The Objective Caml system
release 3.03 ALPHA

Documentation and user’s manual

Xavier Leroy
(with Damien Doligez, Jacques Garrigue, Didier Rémy and Jérome Vouillon)

October 12, 2001

Copyright (© 2001 Institut National de Recherche en Informatique et en Automatique

Contents

I An mmtroduction to Objective Caml

L "I'he core languagg
LI Basicd e e e e e
1.2 Data Typeg o e e e e e e e e e e e e s e e
Lo Functionsas valued 0L L L s e e e e e e e e e e e e e e e e
4 hecords and varlantd00 e e e e e e e e e e e e e e e e e e e
IL.o Imperative T1eaturey« v v v v v e
IL.O0 HEXCEDTIONY o o e
1L/ DYMDOIIC Processing Of €XPIreSSIONT « . v v v v v v v v v v v e e e e e e e e e e
L.s Pretty-printing and Pparsiing o v vt b e e e e e
IL.Y otandalone Caml programgo 0L e e e e e e e e e

2 'I'he module system
21 I T A =Y
2.2 DIFNATUTES . . & v v v v v e s e e
La FUNCLOTS o o o L e
2.4 Functors and type abstraction L L e e
E.0 Modules and separate compilation e e e e e e e e e

b Objects 1n Caml

b.1 Classes and ODbJeCts o e e e e e e e e e e e e e e
b2 heterence ta selll L L L e e e e e e e e e e
Lo Initializerd oL L L L e e e e e e e e e e e e e
b4 Vartual methods L L e e e e e e e e
b Private methodd L e e e e e e e e
Lo Class itertaced L L e e e e e e e e e
b ___Inherifancd L L e e e e e e e e
b.3 Multiple mnheritancd o e e e e e e e e e e
LY Parameterized classed L L e e e e e e e e e
p. 10 USINg COErCIONYT o o i i vt et e e e e e e e e e e e e e e e
pb.l1l Functional objects L e e e e e e e e
p.12 Cloning objecty e
b la Recursive classes L L L L e e e e e e e e e e
b.l4 binary methods L e e e e e e e e e e
BIo FEriendd s

11
11
12
13
14
16
17
18
20
22

25
25
26
27
29
31

Ad_Tabels and variantd 57
BT Tabeld e 57
B2 Polymorphic varianfd 63

p__Advanced examples with classes and modules 67
p.l bxtended example: bank accounty e e e e e e e e 67
b.Z Simple modules as classed e e e e 73
b.3 The subject/observer patternl oo 79

[I The Objective Caml Tanguaged 83

b The Objective Caml Tanguagd 85
B Lexical convenfiond 85
B2 Valued e e 89
B3 Named e e s 90
b4 TYype exXpressiong e . e e e e e e e e e e e e e e e e e e e 93
bo Constantd L L L e e e e e e e e e e e e e e e e 96
6 Paffernd s 96
b.7 Expressiond L e e e e e e e 99
b8 Type and exception delnmitiond v v v v e e e e e 109
BEO__TIassed e 112
p.10 Module types (module specifications)o 118
b.11 Module expressions (module implementations) 121
b.I2 Compilation unifd e 124

[[_Language extensiong 127
[[.I otreams and sfream parsery e e e e e e e e 127
[[Z Range pafternd e e e e 127
[[(3 Asserfion checking. 0 e e e e e 127
[[.4 Deferred computationdo 128
5 Localmaduled e 128

[II The Objective Caml toolg 129

B Batch compilation (ocamlc) 131
B.I Overview of the compiler] e 131
... 132
B3 Modules and the file systemd 136
B4 Common errord L e e e e e e e e e e e e 136

B 'The toplevel system (ocaml) 141
... 143
P2 Toplevel directives e e e e e e 144

B.3 The toplevel and the module systemd 145

B4 Common errord L e e e e e e e e e 145
P5 Building custom toplevel systems: ocamImktod. 146
... 147
10 The runtime system (ocamlrun) 149
I I 0 7= v = 149
T0.2 Optiongd e e e 150
[0.3" Dynamic loading of shared libraried 151
[IZ2—TCTommon errard v v v v e e e e e e e e, 152
11 Native-code compilation (ocamlopt) 155
LI.T Overview of the compilen] e 155
... 156
I3 Common errord o e s e e e e e e e e e e e e 159
[I.4 Compaftibility with the bytecode compile 160
12 Lexer and parser generators (ocamllex, ocamlyacc) 161
2T Overview of ocamTTex v v v v v e e e e e e e e e e e e e 161
[2.2 Svyntax of Iexer definifiond o 162
[Z2.3 Overview of ocamIvacd v e e e 164
[2.4 Syntax of grammar definifiond 164
... 166
[2.6 A complefe exampld e e 167
7 Tommon errard v v o e e e e e e e e e 168
13 Dependency generator (ocamldep) 171
... 171
L3.2 A typical Makefild s 172
[[4 The browser /editor (ocamlbrowser) 175
[4T Tnvocafionl e e e e e e e e 175
117 VA =772 176
[Z3 Module Browsing o v v v i e e e e e e e e e e e 176
L4 4 File ediforl L L L e e e e e e e e e e e e e e 177
MAE"Shello 177
15 The debugger (ocamldebug) 179
[5.T Compiling for debugging 179
[Tnvocafion e e e e e 179
I3 Commandd o e e e e e 180
[54 Execulting a programl v v it e e e e e e 181
[5.5 Breakpoinfq e e e e e 184
o6 Thecall stackl e e e e e e 184
[5.7 Examining variable value§o 185
[5.8 Confrolling the debuggeq 186

UL 9 Miscellaneous commandd 189

Lo.10 hunning the debugger under Emacyg o000

[16 Profiling (ocamlprot)

Lo.1

Compiling for profiling] e e e e

L6.2 FPronling an exXecution v o vt b e e e e e e e e e e e e e e

0.0 FPrintin ronling 1miormation e e e e e e e e e e e e e

L6.4 Tume profiling]o Lo Lo e e e

L7 Intertacing C with Objective Caml

Overview and compilation miormation« . . e e e e e e

The value Typg o e e e e e e e e e e e e

Representation of Caml data typed0 e

Operations on values e e e e e e

Living 1n harmony with the garbage collectoy

A complete examplg L L e e e e e e e

Advanced topic: callbacks from Cto Caml

Advanced example with callbackdo o oo o .

Advanced topic: custom blockyo Lo

i1
7.2
L7.o
7.4
L7.0
L7.6
L7
L7.s
L.y
L7.10

Building mixed C/Caml libraries: ocamlmklib

LV "T'he Objective Caml library

ILs '1'he core library|

ls.1

Module Pervasives: the mmtially opened moduld

1LY 1'he standard library]

9.1 Module Arg: parsing or command line argumenty
ILY.2 Module Array: array operationgt 0 v v e e e e e e e e e e e
19.5 Module Buffer: extensible string bufiery
1L9.4 Module Callback: registering Caml values with the C runtimg
[9.5 Module Char: character operationd
L9.0 Module Digest: MDo message digest] oo oo
LY./ Module Filename: operations on nile name§
9.8 Module Format: pretty printing00
L9.9 Module Gec: memory management control and statistics; nnalised value§
LY.10 Module Genlex: a generic lexical analyzey
U9 11 Module Hashtbl: hash tables and hash tninctiond
LY9.12 Module Int32: 52-Dit Integery Lo oo e e e e e
LY9.15 Module Int64: 64-Dit Integery oo o e e e e e e e e e
19.14 Module Lazy: deterred computations)
LY.15 Module Lexing: the run-time hibrary for lexers generated by ocamllex
[9.16 Module List: Tist operationd L.
LY9.17 Module Map: association tables over ordered typed
LY.18 Module Marshal: marshaling ot data structure§

19.19

Module Nativeint: processor-native mtegerg. v v v v v e 0.

193
193
194
194
194

197
197
203
204
205
208
212
214
218
220
224

227

229
229

LY9.20 Module Uo: object-oriented eXtension« v vt v vt e e e e
11Y.21 Module Parsing: the run-time library for parsers generated by ocamlyacd
L9.22 Module Printexc: facilities 10r printing exceptiony
1L9.25 Module Printf: formatting printing functlong « o v v v v v v v v v o o .
1L9.24 Module Jueue: O1st-1n OISt-0UL qUEUEY o v v v v v v v b e e e e e
19.25 Module Random: pseudo-random number generator (PRNG)
LY9.20 Module Set: sets over ordered typeyo e e e e e e

LY.27 Module Sort: sorting and merging listyo

Y9 2% Maodule Stack: last-in first-ont stackd s,
1Y 29 NModule Stdl.abels: standard labeled libraried

1[9.50 Module Stream: streams and parsery« . oot e e e e e e
LY.01 Module String: string operationg o« . .t e e e e e e e e
M9.32 Module Sys: system interfacd s
LY9.05 Module Weak: arrays of weak polntery« . ..o 0 e e e e e

kU I'he unix library: Unix system callg
EU.1 — Module Unix: 1ntertace to the Unix systemy)

202 Module Inixl.abels: labelized version of the intertacd

k1l I'he num library: arbitrary-precision rational arithmetiqg
gl.l —Module Num: operation on arbitrary-precision numbery
gl.2 Module Big_int: operations on arbitrary-precision integer§
gl.o Module Arith_status: flags that control rational arithmetid

k2 1he str library: regular expressions and String processing]
g2.1 Module Str: regular expressions and high-level string processingl

2o 1'he threads library
Eo.l Module Thread: lightweight threadd

a2 Module Mutex: locks tor mutual exclusion

Eo.o Module Condition: condition variables to synchronize between threadd
Eo.4 Module Event: first-class synchronous communication
Eo.0 Module ThreadUnix: thread-compatible system call§

24 '1'he graphics library]
4.1 Module Graphics: machine-independent graphics primitive§

2o I'he dbm library: access to NDBIVlI databases
2o | Module Dbm- intertace to the ND BV databasd

2o 1'he dynlink library: dynamic loading and linking of object fileg
2o.l Module Dynlink: dynamic loading of bytecode objectnnle§

R7 The Labllk library: I'cl/'I'’k GUI intertace
7.1 Module Tk: basic tunctions and types tor Labllk

309
309
331

335
335
338
341

343
343

349
350
352
352
353
354

357
358

367
367

369
369

371

B8 The bigarray library 377
3.1 Module Bigarray: large, multi-dimensional, numerical arrayd 378
8.2 Big arrays in the Caml-Cinferfacd 389

[V Appendix 393
[ndex to the Tibraryl e 395

396

Index of Keywords e e e e e e e e e e e e e e e

Foreword

This manual documents the release 3.03 ALPHA of the Objective Caml system. It is organized as
follows.

e Part [, “An introduction to Objective Caml”, gives an overview of the language.
e Part [, “The Objective Caml language”, is the reference description of the language.

e Part [II, “The Objective Caml tools”, documents the compilers, toplevel system, and pro-
gramming utilities.

e Part [V, “The Objective Caml library”, describes the modules provided in the standard
library.

e Part [V], “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

Objective Caml runs on several operating systems. The parts of this manual that are specific to
one operating system are presented as shown below:

MacOS:
This is material specific to MacOS 7, 8, 9. (For MacOS X, see “Unix”.)

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (95, 98, ME, NT, 2000).
License

The Objective Caml system is copyright (© 1996, 1997, 1998, 1999, 2000, 2001 Institut National de
Recherche en Informatique et en Automatique (INRIA). INRIA holds all ownership rights to the
Objective Caml system.

8 Foreword

The Objective Caml system is open source and can be freely redistributed. See the file LICENSE
in the distribution for licensing information.

The present documentation is copyright (¢©) 2001 Institut National de Recherche en Informa-
tique et en Automatique (INRIA). The Objective Caml documentation and user’s manual may be
reproduced and distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

e Any translation or derivative work of the Objective Caml documentation and user’s manual
must be approved by the authors in writing before distribution.

e If you distribute the Objective Caml documentation and user’s manual in part, instructions
for obtaining the complete version of this manual must be included, and a means for obtaining
a complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete Objective Caml distribution can be accessed via the Web site http://caml.inria.fr/,
or directly via anonymous FTP at ftp://ftp.inria.fr/lang/caml-light/. The Web site
http://caml.inria.fr/ contains a lot of additional information on the Caml family of languages.

Part 1

An introduction to Objective Caml

Chapter 1

The core language

This part of the manual is a tutorial introduction to the Objective Caml language. A good famil-
iarity with programming in a conventional languages (say, Pascal or C) is assumed, but no prior
exposure to functional languages is required. The present chapter introduces the core language.
Chapter B deals with the object-oriented features, and chapter B with the module system.

1.1 Basics

For this overview of Caml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types Caml phrases, terminated by ;;, in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

142%3;;

- : int =7

let pi = 4.0 *. atan 1.0;;
val pi : float = 3.14159265359

let square x = X *. X;;
val square : float -> float = <fun>

square(sin pi) +. square(cos pi);;
- : float =1

The Caml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

1.0 x 2;;
This expression has type float but is here used with type int

11

12

Recursive functions are defined with the let rec binding:

let rec fib n =
if n < 2 then 1 else fib(n-1) + fib(n-2);;
val fib : int -> int = <fun>

fib 10;;
- : int = 89

1.2 Data types

In addition to integers and floating-point numbers, Caml offers the usual basic data types: booleans,
characters, and character strings.

(1 < 2) = false;;

- : bool = false
#a’;;
- : char = ’a’

"Hello world";;
: string = "Hello world"

Predefined data structures include tuples, arrays, and lists. General mechanisms for defining
your own data structures are also provided. They will be covered in more details later; for now, we
concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated
elements, or built from the empty list [1 (pronounce “nil”) by adding elements in front using the
:: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other Caml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in Caml. Similarly, there is no explicit
handling of pointers: the Caml compiler silently introduces pointers where necessary.

As with most Caml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have the exact same shape as list expressions, with identifier representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort lst =

match 1st with

0 -> [

| head :: tail —-> insert head (sort tail)

and insert elt 1lst =

match 1lst with

[0 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail

Chapter 1. The core language 13

%55
val sort : ’a list -> ’a list = <fun>
val insert : ’a -> ’a list -> ’a list = <fun>

sort 1;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, ’a list -> ’a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type ’a is a type variable, and stands for any
given type. The reason why sort can apply to lists of any type is that the comparisons (=, <=,
etc.) are polymorphic in Caml: they operate between any two values of the same type. This makes
sort itself polymorphic over all list types.

sort [6;2;5;3];;

- : int list = [2; 3; 5; 6]

sort [3.14; 2.718];;

- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in Caml
to modify in-place a list once it is built: we say that lists are immutable data structures. Most
Caml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

1.3 Functions as values

Caml is a functional language: functions in the full mathematical sense are supported and can be
passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f(x +. dx) -. f(x)) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin’ = deriv sin le-6;;

val sin’ : float -> float = <fun>

sin’ pi;;

- : float = -1.00000000014

Even function composition is definable:

let compose f g = function x -> f(g(x));;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
let cos2 = compose square cos;;

val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard Caml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

14

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let recmap £ 1 =

match 1 with

0 ->10

| hd :: t1 -> f hd :: map £ tl;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denum: int};;
type ratio = { num : int; denum : int; }

let add_ratio rl r2 =
{num = ri1.num * r2.denum + r2.num * rl.denum;

denum = rl.denum * r2.denum};;
val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denum=3} {num=2; denum=5};;
- : ratio = {num = 11; denum = 15}

The declaration of a variant type lists all possible shapes for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

Chapter 1. The core language 15

let add_num nl n2 =
match (nl, n2) with

(Int i1, Int i2) —>

(* Check for overflow of integer addition *)

if sign_int il = sign_int i2 && sign_int(il + i2) <> sign_int il
then Float(float il +. float i2)

else Int(il + i2)

| (Int i1, Float f2) -> Float(float il +. f2)

| (Float f1, Int i2) -> Float(f1 +. float i2)

| (Float f1, Float f2) -> Float(f1 +. f2)

| (Error, _) —> Error

|

(_, Error) -> Error;;
val add_num : number -> number -> number = <fun>

add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type ’a btree = Empty | Node of ’a * ’a btree * ’a btree;;
type ’a btree = Empty | Node of ’a * ’a btree * ’a btree

This definition reads as follow: a binary tree containing values of type ’a (an arbitrary type) is
either empty, or is a node containing one value of type ’a and two subtrees containing also values
of type ’a, that is, two ’a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =
match btree with
Empty -> false
| Node(y, left, right) ->
if x = y then true else

if x < y then member x left else member x right;;
val member : ’a -> ’a btree -> bool = <fun>

#
#
#
#
#
#

let rec insert x btree =

match btree with

Empty -> Node(x, Empty, Empty)

| Node(y, left, right) ->

if x <= y then Node(y, insert x left, right)
#

else Node(y, left, insert x right);;
val insert : ’a -> ’a btree -> ’a btree = <fun>

16

1.5 Imperative features

Though all examples so far were written in purely applicative style, Caml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either given in extension between [| and |] brackets, or
allocated and initialized with the Array.create function, then filled up later by assignments. For
instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect vl v2 =

let len = min (Array.length v1) (Array.length v2) in
let res = Array.create len 0.0 in

for i = 0 to len - 1 do
#

#

#

res. (i) <- vi1.(1) +. v2.(1)
done;
res;;
val add_vect : float array -> float array -> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 I]1;;
- : float array = [|4; 6/]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =
p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0; y = O}

translate mypoint 1.0 2.0;;
- : unit = O

mypoint;;
- : mutable_point = {x = 1; y = 2}

Caml has no built-in notion of variable — identifiers whose current value can be changed by
assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells (or
one-element arrays), with operators ! to fetch the current contents of the reference and := to assign
the contents. Variables can then be emulated by let-binding a reference. For instance, here is an
in-place insertion sort over arrays:

let insertion_sort a =

for i = 1 to Array.length a - 1 do
let val_i = a.(i) in
let j = ref i in

#
#
#
while !j > 0 && val_i < a.(!j - 1) do

Chapter 1. The core language 17

a.(1j) <= a.('j - 1;
joi=13j-1

done;

a.(!'j) <= val_i

done; ;

val insertion_sort : ’a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents = 0}

let random () =
current_rand := !current_rand * 25713 + 1345;

lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magic with references: they are implemented as a one-field mutable
record, as follows.

type ’a ref = { mutable contents: ’a I};;
type ’a ref = { mutable contents : ’a; }

let (!) r = r.contents;;
val (!) : ’a ref -> ’a = <fun>

let (:=) r newval = r.contents <- newval;;
val (:=) : ’a ref -> ’a -> unit = <fun>

1.6 Exceptions

Caml provides exceptions for signalling and handling exceptional conditions. Exceptions can also be
used as a general-purpose non-local control structure. Exceptions are declared with the exception
construct, and signalled with the raise operator. For instance, the function below for taking the
head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list

let head 1 =
match 1 with

[l -> raise Empty_list
| hd :: t1 -> hd;;

val head : ’a list -> ’a = <fun>
head [1;2];;

- : int =1

head []1;;

Uncaught exception: Empty_list.

18

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

List.assoc 2 [(0, "zero"); (1, "one")];;
Uncaught exception: Not_found.

Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

name_of_binary_digit O;;
- : string = "zero"

name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part is actually a regular pattern-matching on the exception value. Thus, several
exceptions can be caught by one try...with construct. Also, finalization can be performed by
trapping all exceptions, performing the finalization, then raising again the exception:

let temporarily_set_reference ref newval funct =

let oldval = !ref in

try

ref := newval;

let res = funct () in
ref := oldval;

res

with x ->

ref := oldval;

raise Xx;;

val temporarily_set_reference : ’a ref -> ’a -> (unit -> ’b) -> ’b = <fun>

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of Caml for
symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

Chapter 1. The core language 19

type expression =

Const of float
| Var of string
| Sum of expression * expression (x el + e2 %)
| Diff of expression * expression (x el - e2 %)
| Prod of expression * expression (* el * e2 x)
| Quot of expression * expression (x el / e2 %)

H OH HF H OH H R

)
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =
match exp with
Const ¢ -> ¢
| Var v ->
(try List.assoc v env with Not_found -> raise(Unbound_variable v))
Sum(f, g) -> eval env f +. eval env g
Diff(f, g) -> eval env f -. eval env g
Prod(f, g) -> eval env f *. eval env g

Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

H OH H OH OHF H H

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

let rec deriv exp dv =

match exp with

Const ¢ -> Const 0.0

| Var v -=> if v = dv then Const 1.0 else Const 0.0

| Sum(f, g) -> Sum(deriv f dv, deriv g dv)

| Diff(f, g) -> Diff(deriv f dv, deriv g dv)

| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

#

)

20

val deriv : expression -> string -> expression = <fun>

deriv (Quot(Const 1.0, Var "x")) "x";;

- : expression =

Quot (Diff (Prod (Const 0, Var "x"), Prod (Const 1, Const 1)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing and parsing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence.

let print_expr exp =
(x Local function definitions *)
let open_paren prec op_prec =

if prec > op_prec then print_string "(" in

let close_paren prec op_prec =

if prec > op_prec then print_string ")" in

let rec print prec exp = (* prec is the current precedence *)
match exp with

Const ¢ -> print_float c

| Var v -> print_string v

| Sum(f, g) —>

open_paren prec O;

print O f; print_string " + "; print 0 g;

close_paren prec O

| Diff(f, g) ->

open_paren prec O;

print O f; print_string " - "; print 1 g;

close_paren prec O

| Prod(f, g) —>

open_paren prec 2;

print 2 f; print_string " * "; print 2 g;

close_paren prec 2

| Quot(f, g) —>

open_paren prec 2;

print 2 f; print_string " / "; print 3 g;

close_paren prec 2

in print O exp;;

val print_expr : expression —> unit = <fun>

Chapter 1. The core language 21

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2, Var "x"), Const 1)

print_expr e; print_newline();;

2*xx +1
- : unit = ()
print_expr (deriv e "x"); print_newline();;

N

* 1 +0*x+0
- : unit = ()

Parsing (transforming concrete syntax into abstract syntax) is usually more delicate. Caml
offers several tools to help write parsers: on the one hand, Caml versions of the lexer generator
Lex and the parser generator Yacc (see chapter [J), which handle LALR(1) languages using push-
down automata; on the other hand, a predefined type of streams (of characters or tokens) and
pattern-matching over streams, which facilitate the writing of recursive-descent parsers for LL(1)
languages. An example using ocamllex and ocamlyacc is given in chapter [4. Here, we will use
stream parsers.

open Genlex;;

let lexer = make_lexer [n(u; n)u; ll+ll; II_ll; n*n; ll/ll];;
val lexer : char Stream.t -> Genlex.token Stream.t = <fun>

For the lexical analysis phase (transformation of the input text into a stream of tokens), we use a
“generic” lexer provided in the standard library module Genlex. The make_lexer function takes
a list of keywords and returns a lexing function that “tokenizes” an input stream of characters.
Tokens are either identifiers, keywords, or literals (integer, floats, characters, strings). Whitespace
and comments are skipped.

let token_stream = lexer(Stream.of_string "1.0 +x");;
val token_stream : Genlex.token Stream.t = <abstr>

Stream.next token_stream;;
- : Genlex.token = Float 1

Stream.next token_stream;;
- : Genlex.token = Kwd "+"

Stream.next token_stream;;
- : Genlex.token = Ident "x"

The parser itself operates by pattern-matching on the stream of tokens. As usual with re-
cursive descent parsers, we use several intermediate parsing functions to reflect the precedence
and associativity of operators. Pattern-matching over streams is more powerful than on regular
data structures, as it allows recursive calls to parsing functions inside the patterns, for matching
sub-components of the input stream. See chapter [] for more details.

let rec parse_expr = parser
[< el = parse_mult; e = parse_more_adds el >] -> e
and parse_more_adds el = parser

[\)
[\)

[< ’Kwd "+"; e2
| [< ’Kwd "-"; e2
| [>] => el

and parse_mult = parser

[< el = parse_simple; e = parse_more_mults el >] -> e

and parse_more_mults el = parser

[< ’Kwd "*"; e2 = parse_simple; e = parse_more_mults (Prod(el, e2)) >] -> e
[< ’Kwd "/"; e2 = parse_simple; e parse_more_mults (Quot(el, e2)) >] -> e
| [<>] > el

and parse_simple = parser

[< ’Ident s >] -> Var s

| [< ’Int i >] -> Const(float i)

| [< ’Float f >] -> Const f

| [< ’Kwud "("; e = parse_expr; ’Kud ")" >] -> e;;

Syntax error

parse_mult; e = parse_more_adds (Sum(el, e2)) >] -> e
parse_mult; e = parse_more_adds (Diff(el, e2)) >] -> e

H OH O HF OH OH H OH HF H H HF H H H

let parse_expression = parser [< e = parse_expr; _ = Stream.empty >] -> e;;
Syntax error

Composing the lexer and parser, we finally obtain a function to read an expression from a
character string:

let read_expression s = parse_expression(lexer(Stream.of_string s));;
Unbound value parse_expression

read_expression "2*(x+y)";;
Unbound value read_expression

A small puzzle: why do we get different results in the following two examples?

read_expression "x - 1";;
Unbound value read_expression

read_expression "x-1";;
Unbound value read_expression

Answer: the generic lexer provided by Genlex recognizes negative integer literals as one integer
token. Hence, x-1 is read as the token Ident "x" followed by the token Int(-1); this sequence
does not match any of the parser rules. On the other hand, the second space in x - 1 causes the
lexer to return the three expected tokens: Ident "x", then Kwd "-", then Int(1).

1.9 Standalone Caml programs

All examples given so far were executed under the interactive system. Caml code can also be
compiled separately and executed non-interactively using the batch compilers ocamlc or ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. Here is a sample standalone program to print Fibonacci numbers:

Chapter 1. The core language 23

(* File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib(n-1) + fib(n-2);;
let main () =
let arg = int_of_string Sys.argv.(l) in
print_int (fib arg);
print_newline();
exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml

$./fib 10
89
$./fib 20

10946

24

Chapter 2

The module system

This chapter introduces the module system of Objective Caml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =

struct

type priority = int

type ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
if lprio <= rprio

then Node(lprio, lelt, remove_top left, right)

25

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
module PrioQueue :
sig

type priority = int
and ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
val empty : ’a queue
val insert : ’a queue -> priority -> ’a -> ’a queue
exception Queue_is_empty
val remove_top : ’a queue —-> ’a queue
val extract : ’a queue -> priority * ’a * ’a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue. insert in a value context is the function
insert defined inside the structure PrioQueue. Similarly, PrioQueue.queue in a type context is
the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prio(Jueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (* still concrete *)
type ’a queue (* now abstract *)
val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a *x ’a queue
exception Queue_is_empty
end; ;
module type PRIOQUEUE =
sig

type priority = int
and ’a queue

Chapter 2. The module system 27

val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a * ’a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioueue : PRIOQUEUE

AbstractPrioQueue.remove_top;;
Unbound value AbstractPrio(lueue.remove_top

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;
An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

2.3 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures: a structure A parameterized by a structure B is simply a functor F' with a formal
parameter B (along with the expected signature for B) which returns the actual structure A itself.
The functor F can then be applied to one or several implementations B; ... B, of B, yielding the
corresponding structures Ay ... A,.

For instance, here is a structure implementing sets as sorted lists, parameterized by a structure
providing the type of the set elements and an ordering function over this type (used to keep the
sets sorted):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val compare: t -> t -> comparison
end;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end

module Set =
functor (Elt: ORDERED_TYPE) ->
struct

[\]
oo

type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with
0 -> [xl]
| hd::t1l ->
match Elt.compare x hd with
Equal -> s (* x is already in s *)
| Less -> X :: 8 (* x is smaller than all elements of s *)
| Greater —> hd :: add x tl
let rec member x s =
match s with
[-> false
| hd::t1 ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater -> member x tl
end;;
module Set :

functor (E1t : ORDERED_TYPE) ->

sig

type element = Elt.t

and set = element list

val empty : ’a list

val add : Elt.t -> Elt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =
struct

type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end; ;

module OrderedString :
sig type t = string val compare : ’a —-> ’a —-> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
and set = element list
val empty : ’a list
val add : OrderedString.t -> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t —-> OrderedString.t list -> bool

Chapter 2. The module system 29

end

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

module type SETFUNCTOR =

functor (Elt: ORDERED_TYPE) ->

sig

type element = Elt.t (¥ concrete *)
type set (* abstract *)
val empty : set

val add : element -> set -> set

val member : element -> set -> bool

end;;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
and set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
and set = AbstractSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

AbstractStringSet.add '"gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

30

module type SET =
sig
type element
type set
val empty : set
val add : element -> set —-> set
val member : element -> set -> bool
end;;
module type SET =
sig
type element
and set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (El1t : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet (OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
and set = WrongSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

WrongStringSet.add "gee" WrongStringSet.empty;;
This expression has type string but is here used with type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET is
defined in a context where E1t does not exist. To overcome this difficulty, Objective Caml provides
a with type construct over signatures that allows to enrich a signature with extra type equalities:

module AbstractSet =

(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet :
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
and set

val empty : set
val add : element -> set -> set

Chapter 2. The module system 31

val member : element -> set -> bool
end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

module NoCaseString =
struct

type t = string

let compare sl s2 =

OrderedString.compare (String.lowercase sl1) (String.lowercase s2)

end;;
module NoCaseString :

sig type t = string val compare : string -> string -> comparison end

#
#
#
#

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
and set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

NoCaseStringSet.add "FO0" AbstractStringSet.empty;;
This expression has type

AbstractStringSet.set = AbstractSet (OrderedString).set
but is here used with type

NoCaseStringSet.set = AbstractSet(NoCaseString).set

Notice that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), both are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-

32

cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In Objective Caml, compilation units are special cases of structures and signatures, and the
relationship between the units can be explained easily in terms of the module system. A compilation
unit a comprises two files:

e the implementation file a.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file a.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

Both files define a structure named A (same name as the base name a of the two files, with the
first letter capitalized), as if the following definition was entered at top-level:

module A: sig (* contents of file a.mli *) end
= struct (* contents of file a¢.ml *) end;;

The files defining the compilation units can be compiled separately using the ocamlc -c command
(the -c option means “compile only, do not try to link”); this produces compiled interface files
(with extension .cmi) and compiled object code files (with extension .cmo). When all units have
been compiled, their .cmo files are linked together using the ocaml command. For instance, the
following commands compile and link a program composed of two compilation units aux and main:

$ ocamlc -c aux.mli # produces aux.cmi
$ ocamlc -c aux.ml # produces aux.cmo
$ ocamlc -c main.mli # produces main.cmi
$ ocamlc -c main.ml # produces main.cmo

$ ocamlc -o theprogram aux.cmo main.cmo
The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of aux.mli *) end

= struct (* contents of aux.ml *) end;;
module Main: sig (* contents of main.mli *) end

= struct (* contents of main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in main.ml and
main.mli can refer to definition in aux.ml, using the Aux.ident notation, provided these definitions
are exported in aux.mli.

The order in which the .cmo files are given to ocaml during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Notice that only top-level structures can be mapped to separately-compiled files, but not func-
tors nor module types. However, all module-class objects can appear as components of a structure,
so the solution is to put the functor or module type inside a structure, which can then be mapped
to a file.

Chapter 3

Objects in Caml

(Chapter written by Jérome Vouillon and Didier Rémy)

This chapter gives an overview of the object-oriented features of Objective Caml.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

class point =
object

val mutable x = 0

method get_x = x

method move d = x <- x + d
end;;

class point :
object method get_x : int method move : int -> unit val mutable x : int end

We now create a new point p, instance of the point class.
let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods to p:

pHget_x;;
- : int = 0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

33

34

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =

object

val mutable x = incr x0; !x0
method get_x = x

method move d = x <- x + d

end;;

class point :
object method get_x : int method move : int -> unit val mutable x : int end

new point#get_x;;
- : int =1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object method get_x : int method move : int -> unit val mutable x : int end

#
#
#
#
#
#

Like in function definitions, the definition above can be abbreviated as:

class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->
object method get_x : int method move : int -> unit val mutable x : int end

An instance of the class point is now a function that expects an initial parameter to create a point
object:

new point;;
- : int -> point = <fun>

let p = new point 7;;
val p : point = <obj>

Chapter 3. Objects in Caml 35

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end;;
class point :
int ->
object
method get_offset : int
method get_x : int
method move : int -> unit

H OH HF H OH

val mutable x : int
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 in
object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object
method get_offset : int
method get_x : int
method move : int -> unit
val mutable x : int
end

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternative solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

36

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as decribed below in section B.3.

3.2 Reference to self

A method can also send messages to self (that is, the current object). For that, self must be
explicitly bound, here to the variable s (s could be any identifier, even though we will often choose
the name self.)

class printable_point x_init
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;
class printable_point :
int ->
object
method get_x : int
method move : int -> unit
method print : unit
val mutable x : int
end

let p = new printable_point 7;;
val p : printable_point = <obj>

p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

3.3 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, is can access self and the instance
variables.

class printable_point x_init =

let origin = (x_init / 10) * 10 in
object (self)

val mutable x = origin

Chapter 3. Objects in Caml 37

method get_x = x
method move d = x <- x +d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline()
end;;
class printable_point :
int ->
object
method get_x : int
method move : int -> unit
method print : unit
val mutable x : int
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section p.1].

3.4 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =
object (self)
val mutable x = x_init
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit
val mutable x : int

end
class point x_init =
object
inherit abstract_point x_init
method get_x = x
method move d = x <- x + d

38

end;;
class point :
int ->
object
method get_offset : int
method get_x : int
method move : int -> unit
val mutable x : int
end

3.5 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
class restricted_point :
int ->
object
method bump : unit
method get_x : int
method private move : int -> unit
val mutable x : int
end

let p = new restricted_point O;;
val p : restricted_point = <obj>

p#move 10;;
This expression has type restricted_point
It has no method move

p#bump; ;
- : unit = ()

Private methods are inherited (they are by default visible in subclasses), unless they are hidden by
signature matching, as described below.
Private methods can be made public in a subclass.

class point_again x =

object (self)

inherit restricted_point x
method virtual move

Chapter 3. Objects in Caml 39

end;;
class point_again :
int ->
object
method bump : unit
method get_x : int
method move : int -> unit
val mutable x : int
end

The annotation virtual here is only used to mention a method without providing its definition.
An alternative definition is

class point_again x =
object (self : < move : _; ..>)
inherit restricted_point x
end;;
class point_again :
int ->
object
method bump : unit
method get_x : int
method move : int -> unit
val mutable x : int
end

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible pick its code and define a method of the same
name that run that code, so yet another (heavier) solution would be:

class point_again x =

object (self : < move : _; ..>)
inherit restricted_point x as super
method move = super#move
end; ;
class point_again :
int ->
object

method bump : unit
method get_x : int
method move : int -> unit
val mutable x : int

end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.

3.6 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

40

class type restricted_point_type =

object

method get_x : int
method bump : unit
end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

fun (x : restricted_point_type) -> x;;
- : restricted_point_type —-> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a class.
Both instance variables and concrete private methods can be hidden by a class type constraint.
Public and virtual methods, however, cannot.

class restricted_point’ x = (restricted_point x : restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

Or, equivalently:

class restricted_point’ = (restricted_point : int -> restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

module type POINT = sig

class restricted_point’ : int ->
object
method get_x : int
method bump : unit
end
end;;
module type POINT =
sig

class restricted_point’
int -> object method bump : unit method get_x : int end
end

module Point : POINT = struct

class restricted_point’ = restricted_point
end;;

module Point : POINT

3.7 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

Chapter 3. Objects in Caml 41

class colored_point x (c : string) =
object
inherit point x
val ¢ = ¢
method color = c
end; ;
class colored_point :
int ->
string ->
object
method color : string
method get_offset : int
method get_x : int
method move : int -> unit
val ¢ : string
val mutable x : int
end

let p’ = new colored_point 5 "red";;
val p’ : colored_point = <obj>

p’#get_x, p’#color;;
- : int * string = 5, '"red"

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

let get_succ_x p = p#Hget_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

get_succ_x p + get_succ_x p’;;
- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : ’a; .. > -> ’a = <fun>

let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> ’a; .. > -> ’a = <fun>

3.8 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

42

class printable_colored_point y ¢ =
object (self)
val ¢ = ¢
method color = ¢
inherit printable_point y as super
method print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
class printable_colored_point :
int ->
string ->
object

method color : string
method get_x : int
method move : int -> unit
method print : unit
val ¢ : string
val mutable x : int

end

let p’ = new printable_colored_point 17 "red";;
new point at (10, red)
val p’ : printable_colored_point = <obj>

p’#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

3.9 Parameterized classes

Reference cells can also be implemented as objects. The naive definition fails to typecheck:

class ref x_init =
object
val mutable x = x_init
method get = x
method set y = x <- y
__end;;
Some type variables are unbound in this type:
class ref :
‘a =>
object method get : ’a method set : ’a —> unit val mutable x : ’a end

#
#
#
#
#
#

Chapter 3. Objects in Caml 43

The method get has type ’a where ’a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus eother the class should be parametric, or the method type should
be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class ref (x_init:int) =
object
val mutable x = x_init
method get = x
method set y = x <- y
end;;
class ref :
int ->

object method get : int method set : int -> unit val mutable x : int end

A class for polymorphic references must explicitly list the type parameters in its declaration. Class
type parameters are always listed between [and]. The type parameters must also be bound
somewhere in the class body by a type constraint.

class [’a] ref x_init =
object
val mutable x = (x_init : ’a)
method get = x
method set y = x <- y
end;;
class [’al] ref :
’a -> object method get : ’a method set : ’a —-> unit val mutable x : ’a end

let r = new ref 1 in ri#set 2; (ri#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

class [’a] ref_succ (x_init:’a) =
object
val mutable x = x_init + 1
method get = x
method set y = x <- y
end;;
class [’a] ref_succ :
‘a —>
object

method get : int
method set : int -> unit
val mutable x : int
constraint ’a = int

end

44

Let us consider a more realistic example. We put an additional type constraint in method move,
since no free variables must remain unaccounted for by the class type parameters.

class [’al] circle (¢ : ’a) =
object
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = (center#move : int -> unit)
end;;
class [’a] circle :
‘a ->
object
method center : ’a
method move : int -> unit
method set_center : ’a -> unit
val mutable center : ’a
constraint ’a = < move : int -> unit; .. >
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below.
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

class [’a] circle (¢ : ’a) =
object
constraint ’a = #point
val mutable center = c
method center = center
method set_center c = center <- ¢
method move = center#move
end; ;
class [’a] circle :
T =>
object
method center : ’a
method move : int -> unit
method set_center : ’a -> unit
val mutable center : ’a
constraint ’a = #point
end

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [and].

Chapter 3. Objects in Caml 45

class [’a] colored_circle c =
object
constraint ’a = #colored_point
inherit [’al] circle c
method color = center#color
end; ;
class [’a] colored_circle :
Tg =>
object

method center : ’a

method color : string

method move : int -> unit

method set_center : ’a -> unit

val mutable center : ’a

constraint ’a = #colored_point
end

3.10 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

let 1 = [p; (colored_point_to_point q)];;
val 1 : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t’ only if t is a subtype of t’. For instance,
a point cannot be seen as a colored point.

(p : point :> colored_point);;
Type point = < get_offset : int; get_x : int; move : int —-> unit >
is not a subtype of type
colored_point =
< color : string; get_offset : int; get_x : int; move : int -> unit >

Indeed, narrowing coercions would be unsafe, and could only be combined with a type case, possibly
raising a runtime error. However, there is no such operation available in the language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of

46

colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.
The domain of a coercion can usually be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point :
< get_offset : int; get_x : int; move : int -> unit; .. > -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

class cO = object method m = {< >} method n = 0 end;;
class cO : object (’a) method m : ’a method n : int end

The object type c is an abbreviation for <m : ’a; n : int> as ’a. Consider now the type
declaration:
class type cl = object method m : cl end;;

class type cl1 = object method m : c1 end

The object type c1 is an abbreviation for the type <m : ’a> as ’a. The coercion from an object
of type c0 to an object of type c1 is correct:

fun (x:c0) -> (x : cO0 :> cl);;
- : ¢c0 -> cl1 = <fun>

However, the domain of the coercion cannot be omitted here:

fun (x:c0) > (x :> cl);;

This expression cannot be coerced to type cl = <m : cl >; it has type
cO=<m: cO; n: int >

but is here used with type <m : c1; n : int >

Type cO = <m : cO; n : int > is not compatible with type c1 = <m : cl >

Only the first object type has a method n

The solution is to use the explicit form. Sometimes, a change in the class-type definition can also
solve the problem

class type c2 = object (’a) method m : ’a end;;
class type c2 = object (’a) method m : ’a end

fun (x:c0) —> (x :> c2);;
- : ¢c0 -> c2 = <fun>

Note that, while classe types c1 and c2 are different, both object types c1 and c2 expand to the
same object type (same method names and types). When the domain of a coercion is left implicit
and its co-domain is an abbreviation of a known class type, then the class type, rather than the
object type, is used to derive the coercion function. This allows to leave the domain implicit in
most cases when coercing form a subclass to its superclass. The type of a coercion can always be
seen as below:

Chapter 3. Objects in Caml 47

let to_cl x = (x :> cl);;
val to_cl : <m : c1; .. > -> cl1 = <fun>

let to_c2 x = (x :> c2);;
val to_c2 : (< m : ’a; .. > as ’a) -> c2 = <fun>

Note the difference between the two coercions: in the second case, the type c2 has been unfolded
once (according to the explicit recursion in the class type of c2); hence the success of applying this
coercion to an object of class c0. You may also note that the type of to_c1 is #c1 -> c1 while
the type of to_c2 is more general than #c2 -> c2. This is not always true, since there are class
types for which some instances of #c are not subtypes of ¢, as explained in section B.14. Yet, for
parameterless classes the coercion (_ :> c) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class ¢ inside the
definition of class c. The problem is due to the type abbreviation not being completely defined yet,
and so its subtypes are not clearly known. Then, a coercion (_ :> c) or (_ : #c :> c) is taken
to be the identity function, as in

function x -> (x :> ’a);;
- : ’a -> ’a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrains the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class ¢ = object (self) method m = (self :> c) end;;

This expression cannot be coerced to type ¢ = < .. > as ’a; it has type
<m: ’b; .. >

but is here used with type c = ’a

Self type cannot escape its class

This problem can sometimes be avoided by first defining the abbreviation, using a class type:

class type c’ = object method m : ¢’ end;;
class type c’ = object method m : c’ end

class ¢ : ¢’ = object (self) method m = (self :> c’) end;;
class ¢ : c’

It is also possible to use a virtual class. Inheriting from this class simultaneously allows to enforce
all methods of c4 to have the same type as the methods of c’.

class virtual ¢’ = object method virtual m : ¢’ end;;
class virtual c’ : object method virtual m : c’ end

class ¢ = object (self) inherit c’ method m = (self :> c’) end;;
class ¢ : object method m : ¢’ end

One could think of defining the type abbreviation directly:

type ¢’ =<m : c’>;;
type ¢’ =<m : c’ >

48

However, the abbreviation #c’ cannot be defined directly in a similar way. It can only be defined
by a class or a class-type definition. (One reason is that # sharp abbreviations carry an implicit

anonymous variable .. that cannot be explicitly named). Thus, the abbreviation #c’ should be
expanded:
class ¢ = object (self) method m = (self : (<m : ¢’; ..> as ’a) :> c’) end;;

class ¢ : object method m : c’ end

3.11 Functional objects

It is possible to write a version of class point without assignments on the instance variables. The
construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing the
value of some instance variables.

class functional_point y
object
val x = y
method get_x = x
method move d = {< x
end;;
class functional_point :
int ->
object (’a) method get_x : int method move : int -> ’a val x : int end

x +d >}

#
#
#
#
#
#

let p = new functional_point 7;;
val p : functional_point = <obj>

pHget_x;;
- :int =7

(p#move 3)#get_x;;

- : int = 10
pHget_x;;
- : int =7

Note that the type abbreviation functional_point is recursive, which can be seen in the class
type of functional_point: the type of self is *a and ’a appears inside the type of the method
move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y =

object

val x = y

method get_x = x

method move d = new functional_ point (x+d)
end;;

class bad_functional_point :
int ->

Chapter 3. Objects in Caml 49

object
method get_x : int
method move : int -> functional_point
val x : int

end

let p = new functional_point 7;;
val p : functional_point = <obj>

pHget_x;;
- :int =7

+H+

(p#move 3)#get_x;;
: int = 10

+H+

pH#get_x;;
: int =7

While objects of either class will behave the same, objects of their subclasses will be different. In
a subclass of the latter, the method move will keep returning an object of the parent class. On the
contrary, in a subclass of the former, the method move will return an object of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section
B2

3.12 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo. copy
makes a shallow copy of an object. That is, it returns an object that is equal to the previous one.
The instance variables have been copied but their contents are shared. Assigning a new value to an
instance variable of the copy (using a method call) will not affect instance variables of the original,
and conversely. A deeper assignment (for example if the instance variable if a reference cell) will
of course affect both the original and the copy.

The type of Oo.copy is the following:

0o.copy;;
- : (< .. > as ’a) -> ’a = <fun>

The keyword as in that type binds the type variable ’a to the object type < .. >. Therefore,
0o . copy takes an object with any methods (represented by the ellipsis), and returns an object of
the same type. The type of 0Oo.copy is different from type < .. > -> < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;
val p : point = <obj>

let q = Oo.copy p;;
val q : point = <obj>

g#tmove 7; (p#get_x, qg#fget_x);;
- : int * int = 5, 12

50

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : point = <obj>

#p=4d, P =p;;

- : bool * bool = false, true

Other generic comparissons such as (<, <=,...) can also be used on objects. The relation < defines

an unspecified but strict ordering on objets. The ordering relationship between two objects is fixed

once for all after the two objects have been created and it is not affected by mutation of fields.
Cloning and override have a non empty intersection. They are interchangeable when used within

an object and without overriding any field:

class copy =

object
method copy = {< >}
end;;

class copy : object (’a) method copy : ’a end

class copy =

object (self)

method copy = 0o.copy self

end;;

class copy : object (’a) method copy : ’a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup =
object (self : ’mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
class backup :
object (’a)
method restore : ’a
method save : unit
val mutable copy : ’a option
end

The above definition will only backup one level. The backup facility can be added to any class
using multiple inheritance.

Chapter 3. Objects in Caml 51

class [’al] backup_ref x = object inherit [’a]l ref x inherit backup end;;
class [’al backup_ref :
T =>
object (’b)
method get : ’a
method restore : ’b
method save : unit
method set : ’a —> unit
val mutable copy : ’b option
val mutable x : ’a
end

let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : ’b; restore : ’a; .. > as ’a) -> int -> ’b = <fun>

let p = new backup_ref 0O in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 41;;
- ¢ int list = [2; 1; 1; 1; 1]

A variant of backup could retain all copies. (We then add a method clear to manually erase all
copies.)

class backup =
object (self : ’mytype)
val mutable copy = None
method save = copy <- Some {< >}
method restore = match copy with Some x -> x | None -> self
method clear = copy <- None
end;;
class backup :
object (’a)
method clear : unit
method restore : ’a
method save : unit
val mutable copy : ’a option
end

class [’al] backup_ref x = object inherit [’a]l ref x inherit backup end;;
class [’al] backup_ref :
)a ->
object (’b)
method clear : unit
method get : ’a
method restore : ’b
method save : unit
method set : ’a -> unit
val mutable copy : ’b option
val mutable x : ’a
end

52

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p O; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 0; 0; 0]

3.13 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window =
object
val mutable top_widget = (None : widget option)
method top_widget = top_widget
end
and widget (w : window) =
object
val window = w
method window = window
end;;
class window :
object
method top_widget : widget option
val mutable top_widget : widget option
end
class widget :
window -> object method window : window val window : window end

H OH HF H H H H H

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.14 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type a -> bool where
the type variable ’a is bound to the type of self. Therefore, #comparable expands to < leq : ’a
-> bool; .. > as ’a. We see here that the binder as also allows to write recursive types.

class virtual comparable =

object (_ : ’a)
method virtual leq : ’a -> bool
end;;

class virtual comparable : object (’a) method virtual leq : ’a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. There is a type constraint on the class
parameter x as the primitive <= is a polymorphic comparison function in Objective Caml. The
inherit clause ensures that the type of objects of this class is an instance of #comparable

Chapter 3. Objects in Caml

class money (x : float) =
object

inherit comparable

val repr = x
#
#
#

method value = repr
method leq p = repr <= p#value
end;;
class money :
float ->
object (’a)
method leq : ’a —> bool
method value : float
val repr : float
end

93

Note that the type moneyl is not a subtype of type comparable, as the self type appears in
contravariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m
of type comparable would allow to call method leq on m with an argument that does not have a

method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

class money2 x =

object
inherit money x
method times k = {< repr = k *.
end;;
class money2 :
float ->

object (’a)
method leq : ’a —> bool
method times : float -> ’a
method value : float
val repr : float

end

repr >}

It is however possible to define functions that manipulate objects of type either money or money2: the
function min will return the minimum of any two objects whose type unifies with #comparable. The
type of min is not the same as #comparable -> #comparable -> #comparable, as the abbreviation

#comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a

new variable.

let min (x : #comparable) y =
if x#leq y then x else y;;

val min : (#comparable as ’a) -> ’a -> ’a
This function can be applied to objects of type money or money?2.

(min (new money 1.3) (new money 3.1))#value;;

= <fun>

54

- : float = 1.3

(min (new money2 5.0) (new money2 3.14))#value;;
- : float = 3.14

More examples of binary methods can be found in sections b.2.1] and b.2.3.

Notice the use of functional update for method times. Writing new money2 (k *. repr)
instead of {< repr = k *. repr >} would not behave well with inheritance: in a subclass money3
of money2 the times method would return an object of class money2 but not of class money3 as
would be expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x =
object (self : ’a)

val repr = x

method value = repr

method print = print_float repr
#

#

#

#

method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= p#value
method plus (p : ’a) = {< repr = x +. p#value >}
end;;
class money :
float ->
object (’a)
method leq : ’a —> bool
method plus : ’a -> ’a
method print : unit
method times : float -> ’a
method value : float
val repr : float
end

3.15 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as long as some binary requires access to the representation on object of the same class
but different from self.

class safe_money x =
object (self : ’a)
val repr = x
method print print_float repr
method times k = {< repr = k *. x >}
end;;

#
#
#
#
#
#

Chapter 3. Objects in Caml 55

class safe_money :
float ->
object (’a)
method print : unit
method times : float -> ’a
val repr : float
end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

module type MONEY =
sig
type t
class ¢ : float —>
object (’a)
val repr : t
method value : t
method print : unit
method times : float -> ’a
method leq : ’a —> bool
method plus : ’a -> ’a
end
end;;

#

#

#

#

#

#

#

#

#

#

#

#

module Euro : MONEY =

struct

type t = float

class ¢ x =

object (self : ’a)
val repr = x
method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= p#value
method plus (p : ’a) = {< repr = x +. p#value >}
end

end;;

Another example of friend functions may be found in section p.2.3. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside of the module.

56

Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in Objective Caml 3: labels, and polymorphic
variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

ListLabels.map;;
- : f:(’a -> ’b) -> ’a list -> ’b list = <fun>
Stringlabels.sub;;

- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

let £ "x "y =x - y;;
val £ : x:int -> y:int -> int = <fun>
let x =3 and y =2 in £ "x 7y;;

- : int = 1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

let £ "x:x1 “y:yl = x1 - yi;;
val £ : x:int -> y:int -> int = <fun>

f "x:3 Ty:2;;

- : int =1

o7

58

Labels obey the same rules as other identifiers in Caml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labelsf], the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

let £ "x "y =x - ¥y;;
val f : x:int -> y:int -> int = <fun>

£ "y:2 "x:3;;
- : int =1

+H+

ListLabels.fold_left;;
- : f:(’a -> ’b => ’a) -> init:’a -> ’b list -> ’a = <fun>

ListLabels.fold_left [1;2;3] ~init:0 “f:(+);;
- : int = 6

+H+

ListLabels.fold_left "init:0;;
- : f:(int -> ’a -> int) -> ’a list -> int = <fun>

If in a function several arguments bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

let hline "x:x1 "x:x2 7y = (x1, %2, y);;
val hline : x:’a -> x:’b -> y:’c -> ’a * ’b ¥ ’c = <fun>
hline "x:3 "y:2 "x:5;;

- : int * int * int = 3, 5, 2

As an exception to the above parameter matching rules, if an application is total, labels may
be omitted. In practice, most applications are total, so that labels can be omitted in applications.

£ 3 2;;
- : int =1
ListLabels.map succ [1;2;3];;

: int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

ListLabels.fold_left (+) 0 [1;2;3];;
This expression has type int -> int -> int but is here used with type ’a list

When a function is passed as an argument to an higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

!This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.

Chapter 4. Labels and variants 59

let h g =g "x:3 "y:2;;

val h : (x:int -> y:int -> ’a) -> ’a = <fun>
h f;;

- :int =1

#h (£);;

This expression has type int -> int -> int but is here used with type
x:int -> y:int -> ’a

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by 7 in the function type. Default values may be given for such optional parameters.

let bump 7(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>
bump 2;;

- : int = 3

bump “step:3 2;;

- : int =5

A function taking some optional arguments must also take at least one non-labeled argument.
This is because the criterion for deciding whether an optional has been omitted is the application
on a non-labeled argument appearing after this optional argument in the function type.

let test 27(x =0) ?2(y=0) O ?72(z=0) O = (x, 9, 2);;
val test : 7x:int -> ?y:int -> unit -> 7z:int -> unit -> int * int * int =
<fun>

test O;;
- : ?z:int -> unit -> int * int * int = <fun>
test "x:2 O "z:3 O;;

: int * int * int = 2, 0, 3

Optional parameters may also commute with non-optional or unlabelled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.

test "y:2 "x:3 O O;3;
- : int * int * int = 3, 2, 0
test O O “z:1 "y:2 "x:3;;

- : int * int * int = 3, 2, 1

(test O Q) "z:l;;
This expression is not a function, it cannot be applied

60

Here (test () ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type ’a option = None | Some of ’a
You can then provide different behaviors when an argument is present or not.

let bump 7step x =
match step with

| None -> x * 2
| Somey ->x +y
#55

val bump : ?step:int -> int -> int = <fun>
p P

It may also be useful to relay a functional argument from a function call to another. This can
be done by prefixing the applied argument with ?. This question mark disables the wrapping of
optional argument in an option type.

let test2 7x 7y () = test 7x 7y O O;;
val test2 : ?x:int -> 7y:int -> unit -> int * int * int = <fun>

test2 7x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

let h’ g =g "y:2 "x:3;;

val h’ : (y:int -> x:int -> ’a) -> ’a = <fun>

#h’ £;;

This expression has type x:int -> y:int -> int but is here used with type
y:int -> x:int -> ’a

let bump_it bump x =

bump “step:2 x;;

val bump_it : (step:int -> ’a -> ’b) -> ’a -> ’b = <fun>

bump_it bump 1;;
This expression has type ?step:int -> int -> int but is here used with type
step:int -> int -> ’a

The first case is simple: g is passed “y and then “x, but £ expects “x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> ’a. These two types being

Chapter 4. Labels and variants 61

incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

let bump_it (bump : 7?step:int -> int -> int) x =

bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;

- : int = 3

In practive, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

let twice f (x : int) = £(f x);;
val twice : (int -> int) -> int -> int = <fun>

twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,
e is easy to remember,

e when possible, allows useful partial applications.

We explain here the rules we applied when labeling Objective Caml libraries.
To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination

62

of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear by the function itself. The parameters are labeled with names reminding either of their
nature or role. Best labels combine in their meaning nature and role. When this is not possible

the role is to prefer, since the nature will often be given by the type itself. Obscure abbreviations
should be avoided.

ListLabels.map : f:(’a -> ’b) -> ’a list -> ’b list
UnixLabels.write : file_descr -> buf:string -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:(’a -> ’b -> ’c) -> ’a list -> ’b list -> unit
When there is no preferable object, all arguments are labeled.

StringlLabels.blit :
src:string -> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.

StringlLabels.create : int -> string

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string or array

len: a length

buf: a string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Pervasives.compare
mode: | an operation mode or a flag list

All these are only suggestions, but one shall keep in mind that the choice of labels is essential
for readability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels shall be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.

Chapter 4. Labels and variants 63

4.2 Polymorphic variants

Variants as presented in section [.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact every constructor reserves a name to be used with a unique type. On cannot use the same
name in another type, or consider a value of some type to belong to some other type with more
constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character ‘.

[‘On; ‘Off];;
- : [> ‘On | ‘Off] list = [‘On; ‘Off]
‘Number 1;;

- : [> ‘Number of int] = ‘Number 1

let f = function ‘On -> 1 | ‘Off -> 0 | ‘Number n -> n;;
val £ : [< ‘On | ‘Off | ‘Number of int] -> int = <fun>

List.map “f [‘On; ‘0ffl;;
Expecting function has type ’a list -> ’b list
This argument cannot be applied with label ~f

[>‘0ff| ‘On] 1list means that to match this list, you should at least be able to match ‘0ff and
‘On, without argument. [<‘On| ‘0ff| ‘Number of int] means that £ may be applied to ‘0ff, ‘On
(both without argument), or ‘Number n where n is an integer. The > and < inside the variant type
shows that they may still be refined, either by defining more tags or allowing less. As such they
contain an implicit type variable. Both variant types appearing only once in the type, the implicit
type variables they constrain are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type
annotations, one will most often describe fixed variant types, that is types that can be no longer
refined. This is also the case for type abbreviations. Such types do not contain < or >, but just an
enumeration of the tags and their associated types, just like in a normal datatype definition.

type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist];;
type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist]

let rec map "f : ’a vlist -> ’b vlist = function
| ‘Nil -> ‘Nil

| ‘Cons(a, 1) -> ‘Cons(f a, map “f 1)

%5,

val map : f:(’a -> ’b) -> ’a vlist -> ’b vlist = <fun>

64

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

let £ = function ‘A -> ‘C | ‘B -> ‘D | x -> x;;
val £ : ([> ‘C | ‘D | ‘A | ‘B] as ’a) -> ’a = <fun>

f ‘E;;

-:_[>°“« | D| ‘Al ‘B| ‘E] = ‘E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> ‘A | ‘B] rather than [< ‘A | ‘B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as ’a denotes such type
sharing. If we apply £ to yet another tag ‘E, it gets added to the list.

let f1 = function ‘A x > x =1 1| ‘B -> true | ‘C -> false
let f2 = function ‘A x -> x = "a" | ‘B -> true ;;

val f1 : [< ‘A of int | ‘B | ‘C] -> bool = <fun>

val f2 : [< ‘A of string | ‘B] -> bool = <fun>

let £ x = f1 x && 2 x;;
val £ : [< ‘A of string & int | ‘B] -> bool = <fun>

Here £1 and £2 both accept the variant tags ‘A and ‘B, but the argument of ‘A is int for £1 and
string for £2. In £’s type ‘C, only accepted by f1, disappears, but both argument types appear
for ‘A as int & string. This means that if we pass the variant tag ‘A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ‘A, and ‘B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

type ’a wlist = [‘Nil | ‘Cons of ’a * ’a wlist | ‘Snoc of ’a wlist * ’al;;
type ’a wlist = [‘Nil | ‘Cons of ’a * ’a wlist | ‘Snoc of ’a wlist * ’a]

let wlist_of_vlist 1 = (1 : ’a vlist :> ’a wlist);;
val wlist_of_vlist : ’a vlist -> ’a wlist = <fun>

fun x > (x :> [“Al‘B|‘Cl);;
-:[<fA|] ‘B ‘c] ->1[‘A ‘B| ‘C] = <fun>

You may also selectively coerce values through pattern matching.

let split_cases = function

| ‘Nil | ‘Cons _ as x -> ‘A x
| “Snoc as x -> ‘B x

#

val split_cases :
[< ‘Nil | ‘Cons of ’a | ‘Smoc of ’b] ->
[> ‘A of [> ‘Nil | ‘Cons of ’a] | ‘B of [> ‘Snoc of ’b]] = <fun>

Chapter 4. Labels and variants 65

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,
like incremental definition of functions.

let num x = ‘Num x

let evall eval (‘Num x) = x

let rec eval x = evall eval x ;;

val num : ’a -> [> ‘Num of ’a] = <fun>

val evall : ’a -> [< ‘Num of ’b] -> ’b = <fun>
val eval : [< ‘Num of ’a] -> ’a = <fun>

let plus x y = ‘Plus(x,y)
let eval2 eval = function

| ‘Plus(x,y) -> eval x + eval y

| ‘Num _ as x —> evall eval x

let rec eval x = eval2 eval x ;;

val plus : ’a -> ’b -> [> ‘Plus of ’a * ’b] = <fun>

val eval2 : (’a -> int) -> [< ‘Plus of ’a * ’a | ‘Num of int] -> int = <fun>
val eval : ([< ‘Plus of ’a * ’a | ‘Num of int] as ’a) -> int = <fun>

To make this even more confortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = [‘Tagl int | ‘Tag2 bool], then the
pattern #myvariant is equivalent to writing (‘Tagl(_ : int) | ‘Tag2(_ : bool))

Such abbreviations may be used alone,

let £ = function

| #myvariant -> "myvariant"

| ‘Tag3 -> "Tag3";;

val £ : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

or combined with with aliases.

let gl = function ‘Tagl _ -> "Tagl" | ‘Tag2 _ -> "Tag2";;
val g1 : [< ‘Tagl of ’a | ‘Tag2 of ’b] -> string = <fun>

let g = function

| #myvariant as x -> gl x

| ‘Tag3 -> "Tag3";;

val g : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core
language variants, rather than replacing them.

The answer is two fold. One first aspect is that while being pretty efficient, the lack of static
type information allows for less optimizations, and makes polymorphic variants slightly heavier than
core language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,

66

they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that certain idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

type abc = [‘A | ‘B | ‘CI ;;
type abc = [‘A | ‘B | ‘C]

let £ = function

| “As -> "A"

| #abc -> "other" ;;

val £ : [< ‘As | ‘A | ‘B | ‘C] -> string = <fun>

let £ : abc -> string = f ;;
val £ : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

let £ : abc —> string = function

| (ﬁ —> npn

| #abc -> "other" ;;

This pattern matches values of type [< ‘A4s | ‘A | ‘B | ‘C]

but is here used to match values of type abc = [‘A | ‘B | ‘C]

Chapter 5

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern know of as virtual types through the example of window managers.

5.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter B.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

let zero = euro O.;;
val zero : Euro.c = <obj>

let neg x = x#times (-1.);;
val neg : < times : float -> ’a; .. > -> ’a = <fun>

class account =
object
val mutable balance = zero
method balance = balance
method deposit x = balance <- balance # plus x
method withdraw x =
if x#leq balance then (balance <- balance # plus (neg x); x) else zero
end;;
class account :
object

67

68

method balance : Euro.c
method deposit : Euro.c -> unit
method withdraw : Euro.c -> Euro.c
val mutable balance : Euro.c

end

let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests =
object (self)
inherit account
method private interest = self # deposit (self # balance # times 0.03)
end;;
class account_with_interests :
object
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
val mutable balance : Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

class safe_account =

object
inherit account
method deposit x = if zero#leq x then balance <- balance#plus x
end;;
class safe_account :
object

method balance : Euro.c
method deposit : Euro.c -> unit
method withdraw : Euro.c -> Euro.c
val mutable balance : Euro.c

end

However, the bug might be fixed more safely by the following definition:

class safe_account =

object

inherit account as unsafe
method deposit x =

Chapter 5. Advanced examples with classes and modules 69

if zero#leq x then unsafe # deposit x
else raise (Invalid_argument "deposit")
end;;
class safe_account :

object

method balance : Euro.c
method deposit : Euro.c -> unit
method withdraw : Euro.c -> Euro.c
val mutable balance : Euro.c

end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep trace of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

type ’a operation = Deposit of ’a | Retrieval of ’a;;
type ’a operation = Deposit of ’a | Retrieval of ’a

class account_with_history =
object (self)
inherit safe_account as super
val mutable history = []
method private trace x = history <- x :: history
method deposit x = self#trace (Deposit x); super#deposit x
method withdraw x = self#trace (Retrieval x); super#withdraw x
method history = List.rev history
end;;
class account_with_history :
object
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c
val mutable balance : Euro.c
val mutable history : Euro.c operation list
end

H OHF H OH OHF H H

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initializer.

class account_with_deposit x =

object
inherit account_with_history
initializer balance <- x
end;;
class account_with_deposit :
Euro.c ->
object

method balance : Euro.c

70

method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c
val mutable balance : Euro.c
val mutable history : Euro.c operation list
end

A better alternative is:

class account_with_deposit x =
object (self)

inherit account_with_history
initializer self#deposit x
end; ;

class account_with_deposit :
Euro.c ->
object
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c
val mutable balance : Euro.c
val mutable history : Euro.c operation list
end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

let ccp = new account_with_deposit (euro 100.) in
let balance = ccp#withdraw (euro 50.) in
ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

let close c = c#withdraw (c#balance);;
val close : < balance : ’a; withdraw : ’a -> ’b; .. > -> ’b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some
currency.

let today () = (01,01,2000) (* an approximation *)
module Account (M:MONEY) =

struct

type m = M.c

let m = new M.c

let zero = m O.

Chapter 5. Advanced examples with classes and modules 71

class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then
(balance <- balance # plus (neg x); self#trace (Retrieval x); x)
else zero
method history = List.rev history
end

class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end

class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self) initializer self#deposit y end

module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x
end

let discount x =
let ¢ = new account x in
if today() < (1998,10,30) then c # deposit (m 100.); c
end

H OHF H OH OHF OH H HF H HHF R HH HEHHHHFHHHFEHHEHH K HHHEHHEHHHEHFHHHFEHHHFEH K

end;;

This shows the use of modules to group several class definitions that can in fact be thought of as

72

a single unit. This unit would be provided by a bank for both internal and external uses. This is
implemented as a functor that abstracts over the currency so that the same code can be used to
provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined).
This is the one that will be used for further extensions, refinements, etc. Conversely, the client will
only be given the client view.

module Euro_account = Account(Euro);;
module Client = Euro_account.Client (Euro_account);;

new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts.
Their only way to change their balance is to deposit or withdraw money. It is important to give
the clients a class and not just the ability to create accounts (such as the promotional discount
account), so that they can personalize their account. For instance, a client may refine the deposit
and withdraw methods so as to do his own financial bookkeeping, automatically. On the other
hand, the function discount is given as such, with no possibility for further personalization.

It is important that to provide the client’s view as a functor Client so that client accounts can
still be build after a possible specialization of the bank. The functor Client may remain unchanged
and be passed the new definition to initialize a client’s view of the extended account.

module Investment_account (M : MONEY) =

struct

type m = M.c

module A = Account (M)

#

class bank =

object

inherit A.bank as super

method deposit x =

if (new M.c 1000.)#leq x then
print_string "Would you like to invest?";
super#deposit x

end

#

module Client = A.Client

end;;

The functor Client may also be redefined when some new features of the account can be given to
the client.

module Internet_account (M : MONEY) =
struct

type m = M.c

module A = Account (M)

class bank =

Chapter 5. Advanced examples with classes and modules 73

object

inherit A.bank

method mail s = print_string s
end

class type client_view =

object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
method mail : string -> unit

end

module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit A.check_client x
end
end
end;;

H OH HF H OH OH OH HFH HHH HHHHH HEHH K HH

5.2 Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as
objects. Although this is usually uninteresting for integers or strings, there may be some situations
where this is desirable. The class money above is such an example. We show here how to do it for
strings.

5.2.1 Strings

A naive definition of strings as objects could be:

class ostring s =
object
method get n = String.get n
method set n ¢ = String.set n ¢
method print = print_string s
method copy = new ostring (String.copy s)
end;;
class ostring :
string ->

object

74

method copy : ostring

method get : string -> int -> char

method print : unit

method set : string -> int -> char -> unit
end

However, the method copy returns an object of the class string, and not an objet of the current
class. Hence, if the class is further extended, the method copy will only return an object of the
parent class.

class sub_string s =
object
inherit ostring s
method sub start len = new sub_string (String.sub s start len)
end;;
class sub_string :
string ->
object
method copy : ostring
method get : string -> int -> char
method print : unit
method set : string -> int -> char -> unit
method sub : int -> int -> sub_string
end

As seen in section B.I4, the solution is to use functional update instead. We need to create an
instance variable containing the representation s of the string.

class better_string s =
object

val repr = s

method get n = String.get n
method set n ¢ = String.set n c
#

#

#

#

method print = print_string repr
method copy = {< repr = String.copy repr >}
method sub start len = {< repr = String.sub s start len >}

end;;
class better_string :
string ->

object (’a)
method copy : ’a
method get : string -> int -> char
method print : unit
method set : string -> int -> char -> unit
method sub : int -> int -> ’a
val repr : string
end

As shown in the inferred type, the methods copy and sub now return objects of the same type as
the one of the class.

Chapter 5. Advanced examples with classes and modules 75

Another difficulty is the implementation of the method concat. In order to concatenate a string
with another string of the same class, one must be able to access the instance variable externally.
Thus, a method repr returning s must be defined. Here is the correct definition of strings:

class ostring s =
object (self : ’mytype)
val repr = s
method repr = repr
method get n = String.get n
method set n ¢ = String.set n ¢
method print = print_string repr
method copy = {< repr = String.copy repr >}
method sub start len = {< repr = String.sub s start len >}
method concat (t : ’mytype) = {< repr = repr " t#repr >}
end; ;
class ostring :
string ->
object (’a)
method concat : ’a -> ’a
method copy : ’a
method get : string -> int -> char
method print : unit
method repr : string
method set : string -> int -> char -> unit
method sub : int -> int -> ’a
val repr : string
end

Another constructor of the class string can be defined to return an uninitialized string of a given
length:

class cstring n = ostring (String.create n);;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the
representation of strings as we hid the currency in the class money of section B.13.

Stacks

There is sometimes an alternative between using modules or classes for parametric data types.
Indeed, there are situations when the two approaches are quite similar. For instance, a stack can
be straightforwardly implemented as a class:

exception Empty;;
exception Empty

class [’a] stack =
object

val mutable 1
method push x

([0 : ’a list)
1 <= x::1

76

method pop = match 1 with [] -> raise Empty | a::1’ -> 1 <- 1’; a
method clear = 1 <- []
method length = List.length 1
end;;
class [’al] stack :
object

method clear : unit

method length : int

method pop : ’a

method push : ’a -> unit

val mutable 1 : ’a list
end

However, writing a method for iterating over a stack is more problematic. A method fold would
have type (°’b -> ’a -=> ’b) -> ’b -> ’b. Here ’a is the parameter of the stack. The parameter
’b is not related to the class ’a stack but to the argument that will be passed to the method
fold. The intuition is that method fold should be polymorphic, i.e. of type A1l (*a) (’b ->
’a => ’b) -> ’b -> ’b, which is not currently possible. One possibility would be to make ’b an
extra parameter of class stack:

class [’a, ’b] stack2 =

object
inherit [’al] stack
method fold f (x : ’b) = List.fold_left f x 1
end;;
class [’a, ’b] stack2 :
object

method clear : unit
method fold : (’b -> ’a -> ’b) -> ’b -> ’b
method length : int
method pop : ’a
method push : ’a —-> unit
val mutable 1 : ’a list
end

However, the method fold of a given object can only be applied to functions that all have the same
type:

let s = new stack2;;
val s : (’_a, ’_b) stack2 = <obj>

s#fold (+) O;;
- : int = 0
s;;

- : (int, int) stack2 = <obj>

The best solution would be to make method fold polymorphic. However, OCaml does not currently
allow methods to be polymorphic. Thus, the current solution is to leave the function fold outside
of the class.

Chapter 5. Advanced examples with classes and modules 77

class [’a] stack3 =

object
inherit [’a] stack
method iter f = List.iter (f : ’a —-> unit) 1
end;;
class [’a] stack3 :
object

method clear : unit
method iter : (’a -> unit) -> unit
method length : int
method pop : ’a
method push : ’a -> unit
val mutable 1 : ’a list
end

let stack_fold (s : ’a #stack3) f x =

let accu = ref x in

s#iter (fun e -> accu := f laccu e);

laccu;;

val stack_fold : ’a #stack3 -> (’b -> ’a -> ’b) -> ’b -> ’b = <fun>

5.2.2 Hashtbl

A simplified version of object-oriented hash tables should have the following class type.

class type [’a, ’b] hash_table =

object

method find : ’a -> ’b

method add : ’a -> ’b -> unit
end;;

class type [’a, ’b] hash_table =
object method add : ’a -> ’b -> unit method find : ’a -> ’b end

A simple implementation, which is quite reasonable for small hastables is to use an association list:

class [’a, ’b] small_hashtbl : [’a, ’b] hash_table =

object

val mutable table = []

method find key = List.assoc key table

method add key valeur = table <- (key, valeur) :: table
end;;

class [’a, ’b] small_hashtbl : [’a, ’b] hash_table

A better implementation, and one that scales up better, is to use a true hash tables... whose
elements are small hash tables!

class [’a, ’b] hashtbl size : [’a, ’b] hash_table =
object (self)
val table = Array.init size (fun i -> new small_hashtbl)

78

method private hash key =

(Hashtbl.hash key) mod (Array.length table)

method find key = table.(self#hash key) # find key
method add key = table. (self#hash key) # add key

end;;

class [’a, ’b] hashtbl : int -> [’a, ’b] hash_table

5.2.3 Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access
the internal representation of another object of the same class.

This is another instance of friend functions as seen in section B.I5. Indeed, this is the same
mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return
the representation of a set. Since sets are parametric in the type of elements, the method tag has a
parametric type ’a tag, concrete within the module definition but abstract in its signature. From
outside, it will then be guaranteed that two objects with a method tag of the same type will share
the same representation.

module type SET =
sig
type ’a tag
class [’a] c :
object (’b)
method is_empty : bool
method mem : ’a -> bool
method add : ’a -> ’b
method union : ’b -> ’b
method iter : (’a -> unit) -> unit
method tag : ’a tag
end
end;;

struct
let rec merge 11 12 =
match 11 with
[0 -> 12
[h1 :: t1 ->
match 12 with
0 ->11
| h2 :: t2 —>
if hl < h2 then hl :: merge t1 12
else if hl > h2 then h2 :: merge 11 t2
else merge tl 12

#
#
#
#
#
#
#
#
#
#
#
#
module Set : SET =
#
#
#
#
#
#
#
#
#
#
#
type ’a tag = ’a list

Chapter 5. Advanced examples with classes and modules 79

class [’a]l ¢ =

object (_ : ’b)
val repr = ([] : ’a list)
method is_empty = (repr = [])
method mem x = List.exists ((=) x) repr
method add x = {< repr = merge [x] repr >}
method union (s : ’b) = {< repr = merge repr s#tag >}
method iter (f : ’a -> unit) = List.iter f repr
method tag = repr

end

H OHF H OH OHF OH OH HF H H H

end;;

5.3 The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature
as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the
definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject
and an event to execute an action.

class virtual [’subject, ’event] observer =

object
method virtual notify : ’subject -> ’event -> unit
end;;

class virtual [’a, ’b] observer :
object method virtual notify : ’a -> ’b -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished
method notify_observers to broadcast the message notify to all observers with a particular
event e.

class [’observer, ’event] subject =

object (self)

val mutable observers = ([]:’observer list)

method add_observer obs = observers <- (obs :: observers)
method notify_observers (e : ’event) =

List.iter (fun x -> x#notify self e) observers

end;;

class [’a, ’b] subject :
object (’c)

method add_observer : ’a -> unit

method notify_observers : ’b -> unit

val mutable observers : ’a list

constraint ’a = < notify : ’c -> ’b -> unit; .. >

end

80

The difficulty usually relies in defining instances of the pattern above by inheritance. This can be
done in a natural and obvious manner in Ocaml, as shown on the following example manipulating
windows.

type event = Raise | Resize | Move;;
type event = Raise | Resize | Move

let string_of_event = function
Raise -> "Raise" | Resize -> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>

let count = ref O;;
val count : int ref = {contents = 0}

class [’observer] window_subject =
let id = count := succ !count; !count in
object (self)
inherit [’observer, event] subject
val mutable position = 0
method identity = id
method move x = position <- position + x; self#notify_observers Move
method draw = Printf.printf "{Position = %d}\n" position;
end; ;
class [’al] window_subject :
object (’b)

method add_observer : ’a -> unit

method draw : unit

method identity : int

method move : int -> unit

method notify_observers : event -> unit

val mutable observers : ’a list

val mutable position : int

constraint ’a = < notify : ’b -> event -> unit; .. >

end

class [’subject] window_observer =

object
inherit [’subject, event] observer
method notify s e = s#draw
end;;
class [’al] window_observer :
object
method notify : ’a -> event -> unit
constraint ’a = < draw : unit; .. >
end

Unsurprisingly the type of window is recursive.

let window = new window_subject;;
val window : < notify : ’a —-> event -> unit;
<obj>

> window_subject as ’a =

Chapter 5. Advanced examples with classes and modules 81

However, the two classes of window_subject and window_observer are not mutually recursive.

let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>

window#add_observer window_observer;;
- : unit = ()

window#move 1;;
{Position = 1}
- : unit = ()

Classes window_observer and window_subject can still be extended by inheritance. For in-
stance, one may enrich the subject with new behaviors and refined the behavior of the observer.

class [’observer] richer_window_subject =
object (self)
inherit [’observer] window_subject
val mutable size = 1
method resize x = size <- size + x; self#notify_observers Resize
val mutable top = false
method raise = top <- true; self#notify_observers Raise
method draw = Printf.printf "{Position = %d; Size = %d}\n" position size;
end;;
class [’al richer_window_subject :
object (’b)
method add_observer : ’a -> unit
method draw : unit
method identity : int
method move : int -> unit
method notify_observers : event -> unit
method raise : unit
method resize : int -> unit
val mutable observers : ’a list
val mutable position : int
val mutable size : int
val mutable top : bool
constraint ’a = < notify : ’b -> event -> unit; .. >
end

H OH HF H OH H R

class [’subject] richer_window_observer =

object
inherit [’subject] window_observer as super
method notify s e = if e <> Raise then s#raise; super#notify s e
end;;
class [’al] richer_window_observer :
object
method notify : ’a -> event -> unit
constraint ’a = < draw : unit; raise : unit; .. >
end

We can also create a different kind of observer:

82

class [’subject] trace_observer =
object
inherit [’subject, event] observer
method notify s e =
Printf.printf
"<Window %d <== ¥%s>\n" s#identity (string_of_event e)
end;;
class [’al] trace_observer :
object
method notify : ’a -> event -> unit
constraint ’a = < identity : int; .. >
end

and attached several observers to the same object

let window = new richer_window_subject;;
val window :
< notify : ’a -> event -> unit; _.. > richer_window_subject as ’a = <obj>

window#add_observer (new richer_window_observer);;
: unit = ()

window#add_observer (new trace_observer);;
- : unit = ()

window#move 1; window#resize 2;;

<Window 2 <== Move>
<Window 2 <== Raise>
{Position = 1; Size = 1}
{Position = 1; Size = 1}

<Window 2 <== Resize>
<Window 2 <== Raise>
{Position = 1; Size = 3}
{Position = 1; Size = 3}
- : unit = (O

Part 11

The Objective Caml language

83

Chapter 6

The Objective Caml language

Foreword

This document is intended as a reference manual for the Objective Caml language. It lists the
language constructs, and gives their precise syntax and informal semantics. It is by no means a
tutorial introduction to the language: there is not a single example. A good working knowledge of
Caml is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (1ike this). Non-terminal symbols are set in italic font (like that). Square brackets [...]
denote optional components. Curly brackets {...} denotes zero, one or several repetitions of
the enclosed components. Curly bracket with a trailing plus sign {...}* denote one or several
repetitions of the enclosed components. Parentheses (. ..) denote grouping.

6.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage
return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals
and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are handled correctly.

85

86

Identifiers
ident = (letter | _) {letter | 0...9|_ |}
letter == A...Z|a...z

Identifiers are sequences of letters, digits, _ (the underscore character), and ’ (the single quote),
starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase
letters from the ASCII set. The current implementation (except on MacOS) also recognizes as
letters all accented characters from the ISO 8859-1 (“ISO Latin 1”) set. All characters in an
identifier are meaningful. The current implementation places no limits on the number of characters
of an identifier.

Integer literals

integer-literal = [-] {0...9}T
| [-](0x|0X){0...9]A...F|a...f}*
} H EOO |00) {0...7}"

Ob | 0B) {0...1}"

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, 0X | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.) The interpretation of integer literals
that fall outside the range of representable integer values is undefined.

Floating-point literals

float-literal =[] {0...9}* [. {0...9}] [(e | E) [+] -] {0...9}*]

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal
part is a decimal point followed by zero, one or more digits. The exponent part is the character
e or E followed by an optional + or - sign, followed by one or more digits. The decimal part or
the exponent part can be omitted, but not both to avoid ambiguity with integer literals. The
interpretation of floating-point literals that fall outside the range of representable floating-point
values is undefined.

Character literals

char-literal > regular-char ’

1 NG n]t)
| >\ (0...9)(0...9)(0...9)

Chapter 6. The Objective Caml language 87

Character literals are delimited by ’ (single quote) characters. The two single quotes enclose
either one character different from ’> and \, or one of the escape sequences below:

Sequence | Character denoted

\\ backslash (\)

\’ single quote (?)

\n linefeed (LF)

\r return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ddd the character with ASCII code ddd in decimal
String literals

string-literal ::= " {string-character} "

string-character regular-char

TNG " nlt b)
| \(0...9)(0...9)(0...9)

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table below:

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\n linefeed (LF)

\r return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ddd the character with ASCII code ddd in decimal

To allow splitting long string literals across lines, the sequence \newline blanks (a \ at end-of-line
followed by any number of blanks at the beginning of the next line) is ignored inside string literals.
The current implementation places no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels cannot just be defined syntactically as the sequence of the
three tokens ~, ident and :, and have to be defined at the lexical level.

label == ~(a...z){letter |0...9|_|’}:

optlabel == 7 (a...z){letter |0...9]_ |’} :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones.
They are simply distinguished by their first character, either ~ or 7.

88

Prefix and infix symbols

infix-symbol = (=|<|>|@|~|||&|+|-|*]|/]|$|%) {operator-char}
prefix-symbol = (! |?|~) {operator-char}
operator-char == ! |[$|%h|&|*|+][-|.[/|:|<|=|>]|7|e|" |||~
Sequences of “operator characters”, such as <=> or !!, are read as a single token from the

infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside
expressions, but otherwise behave much as identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as assert asr begin class
closed constraint do done downto else
end exception external false for fun
function functor if in include inherit
land lazy let lor 1sl lsr
1xor match method mod module mutable
new of open or parser private
rec sig struct then to true
try type val virtual when while
with

The following character sequences are also keywords:

& ’ () * R -> ?

77 (L : e 1= ;

H <- = [Ll [< {<] 1]

>] >} _ ¢ { | } -
Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

Line number directives

linenum-directive = #{0...9}"
| #{0...9}" " {string-character} "

Preprocessors that generate Caml source code can insert line number directives in their output
so that error messages produced by the compiler contain line numbers and file names referring

Chapter 6. The Objective Caml language 89

to the source file before preprocessing, instead of after preprocessing. A line number directive is
composed of a # (sharp sign), followed by a positive integer (the source line number), optionally
followed by a character string (the source file name). Line number directives are treated as blank
characters during lexical analysis.

6.2 Values

This section describes the kinds of values that are manipulated by Objective Caml programs.

6.2.1 Base values
Integer numbers

Integer values are integer numbers from —230 to 230 — 1, that is —1073741824 to 1073741823. The
implementation may support a wider range of integer values: on 64-bit platforms, the current
implementation supports integers ranging from —2? to 262 — 1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation
uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of
mantissa and an exponent ranging from —1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The current implementation interprets
character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings con-
taining up to 224 — 6 characters (16777210 characters).

6.2.2 Tuples

Tuples of values are written (v1,...,v,), standing for the n-tuple of values v; to v,. The current
implementation supports tuple of up to 222 — 1 elements (4194303 elements).

6.2.3 Records

Record values are labeled tuples of values. The record value written { field, = v1;...; field, = v,}
associates the value v; to the record field field;, for ¢ = 1...n. The current implementation
supports records with up to 222 — 1 fields (4194303 fields).

90

6.2.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation
supports arrays containing to 222 — 1 elements (4194303 elements).

6.2.5 Variant values

Variant values are either a constant constructor, or a pair of a non-constant constructor and a
value. The former case is written cconstr; the latter case is written ncconstr(v), where v is said to
be the argument of the non-constant constructor ncconstr.

The following constants are treated like built-in constant constructors:

Constant | Constructor
false the boolean false
true the boolean true
O the “unit” value
(] the empty list

The current implementation limits the number of distinct constructors in a given variant type
to at most 249.

6.2.6 Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined
variant type, and following specific typing rules. They can be either constant, written ¢ tag-name,
or non-constant, written ¢ tag-name (v).

6.2.7 Functions

Functional values are mappings from values to values.

6.2.8 Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set
of methods for accessing and modifying these variables. The structure of an object is described by
the toplevel class that created it.

6.3 Names

Identifiers are used to give names to several classes of language objects and refer to these objects
by name later:

e value names (syntactic class value-name),
e value constructors (constant — class cconstr-name — or non-constant — class ncconstr-name),
e labels (label-name),

e variant tags (tag-name),

Chapter 6. The Objective Caml language 91

e type constructors (typeconstr-name),

e record fields (field-name),

e class names (class-name),

e method names (method-name),

e instance variable names (inst-var-name),

e module names (module-name),

e module type names (modtype-name).

These nine name spaces are distinguished both by the context and by the capitalization of the
identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below)
or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this

purpose.

Naming objects

value-name

operator-name

cconstr-name

ncconstr-name

label-name
tag-name
typeconstr-name
field-name
module-name
modtype-name
class-name
inst-var-name

method-name

lowercase-ident
(operator-name)

prefix-symbol | infix-symbol | ¥ | =|or | & | :=

capitalized-ident
false
true

[]
@

capitalized-ident

lowercase-ident
capitalized-ident
lowercase-ident
lowercase-ident
capitalized-ident
ident
lowercase-ident
lowercase-ident

lowercase-ident

As shown above, prefix and infix symbols as well as some keywords can be used as value names,

2..9

provided they are written between parentheses. Keywords such as ’::” and ’false’ are also constructor
names. The capitalization rules are summarized in the table below.

92

Name space Case of first letter
Values lowercase
Constructors uppercase
Labels lowercase
Variant tag uppercase
Type constructors | lowercase
Record fields lowercase
Classes lowercase
Methods lowercase
Modules uppercase
Module types any
Referring to named objects
value-path ::= value-name

| module-path . lowercase-ident

cconstr ::= cconstr-name
| module-path . capitalized-ident

ncconstr ::= ncconstr-name
| module-path . capitalized-ident

typeconstr ::= typeconstr-name
| extended-module-path . lowercase-ident
field ::= field-name

| module-path . lowercase-ident

module-path ::= module-name
| module-path . capitalized-ident

:= module-name
| extended-module-path . capitalized-ident
| extended-module-path (extended-module-path)

extended-module-path

modtype-path ::= modtype-name
| extended-module-path . ident

class-path ::= class-name
| module-path . lowercase-ident

A named object can be referred to either by its name (following the usual static scoping rules
for names) or by an access path prefix . name, where prefix designates a module and name is
the name of an object defined in that module. The first component of the path, prefix, is either
a simple module name or an access path name; . names ..., in case the defining module is itself
nested inside other modules. For referring to type constructors or module types, the prefix can
also contain simple functor applications (as in the syntactic class extended-module-path above), in
case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the

Chapter 6. The Objective Caml language 93

former three are global labels, while the latter are local to a class.

6.4 Type expressions

typexpr = ident

(typexpr)

[[?] ident :] typexpr => typexpr
typexpr {* typexpr}™

typeconstr

typexpr typeconstr

(typexpr {, typexpr}) typeconstr
typexpr as ’ ident

[variant-type]

<[..]>

< method-type {; method-type} [; ..] >
class-path

typexpr # class-path

(typexpr {, typexpr}) # class-path

method-type ::= method-name : typexpr
tag-list == [>{¢ tag-name}™"]

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

* _

-> right

as -

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ’ ident stands for the type variable named ident. The type expression _ stands
for an anonymous type variable. In data type definitions, type variables are names for the data
type parameters. In type constraints, they represent unspecified types that can be instantiated by
any type to satisfy the type constraint.

Parenthesized types
The type expression (typexpr) denotes the same type as typexpr.

94

Function types

The type expression typexpr; -> typexpr, denotes the type of functions mapping arguments of
type typexpr; to results of type typexprsy.
label typexpr, —=> typexpry denotes the same function type, but the argument is labeled label.
? label typexpr; —> typexpr, denotes the type of functions mapping an optional labeled argu-
ment of type typexpr; to results of type typexpry. That is, the physical type of the function will
be typexpr, option -> typexpr,.

Tuple types

The type expression typexpr; *...* typexpr,, denotes the type of tuples whose elements belong to
types typexpry, ... typexpr,, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.
The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.
The type expression (typexpr, ..., typexpr,) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the n-ary type constructor typeconstr to the
types typexpr; through typexpr,,.

Recursive types

The type expression typexpr as ’ ident denotes the same type as typexpr, and also binds the type
variable ident to type typexpr both in typexpr and in the remaining part of the type. If the type
variable ident actually occurs in typexpr, a recursive type is created. Recursive types for which
there exists a recursive path that does not contain an object type constructor are rejected.

Variant types

variant-type = |[|] tag-spec {| tag-spec}
| > [tag-spec] {| tag-spec}
|

<[] tag-spec-full {| tag-spec-full} [> {¢ tag-name}*]

tag-spec = ¢ tag-name [of typexpr]
| typexpr
tag-spec-full = ¢ tag-name [of typexpr| {& typexpr}
| typexpr

Variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types,
and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the
list of all tags the value could take, with their associated types. This type is still compatible with a

Chapter 6. The Objective Caml language 95

variant type containing more tags. A special case is the unknown type, which does not define any
tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and their
associated types, and which tags are known to potentially appear in values. The above exact variant
type is just an abbreviation for a closed variant type where all possible tags are also potentially
present.

In all three cases, tags may be either specified directly in the ‘“¢tag-name [...] form, or indirectly
through a type expression. In this last case, the type expression must expand to an exact variant
type, whose tag specifications are inserted in its place.

Full specification of variant tags are only used for non-exact closed types. They can be under-
stood as a conjunctive type for the argument: it is intended to have all the types enumerated in
the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may
not be used in a value of this type. This does not mean that the whole type is not valid: one can
still use other available tags.

Object types

An object type < method-type {; method-type} > is a record of method types.

The type < method-type {; method-type} ; .. > is the type of an object with methods and
their associated types are described by method-typey, ..., method-type,,, and possibly some other
methods represented by the ellipsis. This ellipsis actually is a special kind of type variable (also
called row variable in the literature) that stands for any number of extra method types.

#-types

The type # class-path is a special kind of abbreviation. This abbreviation unifies with the type of
any object belonging to a subclass of class class-path. It is handled in a special way as it usually
hides a type variable (an ellipsis, representing the methods that may be added in a subclass).
In particular, it vanishes when the ellipsis gets instantiated. Each type expression # class-path
defines a new type variable, so type # class-path —> # class-path is usually not the same as type
(# class-path as ’ ident) -> * ident.

Use of #-types to abbreviate variant types is deprecated. If t is an exact variant type then #t
translates to [< t], and #t[> ‘tag; ... ‘tag,] translates to [<t > ‘tag,... ‘tag]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are
always named, i.e. defined before use and referred to by name. Type definitions are described in
section BXTI.

96

6.5 Constants

integer-literal
float-literal
char-literal
string-literal
cconstr

¢ tag-name

constant

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), and constant constructors from both normal and
polymorphic variants.

6.6 Patterns

pattern ::= value-name
| -
| constant

| pattern as value-name

| (pattern)

| (pattern : typexpr)

| pattern | pattern

| ncconstr pattern

| ¢ tag-name pattern

| # typeconstr-name

| pattern {, pattern}

| { field = pattern {; field = pattern} }

| [pattern {; pattern}]

| pattern :: pattern

The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity
Constructor application | —

right
| left

as -

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of names to values”.

Chapter 6. The Objective Caml language 97

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The
pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot appear several times in a given pattern. In particular,
there is no way to test for equality between two parts of a data structure using only a pattern (but
when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Alias patterns

The pattern pattern, as value-name matches the same values as pattern;. If the matching against
pattern; is successful, the name name is bound to the matched value, in addition to the bindings
performed by the matching against pattern;.

Parenthesized patterns

The pattern (pattern;) matches the same values as pattern;. A type constraint can appear in a
parenthesized pattern, as in (pattern; : typexpr). This constraint forces the type of pattern; to
be compatible with type.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
patterny. A value matches pattern; | pattern, either if it matches pattern; or if it matches
pattern,. The two sub-patterns pattern; and pattern, must bind exactly the same identifiers to
values having the same types. The bindings performed by matching against an “or” pattern are
either those performed by the matching against pattern,, if it succeeds, or those performed by the
matching against pattern,, if it succeeds. If both matchings succeed, it is undefined which set of
bindings is selected.

Variant patterns

The pattern ncconstr pattern; matches all variants whose constructor is equal to ncconstr, and
whose argument matches pattern, .

The pattern pattern; :: pattern, matches non-empty lists whose heads match pattern;, and
whose tails match pattern,. This pattern behaves like (::) (pattern; , pattern,).

The pattern [pattern; ;...; pattern,] matches lists of length n whose elements match
pattern; ... pattern,, respectively. This pattern behaves like pattern; :: ... :: pattern, :: [].

Polymorphic variant patterns

The pattern ‘tag-name pattern; matches all polymorphic variants whose tag is equal to tag-name,
and whose argument matches pattern, .

98

Variant abbreviation patterns

If the type [(’a,’b,...)]| typeconstr = [‘tag, t1 |...| ‘tag, t,] is defined, then the pattern
Y &1 &n
#typeconstr is a shorthand for the or-pattern (‘tag; (L : t1) | ... | ‘tag, (_ : t,)). It matches
g1 En
all values of type #typeconstr.

Tuple patterns

The pattern pattern; , ..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,. That is, the pattern matches the tuple values (vi,...,v,) such that
pattern; matches v; fori =1,... n.

Record patterns

The pattern { field; = pattern; ;... ; field, = pattern, } matches records that define at least the
fields field; through field,, and such that the value associated to field; match the pattern pattern,,
for i =1,...,n. The record value can define more fields than field; ... field,; the values associated
to these extra fields are not taken into account for matching.

Chapter 6. The Objective Caml language 99

6.7 Expressions

expr := value-path
| constant
| Cexpr)

| begin expr end

| Cexpr : typexpr)

| expr , expr {, expr}

| ncconstr expr

| ¢ tag-name expr

| expr :: expr

| [expr{; expr}]

| [I expr {; expr} |]

| { field = expr {; field = expr} }

| { expr with field = expr {; field = expr} }

| expr {argument}™

| prefix-symbol expr

| expr infix-op expr

| expr . field

| expr . field <- expr

| expr .(expr)

| expr .(expr) <- expr

| expr . [expr]

| expr .[expr] <- expr

| if expr then expr [else expr]

| while expr do expr done

| for ident = expr (to | downto) expr do expr done

| expr ; expr

| match expr with pattern-matching

| function pattern-matching

| fun multiple-matching

| try expr with pattern-matching

| let [rec] let-binding {and let-binding} in expr

| new class-path

| expr # method-name

| Cexpr :> typexpr)

| Cexpr : typexpr :> typexpr)

| {< inst-var-name = expr {; inst-var-name = expr} >}

argument = expr
| ~ label-name
| ~ label-name : expr
| 7 label-name

|

? label-name : expr

100

pattern-matching
multiple-matching

let-binding

parameter

infix-op

[l] pattern [when expr| => expr {| pattern [when expr| -> expr}
{parameter}* [when expr] -> expr

pattern [: typexpr| = expr
value-name {parameter}™ [: typexpr] = expr

pattern

~ label-name

~ (label-name [: typexpr])
~ label-name : pattern

? label-name

? (label-name [: typexpr]| [= expr])

? label-name : pattern

? label-name : (pattern [: typexpr] [= expr|)

infix-symbol
x| =|or|&

The table below shows the relative precedences and associativity of operators and non-closed
constructions. The constructions with higher precedence come first. For infix and prefix symbols,

we write “k..

.7 to mean “any symbol starting with *”.

Construction or operator Associativity
prefix-symbol -

. (C L -
function application left
constructor application -

- -. (prefix) -
LL right
*. .. /... /S mod left
- left
HH right
Q.. ... right
comparisons (= == < etc.), all other infix symbols | left
not -
& && left
or || left
<- = right
if —
; right
let match fun function try -

Chapter 6. The Objective Caml language 101

6.7.1 Basic expressions
Constants

Expressions consisting in a constant evaluate to this constant.

Value paths

Expressions consisting in an access path evaluate to the value bound to this path in the current eval-
uation environment. The path can be either a value name or an access path to a value component
of a module.

Parenthesized expressions

The expressions (expr) and begin expr end have the same value as expr. Both constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in (expr : type). This constraint
forces the type of expr to be compatible with type.

Parenthesized expressions can also contain coercions (expr [: type] :> type) (see subsec-

tion (.7.9 below).

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression
expr argument, ...argument,, evaluates the expression expr and those appearing in argument; to
argument,. The expression expr must evaluate to a functional value f, which is then applied to

the values of argument,, ..., argument,,.
The order in which the expressions expr, argument,,...,argument,, are evaluated is not spec-
ified.

Arguments and parameters are matched according to their respective labels. Argument order
is irrelevent, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?7) in the type of expr, the corresponding
argument will be automatically wrapped with the constructor Some, except if the argument itself
is also prefixed by 7, in which case it is passed as is. If a non-labeled argument is passed, and its
corresponding parameter is preceded by one or several optional parameters, then these parameters
are defaulted, i.e. the value None will be passed for them. All other missing parameters (without
corresponding argument), both optional and non-optional, will be kept, and the result of the
function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their
number matches the number of non-optional parameters, then labels are ignored and non-optional
parameters are matched in their definition order. Optional arguments are defaulted.

102

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword
function:

function pattern; -> expry

| pattern, -> expr,

This expression evaluates to a functional value with one argument. When this function is applied
to a value v, this value is matched against each pattern pattern; to pattern,. If one of these
matchings succeeds, that is, if the value v matches the pattern pattern; for some i, then the
expression expr; associated to the selected pattern is evaluated, and its value becomes the value
of the function application. The evaluation of expr; takes place in an environment enriched by the
bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is
selected. If none of the patterns matches the argument, the exception Match_failure is raised.

The other form of function definition is introduced by the keyword fun:
fun parameter; ... parameter,, —> expr
This expression is equivalent to:
fun parameter; ->...fun parameter,, -> expr

Functions of the form fun optlabel (pattern = expry,) —> expr are equivalent to
fun optlabel x -> let pattern = match x with Some x -> x | None —-> expr, in expr

where x is a fresh variable. When expr, will be evaluated is left unspecified.
After these two transformations, expressions are of the form

fun [label;| pattern; -=>...fun [label,] pattern, -> expr
If we ignore labels, which will only be meaningful at function application, this is equivalent to
function pattern; ->...function pattern, -> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values v; ... vy, the values will be matched in parallel against the
patterns pattern, ... pattern,. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.

Guards in pattern-matchings

Cases of a pattern matching (in the function, fun, match and try constructs) can include guard
expressions, which are arbitrary boolean expressions that must evaluate to true for the match case
to be selected. Guards occur just before the -> token and are introduced by the when keyword:

Chapter 6. The Objective Caml language 103

function pattern; [when condy] -> expr;

| pattern,, [when cond,] -> expr,

Matching proceeds as described before, except that if the value matches some pattern pattern;
which has a guard cond;, then the expression cond; is evaluated (in an environment enriched by
the bindings performed during matching). If cond; evaluates to true, then expr; is evaluated and
its value returned as the result of the matching, as usual. But if cond; evaluates to false, the
matching is resumed against the patterns following pattern,.

Local definitions

The let and let rec constructs bind value names locally. The construct
let pattern, = expr; and...and pattern, = expr, in expr

evaluates expr; ... expr,, in some unspecified order, then matches their values against the patterns
pattern; ... pattern,,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter ... parameter,, —> expr
in a let expression, one may instead write

let ident parameter; ... parameter,, = expr

Recursive definitions of names are introduced by let rec:
let rec pattern; = expr; and...and pattern, = expr,, in expr

The only difference with the let construct described above is that the bindings of names to values
performed by the pattern-matching are considered already performed when the expressions expr;
to expr,, are evaluated. That is, the expressions expr; to expr,, can reference identifiers that are
bound by one of the patterns pattern,, ..., pattern,, and expect them to have the same value as
in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr; to
expr,, are function definitions (fun... or function...), and the patterns pattern, ... pattern, are
just value names, as in:

n?

let rec namej = fun...and...and name, = fun... in expr

This defines name; ... name, as mutually recursive functions local to expr.

The behavior of other forms of 1let rec definitions is implementation-dependent. The current
implementation also supports a certain class of recursive definitions of non-functional values, such
as

let rec namej =1 :: names and names = 2 :: name; in expr

which binds name; to the cyclic list 1::2::1::2::..., and names to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions where
the defined names occur only inside function bodies or as argument to a data constructor.

104

6.7.2 Control structures
Sequence

The expression expr; ; expr, evaluates expr; first, then expry, and returns the value of expr,.

Conditional

The expression if expr; then expr, else exprs evaluates to the value of expr, if expr; evaluates
to the boolean true, and to the value of exprs if expr, evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else (.

Case expression

The expression
match expr
with pattern,; -> expry
I

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against
pattern; succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr; takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expr; && expry evaluates to true if both expr; and expr, evaluate to true; oth-
erwise, it evaluates to false. The first component, expr;, is evaluated first. The second com-
ponent, expry, is not evaluated if the first component evaluates to false. Hence, the expression
expr, && expr, behaves exactly as

if expr; then expr, else false.

The expression expr; || expr, evaluates to true if one of expr; and expr, evaluates to true;
otherwise, it evaluates to false. The first component, expr;, is evaluated first. The second
component, expry, is not evaluated if the first component evaluates to true. Hence, the expression
expr; || expry, behaves exactly as

if expr; then true else expr,.

The boolean operator & is synonymous for &&. The boolean operator or is synonymous for | |.

Chapter 6. The Objective Caml language 105

Loops

The expression while expr; do expry done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expr; is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for name = expr; to expr, do exprs done first evaluates the expressions expr;
and expr, (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where name is successively bound to the values n, n+1, ..., p—1,
p. The loop body is never evaluated if n > p.

The expression for name = expr; downto expry do exprs done evaluates similarly, except that
name is successively bound to the valuesn, n — 1, ..., p+ 1, p. The loop body is never evaluated
if n <p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression
try expr
with pattern; -> expry
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern; to pattern,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

6.7.3 Operations on data structures
Products

The expression expr; , ..., expr, evaluates to the n-tuple of the values of expressions expr; to
expr,,. The evaluation order for the subexpressions is not specified.

Variants

The expression ncconstr expr evaluates to the variant value whose constructor is ncconstr, and
whose argument is the value of expr.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the con-
structor (::) applied to the argument (expr, , expry), and therefore evaluates to the list whose
head is the value of expr; and whose tail is the value of expr,. The expression [expr; ;... ; expr,]
is equivalent to expr; ::...:: expr, :: [], and therefore evaluates to the list whose elements are
the values of expr; to expr,,.

106

Polymorphic variants

The expression ¢ tag-name expr evaluates to the variant value whose tag is tag-name, and whose
argument is the value of expr.

Records
The expression { fieldy = expr; ;...; field, = expr, } evaluates to the record value
{ fieldy = vy ;...; field, = vy, }, where v; is the value of expr; for i = 1,...,n. The fields field;

to field,, must all belong to the same record types; all fields belonging to this record type must
appear exactly once in the record expression, though they can appear in any order. The order in
which expr; to expr,, are evaluated is not specified.

The expression { expr with field; = expr; ;...; field, = expr, } builds a fresh record with
fields field; ... field,, equal to expr; ...expr,, and all other fields having the same value as in the
record expr. In other terms, it returns a shallow copy of the record expr, except for the fields
field; ... field,,, which are initialized to expry ...expr,,.

The expression expr, . field evaluates expr; to a record value, and returns the value associated
to field in this record value.

The expression expr; . field <- expr, evaluates expr; to a record value, which is then modified
in-place by replacing the value associated to field in this record by the value of expr,. This operation
is permitted only if field has been declared mutable in the definition of the record type. The whole
expression expr; . field <- expr, evaluates to the unit value ().

Arrays

The expression [| expry ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expr; to expr,, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr; . (expry) returns the value of element number expr, in the array denoted
by expr;. The first element has number 0; the last element has number n — 1, where n is the size
of the array. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; . (expry) <- exprs modifies in-place the array denoted by expr,, replac-
ing element number expr, by the value of exprs;. The exception Invalid_argument is raised if the
access is out of bounds. The value of the whole expression is ().

Strings

The expression expr; . [expry] returns the value of character number expry in the string denoted
by expr;. The first character has number 0; the last character has number n — 1, where n is the
length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; .[expr,] <- exprs modifies in-place the string denoted by expry,
replacing character number expr, by the value of exprs. The exception Invalid_argument is
raised if the access is out of bounds. The value of the whole expression is ().

Chapter 6. The Objective Caml language 107

6.7.4 Operators

Symbols from the class infix-symbols, as well as the keywords *, =, or and &, can appear in infix
position (between two expressions). Symbols from the class prefix-symbols can appear in prefix
position (in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as
applications of functions bound to the names corresponding to the symbols. The expression
prefix-symbol expr is interpreted as the application (prefix-symbol) expr. Similarly, the
expression expr; infix-symbol expr, is interpreted as the application (infix-symbol) expr, expr,.

The table below lists the symbols defined in the initial environment and their initial meaning.
(See the description of the standard library module Pervasive in chapter [§ for more details).
Their meaning may be changed at any time using let (infix-op) name; names =...

108

Operator Initial meaning

+ Integer addition.

- (infix) Integer subtraction.

- (prefix) | Integer negation.

* Integer multiplication.

/ Integer division. Raise Division_by_zero if second argument is zero.
The result is unspecified if either argument is negative.

mod Integer modulus. Raise Division_by_zero if second argument is zero.
The result is unspecified if either argument is negative.

land Bitwise logical “and” on integers.

lor Bitwise logical “or” on integers.

1xor Bitwise logical “exclusive or” on integers.

1sl Bitwise logical shift left on integers.

lsr Bitwise logical shift right on integers.

asr Bitwise arithmetic shift right on integers.

+. Floating-point addition.

-. (infix) | Floating-point subtraction.

-. (prefix) | Floating-point negation.

* Floating-point multiplication.

/. Floating-point division.

*% Floating-point exponentiation.
List concatenation.

- String concatenation.

! Dereferencing (return the current contents of a reference).

= Reference assignment (update the reference given as first argument with

the value of the second argument).

= Structural equality test.

<> Structural inequality test.

== Physical equality test.

1= Physical inequality test.

< Test “less than”.

<= Test “less than or equal”.

> Test “greater than”.

>= Test “greater than or equal”.

6.7.5 Objects
Object creation

When class-path evaluates to a class body, new class-path evaluates to an object containing the
instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting
the same number of arguments and returning a new object of this class.

Chapter 6. The Objective Caml language 109

Message sending

The expression expr # method-name invokes the method method-name of the object denoted by
expr.

Coercion
The type of an object can be coerced (weakened) to a supertype. The expression
(expr :> typexpr) coerces the expression expr to type typexpr. The expression

(expr : typexpr; :> typexpry) coerces the expression expr from type typexpr, to type typexprs.
The former operator will sometimes fail to coerce an expression expr from a type t; to a type to
even if type t1 is a subtype of type to. In this case, the latter operator should be used.

In a class definition, coercion to the type this class defines is the identity, as this type abbrevi-
ation is not yet completely defined.

Object duplication

An object can be duplicated using the library function Oo. copy (see section [[9.20). Inside a method,
the expression {< inst-var-name = expr {; inst-var-name = expr} >} returns a copy of self with
the given instance variables replaced by the values of the associated expressions; other instance
variables have the same value in the returned object as in self.

6.8 Type and exception definitions

6.8.1 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

110

type-definition ::= type typedef {and typedef}
typedef ::= [type-params] typeconstr-name [type-information]
type-information := [type-equation] [type-representation] {type-constraint}
type-equation ::= = typexpr
type-representation ::= = constr-decl {| constr-decl}

| ={ field-decl {; field-decl} }

type-params 1= type-param
| (type-param {, type-param})
type-param ::= ’ ident
| + ident
| - ident
constr-decl ::= cconstr-name
| ncconstr-name of typexpr
field-decl ::= field-name : typexpr
| mutable field-name : typexpr
type-constraint ::= constraint ’ ident = typexpr

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor.

A simple definition consists in a lowercase identifier, possibly preceded by one or several type
parameters, and followed by an optional type equation, then an optional type representation, and
then a constraint clause. The identifier is the name of the type constructor being defined.

The optional type parameters are either one type variable ’ ident, for type constructors with
one parameter, or a list of type variables (’ identq, ..., ident,), for type constructors with several
parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating
that the parameter is covariant (resp. contravariant). These type parameters can appear in the type
expressions of the right-hand side of the definition, restricted eventually by a variance constraint ;
i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely,
follow the left branch of an even number of arrows), and a convariant parameter only the left side
(left branch of an odd number of arrows).

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr on the right of the = sign: one can be substituted for the other during typing. If no type
equation is given, a new type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type). If no type representation is given, nothing is assumed on the structure of the type besides
what is stated in the optional type equation.

Chapter 6. The Objective Caml language 111

The type representation = constr-decl {| constr-decl} describes a variant type. The constructor
declarations constr-decly, . . ., constr-decl,, describe the constructors associated to this variant type.
The constructor declaration ncconstr-name of typexpr declares the name ncconstr-name as a non-
constant constructor, whose argument has type typexpr. The constructor declaration cconstr-name
declares the name cconstr-name as a constant constructor. Constructor names must be capitalized.

The type representation = { field-decl {; field-decl} } describes a record type. The field
declarations field-decly, . . ., field-decl,, describe the fields associated to this record type. The field
declaration field-name : typexpr declares field-name as a field whose argument has type typexpr.
The field declaration mutable field-name : typexpr behaves similarly; in addition, it allows physical
modification over the argument to this field. Immutable fields are covariant, but mutable fields are
neither covariant nor contravariant.

The two components of a type definition, the optional equation and the optional representation,
can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
When appearing in a module signature, this definition specifies nothing on the type con-
structor, besides its number of parameters: its representation is hidden and it is assumed
incompatible with any other type.

Type abbreviation: an equation, no representation.
This defines the type constructor as an abbreviation for the type expression on the right of
the = sign.

New variant type or record type: no equation, a representation.
This generates a new type constructor and defines associated constructors or fields, through
which values of that type can be directly built or inspected.

Re-exported variant type or record type: an equation, a representation.
In this case, the type constructor is defined as an abbreviation for the type expression given
in the equation, but in addition the constructors or fields given in the representation remain
attached to the defined type constructor. The type expression in the equation part must agree
with the representation: it must be of the same kind (record or variant) and have exactly the
same constructors or fields, in the same order, with the same arguments.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate
that the type constructor is covariant or contravariant with respect to this parameter. This variance
information is used to decide subtyping relations when checking the validity of >: coercions (see
section p.7.5).

For instance, type +’a t declares t as an abstract type that is covariant in its parameter; this
means that if the type 7 is a subtype of the type o, then 7 t is a subtype of ¢ t. Similarly, type
-’a t declares that the abstract type t is contravariant in its parameter: if 7 is subtype of o, then
o t is subtype of 7 t. If no + or - variance annotation is given, the type constructor is assumed
invariant in the corresponding parameter. For instance, the abstract type declaration type ’a t
means that 7 t is neither a subtype nor a supertype of o t if 7 is subtype of o.

The variance indicated by the + and - annotations on parameters are required only for abstract
types. For abbreviations, variant types or record types, the variance properties of the type construc-

112

tor are inferred from its definition, and the variance annotations are only checked for conformance
with the definition.

The construct constraint ’ ident = typexpr allows to specify type parameters. Any actual
type argument corresponding to the type parameter ident has to be an instance of typexpr (more
precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type equation
and the type declaration.

6.8.2 Exception definitions

= exception constr-decl
| exception cconstr-name = cconstr
| exception ncconstr-name = ncconstr

exception-definition

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

The form exception constr-decl generates a new exception, distinct from all other exceptions in
the system. The form exception name = constr gives an alternate name to an existing exception.

6.9 Classes

Classes are defined using a small language, similar to the module language.

6.9.1 Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and
type properties of classes.

class-type
class-body-type
[[?] label] typexpr => class-type

object [(typexpr)] {class-field-spec} end
class-path
[typexpr {, typexpr} 1 class-path

class-body-type

inherit class-type

val [mutable] inst-var-name : typexpr

method [private] method-name : typexpr

method [private] virtual method-name : typexpr
constraint typexpr = typexpr

class-field-spec

Simple class expressions

The expression class-path is equivalent to the class type bound to the name class-path. Similarly,
the expression [typexpr; ,...typexpr, 1 class-path is equivalent to the parametric class type

Chapter 6. The Objective Caml language 113

bound to the name class-path, in which type parameters have been instanciated to respectively
typexpry, ...typexpr,.

Class function type

The class type expression typexpr -> class-type is the type of class functions (functions from
values to classes) that take as argument a value of type typexpr and return as result a class of type
class-type.

Class body type

The class type expression object [(typexpr)] {class-field-spec} end is the type of a class body.
It specifies its instance variables and methods. In this type, typexpr is match agains self type,
therefore provinding a binding for self type.

A class body will match a class body type if it provides definitions for all the components
specified in the class type, and these definitions meet the type requirements given in the class
type. Furthermore, all methods either virtual or public present in the class body must also be
present in the class type (on the other hand, some instance variables and concrete private methods
may be omitted). A virtual method will match a concrete method, thus allowing to forget its
implementation. An immutable instance variable will match a mutable instance variable.

Inheritance

The inheritance construct inherit class-type allows to include methods and instance variables
from other classes types. The instance variable and method types from this class type are added
into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] inst-var-name : typexpr, where
inst-var-name is the name of the instance variable and typexpr its expected type. The flag mutable
indicates whether this instance variable can be physically modified.

An instance variable specification will hide any previous specification of an instance variable of
the same name.

Method specification

A specification of an method is written method [private| method-name : typexpr, where
method-name is the name of the method and typexpr its expected type. The flag private
indicates whether the method can be accessed from outside the class.

Several specification for the same method must have compatible types.

Virtual method specification

Virtual method specification is written method [private| virtual method-name : typexpr, where
method-name is the name of the method and typexpr its expected type.

114

Constraints on type parameters

The construct constraint typexpr; = typexpry forces the two type expressions to be equals. This
is typically used to specify type parameters: they can be that way be bound to a specified type
expression.

6.9.2 Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus
providing implementations for the specifications expressed in class types.

class-expr ::= class-path

| [typexpr {, typexpr} 1 class-path

| (class-expr)

| (class-expr : class-type)

| class-expr {argument}™

| fun {parameter}t -> class-expr

| let [rec] let-binding {and let-binding} in class-expr
| object [(pattern [: typexpr])] {class-field} end

class-field ::= inherit class-expr [as value-name]
| val [mutable] inst-var-name = expr
| method [private] method-name {pattern} = expr
| method [private] virtual method-name : typexpr
| comnstraint typexpr = typexpr
|

initializer expr

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the ex-
pression [typexpry , ...typexpr, 1 class-path evaluates to the parametric class bound to the name
class-path, in which type parameters have been instanciated to respectively typexpry, ... typexpr,,.

The expression (class-expr) evaluates to the same module as class-expr.

The expression (class-expr : class-type) checks that class-type match the type of class-expr
(that is, that the implementation class-expr meets the type specification class-type). The whole
expression evaluates to the same class as class-expr, except that all components not specified in
class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. Evaluation works
as for expression application.

Chapter 6. The Objective Caml language 115

Class function

The expression fun [[?] label] pattern -> class-expr evaluates to a function from values to classes.
When this function is applied to a value v, this value is matched against the pattern pattern and
the result is the result of the evaluation of class-expr in the extended environment.

Conversion from functions with default values to functions with patterns only works identically
for class functions as for normal functions.

The expression

fun parameter ... parameter, —> class-expr
is a short form for

fun parameter; —>...fun parameter, —> expr

Local definitions

The 1let and let rec constructs bind value names locally, as for the core language expressions.

Class body

The expression object (pattern [: typexpr]) {class-field} end denotes a class body. This is the
prototype for an object : it lists the instance variables and methods of an objet of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated
each time an object is created.

In a class body, the pattern (pattern [: typexpr|) is matched against self, therefore provinding
a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Inheritance

The inheritance construct inherit class-expr allows to reuse methods and instance variables from
other classes. The class expression class-expr must evaluate to a class body. The instance variables,
methods and initializers from this class body are added into the current class. The addition of a
method will override any previously defined methods of the same name.

An ancestor can be bound by prepending the construct as value-name to the inheritance con-
struct above. value-name is not a true variable and can only be used to select a method, i.e. in an
expression value-name # method-name. This gives access to the method method-name as it was
defined in the parent class even if it is redefined in the current class. The scope of an ancestor
binding is limited to the current class. The ancestor method may be called from a subclass but
only indirectly.

Instance variable definition

The definition val [mutable| inst-var-name = expr adds an instance variable inst-var-name whose
initial value is the value of expression expr. Several variables of the same name can be defined in
the same class. The flag mutable allows physical modification of this variable by methods.

An instance variables can only be used in the following methods and initializers of the class.

116

Method definition

Method definition is written method method-name = expr. The definition of a method overrides
any previous definition of this method. The method will be public (that is, not private) if any of
the definition states so.

A private method, method private method-name = expr, is a method that can only be invoked
on self (from other methods of the current class as well as of subclasses of the current class). This
invocation is performed using the expression value-name # method-name, where value-name is
directly bound to self at the beginning of the class definition. Private methods do not appear in
object types.

Some special expressions are available in method bodies for manipulating instance variables and
duplicating self:

expr =
| inst-var-name <- expr
| {< [inst-var-name = expr {; inst-var-name = expr}| >}

The expression inst-var-name <- expr modifies in-place the current object by replacing the
value associated to inst-var-name by the value of expr. Of course, this instance variable must have
been declared mutable.

The expression {< [inst-var-name = expr {; inst-var-name = expr}] >} evaluates to a copy of
the current object in which the values of instance variables inst-var-namey, . . ., inst-var-name,, have
been replaced by the values of the corresponding expressions expry, ..., expr,,.

Virtual method definition
Method specification is written method [private| virtual method-name : typexpr. It specifies
whether the method is public or private, and gives its type.

Constraints on type parameters

The construct constraint typexpr; = typexpry forces the two type expressions to be equals. This
is typically used to specify type parameters: they can be that way be bound to a specified type
expression.

Initializers
A class initializer initializer expr specifies an expression that will be evaluated when an object

will be created from the class, once all the instance variables have been initialized.

6.9.3 Class definitions

class-definition ::= class class-binding {and class-binding}
class-binding ::= [virtual] [[type-parameters]| class-name {pattern} [: class-type| = class-expr

type-parameters =’ ident {, ’ ident}

Chapter 6. The Objective Caml language 117

A class definition class class-binding {and class-binding} is recursive. Each class-binding
defines a class-name that can be used in the whole expression except for inheritance. It can also
be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also
binds the class type class-name to the type of the class, and defines two type abbreviations :
class-name and # class-name. The first one is the type of objects of this class, while the second is
more general as it unifies with the type of any object belonging to a subclass (see section [p.4).

Virtual class

A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type,
but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations
defined by the class binding. They must be bound to actual types in the class definition using type
constraints. So that the abbreviations are well-formed, type variables of the inferred type of the
class must either be type parameters or be bound in the constraint clause.

6.9.4 Class specification
class-specification ::= class class-spec {and class-spec}

class-spec = [virtual] [[type-parameters 1| class-name : class-type

This is the counterpart in signatures of class definitions. A class specification matches a class
definition if they have the same type parameters and their types match.

6.9.5 Class type definitions
classtype-definition ::= class type classtype-def {and classtype-def}

classtype-def ::= [virtual] [[type-parameters]] class-name = class-body-type

A class type definition class class-name = class-body-type defines an abbreviation class-name
for the class body type class-body-type. As for class definitions, two type abbreviations class-name
and # class-name are also defined. The definition can be parameterized by some type parameters.
If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and the types they
expand to match.

118

6.10 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.

modtype-path

sig {specification [; ;]} end

functor (module-name : module-type) -> module-type
module-type with mod-constraint {and mod-constraint}

module-type

(module-type)

specification ::= val value-name : typexpr

| external value-name : typexpr = external-declaration
| type-definition

| exception constr-decl

| class-specification

| classtype-definition

| module module-name : module-type

| module module-name {(module-name : module-type)} : module-type
| module type modtype-name

| module type modtype-name = module-type

| open module-path

| include module-type

mod-constraint ::= type [type-parameters| typeconstr = typexpr
| module module-path = extended-module-path

6.10.1 Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path.
The expression (module-type) denotes the same type as module-type.

6.10.2 Signatures

Signatures are type specifications for structures. Signatures sig...end are collections of type
specifications for value names, type names, exceptions, module names and module type names.
A structure will match a signature if the structure provides definitions (implementations) for all
the names specified in the signature (and possibly more), and these definitions meet the type
requirements given in the signature.

For compatibility with Caml Light, an optional ;; is allowed after each specification in a
signature. The ;; has no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name : typexpr, where
value-name is the name of the value and typexpr its expected type.

Chapter 6. The Objective Caml language 119

The form external value-name : typexpr = external-declaration is similar, except that
it requires in addition the name to be implemented as the external function specified in
external-declaration (see chapter [[7]).

Type specifications

A specification of one or several type components in a signature is written type typedef {and typedef}
and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexp and an
optional type representation = constr-decl... or = { label-decl...}. The implementation of the
type name in a matching structure must be compatible with the type expression specified in the
equation (if given), and have the specified representation (if given). Conversely, users of that
signature will be able to rely on the type equation or type representation, if given. More precisely,
we have the following four situations:

Abstract type: no equation, no representation.

Names that are defined as abstract types in a signature can be implemented in a matching
structure by any kind of type definition (provided it has the same number of type param-
eters). The exact implementation of the type will be hidden to the users of the structure.
In particular, if the type is implemented as a variant type or record type, the associated
constructors and fields will not be accessible to the users; if the type is implemented as an
abbreviation, the type equality between the type name and the right-hand side of the abbre-
viation will be hidden from the users of the structure. Users of the structure consider that
type as incompatible with any other type: a fresh type has been generated.

Type abbreviation: an equation = typexp, no representation.
The type name must be implemented by a type compatible with typexp. All users of the
structure know that the type name is compatible with typexp.

New variant type or record type: no equation, a representation.
The type name must be implemented by a variant type or record type with exactly the
constructors or fields specified. All users of the structure have access to the constructors
or fields, and can use them to create or inspect values of that type. However, users of the
structure consider that type as incompatible with any other type: a fresh type has been
generated.

Re-exported variant type or record type: an equation, a representation.
This case combines the previous two: the representation of the type is made visible to all
users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide
an exception with the name and arguments specified in the definition, and makes the exception
available to all users of the structure.

120

Class specifications

A specification of one or several classes in a signature is written class class-spec {and class-spec}
and consists of a sequence of mutually recursive definitions of class names.
Class specifications are described more precisely in section b.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def {and classtype-def }
and consists of a sequence of mutually recursive definitions of class type names. Class type
specifications are described more precisely in section (.9.3.

Module specifications

A specification of a module component in a signature is written module module-name : module-type,
where module-name is the name of the module component and module-type its expected type.
Modules can be nested arbitrarily; in particular, functors can appear as components of structures
and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name (name; : module-type;) ... (name, : module-type,) : module-type
instead of

module module-name : functor (name; : module-type;) =>...-> module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as
an abstract module type.

An abstract module type specification module type modtype-name allows the name
modtype-name to be implemented by any module type in a matching signature, but hides the
implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name = module-type requires the
name modtype-name to be implemented by the module type module-type in a matching signature,
but makes the equality between modtype-name and module-type apparent to all users of the
signature.

Opening a module path

The expression open module-path in a signature does not specify any components. It simply
affects the parsing of the following items of the signature, allowing components of the module
denoted by module-path to be referred to by their simple names name instead of path accesses
module-path . name. The scope of the open stops at the end of the signature expression.

Chapter 6. The Objective Caml language 121

Including a signature

The expression include module-type in a signature performs textual inclusion of the components
of the signature denoted by module-type. It behaves as if the components of the included signature
were copied at the location of the include. The module-type argument must refer to a module
type that is a signature, not a functor type.

6.10.3 Functor types

The module type expression functor (module-name : module-type;) -> module-type, is the
type of functors (functions from modules to modules) that take as argument a module of type
module-type; and return as result a module of type module-typey. The module type module-type,
can use the name module-name to refer to type components of the actual argument of the functor.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

6.10.4 The with operator

Assuming module-type denotes a signature, the expression module-type with mod-constraint {and mod-constraint
denotes the same signature where type equations have been added to some of the type spec-

ifications, as described by the constraints following the with keyword. The constraint

type [type-parameters] typeconstr = typexp adds the type equation = typexp to the specification

of the type component named typeconstr of the constrained signature. The constraint

module module-path = extended-module-path adds type equations to all type components of

the sub-structure denoted by module-path, making them equivalent to the corresponding type

components of the structure denoted by extended-module-path.

For instance, if the module type name S is bound to the signature

sig type t module M: (sig type u end) end
then S with type t=int denotes the signature
sig type t=int module M: (sig type u end) end
and S with module M = N denotes the signature
sig type t module M: (sig type u=N.u end) end
A functor taking two arguments of type S that share their t component is written

functor (A: S) (B: S with type t = A.t)

6.11 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types.

122

module-path

struct {definition [; ;]} end

functor (module-name : module-type) —-> module-expr
module-expr (module-expr)

(module-expr)

(module-expr : module-type)

module-expr

definition ::= 1let [rec] let-binding {and let-binding}

external value-name : typexpr = external-declaration

type-definition

exception-definition

class-definition

classtype-definition

module module-name { (module-name : module-type)} [: module-type] = module-expr
module type modtype-name = module-type

open module-path

include module-expr

6.11.1 Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression (module-expr) evaluates to the same module as module-expr.

The expression (module-expr : module-type) checks that the type of module-expr is a
subtype of module-type, that is, that all components specified in module-type are implemented
in module-expr, and their implementation meets the requirements given in module-type. In other
terms, it checks that the implementation module-expr meets the type specification module-type.
The whole expression evaluates to the same module as module-expr, except that all components
not specified in module-type are hidden and can no longer be accessed.

6.11.2 Structures

Structures struct...end are collections of definitions for value names, type names, exceptions,
module names and module type names. The definitions are evaluated in the order in which they
appear in the structure. The scope of the bindings performed by the definitions extend to the end
of the structure. As a consequence, a definition may refer to names bound by earlier definitions in
the same structure.

For compatibility with toplevel phrases (chapter) and with Caml Light, an optional ;; is
allowed after each definition in a structure. The ;; has no semantic meaning. Also for compatibility,
;3 expr is allowed as a component of a structure, meaning let _ = expr, i.e. evaluate expr for its
side-effects.

Value definitions

A value definition let [rec]| let-binding {and let-binding} bind value names in the same way as
a let...in... expression (see section B.7.1]). The value names appearing in the left-hand sides of

Chapter 6. The Objective Caml language 123

the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name : typexpr = external-declaration implements
value-name as the external function specified in external-declaration (see chapter [[7).
Type definitions
A definition of one or several type components is written type typedef {and typedef} and consists
of a sequence of mutually recursive definitions of type names.
Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name = constr.

Class definitions

A definition of one or several classes is written class class-binding {and class-binding} and consists
of a sequence of mutually recursive definitions of class names. Class definitions are described more
precisely in section (.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def {and classtype-def} and
consists of a sequence of mutually recursive definitions of class type names. Class type definitions
are described more precisely in section b.9.5.

Module definitions

The basic form for defining a module component is module module-name = module-expr, which
evaluates module-expr and binds the result to the name module-name.
One can write

module module-name : module-type = module-expr
instead of
module module-name = (module-expr : module-type).
Another derived form is
module module-name (name; : module-type;) ... (name, : module-type,,) = module-expr
which is equivalent to

module module-name = functor (name; : module-type;) ->...-> module-expr

Module type definitions

A definition for a module type is written module type modtype-name = module-type. It binds the
name modtype-name to the module type denoted by the expression module-type.

124

Opening a module path

The expression open module-path in a structure does not define any components nor perform any
bindings. It simply affects the parsing of the following items of the structure, allowing components
of the module denoted by module-path to be referred to by their simple names name instead of path
accesses module-path . name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include , module-expr in a structure re-exports in the current structure all defi-
nitions of the structure denoted by module-expr. For instance, if the identifier S is bound to the
module

struct type t = int let x = 2 end
the module expression
struct include S let y = (x + 1 : t) end
is equivalent to the module expression
struct type t = int let x =2 lety = (x+ 1 : t) end

The difference between open and include is that open simply provides short names for the com-
ponents of the opened structure, without defining any components of the current structure, while
include also adds definitions for the components of the included structure.

6.11.3 Functors
Functor definition

The expression functor (module-name : module-type) -> module-expr evaluates to a functor
that takes as argument modules of the type module-type,, binds module-name to these modules,
evaluates module-expr in the extended environment, and returns the resulting modules as results.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

Functor application

The expression module-expr; (module-expry) evaluates module-expr; to a functor and
module-expry to a module, and applies the former to the latter. The type of module-expr, must
match the type expected for the arguments of the functor module-expr;.

6.12 Compilation units

unit-interface = {specification [; ;]}

unit-implementation ::= {definition [;;]}

Chapter 6. The Objective Caml language 125

Compilation units bridge the module system and the separate compilation system. A compila-
tion unit is composed of two parts: an interface and an implementation. The interface contains a
sequence of specifications, just as the inside of a sig...end signature expression. The implemen-
tation contains a sequence of definitions, just as the inside of a struct...end module expression.
A compilation unit also has a name unit-name, derived from the names of the files containing the
interface and the implementation (see chapter § for more details). A compilation unit behaves
roughly as the module definition

module unit-name : sig unit-interface end = struct unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular
modules. For instance, if U is a compilation unit that defines a type t, other compilation units can
refer to that type under the name U.t; they can also refer to U as a whole structure. Except for
names of other compilation units, a unit interface or unit implementation must not have any other
free variables. In other terms, the type-checking and compilation of an interface or implementation
proceeds in the initial environment

name; : sig interface; end...name, : sig interface, end

where name; ...namey are the names of the other compilation units available in the search path
(see chapter B for more details) and interface; . .. interface, are their respective interfaces.

126

Chapter 7

Language extensions

This chapter describes the language features that are implemented in Objective Caml, but not
described in the Objective Caml reference manual. In contrast with the fairly stable kernel language
that is described in the reference manual, the extensions presented here are still experimental, and
may be removed or changed in the future.

7.1 Streams and stream parsers

Streams and stream parsers are no longer part of the Objective Caml language, but available
through a CamlP4 syntax extension. See the CamlP4 reference manual for more information.
Objective Caml programs that use streams and stream parsers can be compiled with the -pp
camlp4o option to ocamlc and ocamlopt.

7.2 Range patterns

In patterns, Objective Caml recognizes the form > ¢ > .. > d ’ (two character literals separated
by ..) as shorthand for the pattern

’C"’Cl’|’C2’|...|’Cn’|’d’

where ¢1, c2, ..., ¢, are the characters that occur between ¢ and d in the ASCII character set. For
instance, the pattern >0°..°9° matches all characters that are digits.

7.3 Assertion checking

Objective Caml supports the assert construct to check debugging assertions. The expression
assert expr evaluates the expression expr and returns () if expr evaluates to true. Otherwise,
the exception Assert_failure is raised with the source file name and the location of expr as
arguments. Assertion checking can be turned off with the -noassert compiler option.

As a special case, assert false is reduced to raise (Assert_failure ...), which is poly-
morphic (and is not turned off by the -noassert option).

127

128

7.4 Deferred computations

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of
expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation
will be performed the first time Lazy.force is applied to the value v, returning the actual value of
expr. Subsequent applications of Lazy.force to v do not evaluate expr again.

The expression lazy expr is equivalent to ref (Lazy.Delayed (fun () -> expr)). For more
information, see the description of module Lazy in the standard library (section [[9.14).

7.5 Local modules

The expression let module module-name = module-expr in expr locally binds the module expres-
sion module-expr to the identifier module-name during the evaluation of the expression expr. It
then returns the value of expr. For example:

let remove_duplicates comparison_fun string_list =
let module StringSet =
Set .Make(struct type t = string
let compare = comparison_fun end) in
StringSet.elements
(List.fold_right StringSet.add string_list StringSet.empty)

Part 111

The Objective Caml tools

129

Chapter 8

Batch compilation (ocamlc)

This chapter describes the Objective Caml batch compiler ocamlc, which compiles Caml source
files to bytecode object files and link these object files to produce standalone bytecode executable
files. These executable files are then run by the bytecode interpreter ocamlrun.

8.1 Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. Inter-
faces specify the names exported by compilation units: they declare value names with their
types, define public data types, declare abstract data types, and so on. From the file z.ml11,
the ocamlc compiler produces a compiled interface in the file z.cmi.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.ml, the ocamlc compiler
produces compiled object bytecode in the file z. cmo.

If the interface file z.m1i exists, the implementation x.ml is checked against the corresponding
compiled interface z.cmi, which is assumed to exist. If no interface z.mli is provided, the
compilation of x.ml produces a compiled interface file x.cmi in addition to the compiled
object code file z.cmo. The file z.cmi produced corresponds to an interface that exports
everything that is defined in the implementation z.ml.

e Arguments ending in .cmo are taken to be compiled object bytecode. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
Objective Caml standard library, to produce a standalone executable program. The order in
which .cmo and .ml arguments are presented on the command line is relevant: compilation
units are initialized in that order at run-time, and it is a link-time error to use a component
of a unit before having initialized it. Hence, a given z.cmo file must come before all . cmo files
that refer to the unit z.

131

132

e Arguments ending in .cma are taken to be libraries of object bytecode. A library of object
bytecode packs in a single file a set of object bytecode files (.cmo files). Libraries are built
with ocamlc -a (see the description of the —a option below). The object files contained in the
library are linked as regular .cmo files (see above), in the order specified when the .cma file
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

e Arguments ending in .c are passed to the C compiler, which generates a .o object file. This
object file is linked with the program if the ~custom flag is set (see the description of -~custom
below).

e Arguments ending in .o or .a (.obj or .1lib under Windows) are assumed to be C object
files and libraries. They are passed to the C linker when linking in -custom mode (see the
description of -custom below).

e Arguments ending in .so (.d11 under Windows) are assumed to be C shared libraries (DLLs).
During linking, they are searched for external C functions referenced from the Caml code,
and their names are written in the generated bytecode executable. The run-time system
ocamlrun then loads them dynamically at program start-up time.

The output of the linking phase is a file containing compiled bytecode that can be executed by
the Objective Caml bytecode interpreter: the command named ocamlrun. If caml.out is the name
of the file produced by the linking phase, the command

ocamlrun caml.out arg; arg, ... arg,

executes the compiled code contained in caml.out, passing it as arguments the character strings
arg; to arg,,. (See chapter [[(J for more details.)
On most systems, the file produced by the linking phase can be run directly, as in:

./caml.out arg; argy ... arg,

The produced file has the executable bit set, and it manages to launch the bytecode interpreter by
itself.

8.2 Options
The following command-line options are recognized by ocamlc.

-a Build a library (.cma file) with the object files (. cmo files) given on the command line, instead
of linking them into an executable file. The name of the library can be set with the -o option.
The default name is library.cma.

If ~custom, -cclib or -ccopt options are passed on the command line, these options are
stored in the resulting .cma library. Then, linking with this library automatically adds back
the —custom, —cclib and -ccopt options as if they had been provided on the command line,
unless the -noautolink option is given.

Chapter 8. Batch compilation (ocamlc) 133

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker called by ocamlc -custom and as the C compiler for compiling .c
source files.

-cclib -llibname
Pass the -1libname option to the C linker when linking in “custom runtime” mode (see the
-custom option). This causes the given C library to be linked with the program.

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode
(see the -custom option). For instance, -ccopt -Ldir causes the C linker to search for C
libraries in directory dir.

—custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, ocamlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is larger, but it can be executed directly, even
if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables
static linking of Caml code with user-defined C functions, as described in chapter [[1.

Unix:

Never use the strip command on executables produced by ocamlc -custom.
This would remove the bytecode part of the executable.

-dllpath dir
Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared
libraries are searched in the standard search path (the one corresponding to the -I option).
The -d1lpath option simply stores dir in the produced executable file, where ocamlrun can
find it and exploit it as described in section [0.3.

-g Add debugging information while compiling and linking. This option is required in order to
be able to debug the program with ocamldebug (see chapter [3).

-i Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). This can be useful to check the types inferred
by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing
an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to
a .mli file, and edit that file to remove all declarations of unexported names.

-1 directory
Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files (.cmo), libraries (.cma), and C libraries specified with -cclib

134

-1xxx. By default, the current directory is searched first, then the standard library directory.
Directories added with -I are searched after the current directory, in the order in which they
were given on the command line, but before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-impl filename
Compile the file filename as an implementation file, even if its extension is not .ml.

-intf filename
Compile the file filename as an interface file, even if its extension is not .mli.

-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (-a flag), setting the ~1inkall flag forces
all subsequent links of programs involving that library to link all the modules contained in
the library.

-noassert
Turn assertion checking off: assertions are not compiled. This flag has no effect when linking
already compiled files.

-noautolink
When linking .cma libraries, ignore -custom, —cclib and -ccopt options potentially con-
tained in the libraries (if these options were given when building the libraries). This can be
useful if a library contains incorrect specifications of C libraries or C options; in this case,
during linking, set -noautolink and pass the correct C libraries and options on the command
line.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-o exec-file
Specify the name of the output file produced by the linker. The default output name is a. out,
in keeping with the Unix tradition. If the -a option is given, specify the name of the library
produced. If the —output-obj option is given, specify the name of the output file produced.

—output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is useful
to wrap Caml code as a C library, callable from any C program. See chapter [, section [7.7.5.
The name of the output object file is camlprog. o by default; it can be set with the -o option.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards. The name of this file is built

Chapter 8. Batch compilation (ocamlc) 135

from the basename of the source file with the extension .ppi for an interface (.mli) file and
.ppo for an implementation (.ml) file.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

—thread
Compile or link multithreaded programs, in combination with the threads library described
in chapter 3. What this option actually does is select a special, thread-safe version of the
standard library.

-unsafe
Turn bound checking off on array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can
happen if the program accesses an array or string outside of its bounds.

-v Print the version number of the compiler, then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the C
compiler and linker in -custom mode. Useful to debug C library problems.

-w warning-list
Enable or disable warnings according to the argument warning-list. The argument is a string
of one or several characters, with the following meaning for each character:
A/a enable/disable all warnings.
C/c enable/disable warnings for suspicious comments.
D/d enable/disable warnings for deprecated features.

F/f enable/disable warnings for partially applied functions (i.e. £ x; expr where the appli-
cation £ x has a function type).

L/1 enable/disable warnings for labels omitted in application.
M/m enable/disable warnings for overriden methods.
P/p enable/disable warnings for partial matches (missing cases in pattern matchings).

S/s enable/disable warnings for statements that do not have type unit (e.g. exprl; expr2
when ezpr! does not have type unit).

U/u enable/disable warnings for unused (redundant) match cases.
V/v enable/disable warnings for hidden instance variables.

X/x enable/disable all other warnings.
The default setting is -w Al (all warnings but labels enabled).

-warn-error warning-list
Turn the warnings indicated in the argument warning-list into errors. The compiler will stop

136

on an error as soon as one of these warnings is emitted, instead of going on. The warning-
list is a string of one or several characters, with the same meaning as for the -w option:
an uppercase character turns the corresponding warning into an error, a lowercase character
leaves it as a warning. The default setting is -warn-error a (all warnings are not treated as
errors).

-where
Print the location of the standard library, then exit.

8.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corre-
sponding to compilation units and the names of the files that contain their compiled interface and
compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source
file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml or
.mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that
module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an
implementation for the module named Misc. Other compilation units may refer to components
defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use
unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file.
Hence, the compiled files always have their base name equal (modulo capitalization of the first
letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search
path for a file mod.cmi (note lowercasing of first letter) and loads the compiled interface contained
in that file. As a consequence, renaming .cmi files is not advised: the name of a .cmi file must
always correspond to the name of the compilation unit it implements. It is admissible to move
them to another directory, if their base name is preserved, and the correct -1 options are given to
the compiler. The compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created.
That’s because the linker never attempts to find by itself the .cmo file that implements a module
with a given name: it relies instead on the user providing the list of .cmo files by hand.

8.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file
(.cmo file). If filename has the format mod.cmi, this means you are trying to compile a
file that references identifiers from module mod, but you have not yet compiled an interface
for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface
mod.cmi.

Chapter 8. Batch compilation (ocamlc) 137

If filename has the format mod.cmo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename
The compiler produces this error when it tries to read a compiled interface file (.cmi file) that
has the wrong structure. This means something went wrong when this .cmi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.
This error can also appear if a .cmi file is modified after its creation by the compiler. Fix:
remove the corrupted .cmi file, and rebuild it.

This expression has type t;, but is used with type t
This is by far the most common type error in programs. Type #; is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type t is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t; and t; are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types #; and ty are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two
type constructors can have the same name, but actually represent different types. This can
happen if a type constructor is redefined. Example:

type foo = A | B

let £ = function A -> 0 | B -> 1
type foo = C | D

£fC

This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, ¢, contains type variables that cannot be generalized
Type variables (’a, b, ...) in a type ¢ can be in either of two states: generalized (which
means that the type ¢ is valid for all possible instantiations of the variables) and not gener-
alized (which means that the type ¢ is valid only for one instantiation of the variables). In a
let binding let name = ezpr, the type-checker normally generalizes as many type variables
as possible in the type of ezpr. However, this leads to unsoundness (a well-typed program
can crash) in conjunction with polymorphic mutable data structures. To avoid this, general-
ization is performed at let bindings only if the bound expression expr belongs to the class of
“syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values,
etc. In all other cases (for instance, expr is a function application), a polymorphic mutable
could have been created and generalization is therefore turned off.

Non-generalized type variables in a type cause no difficulties inside a given structure or
compilation unit (the contents of a .ml file, or an interactive session), but they cannot be
allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used

138

inconsistently later. Therefore, the compiler flags an error when a structure or compilation
unit defines a value name whose type contains non-generalized type variables. There are two
ways to fix this error:

e Add a type constraint or a .mli file to give a monomorphic type (without type variables)
to name. For instance, instead of writing

let sort_int_list = Sort.list (<)
(* inferred type ’a list -> ’a list, with ’a not generalized *)

write
let sort_int_list = (Sort.list (<) : int list -> int list);;

e If you really need name to have a polymorphic type, turn its defining expression into a
function by adding an extra parameter. For instance, instead of writing

let map_length = List.map Array.length
(* inferred type ’a array list -> int list, with ’a not generalized *)

write

let map_length 1lv = List.map Array.length 1lv

Reference to undefined global mod

This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the compilation unit named mod on the
command line (typically, the file named mod. cmo, or a library containing that file). Fix: add
the missing .ml or .cmo file to the command line. Or, you have provided an implementation
for the module named mod, but it comes too late on the command line: the implementation
of mod must come before all bytecode object files that reference mod. Fix: change the order
of .ml and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function
Mod1l.f. In this case, no matter what permutations you perform on the command line, the
program will be rejected at link-time. Fixes:

e Put f and g in the same module.

e Parameterize one function by the other. That is, instead of having

modl.ml: let £ x = . Mod2.g ...
mod2.ml: let gy = . Modl.f

define

modl.ml: let fgx=...¢g ...

mod2.ml: let rec gy = ... Modl.f g ...

and link mod1.cmo before mod2.cmo.

e Use a reference to hold one of the two functions, as in :

Chapter 8. Batch compilation (ocamlc) 139

modl.ml:

mod2.ml:

let forward_g =
ref ((fun x -> failwith "forward_g") : <type>)

let £ x = ... lforward_g ...
let gy = ... Modl.f
let _ = Modl.forward_ g := g

This will not work if g is a polymorphic function, however.

The external function f is not available

This error appears when trying to link code that calls external functions written in C. As
explained in chapter [[7, such code must be linked with C libraries that implement the required
f C function. If the C libraries in question are not shared libraries (DLLs), the code must be

linked in “custom runtime” mode. Fix: add the required C libraries to the command line,
and possibly the —custom option.

140

Chapter 9

The toplevel system (ocaml)

This chapter describes the toplevel system for Objective Caml, that permits interactive use of the
Objective Caml system through a read-eval-print loop. In this mode, the system repeatedly reads
Caml phrases from the input, then typechecks, compile and evaluate them, then prints the inferred
type and result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The
toplevel input consists in one or several toplevel phrases, with the following syntax:

toplevel-input ::= {toplevel-phrase} ;;
toplevel-phrase definition
expr

ident directive-argument

definition ::= let [rec] let-binding {and let-binding}
| external value-name : typexpr = external-declaration
| type-definition

| exception-definition

| module module-name [: module-type] = module-expr

| module type modtype-name = module-type

|

open module-path

directive-argument := nothing

| string-literal

| integer-literal
|

value-path

A phrase can consist of a definition, similar to those found in implementations of compilation
units or in struct...end module expressions. The definition can bind value names, type names,
an exception, a module name, or a module type name. The toplevel system performs the bindings,
then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a open directive (see section p.11]), or a value expression (sec-
tion p.1). Expressions are simply evaluated, without performing any bindings, and the value of the
expression is printed.

141

142

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These
directives control the behavior of the toplevel; they are listed below in section J.2.

Unix:
The toplevel system is started by the command ocaml, as follows:

ocaml options # interactive mode
ocaml options scriptfile # script mode

If no filename is given on the command line, the toplevel system enters interactive mode:
phrases are read on standard input, results are printed on standard output, errors on stan-
dard error. End-of-file on standard input terminates ocaml (see also the #quit directive in

section 0.2).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current
directory, its contents are read as a sequence of Objective Caml phrases and executed as per
the #use directive described in section P.2. The evaluation outcode for each phrase are not
displayed.

The toplevel system does not perform line editing, but it can easily be used in conjunction
with an external line editor such as fep; just run fep -emacs ocaml or fep -vi ocaml.
Another option is to use ocaml under Gnu Emacs, which gives the full editing power of
Emacs (see the subdirectory emacs of the Objective Caml distribution).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing ctrl-C (or, more precisely, by sending the sigintr signal to the ocaml process).
The toplevel then immediately returns to the # prompt.

If a filename is given on the command-line to ocaml, the toplevel system enters script mode:
the contents of the file are read as a sequence of Objective Caml phrases and executed, as per
the #use directive (section P.2). The outcome of the evaluation is not printed. On reaching
the end of file, the ocaml command exits immediately. No commands are read from standard
input. Sys.argv is transformed, ignoring all Objective Caml parameters, and starting with
the script file name in Sys.argv. (0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it is theoretically
possible to make the script itself executable and put as first line #! /usr/local/bin/ocaml,
thus calling the toplevel system automatically when the script is run. However, ocaml itself is
a #! script on most installations of Objective Caml, and Unix kernels usually do not handle
nested #! scripts.

Windows:
In addition to the text-only command ocaml.exe, which works exactly as under Unix (see
above), a graphical user interface for the toplevel is available under the name ocamlwin.exe.
It should be launched from the Windows file manager or program manager.

The “Terminal” windows is split in two panes. Phrases are entered and edited in the bottom
pane. The top pane displays a copy of the input phrases as they are processed by the Objective
Caml toplevel, interspersed with the toplevel responses. The “Return” key sends the contents
of the bottom pane to the Objective Caml toplevel. The “Enter” key inserts a newline without

Chapter 9. The toplevel system (ocaml) 143

sending the contents of the Input window. (This can be configured with the “Preferences”
menu item.)

The contents of the input window can be edited at all times, with the standard Windows
interface. An history of previously entered phrases is maintained and displayed in a separate
window.

To quit the Camlwin application, either select “Quit” from the “File” menu, or use the quit
function described below.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by selecting the “Interrupt Objective Caml” menu item. This goes back to the # prompt.

9.1 Options
The following command-line options are recognized by the ocaml command.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, then the standard library directory. Directories
added with -I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

Directories can also be added to the search path once the toplevel is running with the
#directory directive (section P.2).

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

—unsafe
See the corresponding option for ocamlc, chapter §. Turn bound checking off on array and
string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are
therefore slightly faster, but unsafe: anything can happen if the program accesses an array
or string outside of its bounds.

-w warning-list
Enable or disable warnings according to the argument warning-list.

Unix:
The following environment variables are also consulted:

144

LC_CTYPE
If set to iso_8859_1, accented characters (from the ISO Latin-1 character set) in string
and character literals are printed as is; otherwise, they are printed as decimal escape
sequences (\ddd).

TERM
When printing error messages, the toplevel system attempts to underline visually the
location of the error. It consults the TERM variable to determines the type of output
terminal and look up its capabilities in the terminal database.

9.2 Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program
execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive,
and must not be confused with the # prompt displayed by the interactive loop. For instance, typing
#quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

#quit; ;
Exit the toplevel loop and terminate the ocaml command.

#labels bool;;
Ignore labels in function types if argument is false, or switch back to default behaviour
(commuting style) if argument is true.

#warnings "warning-list"; ;
Enable or disable warnings according to the argument.

#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.

#cd "dir-name"; ;
Change the current working directory.

#load "file-name";;
Load in memory a bytecode object file (.cmo file) produced by the batch compiler ocamlc.

#use "file-name"; ;
Read, compile and execute source phrases from the given file. This is textual inclusion:
phrases are processed just as if they were typed on standard input. The reading of the file
stops at the first error encountered.

#install_printer printer-name; ;
This directive registers the function named printer-name (a value path) as a printer for values
whose types match the argument type of the function. That is, the toplevel loop will call
printer-name when it has such a value to print.

The printing function printer-name should have type Format.formatter -> t -=> unit, where
t is the type for the values to be printed, and should output its textual representation for the

Chapter 9. The toplevel system (ocaml) 145

value of type t on the given formatter, using the functions provided by the Format library. For
backward compatibility, printer-name can also have type t —> unit and should then output
on the standard formatter, but this usage is deprecated.

#remove_printer printer-name; ;
Remove the named function from the table of toplevel printers.

#trace function-name;;
After executing this directive, all calls to the function named function-name will be “traced”.
That is, the argument and the result are displayed for each call, as well as the exceptions
escaping out of the function, raised either by the function itself or by another function it calls.
If the function is curried, each argument is printed as it is passed to the function.

#untrace function-name; ;
Stop tracing the given function.

#untrace_all;;
Stop tracing all functions traced so far.

#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth exceeds
n are printed as ... (ellipsis).

#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are printed
as ... (ellipsis).

9.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms
as for separately compiled units: either by using qualified names (Modulename.localname), or by
using the open construct and unqualified names (see section B.J).

However, before referencing another compilation unit, an implementation of that unit must be
present in memory. At start-up, the toplevel system contains implementations for all the modules in
the the standard library. Implementations for user modules can be entered with the #load directive
described above. Referencing a unit for which no implementation has been provided results in the
error “Reference to undefined global “..."”.

Note that entering open mod merely accesses the compiled interface (.cmi file) for mod, but
does not load the implementation of mod, and does not cause any error if no implementation of mod
has been loaded. The error “reference to undefined global mod” will occur only when executing a
value or module definition that refers to mod.

9.4 Common errors

This section describes and explains the most frequently encountered error messages.

146

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.cmi, this means you have referenced the compilation unit
mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first,
to create the compiled interface mod. cmi.

If filename has the format mod. cmo, this means you are trying to load with #load a bytecode
object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: use the #directory directive to add the correct
directories to the search path.

This expression has type t;, but is used with type t»
See section 4.

Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See
section B3 above.

9.5 Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds Objective Caml toplevels that contain user code preloaded at
start-up.

The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with
the object files that implement the Objective Caml toplevel. The typical use is:

ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the Objective Caml toplevel system, plus
the code from the three .cmo files. This toplevel is directly executable and is started by:

./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo is
already loaded in memory, just as if you had typed:

#load "foo.cmo";;
#load "bar.cmo";;
#load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still have
to do

open Foo;;

yourself, if this is what you wish.

Chapter 9. The toplevel system (ocaml) 147

9.6 Options
The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -1libname option to the C linker when linking in “custom runtime” mode. See the
corresponding option for ocamlc, in chapter B.

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode.
See the corresponding option for ocamlc, in chapter B.

-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter B.

-I directory
Add the given directory to the list of directories searched for compiled object code files (. cmo
and .cma).

-o exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.

148

Chapter 10

The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc
command.

10.1 Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually ex-
ecutes bytecode files; the memory allocator and garbage collector; and a set of C functions that
implement primitive operations such as input/output.

The usage for ocamlrun is:

ocamlrun options bytecode-executable arg, ... arg,

The first non-option argument is taken to be the name of the file containing the executable bytecode.
(That file is searched in the executable path as well as in the current directory.) The remaining
arguments are passed to the Caml program, in the string array Sys.argv. Element 0 of this array
is the name of the bytecode executable file; elements 1 to n are the remaining arguments arg; to
arg,,.

As mentioned in chapter B, the bytecode executable files produced by the ocamlc command are
self-executable, and manage to launch the ocamlrun command on themselves automatically. That
is, assuming caml.out is a bytecode executable file,

caml.out arg; ... arg,
works exactly as
ocamlrun caml.out arg; ... arg,

Notice that it is not possible to pass options to ocamlrun when invoking caml.out directly.

Windows:
Under several versions of Windows, bytecode executable files are self-executable only if their
name ends in .exe. It is recommended to always give .exe names to bytecode executables,
e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog

149

150

10.2 Options
The following command-line options are recognized by ocamlrun.

-b When the program aborts due to an uncaught exception, print a detailed “back trace” of the
execution, showing where the exception was raised and which function calls were outstanding
at this point. The back trace is printed only if the bytecode executable contains debugging
information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent
to setting b=1 in the OCAMLRUNPARAM environment variable (see below).

-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search
path (see section [[0.3).

-v Direct the memory manager to print some progress messages on standard error. This is
equivalent to setting v=63 in the 0CAMLRUNPARAM environment variable (see below).

The following environment variables are also consulted:

CAML_LD_LIBRARY_PATH
Additional directories to search for dynamically-loaded libraries (see section [[0.3).

CAMLLIB
The directory containing the Objective Caml standard library. Used to locate the 1d.conf
configuration file for dynamic loading (see section [[0.3). If not set, default to the library
directory specified when compiling Objective Caml.

OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If OCAMLRUNPARAM is
not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter
specifications. A parameter specification is an option letter followed by an = sign, a decimal
number, and an optional multiplier. There are eight options, six of which correspond to the
fields of the control record documented in section [IY.

b (backtrace) Control the printing of a stack backtrace when an uncaught exception aborts
the program. A non-zero argument turns the backtrace facility on; a zero argument turns
it off.

minor_heap_size) Size of the minor heap.

2]

major_heap_increment) Minimum size increment for the major heap.

[=ry

space_overhead) The major GC speed setting.

(
(
(
(

max_overhead) The heap compaction trigger setting.

< o o©

(verbose) What GC messages to print to stderr. This is a sum of values selected from
the following:

1 (= 0b0000000001)
Start of major GC cycle.

Chapter 10. The runtime system (ocamlrun) 151

PATH

2 (= 0b0000000010)
Minor collection and major GC slice.
4 (= 0b0000000100)
Growing and shrinking of the heap.
8 (= 0b0000001000)
Resizing of stacks and memory manager tables.
16 (= 0b0000010000)
Heap compaction.
32 (= 0b0000100000)
Change of GC parameters.

64 (= 0b0001000000)
Computation of major GC slice size.

128 (= 0b0010000000)
Calling of finalization functions
256 (= 0b0100000000)
Startup messages (loading the bytecode executable file, resolving shared libraries).
1 (stack_limit) The limit (in words) of the stack size.
h The initial size of the major heap (in words).
210 220

230

The multiplier is k, M, or G, for multiplication by , and respectively. For example,

on a 32-bit machine, under bash the command
export OCAMLRUNPARAM=’b=1,s=256k,v=1"

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor
heap size to 1 megabyte and print a message at the start of each major GC cycle.

List of directories searched to find the bytecode executable file.

10.3 Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries
(DLLs) providing additional C primitives beyond those provided by the standard runtime system.
The names for these libraries are provided at link time as described in section [[7.1.4), and recorded
in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to
their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order
indicated:

1.
2.

Directories specified on the ocamlrun command line with the -I option.
Directories specified in the CAML_LD_LIBRARY_PATH environment variable.

Directories specified at link-time via the -rpath option to ocamlc. (These directories are
recorded in the bytecode executable file.)

152

4. Directories specified in the file 1d.conf. This file resides in the Objective Caml standard
library directory, and lists directory names (one per line) to be searched. Typically, it contains
only one line naming the Objective Caml standard library directory. Users can add there the
names of other directories containing frequently-used shared libraries.

5. Default directories searched by the system dynamic loader. Under Unix, these generally
include /1ib and /usr/lib, plus the directories listed in the file /etc/1d.so.conf and the
environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system
directories, plus the directories listed in the PATH environment variable.

10.4 Common errors
This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second
possibility indicates that Objective Caml has not been properly installed on your system.

Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the
executable path. Check that Objective Caml has been properly installed on your system.

Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument
to ocamlrun) either does not exist, or is not a valid executable bytecode file.

Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably
it has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception

The program being executed contains a “stray” exception. That is, it raises an exception
at some point, and this exception is never caught. This causes immediate termination of
the program. The name of the exception is printed, along with its string and integer argu-
ments (arguments of more complex types are not correctly printed). To locate the context
of the uncaught exception, compile the program with the -g option and either run it again
under the ocamldebug debugger (see chapter [[§), or run it with ocamlrun -b or with the
OCAMLRUNPARAM environment variable set to b=1.

Out of memory
The program being executed requires more memory than available. Either the program builds
excessively large data structures; or the program contains too many nested function calls, and
the stack overflows. In some cases, your program is perfectly correct, it just requires more
memory than your machine provides. In other cases, the “out of memory” message reveals an
error in your program: non-terminating recursive function, allocation of an excessively large
array or string, attempts to build an infinite list or other data structure, ...

Chapter 10. The runtime system (ocamlrun) 153

To help you diagnose this error, run your program with the -v option to ocamlrun, or
with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of “Growing

stack...” messages, this is probably a looping recursive function.

If it displays lots of
“Growing heap...”

messages, with the heap size growing slowly, this is probably an attempt
to construct a data structure with too many (infinitely many?) cells.

If it displays few
“Growing heap...”

messages, but with a huge increment in the heap size, this is probably
an attempt to build an excessively large array or string.

154

Chapter 11

Native-code compilation (ocamlopt)

This chapter describes the Objective Caml high-performance native-code compiler ocamlopt, which
compiles Caml source files to native code object files and link these object files to produce standalone
executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster
than the bytecode produced by ocamlc, at the cost of increased compilation time and executable
code size. Compatibility with the bytecode compiler is extremely high: the same source code should
run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlc with bytecode object
files produced by ocamlopt: a program must be compiled entirely with ocamlopt or entirely with
ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system
ocaml.

11.1 Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the
same types of arguments:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. In-
terfaces specify the names exported by compilation units: they declare value names with
their types, define public data types, declare abstract data types, and so on. From the file
xz.m1i, the ocamlopt compiler produces a compiled interface in the file x.cmi. The interface
produced is identical to that produced by the bytecode compiler ocamlc.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.m1, the ocamlopt compiler
produces two files: x.o0, containing native object code, and z.cmx, containing extra informa-
tion for linking and optimization of the clients of the unit. The compiled implementation
should always be referred to under the name z.cmx (when given a .o file, ocamlopt assumes
that it contains code compiled from C, not from Caml).

The implementation is checked against the interface file z.m1i (if it exists) as described in
the manual for ocamlc (chapter §).

155

156

Arguments ending in .cmx are taken to be compiled object code. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
Caml standard library, to produce a native-code executable program. The order in which
.cmx and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmx file must come before all .cmx files
that refer to the unit x.

Arguments ending in .cmxa are taken to be libraries of object code. Such a library packs in
two files (lib.cmxa and lib.a) a set of object files (.cmx/.o files). Libraries are build with
ocamlopt -a (see the description of the -a option below). The object files contained in the
library are linked as regular .cmx files (see above), in the order specified when the library
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

Arguments ending in .c are passed to the C compiler, which generates a .o object file. This
object file is linked with the program.

Arguments ending in .o, .a or .so (.obj, .1lib and .d11l under Windows) are assumed to
be C object files and libraries. They are linked with the program.

The output of the linking phase is a regular Unix executable file. It does not need ocamlrun to
run.

11.2 Options

The following command-line options are recognized by ocamlopt.

—a

Build a library (.cmxa/.a file) with the object files (.cmx/.o files) given on the command
line, instead of linking them into an executable file. The name of the library can be set with
the -o option. The default name is 1ibrary.cmxa.

If —cclib or -ccopt options are passed on the command line, these options are stored in
the resulting .cmxa library. Then, linking with this library automatically adds back the
-cclib and -ccopt options as if they had been provided on the command line, unless the
-noautolink option is given.

Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

—CC ccomp

Use ccomp as the C linker called to build the final executable and as the C compiler for
compiling .c source files.

-cclib -1libname

Pass the -1libname option to the linker. This causes the given C library to be linked with
the program.

Chapter 11. Native-code compilation (ocamlopt) 157

—ccopt option
Pass the given option to the C compiler and linker. For instance, ~ccopt -Ldir causes the C
linker to search for C libraries in directory dir.

—-compact
Optimize the produced code for space rather than for time. This results in slightly smaller
but slightly slower programs. The default is to optimize for speed.

-i Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). This can be useful to check the types inferred
by the compiler. Also, since the output follows the syntax of interfaces, it can help in writing
an explicit interface (.mli file) for a file: just redirect the standard output of the compiler to
a .mli file, and edit that file to remove all declarations of unexported names.

-1 directory
Add the given directory to the list of directories searched for compiled interface files (.cmi),
compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory is
searched first, then the standard library directory. Directories added with -I are searched
after the current directory, in the order in which they were given on the command line, but
before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-inline n
Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0
prevents all functions from being inlined, except those whose body is smaller than the call
site. Thus, inlining causes no expansion in code size. The default aggressiveness, —inline
1, allows slightly larger functions to be inlined, resulting in a slight expansion in code size.
Higher values for the -inline option cause larger and larger functions to become candidate
for inlining, but can result in a serious increase in code size.

-linkall
Forces all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (-a flag), setting the ~1inkall flag forces
all subsequent links of programs involving that library to link all the modules contained in
the library.

-noassert
Turn assertion checking off: assertions are not compiled. This flag has no effect when linking
already compiled files.

-noautolink
When linking .cmxa libraries, ignore -cclib and -ccopt options potentially contained in
the libraries (if these options were given when building the libraries). This can be useful
if a library contains incorrect specifications of C libraries or C options; in this case, during
linking, set -noautolink and pass the correct C libraries and options on the command line.

158

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-0 exec-file
Specify the name of the output file produced by the linker. The default output name is a.out,
in keeping with the Unix tradition. If the -a option is given, specify the name of the library
produced. If the —output-obj option is given, specify the name of the output file produced.

—output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to
wrap Caml code as a C library, callable from any C program. See chapter [7, section [[7.7.5.
The name of the output object file is camlprog.o by default; it can be set with the -o option.

-p Generate extra code to write profile information when the program is executed. The profile
information can then be examined with the analysis program gprof. (See chapter for
more information on profiling.) The -p option must be given both at compile-time and at
link-time. Linking object files not compiled with -p is possible, but results in less precise
profiling.

Unix:

See the Unix manual page for gprof(1) for more information about the pro-
files.

Full support for gprof is only available for certain platforms (currently: Intel x86/Linux
and Alpha/Digital Unix). On other platforms, the -p option will result in a less precise
profile (no call graph information, only a time profile).

Windows:

The -p option does not work under Windows.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards. The name of this file is built
from the basename of the source file with the extension .ppi for an interface (.mli) file and
.ppo for an implementation (.ml) file.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-S Keep the assembly code produced during the compilation. The assembly code for the source
file z.m1 is saved in the file z.s.

—thread
Compile or link multithreaded programs, in combination with the threads library described

Chapter 11. Native-code compilation (ocamlopt) 159

in chapter 3. What this option actually does is select a special, thread-safe version of the
standard library.

-unsafe

'

Turn bound checking off on array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore faster, but unsafe: anything can happen if
the program accesses an array or string outside of its bounds.

Print the version number of the compiler.

-w warning-list

Enable or disable warnings according to the argument warning-list. The argument is a string
of one or several characters, with the following meaning for each character:

A/a enable/disable all warnings.

C/c enable/disable warnings for suspicious comments.

D/d enable/disable warnings for deprecated features.

F/f enable/disable warnings for partially applied functions (i.e. £ x; expr where the appli-
cation £ x has a function type).

L/1 enable/disable warnings for labels omitted in application.
M/m enable/disable warnings for overriden methods.
P/p enable/disable warnings for partial matches (missing cases in pattern matchings).

S/s enable/disable warnings for statements that do not have type unit (e.g. exprl; expr2
when exprl does not have type unit).

U/u enable/disable warnings for unused (redundant) match cases.
V/v enable/disable warnings for hidden instance variables.

X/x enable/disable all other warnings.

The default setting is -w Al (all warnings but labels enabled).

-warn-error warning-list

Turn the warnings indicated in the argument warning-list into errors. The compiler will stop
on an error as soon as one of these warnings is emitted, instead of going on. The warning-
list is a string of one or several characters, with the same meaning as for the -w option:
an uppercase character turns the corresponding warning into an error, a lowercase character
leaves it as a warning. The default setting is ~-warn-error a (all warnings are not treated as
errors).

-where

Print the location of the standard library.

11.3 Common errors

The error messages are almost identical to those of ocamlc. See section B.4.

160

11.4 Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code
compiler. Except on those points, the two compilers should generate code that behave identically.

e The following operations abort the program (either by printing an error message or just via
an hardware trap or fatal Unix signal) instead of raising an exception:

— integer division by zero, modulus by zero;
— stack overflow;

— on the Alpha processor only, floating-point operations involving infinite or denormalized

numbers (all other processors supported by ocamlopt treat these numbers correctly, as
per the IEEE 754 standard).

In particular, notice that stack overflow caused by excessively deep recursion is reported by
most Unix kernels as a “segmentation violation” signal.

e Signals are detected only when the program performs an allocation in the heap. That is, if
a signal is delivered while in a piece of code that does not allocate, its handler will not be
called until the next heap allocation.

The best way to avoid running into those incompatibilities is to mnever trap the
Division_by_zero and Stack_overflow exceptions, thus also treating them as fatal er-
rors with the bytecode compiler as well as with the native-code compiler. Test the divisor before
performing the operation instead of trapping the exception afterwards.

Chapter 12

Lexer and parser generators
(ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences
with 1lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason
and Brown (O’Reilly, 1992).

12.1 Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of lex. Assuming the input file is lezer.ml1l, executing

ocamllex lexer.mll

produces Caml code for a lexical analyzer in file lexzer.m1l. This file defines one lexing function per
entry point in the lexer definition. These functions have the same names as the entry points. Lexing
functions take as argument a lexer buffer, and return the semantic attribute of the corresponding
entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing.
The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create
lexer buffers that read from an input channel, a character string, or any reading function, respec-
tively. (See the description of module Lexing in chapter [[§.)

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of ocamlyacc below.)

161

162

12.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp ...
rule entrypoint =
parse regexp { action }
|
| regexp { action }
and entrypoint =
parse ...
and ...
{ trailer }

Comments are delimited by (* and *), as in Caml.

12.2.1 Header and trailer

The header and trailer sections are arbitrary Caml text enclosed in curly braces. Either or both
can be omitted. If present, the header text is copied as is at the beginning of the output file and
the trailer text at the end. Typically, the header section contains the open directives required by
the actions, and possibly some auxiliary functions used in the actions.

12.2.2 Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular
expressions. This is written let ident = regexp. In following regular expressions, the identifier
ident can be used as shorthand for regexp.

12.2.3 Entry points
The names of the entry points must be valid identifiers for Caml values (starting with a lowercase
letter).

12.2.4 Regular expressions

The regular expressions are in the style of 1lex, with a more Caml-like syntax.

> char ’
A character constant, with the same syntax as Objective Caml character constants. Match
the denoted character.

(Underscore.) Match any character.

eof Match the end of the lexer input.
Note: On some systems, with interactive input, and end-of-file may be followed by more
characters. However, ocamllex will not correctly handle regular expressions that contain eof
followed by something else.

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 163

" string "
A string constant, with the same syntax as Objective Caml string constants. Match the
corresponding sequence of characters.

[character-set]
Match any single character belonging to the given character set. Valid character sets are:
single character constants > ¢ ’; ranges of characters > ¢; > = ? ¢o ’ (all characters between
c1 and cg, inclusive); and the union of two or more character sets, denoted by concatenation.

[~ character-set]
Match any single character not belonging to the given character set.

regexp
(Repetition.) Match the concatenation of zero or more strings that match regexp.

regexp +
(Strict repetition.) Match the concatenation of one or more strings that match regexp.

regexp ?
(Option.) Match either the empty string, or a string matching regexp.

regexp, | regexp,
(Alternative.) Match any string that matches either regexp, or regexp,

regexp, regexps
(Concatenation.) Match the concatenation of two strings, the first matching regexp;, the
second matching regexps.

(regexp)
Match the same strings as regexp.

ident
Reference the regular expression bound to ident by an earlier let ident = regexp definition.

Concerning the precedences of operators, * and + have highest precedence, followed by 7, then
concatenation, then | (alternation).

12.2.5 Actions

The actions are arbitrary Caml expressions. They are evaluated in a context where the identifier
lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the
operations on lexer buffers provided by the Lexing standard library module, are listed below.

Lexing.lexeme lexbuf
Return the matched string.

Lexing.lexeme_char lexbuf n
Return the n'® character in the matched string. The first character corresponds to n = 0.

164

Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string. The
first character read from the input text has position 0.

Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string. The first
character read from the input text has position 0.

entrypoint lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Useful for lexing nested comments, for example.

12.2.6 Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such
identifier in your programs.

12.3 Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with at-
tached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

ocamlyacc options grammar.mly

produces Caml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented
in the standard library module Lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by ocamlyacc.

12.4 Syntax of grammar definitions

Grammar definitions have the following format:

{

header
hy

declarations
oo

rules
oo

trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections,

and between (* and *) (as in Caml) in the “header” and “trailer” sections.

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 165

12.4.1 Header and trailer

The header and the trailer sections are Caml code that is copied as is into file grammar.ml. Both
sections are optional. The header goes at the beginning of the output file; it usually contains open
directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at
the end of the output file.

12.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

%token symbol. .. symbol
Declare the given symbols as tokens (terminal symbols). These symbols are added as constant
constructors for the token concrete type.

%token < type > symbol. .. symbol

Declare the given symbols as tokens with an attached attribute of the given type. These
symbols are added as constructors with arguments of the given type for the token concrete
type. The type part is an arbitrary Caml type expression, except that all type constructor
names must be fully qualified (e.g. Modname.typename) for all types except standard built-
in types, even if the proper open directives (e.g. open Modname) were given in the header
section. That’s because the header is copied only to the .ml output file, but not to the .mli
output file, while the type part of a %token declaration is copied to both.

%hstart symbol . .. symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the %type directive below.

htype < type > symbol . .. symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the Objective Caml compiler (unless the
-s option is in effect). The type part is an arbitrary Caml type expression, except that all
type constructor names must be fully qualified, as explained above for %token.

%left symbol...symbol

%hright symbol...symbol

%nonassoc symbol. .. symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before
in a %left, %right or %nonassoc line. They have lower precedence than symbols declared

166

after in a %left, %right or %nonassoc line. The symbols are declared to associate to the
left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.

12.4.3 Rules

The syntax for rules is as usual:

nonterminal :
symbol ... symbol { semantic-action }
I ...
| symbol ... symbol { semantic-action }

I

Rules can also contain the %prec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary Caml expressions, that are evaluated to produce the semantic
attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in
yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular Caml symbols, except that they cannot end with > (single
quote).

12.4.4 Error handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can
apply), it calls a function named parse_error with the string "syntax error" as argument. The
default parse_error function does nothing and returns, thus initiating error recovery (see below).
The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the
Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where
the error token can be shifted. It then discards tokens from the input until it finds three suc-
cessive tokens that can be accepted, and starts processing with the first of these. If no state
can be uncovered where the error token can be shifted, then the parser aborts by raising the
Parsing.Parse_error exception.

Refer to documentation on yacc for more details and guidance in how to use error recovery.

12.5 Options

The ocamlyacc command recognizes the following options:

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 167

-v Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar. output.

-bprefix
Name the output files prefiz.ml, prefix.mli, prefix.output, instead of the default naming
convention.

12.6 A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard
input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */
%token <int> INT

%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN

%token EQOL

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */

%type <int> main

hto

main:
expr EOL {$11%}
expr
INT {$113}
| LPAREN expr RPAREN {3%21}
| expr PLUS expr {$1+ 831}
| expr MINUS expr {$1-831%
| expr TIMES expr {$1 % 831}
| expr DIV expr {$1/ 831}
| MINUS expr %prec UMINUS { - $2 }
Here is the definition for the corresponding lexer:
(¥ File lexer.mll x)
{
open Parser (* The type token is defined in parser.mli *)
exception Eof
}
rule token = parse
[7 °\t’] { token lexbuf } (* skip blanks x*)

I [’\n’] { EOL }

168

| [’0°-"9°]+ { INT(int_of_string(Lexing.lexeme lexbuf)) }
| >+ { PLUS }

|- { MINUS }

| 7% { TIMES }

|2/ { DIV }

| ¢ { LPAREN }

I 2)° { RPAREN }

| eof { raise Eof }

Here is the main program, that combines the parser with the lexer:

(* File calc.ml *)
let _ =
try
let lexbuf = Lexing.from_channel stdin in
while true do
let result = Parser.main Lexer.token lexbuf in
print_int result; print_newline(); flush stdout
done
with Lexer.Eof ->
exit O

To compile everything, execute:

ocamllex lexer.mll # generates lexer.ml

ocamlyacc parser.mly # generates parser.ml and parser.mli
ocamlc -c parser.mli

ocamlc -c lexer.ml

ocamlc -c parser.ml

ocamlc -c calc.ml

ocamlc -o calc lexer.cmo parser.cmo calc.cmo

12.7 Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions.
The message above indicates that your lexer definition is too complex and overflows this
limit. This is commonly caused by lexer definitions that have separate rules for each of the
alphabetic keywords of the language, as in the following example.

rule token = parse
"keywordl" { KwD1 }
| "keyword2" { KwD2 }
I ...
| "keyword100" { KWD100 }

Chapter 12. Lexer and parser generators (ocamllex, ocamlyacc) 169

| []A}_)Z) ’a’-’z’] [’A’-’Z’ rar-rz? 102-290 J] *
{ IDENT(Lexing.lexeme lexbuf) }

To keep the generated automata small, rewrite those definitions with only one general “iden-
tifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
let _ =
List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
["keywordl", KWD1;
"keyword2", KWD2;
"keyword100", KWD100]
}
rule token = parse
[A=Z° 2a’=z] [PA’-°Z° ’a’-’z’ ’0°-’97 7_’] %
{ let id = Lexing.lexeme lexbuf in
try
Hashtbl.find keyword_table s
with Not_found ->
IDENT s }

170

Chapter 13

Dependency generator (ocamldep)

The ocamldep command scans a set of Objective Caml source files (.m1 and .m1i files) for references
to external compilation units, and outputs dependency lines in a format suitable for the make utility.
This ensures that make will compile the source files in the correct order, and recompile those files
that need to when a source file is modified.

The typical usage is:

ocamldep options *.mli *.ml > .depend

where *.m1i *.ml expands to all source files in the current directory and .depend is the file that
should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with
the native-code compiler ocamlopt.

13.1 Options
The following command-line option is recognized by ocamldep.

-1 directory
Add the given directory to the list of directories searched for source files. If a source file
foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface
bar.cmi is generated only if the source for bar is found in the current directory or in one of
the directories specified with -I. Otherwise, Bar is assumed to be a module form the standard
library, and no dependencies are generated. For programs that span multiple directories, it
is recommended to pass ocamldep the same -I options that are passed to the compiler.

-native

Generate dependencies for a pure native-code program (no bytecode version). When an
implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates
dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can
cause unnecessary bytecode recompilations for programs that are compiled to native-code
only. The flag -native causes dependencies on native compiled files (.cmx) to be generated
instead of on .cmo files. (This flag makes no difference if all source files have explicit .m1i
interface files.)

171

172

13.2 A typical Makefile

Here is a template Makefile for a Objective Caml program.

OCAMLC=ocamlc

OCAMLOPT=ocamlopt

OCAMLDEP=ocamldep

INCLUDES= # all relevant -I options here
OCAMLFLAGS=$ (INCLUDES) # add other options for ocamlc here
OCAMLOPTFLAGS=$ (INCLUDES) # add other options for ocamlopt here

progl should be compiled to bytecode, and is composed of three
units: modl, mod2 and mod3.

The list of object files for progl
PROG1_0BJS=mod1.cmo mod2.cmo mod3.cmo

progl: $(PROG1_0BJS)
$ (0CAMLC) -o progl $(OCAMLFLAGS) $(PROG1_0BJS)

prog2 should be compiled to native-code, and is composed of two
units: mod4 and mod>5.

The list of object files for prog2
PROG2_0BJS=mod4.cmx mod5.cmx

prog2: $(PROG2_0BJS)
$ (OCAMLOPT) -o prog2 $(OCAMLFLAGS) $(PROG2_0BJS)

Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
$(0CAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
$(0OCAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
$ (OCAMLOPT) $(OCAMLOPTFLAGS) -c $<

Clean up

clean:
rm -f progl prog2
rm -f *.cm[iox]

Chapter 13. Dependency generator (ocamldep) 173

Dependencies

depend:
$ (OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend

174

Chapter 14

The browser/editor (ocamlbrowser)

This chapter describes OCamlBrowser, a source and compiled interface browser, written using
LablTk. This is a useful companion to the programmer.
Its functions are:

e navigation through Objective Caml’s modules (using compiled interfaces).
e source editing, type-checking, and browsing.

e integrated Objective Caml shell, running as a subprocess.

14.1 Invocation

The browser is started by the command ocamlbrowser, as follows:
ocamlbrowser options

The following command-line options are recognized by ocamlbrowser.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, only the standard library directory is searched. The standard library can also be
changed by setting the CAMLLIB environment variable.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-oldui
Old multi-window interface. The default is now more like Smalltalk’s class browser.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-w warning-list
Enable or disable warnings according to the argument warning-list.

175

176

Most options can also be modified inside the application by the Modules - Path editor and
Compiler - Preferences commands. They are inherited when you start a toplevel shell.

14.2 Viewer

This is the first window you get when you start OCamlBrowser. It displays a search window, and
the list of modules in the load path. At the top a row of menus.

e File - Open and File - Editor give access to the editor.

e File - Shell creates an Objective Caml subprocess in a shell.

e View - Show all defs displays the signature of the currently selected module.
e View - Search entry shows/hides the search entry just below the menu bar.

e Modules - Path editor changes the load path. Modules - Reset cache rescans the load
path and resets the module cache. Do it if you recompile some interface, or get confused
about what is in the cache.

e Modules - Search symbol allows to search a symbol either by its name, like the bottom
line of the viewer, or, more interestingly, by its type. Exact type searches for a type with
exactly the same information as the pattern (variables match only variables). Included type
allows to give only partial information: the actual type may take more arguments and return
more results, and variables in the pattern match anything. In both cases, argument and tuple
order is irrelevantf], and unlabeled arguments in the pattern match any label.

e The Search entry just below the menu bar allows one to search for an identifier in all
modules (wildcards “?” and “*” allowed). If you choose the type option, the search is done
by type inclusion (¢f. Search Symbol - Included type).

e The Close all button is there to dismiss the windows created by the Detach button. By
double-clicking on it you will quit the browser.

14.3 Module browsing

You select a module in the leftmost box by either cliking on it or pressing return when it is selected.
Fast access is available in all boxes pressing the first few letter of the desired name. Double-clicking
/ double-return displays the whole signature for the module.

Defined identifiers inside the module are displayed in a box to the right of the previous one.
If you click on one, this will either display its contents in another box (if this is a sub-module) or
display the signature for this identifier below.

Signatures are clickable. Double clicking with the left mouse button on an identifier in a
signature brings you to its signature. A single click on the right button pops up a menu displaying

1To avoid combinatorial explosion of the search space, optional arguments in the actual type are ignored in the
actual if (1) there are too many of them, and (2) they do not appear explicitly in the pattern.

Chapter 14. The browser/editor (ocamlbrowser) 177

the type declaration for the selected identifier. Its title, when selectable, also brings you to its
signature.
At the bottom, a series of buttons, depending on the context.

e Detach copies the currently displayed signature in a new window, to keep it.

e Impl and Intf bring you to the implementation or interface of the currently displayed signa-
ture, if it is available.

Control-S lets you search a string in the signature.

14.4 File editor

You can edit files with it, if you're not yet used to emacs. Otherwise you can use it as a browser,
making occasional corrections.

The Edit menu contains commands for jump (C-g), search (C-s), and sending the current
phrase (or selection if some text is selected) to a sub-shell (M-x). For this last option, you may
choose the shell via a dialog.

Essential functions are in the Compiler menu.

e Preferences opens a dialog to set internals of the editor and type-checker.
e Lex adds colors according to lexical categories.

e Typecheck verifies typing, and memorizes to let one see an expression’s type by double-
clicking on it. This is also valid for interfaces. If an error occurs, the part of the interface
preceding the error is computed.

After typechecking, pressing the right button pops up a menu giving the type of the pointed
expression, and eventually allowing to follow some links.

e Clear errors dismisses type-checker error messages and warnings.

e Signature shows the signature of the current file (after type checking).

14.5 Shell

When you create a shell, a dialog is presented to you, letting you choose which command you want
to run, and the title of the shell (to choose it in the Editor).
The executed subshell is given the current load path.

e File use a source file or load a bytecode file. You may also import the browser’s path into
the subprocess.

e History M-p and M-n browse up and down.

e Signal C-c interrupts, and you can also kill the subprocess.

178

Chapter 15

The debugger (ocamldebug)

This chapter describes the Objective Caml source-level replay debugger ocamldebug.

Unix:
The debugger is available on Unix systems that provides BSD sockets.

Windows:
The debugger is available under the Cygwin port of Objective Caml, but not under the native
Win32 port.

MacOS:
The debugger is not available.

15.1 Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all
.cmo and .cma files that are part of the program should have been created with ocamlc -g, and
they must be linked together with ocamlc -g.

Compiling with -g entails no penalty on the running time of programs: object files and bytecode
executable files are bigger and take longer to produce, but the executable files run at exactly the
same speed as if they had been compiled without -g.

15.2 Invocation

15.2.1 Starting the debugger

The Objective Caml debugger is invoked by running the program ocamldebug with the name of
the bytecode executable file as first argument:

ocamldebug [options] program [arguments]

The arguments following program are optional, and are passed as command-line arguments to the
program being debugged. (See also the set arguments command.)
The following command-line options are recognized:

179

180

-I directory
Add directory to the list of directories searched for source files and compiled files. (See also
the directory command.)

-s socket
Use socket for communicating with the debugged program. See the description of the com-
mand set socket (section [[5.8.6) for the format of socket.

-c count
Set the maximum number of simultaneously live checkpoints to count.

-cd directory
Run the debugger program from the working directory directory, instead of the current di-
rectory. (See also the cd command.)

-emacs
Tell the debugger it is executed under Emacs. (See section [[5.10 for information on how to
run the debugger under Emacs.)

15.2.2 Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file
character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate
the action of any debugger command that is in progress and return to the debugger command level.

15.3 Commands

A debugger command is a single line of input. It starts with a command name, which is followed
by arguments depending on this name. Examples:

run
goto 1000
set arguments argl arg?2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000
is understood as goto 1000, since there are no other commands whose name starts with go. For
the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands
for run even though there are others commands starting with r. You can test the validity of an
abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.

15.3.1 Getting help

The Objective Caml debugger has a simple on-line help system, which gives a brief description of
each command and variable.

Chapter 15. The debugger (ocamldebug) 181

help
Print the list of commands.

help command
Give help about the command command.

help set wariable, help show wvariable
Give help about the variable variable. The list of all debugger variables can be obtained with
help set.

help info topic
Give help about topic. Use help info to get a list of known topics.

15.3.2 Accessing the debugger state

set wvariable value
Set the debugger variable variable to the value value.

show wvariable
Print the value of the debugger variable variable.

info subject
Give information about the given subject. For instance, info breakpoints will print the list
of all breakpoints.

15.4 Executing a program

15.4.1 Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of
evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to
the next or previous event encountered in the program execution). Also, breakpoints can only be
set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of
this counter is referred as the current time. Thanks to reverse execution, it is possible to jump
back and forth to any time of the execution.

Here is where the debugger events (written bowtie) are located in the source code:

e Following a function application:
(f arg)bowtie

e On entrance to a function:
fun x y z -> bowtie ...

e On each case of a pattern-matching definition (function, match...with construct, try...with
construct):

182

function patl -> bowtie exprl

| ...
| patN -> bowtie exprN

e Between subexpressions of a sequence:

exprl; bowtie expr2; bowtie ...; bowtie exprN
e In the two branches of a conditional expression:

if cond then bowtie exprl else bowtie expr2
e At the beginning of each iteration of a loop:

while cond do bowtie body done
for i = a to b do bowtie body done

Exceptions: A function application followed by a function return is replaced by the compiler by a
jump (tail-call optimization). In this case, no event is put after the function application.

15.4.2 Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting brea-
points or assigning debugger variables before execution starts. There are several ways to start
execution:

run Run the program until a breakpoint is hit, or the program terminates.

step O
Load the program and stop on the first event.

goto time
Load the program and execute it until the given time. Useful when you already know ap-
proximately at what time the problem appears. Also useful to set breakpoints on function
values that have not been computed at time 0 (see section [5.7).

The execution of a program is affected by certain information it receives when the debugger
starts it, such as the command-line arguments to the program and its working directory. The
debugger provides commands to specify this information (set arguments and cd). These com-
mands must be used before program execution starts. If you try to change the arguments or the
working directory after starting your program, the debugger will kill the program (after asking for
confirmation).

Chapter 15. The debugger (ocamldebug) 183

15.4.3 Running the program

The following commands execute the program forward or backward, starting at the current time.
The execution will stop either when specified by the command or when a breakpoint is encountered.

run Execute the program forward from current time. Stops at next breakpoint or when the
program terminates.

reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint
encountered before the current time.

step [count]
Run the program and stop at the next event. With an argument, do it count times.

backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count
times.

next [count]
Run the program and stop at the next event, skipping over function calls. With an argument,
do it count times.

previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With
an argument, do it count times.

finish
Run the program until the current function returns.

start
Run the program backward and stop at the first event before the current function invocation.

15.4.4 Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.
As you move through the program, the debugger maintains an history of the successive times

you stop at. The last command can be used to revisit these times: each last command moves one

step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.

last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count
times.

set history size
Set the size of the execution history.

184

15.4.5 Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile
the program without leaving the debugger.

15.5 Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It
can be set in several ways using the break command. Breakpoints are assigned numbers when set,
for further reference. The most comfortable way to set breakpoints is through the Emacs interface

(see section [[5.10).

break
Set a breakpoint at the current position in the program execution. The current position must
be on an event (i.e., neither at the beginning, nor at the end of the program).

break function
Set a breakpoint at the beginning of function. This works only when the functional value of
the identifier function has been computed and assigned to the identifier. Hence this command
cannot be used at the very beginning of the program execution, when all identifiers are still
undefined; use goto time to advance execution until the functional value is available.

break @ [module] lin