCP Status attribute), 15
Separator() (in module FrameWork), 18
service routine, asynchronous, 15, 16
setarrowcursor() (in module FrameWork), 19
SetConfig() (connection method), 5
SetCreatorType() (FSSpec method), 9
SetDates() (FSSpec method), 10
SetEventHandler() (in module MacOS), 12
SetFInfo() (FSSpec method), 10
SetFolder() (in module macfs), 9
setmode() (console window method), 6
SetPitch() (Speech Channel method), 17
SetRate() (Speech Channel method), 17
settabs() (console window method), 6
settypecreator() (IC method), 12
settypecreator() (in module ic), 11
setwatchcursor() (in module FrameWork), 19
show() (console window method), 6
shutdown() (in module findertools), 14
sleep() (in module findertools), 14
SMTP, 7

socket (built-in module), 14
SpeakString() (in module macspeech), 16
SpeakText() (Speech Channel method), 17
Speech Manager, Macintosh, 16
splash() (in module MacOS), 13
Standard File, 8
StandardGetFile() (in module macfs), 8
StandardPutFile() (in module macfs), 9
Status() (TCP Stream method), 15
Status() (connection method), 5
stdwin (built-in module), 17
Stop() (Speech Channel method), 17
StrToAddr() (in module macdnr), 7
SubMenu() (in module FrameWork), 18

T
TCPCreate() (in module mactcp), 14
title (macconsole option), 6
top (macconsole option), 6
touched() (in module macostools), 13
txFont (macconsole option), 6
txSize (macconsole option), 6
txStyle (macconsole option), 6
Type (FInfo attribute), 10

U
UDPCreate() (in module mactcp), 14
Update() (Alias method), 10
updatescrollbars() (ScrolledWindow method),

20

V
Version() (in module macspeech), 16

W
wait() (TCP Stream method), 15
wait() (dnr result method), 7
Window() (in module FrameWork), 18
windowbounds() (in module FrameWork), 18
Write() (UDP Stream method), 16
Write() (connection method), 5

X
xstat() (in module mac), 3

26 Index

	1 Introduction
	2 mac --- Implementations for the os module
	3 macpath --- MacOS path manipulation functions
	4 ctb --- Interface to the Communications Tool Box
	4.1 Connection Objects

	5 macconsole --- Think C's console package
	5.1 macconsole options object
	5.2 console window object

	6 macdnr --- Interface to the Macintosh Domain Name Resolver
	6.1 DNR Result Objects

	7 macfs --- Various file system services
	7.1 FSSpec objects
	7.2 Alias Objects
	7.3 FInfo Objects

	8 ic --- Access to Internet Config
	8.1 IC Objects

	9 MacOS --- Access to MacOS interpreter features
	10 macostools --- Convenience routines for file manipulation
	11 findertools --- The finder's Apple Events interface
	12 mactcp --- The MacTCP interfaces
	12.1 TCP Stream Objects
	12.2 TCP Status Objects
	12.3 UDP Stream Objects

	13 macspeech --- Interface to the Macintosh Speech Manager
	13.1 Voice Objects
	13.2 Speech Channel Objects

	14 EasyDialogs --- Basic Macintosh dialogs
	15 FrameWork --- Interactive application framework
	15.1 Application Objects
	15.2 Window Objects
	15.3 ControlsWindow Object
	15.4 ScrolledWindow Object
	15.5 DialogWindow Objects

	16 MiniAEFrame --- Open Scripting Architecture server support
	16.1 AEServer Objects

	Module Index
	Index

