
Document Object Model (DOM) Level 3 Core
Specification

Version 1.0

W3C Working Draft 09 April 2002
This version:

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409
(PostScript file , PDF file , plain text , ZIP file , single HTML file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-Core

Previous version:
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114

Editors:
Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C, WG Chair
Lauren Wood, SoftQuad, Inc. (WG Chair emerata, for DOM Level 1 and 2)
Gavin Nicol, Inso EPS (for DOM Level 1)
Jonathan Robie, Texcel Research and Software AG (for DOM Level 1)
Mike Champion, ArborText and Software AG (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

Copyright ©2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Core Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content, structure and
style of documents. The Document Object Model Core Level 3 builds on the Document Object Model
Core Level 2 [DOM Level 2 Core].

1

Document Object Model (DOM) Level 3 Core Specification

http://www.w3.org/
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/DOM3-Core.ps
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/DOM3-Core.pdf
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/DOM3-Core.txt
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/DOM3-Core.zip
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/DOM3-Core.html
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This document contains the Document Object Model Level 3 Core specification.

This is a Working Draft for review by W3C members and other interested parties.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM Working Group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM Working Group members.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
.............. 9What is the Document Object Model?

............... 151. Document Object Model Core

................. 99Appendix A: Changes

.............. 101Appendix B: Namespaces Algorithms

............ 109Appendix C: Accessing code point boundaries

................ 111Appendix D: IDL Definitions

.............. 121Appendix E: Java Language Binding

............ 135Appendix F: ECMAScript Language Binding

............... 149Appendix G: Acknowledgements

.................... 151Glossary

.................... 155References

..................... 159Index

2

Status of this document

http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/TR/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License
.............. 9What is the Document Object Model?
................... 9Introduction
............. 9What the Document Object Model is
............ 11What the Document Object Model is not
........... 11Where the Document Object Model came from
............... 12Entities and the DOM Core
.................. 12Conformance
............ 13DOM Interfaces and DOM Implementations

............... 151. Document Object Model Core

............ 151.1. Overview of the DOM Core Interfaces

............. 151.1.1. The DOM Structure Model

.............. 161.1.2. Memory Management

.............. 161.1.3. Naming Conventions

......... 171.1.4. Inheritance vs. Flattened Views of the API

.............. 171.1.5. The DOMString type

............. 181.1.6. The DOMTimeStamp type

............. 181.1.7. The DOMUserData type

.............. 191.1.8. The DOMObject type

............ 191.1.9. String comparisons in the DOM

.............. 191.1.10. XML Namespaces

............ 211.1.11. Mixed DOM implementations

................ 221.1.12. Bootstrapping

............... 221.2. Fundamental Interfaces

................ 911.3. Extended Interfaces

................. 99Appendix A: Changes

...... 99A.1. Changes between DOM Level 2 Core and DOM Level 3 Core

...... 99A.2. Changes between DOM Level 1 Core and DOM Level 2 Core

...... 99A.2.1. Changes to DOM Level 1 Core interfaces and exceptions

................ 100A.2.2. New features

.............. 101Appendix B: Namespaces Algorithms

.............. 101B.1. Namespace normalization

.............. 104B.2. Namespace Prefix Lookup

.............. 106B.3. Default Namespace Lookup

............... 107B.4. Namespace URI Lookup

............ 109Appendix C: Accessing code point boundaries

3

Expanded Table of Contents

.................. 109C.1. Introduction

.................. 109C.2. Methods

................ 111Appendix D: IDL Definitions

.............. 121Appendix E: Java Language Binding

............... 121E.1. Java Binding Extension

................ 123E.2. Other Core interfaces

............ 135Appendix F: ECMAScript Language Binding

............. 135F.1. ECMAScript Binding Extension

................ 135F.2. Other Core interfaces

............... 149Appendix G: Acknowledgements

................ 149G.1. Production Systems

.................... 151Glossary

.................... 155References

................ 1551. Normative references

................ 1562. Informative references

..................... 159Index

4

Expanded Table of Contents

Copyright Notice
Copyright © 2002 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/IPR-FAQ.html
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

What is the Document Object Model?
Editors:

Philippe Le Hégaret, W3C
Lauren Wood, SoftQuad Software Inc. (for DOM Level 2)
Jonathan Robie, Texcel (for DOM Level 1)

Introduction
The Document Object Model (DOM) is an application programming interface (API [p.151]) for valid
HTML [p.152] and well-formed XML [p.154] documents. It defines the logical structure of documents and
the way a document is accessed and manipulated. In the DOM specification, the term "document" is used
in the broad sense - increasingly, XML is being used as a way of representing many different kinds of
information that may be stored in diverse systems, and much of this would traditionally be seen as data
rather than as documents. Nevertheless, XML presents this data as documents, and the DOM may be used
to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces [p.152] for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications [p.151] . The
DOM is designed to be used with any programming language. In order to provide a precise,
language-independent specification of the DOM interfaces, we have chosen to define the specifications in
Object Management Group (OMG) IDL [OMG IDL], as defined in the CORBA 2.3.1 specification
[CORBA]. In addition to the OMG IDL specification, we provide language bindings [p.152] for Java
[Java] and ECMAScript [ECMAScript] (an industry-standard scripting language based on JavaScript
[JavaScript] and JScript [JScript]).

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces [p.152] . Various other IDLs could have been used ([COM], [Java IDL], [MIDL], ...). In
general, IDLs are designed for specific computing environments. The Document Object Model can be
implemented in any computing environment, and does not require the object binding runtimes generally
associated with such IDLs.

What the Document Object Model is
The DOM is a programming API [p.151] for documents. It is based on an object structure that closely
resembles the structure of the documents it models [p.153] . For instance, consider this table, taken from
an HTML document:

9

What is the Document Object Model?

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>
 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

A graphical representation of the DOM of the example table is:

graphical representation of the DOM of the example table

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, which
is like a "forest" or "grove", which can contain more than one tree. Each document contains zero or one
doctype nodes, one document element node, and zero or more comments or processing instructions; the
document element serves as the root of the element tree for the document. However, the DOM does not
specify that documents must be implemented as a tree or a grove, nor does it specify how the relationships
among objects be implemented. The DOM is a logical model that may be implemented in any convenient
manner. In this specification, we use the term structure model to describe the tree-like representation of a
document. We also use the term "tree" when referring to the arrangement of those information items
which can be reached by using "tree-walking" methods; (this does not include attributes). One important
property of DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the same
structure model, in accordance with the XML Information Set [XML Information set].

Note: There may be some variations depending on the parser being used to build the DOM. For instance,
the DOM may not contain white spaces in element content if the parser discards them.

10

What the Document Object Model is

The name "Document Object Model" was chosen because it is an "object model [p.153] " in the traditional
object oriented design sense: documents are modeled using objects, and the model encompasses not only
the structure of a document, but also the behavior of a document and the objects of which it is composed.
In other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model [p.151] ,
not by an object model. In an abstract data model [p.151] , the model is centered around the data. In object
oriented programming languages, the data itself is encapsulated in objects that hide the data, protecting it
from direct external manipulation. The functions associated with these objects determine how the objects
may be manipulated, and they are part of the object model.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

The Document Object Model is not a binary specification. DOM programs written in the same
language binding will be source code compatible across platforms, but the DOM does not define any
form of binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.
The Document Object Model is not a set of data structures; it is an object model [p.153] that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the XML Information Set
[XML Information set]. The DOM is simply an API [p.151] to this information set.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
[COM]. COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

11

What the Document Object Model is not

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and
document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or in the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of Document Object Model Core [p.15] .

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations [p.152] should be
aware of the fact that serialization into a character encoding ("charset") that does not fully cover ISO
10646 may fail if there are characters in markup or CDATA sections that are not present in the encoding.

Conformance
This section explains the different levels of conformance to DOM Level 3. DOM Level 3 consists of ?
modules. It is possible to conform to DOM Level 3, or to a DOM Level 3 module.

An implementation is DOM Level 3 conformant if it supports the Core module defined in this document
(see Fundamental Interfaces [p.22]). An implementation conforms to a DOM Level 3 module if it
supports all the interfaces for that module and the associated semantics.

Here is the complete list of DOM Level 3.0 modules and the features used by them. Feature names are
case-insensitive.

12

Where the Document Object Model came from

Core module
defines the feature "Core" [p.22] .

XML module
Defines the feature "XML" [p.91] .

Events module
defines the feature "Events" in [DOM Level 3 Events].

User interface Events module
defines the feature "UIEvents" in [DOM Level 3 Events].

Mouse Events module
defines the feature "MouseEvents" in [DOM Level 3 Events].

Text Events module
defines the feature "TextEvents" in [DOM Level 3 Events].

Mutation Events module
defines the feature "MutationEvents" in [DOM Level 3 Events].

HTML Events module
defines the feature "HTMLEvents" in [DOM Level 3 Events].

Load and Save module
defines the feature "LS" in [DOM Level 3 Abstract Schemas and Load and Save].

Abstract Schemas Editing module
defines the feature "AS-EDIT" in [DOM Level 3 Abstract Schemas and Load and Save].

XPath module
defines the feature "XPath" in [DOM Level 3 XPath].

A DOM implementation must not return true to the hasFeature(feature, version) method
[p.153] of the DOMImplementation [p.25] interface for that feature unless the implementation
conforms to that module. The version number for all features used in DOM Level 3.0 is "3.0".

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
Read-only attributes have only a get() function in the language bindings.

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM conformant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM cannot know
what constructors to call for an implementation. In general, DOM users call the createX() methods on
the Document class to create document structures, and DOM implementations create their own

13

DOM Interfaces and DOM Implementations

http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-ASLS/load-save.html
http://www.w3.org/TR/DOM-Level-3-ASLS/abstract-schemas.html
http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

internal representations of these structures in their implementations of the createX() functions.

The Level 2 interfaces were extended to provide both Level 2 and Level 3 functionality.

DOM implementations in languages other than Java or ECMAScript may choose bindings that are
appropriate and natural for their language and run time environment. For example, some systems may
need to create a Document3 class which inherits from a Document class and contains the new methods
and attributes.

DOM Level 3 does not specify multithreading mechanisms.

14

DOM Interfaces and DOM Implementations

1. Document Object Model Core
Editors:

Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C
Gavin Nicol, Inso EPS (for DOM Level 1)
Lauren Wood, SoftQuad, Inc. (for DOM Level 1)
Mike Champion, ArborText and Software AG (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

1.1. Overview of the DOM Core Interfaces
This section defines a set of objects and interfaces for accessing and manipulating document objects. The
functionality specified in this section (the Core functionality) is sufficient to allow software developers
and web script authors to access and manipulate parsed HTML and XML content inside conforming
products. The DOM Core API [p.151] also allows creation and population of a Document [p.29] object
using only DOM API calls; loading a Document and saving it persistently is left to the product that
implements the DOM API.

1.1.1. The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.49] objects that also implement other, more
specialized interfaces. Some types of nodes may have child [p.151] nodes of various types, and others are
leaf nodes that cannot have anything below them in the document structure. For XML and HTML, the
node types, and which node types they may have as children, are as follows:

Document [p.29] -- Element [p.78] (maximum of one), ProcessingInstruction [p.96] ,
Comment [p.88] , DocumentType [p.92] (maximum of one)
DocumentFragment [p.29] -- Element [p.78] , ProcessingInstruction [p.96] ,
Comment [p.88] , Text [p.86] , CDATASection [p.92] , EntityReference [p.96]
DocumentType [p.92] -- no children
EntityReference [p.96] -- Element [p.78] , ProcessingInstruction [p.96] , Comment
[p.88] , Text [p.86] , CDATASection [p.92] , EntityReference
Element [p.78] -- Element, Text [p.86] , Comment [p.88] , ProcessingInstruction
[p.96] , CDATASection [p.92] , EntityReference [p.96]
Attr [p.76] -- Text [p.86] , EntityReference [p.96]
ProcessingInstruction [p.96] -- no children
Comment [p.88] -- no children
Text [p.86] -- no children
CDATASection [p.92] -- no children
Entity [p.94] -- Element [p.78] , ProcessingInstruction [p.96] , Comment [p.88] ,
Text [p.86] , CDATASection [p.92] , EntityReference [p.96]
Notation [p.94] -- no children

15

1. Document Object Model Core

The DOM also specifies a NodeList [p.67] interface to handle ordered lists of Nodes [p.49] , such as
the children of a Node [p.49] , or the elements [p.152] returned by the getElementsByTagName
method of the Element [p.78] interface, and also a NamedNodeMap [p.68] interface to handle
unordered sets of nodes referenced by their name attribute, such as the attributes of an Element.
NodeList [p.67] and NamedNodeMap [p.68] objects in the DOM are live; that is, changes to the
underlying document structure are reflected in all relevant NodeList and NamedNodeMap objects. For
example, if a DOM user gets a NodeList object containing the children of an Element [p.78] , then
subsequently adds more children to that element [p.152] (or removes children, or modifies them), those
changes are automatically reflected in the NodeList, without further action on the user’s part. Likewise,
changes to a Node [p.49] in the tree are reflected in all references to that Node in NodeList and
NamedNodeMap objects.

Finally, the interfaces Text [p.86] , Comment [p.88] , and CDATASection [p.92] all inherit from the
CharacterData [p.72] interface.

1.1.2. Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and specified operation, not implement
classes that correspond directly to the interfaces. This allows the DOM APIs to be implemented as a thin
veneer on top of legacy applications with their own data structures, or on top of newer applications with
different class hierarchies. This also means that ordinary constructors (in the Java or C++ sense) cannot be
used to create DOM objects, since the underlying objects to be constructed may have little relationship to
the DOM interfaces. The conventional solution to this in object-oriented design is to define factory
methods that create instances of objects that implement the various interfaces. Objects implementing some
interface "X" are created by a "createX()" method on the Document [p.29] interface; this is because all
DOM objects live in the context of a specific Document.

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language bindings that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings defined by the DOM API (for ECMAScript [p.152] and Java) require any memory management
methods, but DOM bindings for other languages (especially C or C++) may require such support. These
extensions will be the responsibility of those adapting the DOM API to a specific language, not the DOM
Working Group.

16

1.1.2. Memory Management

1.1.3. Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL and ECMAScript have
significant limitations in their ability to disambiguate names from different namespaces that make it
difficult to avoid naming conflicts with short, familiar names. So, DOM names tend to be long and
descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, the DOM API uses the method name
"remove" when the method changes the structural model, and the method name "delete" when the method
gets rid of something inside the structure model. The thing that is deleted is not returned. The thing that is
removed may be returned, when it makes sense to return it.

1.1.4. Inheritance vs. Flattened Views of the API

The DOM Core APIs [p.151] present two somewhat different sets of interfaces to an XML/HTML
document: one presenting an "object oriented" approach with a hierarchy of inheritance [p.152] , and a
"simplified" view that allows all manipulation to be done via the Node [p.49] interface without requiring
casts (in Java and other C-like languages) or query interface calls in COM [p.151] environments. These
operations are fairly expensive in Java and COM, and the DOM may be used in performance-critical
environments, so we allow significant functionality using just the Node interface. Because many other
users will find the inheritance [p.152] hierarchy easier to understand than the "everything is a Node"
approach to the DOM, we also support the full higher-level interfaces for those who prefer a more
object-oriented API [p.151] .

In practice, this means that there is a certain amount of redundancy in the API [p.151] . The Working
Group considers the "inheritance [p.152] " approach the primary view of the API, and the full set of
functionality on Node [p.49] to be "extra" functionality that users may employ, but that does not eliminate
the need for methods on other interfaces that an object-oriented analysis would dictate. (Of course, when
the O-O analysis yields an attribute or method that is identical to one on the Node interface, we don’t
specify a completely redundant one.) Thus, even though there is a generic nodeName attribute on the
Node interface, there is still a tagName attribute on the Element [p.78] interface; these two attributes
must contain the same value, but the it is worthwhile to support both, given the different constituencies the
DOM API [p.151] must satisfy.

1.1.5. The DOMString type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMString

A DOMString [p.17] is a sequence of 16-bit units [p.151] .

17

1.1.3. Naming Conventions

IDL Definition

valuetype DOMString sequence<unsigned short>;

Applications must encode DOMString [p.17] using UTF-16 (defined in [Unicode 2.0] and Amendment 1
of [ISO/IEC 10646]).

The UTF-16 encoding was chosen because of its widespread industry practice. Note that for both HTML
and XML, the document character set (and therefore the notation of numeric character references) is based
on UCS [ISO/IEC 10646]. A single numeric character reference in a source document may therefore in
some cases correspond to two 16-bit units in a DOMString [p.17] (a high surrogate and a low surrogate).

Note: Even though the DOM defines the name of the string type to be DOMString [p.17] , bindings may
use different names. For example for Java, DOMString is bound to the String type because it also
uses UTF-16 as its encoding.

Note: As of August 2000, the OMG IDL specification ([OMG IDL]) included a wstring type.
However, that definition did not meet the interoperability criteria of the DOM API [p.151] since it relied
on negotiation to decide the width and encoding of a character.

1.1.6. The DOMTimeStamp type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMTimeStamp

A DOMTimeStamp [p.18] represents a number of milliseconds.

IDL Definition

typedef unsigned long long DOMTimeStamp;

Note: Even though the DOM uses the type DOMTimeStamp [p.18] , bindings may use different types.
For example for Java, DOMTimeStamp is bound to the long type. In ECMAScript, TimeStamp is
bound to the Date type because the range of the integer type is too small.

1.1.7. The DOMUserData type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMUserData

A DOMUserData [p.18] represents a reference to an application object.

IDL Definition

typedef Object DOMUserData;

18

1.1.6. The DOMTimeStamp type

Note: Even though the DOM uses the type DOMUserData [p.18] , bindings may use different types. For
example, in Java DOMUserData is bound to the Object type, while in ECMAScript DOMUserData is
bound to any type.

Issue DOMKeyObject-1:
What does DOMUserData map to in ECMAScript?
Resolution: "any type"

1.1.8. The DOMObject type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMObject

A DOMObject [p.19] represents a reference to an application object.

IDL Definition

typedef Object DOMObject;

Note: Even though the DOM uses the type DOMObject [p.19] , bindings may use different types. For
example, in Java and ECMAScript DOMObject is bound to the Object type.

1.1.9. String comparisons in the DOM

The DOM has many interfaces that imply string matching. HTML processors generally assume an
uppercase (less often, lowercase) normalization of names for such things as elements [p.152] , while XML
is explicitly case sensitive. For the purposes of the DOM, string matching is performed purely by binary
comparison [p.153] of the 16-bit units [p.151] of the DOMString [p.17] . In addition, the DOM assumes
that any case normalizations take place in the processor, before the DOM structures are built.

The W3C Text normalization, as defined in [CharModel], is assumed to happen at serialization time. The
DOM Level 3 Load and Save module [DOM Level 3 Abstract Schemas and Load and Save] provides a
serialization mechanism (see the DOMWriter interface, section 2.3.1) and defines the
"ls-normalize-characters" to assure that text is serialized in the W3C Text Normalization form.
Other serialization mechanisms built on top of the DOM Level 3 Core also have to assure that text is
serialized in the W3C Text Normalization form.

(ED: We need to review the case sensitivity of methods and attributes and how it fits with XML and
HTML. Current wording is not clear at all ...)

1.1.10. XML Namespaces

The DOM Level 2 (and higher) supports XML namespaces [XML Namespaces] by augmenting several
interfaces of the DOM Level 1 Core to allow creating and manipulating elements [p.152] and attributes
associated to a namespace.

19

1.1.8. The DOMObject type

As far as the DOM is concerned, special attributes used for declaring XML namespaces [p.154] are still
exposed and can be manipulated just like any other attribute. However, nodes are permanently bound to
namespace URIs [p.153] as they get created. Consequently, moving a node within a document, using the
DOM, in no case results in a change of its namespace prefix [p.153] or namespace URI. Similarly,
creating a node with a namespace prefix and namespace URI, or changing the namespace prefix of a node,
does not result in any addition, removal, or modification of any special attributes for declaring the
appropriate XML namespaces. Namespace validation is not enforced; the DOM application is responsible.
In particular, since the mapping between prefixes and namespace URIs is not enforced, in general, the
resulting document cannot be serialized naively. For example, applications may have to declare every
namespace in use when serializing a document.

In general, the DOM implementation (and higher) doesn’t perform any URI normalization or
canonicalization. The URIs given to the DOM are assumed to be valid (e.g., characters such as white
spaces are properly escaped), and no lexical checking is performed. Absolute URI references are treated
as strings and compared literally [p.153] . How relative namespace URI references are treated is
undefined. To ensure interoperability only absolute namespace URI references (i.e., URI references
beginning with a scheme name and a colon) should be used. Applications that wish to have no namespace
should use the value null as the namespaceURI parameter of methods. If they pass an empty string the
DOM implementation turns it into a null.

Note: In the DOM, all namespace declaration attributes are by definition bound to the namespace URI:
"http://www.w3.org/2000/xmlns/". These are the attributes whose namespace prefix [p.153] or qualified
name [p.153] is "xmlns". Although, at the time of writing, this is not part of the XML Namespaces
specification [XML Namespaces], it is planned to be incorporated in a future revision.

In a document with no namespaces, the child [p.151] list of an EntityReference [p.96] node is
always the same as that of the corresponding Entity [p.94] . This is not true in a document where an
entity contains unbound namespace prefixes [p.153] . In such a case, the descendants [p.151] of the
corresponding EntityReference nodes may be bound to different namespace URIs [p.153] ,
depending on where the entity references are. Also, because, in the DOM, nodes always remain bound to
the same namespace URI, moving such EntityReference nodes can lead to documents that cannot be
serialized. This is also true when the DOM Level 1 method createEntityReference of the
Document [p.29] interface is used to create entity references that correspond to such entities, since the
descendants [p.151] of the returned EntityReference are unbound. The DOM Level 2 does not
support any mechanism to resolve namespace prefixes. For all of these reasons, use of such entities and
entity references should be avoided or used with extreme care. A future Level of the DOM may include
some additional support for handling these.

The new methods, such as createElementNS and createAttributeNS of the Document [p.29]
interface, are meant to be used by namespace aware applications. Simple applications that do not use
namespaces can use the DOM Level 1 methods, such as createElement and createAttribute.
Elements and attributes created in this way do not have any namespace prefix, namespace URI, or local
name.

Note: Given that the property [in-scope namespaces] defined in [XML Information set] is not accessible
from DOM Level 3 Core, the properties [prefix] and [namespace name] defined by the Namespace
Information Item in [XML Information set] are not accessible from DOM Level 3 Core. However, [DOM

20

1.1.10. XML Namespaces

http://www.w3.org/2000/xmlns/

Level 3 XPath] does provide a way to access them.

Note: DOM Level 1 methods are namespace ignorant. Therefore, while it is safe to use these methods
when not dealing with namespaces, using them and the new ones at the same time should be avoided.
DOM Level 1 methods solely identify attribute nodes by their nodeName. On the contrary, the DOM
Level 2 methods related to namespaces, identify attribute nodes by their namespaceURI and
localName. Because of this fundamental difference, mixing both sets of methods can lead to
unpredictable results. In particular, using setAttributeNS, an element [p.152] may have two
attributes (or more) that have the same nodeName, but different namespaceURIs. Calling
getAttribute with that nodeName could then return any of those attributes. The result depends on
the implementation. Similarly, using setAttributeNode, one can set two attributes (or more) that
have different nodeNames but the same prefix and namespaceURI. In this case
getAttributeNodeNS will return either attribute, in an implementation dependent manner. The only
guarantee in such cases is that all methods that access a named item by its nodeName will access the
same item, and all methods which access a node by its URI and local name will access the same node. For
instance, setAttribute and setAttributeNS affect the node that getAttribute and
getAttributeNS, respectively, return.

1.1.11. Mixed DOM implementations

As new XML vocabularies are developed, those defining the vocabularies are also beginning to define
specialized APIs for manipulating XML instances of those vocabularies. This is usually done by
extending the DOM to provide interfaces and methods that perform operations frequently needed their
users. For example, the MathML [MathML 2.0] and SVG [SVG 1.0] specifications are developing DOM
extensions to allow users to manipulate instances of these vocabularies using semantics appropriate to
images and mathematics (respectively) as well as the generic DOM XML semantics. Instances of SVG or
MathML are often embedded in XML documents conforming to a different schema such as XHTML.

While the XML Namespaces Recommendation provides a mechanism for integrating these documents at
the syntax level, it has become clear that the DOM Level 2 Recommendation [DOM Level 2 Core] is not
rich enough to cover all the issues that have been encountered in having these different DOM
implementations be used together in a single application. DOM Level 3 deals with the requirements
brought about by embedding fragments written according to a specific markup language (the embedded
component) in a document where the rest of the markup is not written according to that specific markup
language (the host document). It does not deal with fragments embedded by reference or linking.

A DOM implementation supporting DOM Level 3 Core should be able to collaborate with subcomponents
implementing specific DOMs to assemble a compound document that can be traversed and manipulated
via DOM interfaces as if it were a seamless whole.

The normal typecast operation on an object should support the interfaces expected by legacy code for a
given document type. Typecasting techniques may not be adequate for selecting between multiple DOM
specializations of an object which were combined at run time, because they may not all be part of the
same object as defined by the binding’s object model. Conflicts are most obvious with the Document
[p.29] object, since it is shared as owner by the rest of the document. In a homogeneous document,
elements rely on the Document for specialized services and construction of specialized nodes. In a
heterogeneous document, elements from different modules expect different services and APIs from the

21

1.1.11. Mixed DOM implementations

same Document object, since there can only be one owner and root of the document hierarchy.

1.1.12. Bootstrapping

Because previous versions of the DOM specification only defined a set of interfaces, applications had to
rely on some implementation dependent code to start from. However, hard-coding the application to a
specific implementation prevents the application from running on other implementations and from using
the most-suitable implementation of the environment. At the same time, implementations may also need to
load modules or perform other setup to efficiently adapt to different and sometimes mutually-exclusive
feature sets.

To solve these problems this specification introduces a DOMImplementationRegistry object with a
function that lets an application find an implementation, based on the specific features it requires. How
this object is found and what it exactly looks like is not defined here, because this cannot be done in a
language-independent manner. Instead, each language binding defines its own way of doing this. See Java
Language Binding [p.121] and ECMAScript Language Binding [p.135] for specifics.

In all cases, though, the DOMImplementationRegistry provides a getDOMImplementation
method accepting a features string, which is passed to every known DOMImplementationSource
[p.24] until a suitable DOMImplementation [p.25] is found and returned. This method is the same as
the one found on the DOMImplementationSource interface defined below.

Any number of DOMImplementationSource [p.24] objects can be registered. A source may return
one or more DOMImplementation [p.25] singletons or construct new DOMImplementation
objects, depending upon whether the requested features require specialized state in the
DOMImplementation object.

Issue Level-3-Bootstrap-1:
Is this not generic enough?
Resolution: Yes. (F2F 31 Jul 2001)

Issue Level-3-Bootstrap-2:
Should the method getDOMImplementation be called byFeature instead?
Resolution: No. (F2F 31 Jul 2001)

1.2. Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations [DOM Level 2
HTML], unless otherwise specified.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation [p.25] interface with parameter values "Core" and "3.0" (respectively) to
determine whether or not this module is supported by the implementation. Any implementation that
conforms to DOM Level 3 or a DOM Level 3 module must conform to the Core module. Please refer to
additional information about conformance in this specification. The DOM Level 3 Core module is
backward compatible with the DOM Level 2 Core [DOM Level 2 Core] module, i.e. a DOM Level 3 Core
implementation who returns true for "Core" with the version number "3.0" must also return true

22

1.2. Fundamental Interfaces

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020114/introduction.html#ID-Conformance

for this feature when the version number is "2.0", "" or, null.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situations, such as out-of-bound errors when using NodeList [p.67] .

Implementations should raise other exceptions under other circumstances. For example,
implementations should raise an implementation-dependent exception if a null argument is passed
when null was not expected.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.

IDL Definition

exception DOMException {
 unsigned short code;
};
// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;
// Introduced in DOM Level 2:
const unsigned short INVALID_STATE_ERR = 11;
// Introduced in DOM Level 2:
const unsigned short SYNTAX_ERR = 12;
// Introduced in DOM Level 2:
const unsigned short INVALID_MODIFICATION_ERR = 13;
// Introduced in DOM Level 2:
const unsigned short NAMESPACE_ERR = 14;
// Introduced in DOM Level 2:
const unsigned short INVALID_ACCESS_ERR = 15;
// Introduced in DOM Level 3:
const unsigned short VALIDATION_ERR = 16;

Definition group ExceptionCode

An integer indicating the type of error generated.

23

1.2. Fundamental Interfaces

Note: Other numeric codes are reserved for W3C for possible future use.

Defined Constants
DOMSTRING_SIZE_ERR

If the specified range of text does not fit into a DOMString
HIERARCHY_REQUEST_ERR

If any node is inserted somewhere it doesn’t belong
INDEX_SIZE_ERR

If index or size is negative, or greater than the allowed value
INUSE_ATTRIBUTE_ERR

If an attempt is made to add an attribute that is already in use elsewhere
INVALID_ACCESS_ERR, introduced in DOM Level 2.

If a parameter or an operation is not supported by the underlying object.
INVALID_CHARACTER_ERR

If an invalid or illegal character is specified, such as in a name. See production 2 in
the XML specification for the definition of a legal character, and production 5 for the
definition of a legal name character.

INVALID_MODIFICATION_ERR, introduced in DOM Level 2.
If an attempt is made to modify the type of the underlying object.

INVALID_STATE_ERR, introduced in DOM Level 2.
If an attempt is made to use an object that is not, or is no longer, usable.

NAMESPACE_ERR, introduced in DOM Level 2.
If an attempt is made to create or change an object in a way which is incorrect with
regard to namespaces.

NOT_FOUND_ERR
If an attempt is made to reference a node in a context where it does not exist

NOT_SUPPORTED_ERR
If the implementation does not support the requested type of object or operation.

NO_DATA_ALLOWED_ERR
If data is specified for a node which does not support data

NO_MODIFICATION_ALLOWED_ERR
If an attempt is made to modify an object where modifications are not allowed

SYNTAX_ERR, introduced in DOM Level 2.
If an invalid or illegal string is specified.

VALIDATION_ERR, introduced in DOM Level 3.
If a call to a method such as insertBefore or removeChild would make the
Node [p.49] invalid with respect to "partial validity" [p.153] , this exception would
be raised and the operation would not be done. This code is used in [DOM Level 3
Abstract Schemas and Load and Save]. Refer to this specification for further
information.

WRONG_DOCUMENT_ERR
If a node is used in a different document than the one that created it (that doesn’t
support it)

Interface DOMImplementationSource

24

1.2. Fundamental Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#NT-Char
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name

This interface permits a DOM implementer to supply one or more implementations, based upon
requested features. Each implemented DOMImplementationSource object is listed in the
binding-specific list of available sources so that its DOMImplementation [p.25] objects are made
available.

IDL Definition

interface DOMImplementationSource {
 DOMImplementation getDOMImplementation(in DOMString features);
};

Methods
getDOMImplementation

A method to request a DOM implementation.
Parameters
features of type DOMString [p.17]

A string that specifies which features are required. This is a space separated list in
which each feature is specified by its name optionally followed by a space and a
version number. This is something like: "XML 1.0 Traversal Events 2.0"

Return Value

DOMImplementation
[p.25]

An implementation that has the desired features, or
null if this source has none.

No Exceptions
Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.

IDL Definition

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 // Introduced in DOM Level 3:
 DOMImplementation getInterface(in DOMString feature);
};

25

1.2. Fundamental Interfaces

Methods
createDocument introduced in DOM Level 2

Creates a DOM Document object of the specified type with its document element.
Note that based on the DocumentType [p.92] given to create the document, the
implementation may instantiate specialized Document [p.29] objects that support
additional features than the "Core", such as "HTML" [DOM Level 2 HTML]. On the other
hand, setting the DocumentType after the document was created makes this very
unlikely to happen. Alternatively, specialized Document creation methods, such as
createHTMLDocument [DOM Level 2 HTML], can be used to obtain specific types of
Document objects.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the document element to create or null.
qualifiedName of type DOMString

The qualified name [p.153] of the document element to be created or null.
doctype of type DocumentType [p.92]

The type of document to be created or null.
When doctype is not null, its Node.ownerDocument [p.56] attribute is set to
the document being created.

Return Value

Document
[p.29]

A new Document object with its document element. If the
NamespaceURI, qualifiedName, and doctype are null, the
returned Document is empty with no document element.

Exceptions

26

1.2. Fundamental Interfaces

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, or if the qualifiedName is null
and the namespaceURI is different from null, or if the
qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML
Namespaces], or if the DOM implementation does not support the
"XML" feature but a non-null namespace URI was provided,
since namespaces were defined by XML.

WRONG_DOCUMENT_ERR: Raised if doctype has already
been used with a different document or was created from a
different implementation.

NOT_SUPPORTED_ERR: May be raised by DOM
implementations which do not support the "XML" feature, if they
choose not to support this method.

Note: Other features introduced in the future, by the DOM WG or
in extensions defined by other groups, may also demand support
for this method; please consult the definition of the feature to see
if it requires this method.

createDocumentType introduced in DOM Level 2
Creates an empty DocumentType [p.92] node. Entity declarations and notations are not
made available. Entity reference expansions and default attribute additions do not occur. It
is expected that a future version of the DOM will provide a way for populating a
DocumentType.
Parameters
qualifiedName of type DOMString [p.17]

The qualified name [p.153] of the document type to be created.
publicId of type DOMString

The external subset public identifier.
systemId of type DOMString

The external subset system identifier.
Return Value

DocumentType
[p.92]

A new DocumentType node with
Node.ownerDocument [p.56] set to null.

Exceptions

27

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed.

NOT_SUPPORTED_ERR: May be raised by DOM
implementations which do not support the "XML" feature, if
they choose not to support this method.

Note: Other features introduced in the future, by the DOM WG
or in extensions defined by other groups, may also demand
support for this method; please consult the definition of the
feature to see if it requires this method.

getInterface introduced in DOM Level 3
This method makes available a DOMImplementation’s specialized interface (see Mixed
DOM implementations [p.21]).
Parameters
feature of type DOMString [p.17]

The name of the feature requested (case-insensitive).
Return Value

DOMImplementation
[p.25]

Returns an alternate DOMImplementation which
implements the specialized APIs of the specified feature,
if any, or null if there is no alternate
DOMImplementation object which implements
interfaces associated with that feature. Any alternate
DOMImplementation returned by this method must
delegate to the primary core DOMImplementation and
not return results inconsistent with the primary
DOMImplementation

No Exceptions
hasFeature

Test if the DOM implementation implements a specific feature.
Parameters
feature of type DOMString [p.17]

The name of the feature to test (case-insensitive). The values used by DOM features
are defined throughout the DOM Level 3 specifications and listed in the Conformance
[p.12] section. The name must be an XML name [p.154] . To avoid possible conflicts,
as a convention, names referring to features defined outside the DOM specification
should be made unique.

version of type DOMString
This is the version number of the feature to test. In Level 3, the string can be either
"3.0", "2.0" or "1.0". If the version is null or empty string, supporting any version of

28

1.2. Fundamental Interfaces

the feature causes the method to return true.
Return Value

boolean true if the feature is implemented in the specified version, false
otherwise.

No Exceptions
Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.29] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document object could fulfill this role,
a Document object can potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very lightweight object. DocumentFragment
is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.49] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents [p.154] (although they do need to follow the rules imposed upon
well-formed XML parsed entities, which can have multiple top nodes). For example, a
DocumentFragment might have only one child and that child node could be a Text [p.86] node.
Such a structure model represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.29] (or indeed any other Node
[p.49] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node. This makes the DocumentFragment
very useful when the user wishes to create nodes that are siblings [p.153] ; the
DocumentFragment acts as the parent of these nodes so that the user can use the standard
methods from the Node interface, such as insertBefore and appendChild.

Note: The properties [notations] and [unparsed entities] defined by the Document Information Item
in [XML Information set] are accessible through the DocumentType [p.92] interface. The property
[all declarations processed] is not accessible through the DOM API.

IDL Definition

interface DocumentFragment : Node {
};

Interface Document

29

1.2. Fundamental Interfaces

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
[p.153] of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document, the Document interface also contains the factory methods needed to create these
objects. The Node [p.49] objects created have a ownerDocument attribute which associates them
with the Document within whose context they were created.

IDL Definition

interface Document : Node {
 // Modified in DOM Level 3:
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 // Introduced in DOM Level 3:
 attribute DOMString actualEncoding;
 // Introduced in DOM Level 3:
 attribute DOMString encoding;
 // Introduced in DOM Level 3:
 attribute boolean standalone;
 // Introduced in DOM Level 3:
 attribute DOMString version;

30

1.2. Fundamental Interfaces

 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute boolean strictErrorChecking;
 // Introduced in DOM Level 3:
 attribute DOMErrorHandler errorHandler;
 // Introduced in DOM Level 3:
 attribute DOMString documentURI;
 // Introduced in DOM Level 3:
 Node adoptNode(in Node source)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void normalizeDocument();
 // Introduced in DOM Level 3:
 boolean canSetNormalizationFeature(in DOMString name,
 in boolean state);
 // Introduced in DOM Level 3:
 void setNormalizationFeature(in DOMString name,
 in boolean state)
 raises(DOMException);
 // Introduced in DOM Level 3:
 boolean getNormalizationFeature(in DOMString name)
 raises(DOMException);
 // Introduced in DOM Level 3:
 Node renameNode(in Node n,
 in DOMString namespaceURI,
 in DOMString name)
 raises(DOMException);
};

Attributes
actualEncoding of type DOMString [p.17] , introduced in DOM Level 3

An attribute specifying the actual encoding of this document. This is null otherwise.
This attribute represents the property [character encoding scheme] defined in [XML
Information set].

doctype of type DocumentType [p.92] , readonly, modified in DOM Level 3
The Document Type Declaration (see DocumentType [p.92]) associated with this
document. For HTML documents as well as XML documents without a document type
declaration this returns null.
This provides direct access to the DocumentType [p.92] node, child node of this
Document. This node can be set at document creation time and later changed through the
use of child nodes manipulation methods, such as insertBefore, or replaceChild.
Note, however, that while some implementations may instantiate different types of
Document objects supporting additional features than the "Core", such as "HTML"
[DOM Level 2 HTML], based on the DocumentType specified at creation time,
changing it afterwards is very unlikely to result in a change of the features supported.

documentElement of type Element [p.78] , readonly
This is a convenience [p.151] attribute that allows direct access to the child node that is the
document element [p.151] of the document.
This attribute represents the property [document element] defined in [XML Information
set].

31

1.2. Fundamental Interfaces

documentURI of type DOMString [p.17] , introduced in DOM Level 3
The location of the document or null if undefined.
Beware that when the Document supports the feature "HTML" [DOM Level 2 HTML],
the href attribute of the HTML BASE element takes precedence over this attribute.

encoding of type DOMString [p.17] , introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, the encoding of this document.
This is null when unspecified.

errorHandler of type DOMErrorHandler [p.90] , introduced in DOM Level 3
This attribute allows applications to specify a DOMErrorHandler [p.90] to be called in
the event that an error is encountered while performing an operation on a document. Note
that not all methods use this mechanism, see the description of each method for details.

implementation of type DOMImplementation [p.25] , readonly
The DOMImplementation [p.25] object that handles this document. A DOM
application may use objects from multiple implementations.

standalone of type boolean, introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, whether this document is
standalone.
This attribute represents the property [standalone] defined in [XML Information set].

strictErrorChecking of type boolean, introduced in DOM Level 3
An attribute specifying whether errors checking is enforced or not. When set to false, the
implementation is free to not test every possible error case normally defined on DOM
operations, and not raise any DOMException [p.23] . In case of error, the behavior is
undefined. This attribute is true by defaults.

version of type DOMString [p.17] , introduced in DOM Level 3
An attribute specifying, as part of the XML declaration, the version number of this
document. This is null when unspecified.
This attribute represents the property [version] defined in [XML Information set].
Exceptions on setting

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised if the version is set to a
value that is not supported by this Document.

Methods
adoptNode introduced in DOM Level 3

Changes the ownerDocument of a node, its children, as well as the attached attribute
nodes if there are any. If the node has a parent it is first removed from its parent child list.
This effectively allows moving a subtree from one document to another. The following list
describes the specifics for each type of node.
ATTRIBUTE_NODE

The ownerElement attribute is set to null and the specified flag is set to
true on the adopted Attr [p.76] . The descendants of the source Attr are
recursively adopted.

DOCUMENT_FRAGMENT_NODE
The descendants of the source node are recursively adopted.

32

1.2. Fundamental Interfaces

DOCUMENT_NODE
Document nodes cannot be adopted.

DOCUMENT_TYPE_NODE
DocumentType [p.92] nodes cannot be adopted.

ELEMENT_NODE
Specified attribute nodes of the source element are adopted, and the generated Attr
[p.76] nodes. Default attributes are discarded, though if the document being adopted
into defines default attributes for this element name, those are assigned. The
descendants of the source element are recursively adopted.

ENTITY_NODE
Entity [p.94] nodes cannot be adopted.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.96] node itself is adopted, the descendants are
discarded, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.94] nodes cannot be adopted.

PROCESSING_INSTRUCTION_NODE, TEXT_NODE,
CDATA_SECTION_NODE, COMMENT_NODE

These nodes can all be adopted. No specifics.
Issue adoptNode-1:

Should this method simply return null when it fails? How "exceptional" is failure for
this method?
Resolution: Stick with raising exceptions only in exceptional circumstances, return
null on failure (F2F 19 Jun 2000).

Issue adoptNode-2:
Can an entity node really be adopted?
Resolution: No, neither can Notation nodes (Telcon 13 Dec 2000).

Issue adoptNode-3:
Does this affect keys and hashCode’s of the adopted subtree nodes?
If so, what about readonly-ness of key and hashCode?
if not, would appendChild affect keys/hashCodes or would it generate exceptions if
key’s are duplicate?
Resolution: Both keys and hashcodes have been dropped.

Parameters
source of type Node [p.49]

The node to move into this document.
Return Value

Node
[p.49]

The adopted node, or null if this operation fails, such as when the source
node comes from a different implementation.

Exceptions

33

1.2. Fundamental Interfaces

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised if the source node is of type
DOCUMENT, DOCUMENT_TYPE.

NO_MODIFICATION_ALLOWED_ERR: Raised when the
source node is readonly.

canSetNormalizationFeature introduced in DOM Level 3
Query whether setting a feature to a specific value is supported.
The feature name has the same form as a DOM hasFeature string.
Parameters
name of type DOMString [p.17]

The name of the feature to check.
state of type boolean

The requested state of the feature (true or false).
Return Value

boolean true if the feature could be successfully set to the specified value, or
false if the feature is not recognized or the requested value is not
supported. This does not change the current value of the feature itself.

No Exceptions
createAttribute

Creates an Attr [p.76] of the given name. Note that the Attr instance can then be set on
an Element [p.78] using the setAttributeNode method.
To create an attribute with a qualified name and namespace URI, use the
createAttributeNS method.
Parameters
name of type DOMString [p.17]

The name of the attribute.
Return Value

Attr
[p.76]

A new Attr object with the nodeName attribute set to name, and
localName, prefix, and namespaceURI set to null. The value of
the attribute is the empty string.

Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

createAttributeNS introduced in DOM Level 2
Creates an attribute of the given qualified name and namespace URI.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.

34

1.2. Fundamental Interfaces

Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the attribute to create.
qualifiedName of type DOMString

The qualified name [p.153] of the attribute to instantiate.
Return Value

Attr
[p.76]

A new Attr object with the following attributes:

Attribute Value

Node.nodeName [p.55] qualifiedName

Node.namespaceURI
[p.55]

namespaceURI

Node.prefix [p.56] prefix, extracted from qualifiedName,
or null if there is no prefix

Node.localName [p.55] local name, extracted from
qualifiedName

Attr.name [p.77] qualifiedName

Node.nodeValue [p.55] the empty string

Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character, per the XML 1.0 specification
[XML 1.0].

NAMESPACE_ERR: Raised if the qualifiedName is
malformed per the Namespaces in XML specification, if the
qualifiedName has a prefix and the namespaceURI is
null, if the qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", or if the
qualifiedName, or its prefix, is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/".

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

35

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

createCDATASection
Creates a CDATASection [p.92] node whose value is the specified string.
Parameters
data of type DOMString [p.17]

The data for the CDATASection [p.92] contents.
Return Value

CDATASection [p.92] The new CDATASection object.

Exceptions

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createComment
Creates a Comment [p.88] node given the specified string.
Parameters
data of type DOMString [p.17]

The data for the node.
Return Value

Comment [p.88] The new Comment object.

No Exceptions
createDocumentFragment

Creates an empty DocumentFragment [p.29] object.
Return Value

DocumentFragment [p.29] A new DocumentFragment.

No Parameters
No Exceptions

createElement
Creates an element of the type specified. Note that the instance returned implements the
Element [p.78] interface, so attributes can be specified directly on the returned object.
In addition, if there are known attributes with default values, Attr [p.76] nodes
representing them are automatically created and attached to the element.
To create an element with a qualified name and namespace URI, use the
createElementNS method.
Parameters
tagName of type DOMString [p.17]

The name of the element type to instantiate. For XML, this is case-sensitive, otherwise
it depends on the case-sentivity of the markup language in use. In that case, the name
is mapped to the canonical form of that markup by the DOM implementation.

36

1.2. Fundamental Interfaces

Return Value

Element
[p.78]

A new Element object with the nodeName attribute set to
tagName, and localName, prefix, and namespaceURI set to
null.

Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

createElementNS introduced in DOM Level 2
Creates an element of the given qualified name and namespace URI.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the element to create.
qualifiedName of type DOMString

The qualified name [p.153] of the element type to instantiate.
Return Value

Element
[p.78]

A new Element object with the following attributes:

Attribute Value

Node.nodeName [p.55] qualifiedName

Node.namespaceURI
[p.55]

namespaceURI

Node.prefix [p.56] prefix, extracted from
qualifiedName, or null if there is
no prefix

Node.localName [p.55] local name, extracted from
qualifiedName

Element.tagName
[p.79]

qualifiedName

Exceptions

37

1.2. Fundamental Interfaces

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character, per the XML 1.0 specification
[XML 1.0].

NAMESPACE_ERR: Raised if the qualifiedName is
malformed per the Namespaces in XML specification, if the
qualifiedName has a prefix and the namespaceURI is
null, or if the qualifiedName has a prefix that is "xml" and
the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML
Namespaces].

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

createEntityReference
Creates an EntityReference [p.96] object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that of the
corresponding Entity [p.94] node.

Note: If any descendant of the Entity [p.94] node has an unbound namespace prefix
[p.153] , the corresponding descendant of the created EntityReference [p.96] node is
also unbound; (its namespaceURI is null). The DOM Level 2 does not support any
mechanism to resolve namespace prefixes.

Parameters
name of type DOMString [p.17]

The name of the entity to reference.
Return Value

EntityReference [p.96] The new EntityReference object.

Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createProcessingInstruction
Creates a ProcessingInstruction [p.96] node given the specified name and data
strings.
Parameters

38

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace

target of type DOMString [p.17]
The target part of the processing instruction.

data of type DOMString
The data for the node.

Return Value

ProcessingInstruction
[p.96]

The new ProcessingInstruction
object.

Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified target
contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createTextNode
Creates a Text [p.86] node given the specified string.
Parameters
data of type DOMString [p.17]

The data for the node.
Return Value

Text [p.86] The new Text object.

No Exceptions
getElementById introduced in DOM Level 2

Returns the Element [p.78] whose ID is given by elementId. If no such element
exists, returns null. Behavior is not defined if more than one element has this ID.

Note: The DOM implementation must have information that says which attributes are of
type ID. Attributes with the name "ID" are not of type ID unless so defined.
Implementations that do not know whether attributes are of type ID or not are expected to
return null.

Parameters
elementId of type DOMString [p.17]

The unique id value for an element.
Return Value

Element [p.78] The matching element.

39

1.2. Fundamental Interfaces

No Exceptions
getElementsByTagName

Returns a NodeList [p.67] of all the Elements [p.78] with a given tag name in
document order [p.152] .
Parameters
tagname of type DOMString [p.17]

The name of the tag to match on. The special value "*" matches all tags. For XML,
this is case-sensitive, otherwise it depends on the case-sentivity of the markup
language in use.

Return Value

NodeList
[p.67]

A new NodeList object containing all the matched Elements
[p.78] .

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.67] of all the Elements [p.78] with a given local name [p.153]
and namespace URI in document order [p.152] .
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the elements to match on. The special value "*"
matches all namespaces.

localName of type DOMString
The local name [p.153] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.67]

A new NodeList object containing all the matched Elements
[p.78] .

No Exceptions
getNormalizationFeature introduced in DOM Level 3

Look up the value of a feature.
The feature name has the same form as a DOM hasFeature string. The recognized
features are the same as the ones defined for setNormalizationFeature.
Parameters
name of type DOMString [p.17]

The name of the feature to look up.
Return Value

boolean The current state of the feature (true or false).

Exceptions

40

1.2. Fundamental Interfaces

DOMException
[p.23]

NOT_FOUND_ERR: Raised when the feature name is not
recognized.

importNode introduced in DOM Level 2
Imports a node from another document to this document. The returned node has no parent;
(parentNode is null). The source node is not altered or removed from the original
document; this method creates a new copy of the source node.
For all nodes, importing a node creates a node object owned by the importing document,
with attribute values identical to the source node’s nodeName and nodeType, plus the
attributes related to namespaces (prefix, localName, and namespaceURI). As in the
cloneNode operation, the source node is not altered. User data associated to the imported
node is not carried over. However, if any UserDataHandlers [p.88] has been specified
along with the associated data these handlers will be called with the appropriate parameters
before this method returns.
Additional information is copied as appropriate to the nodeType, attempting to mirror the
behavior expected if a fragment of XML or HTML source was copied from one document
to another, recognizing that the two documents may have different DTDs in the XML case.
The following list describes the specifics for each type of node.
ATTRIBUTE_NODE

The ownerElement attribute is set to null and the specified flag is set to
true on the generated Attr [p.76] . The descendants [p.151] of the source Attr are
recursively imported and the resulting nodes reassembled to form the corresponding
subtree.
Note that the deep parameter has no effect on Attr [p.76] nodes; they always carry
their children with them when imported.

DOCUMENT_FRAGMENT_NODE
If the deep option was set to true, the descendants [p.151] of the source
DocumentFragment [p.29] are recursively imported and the resulting nodes
reassembled under the imported DocumentFragment to form the corresponding
subtree. Otherwise, this simply generates an empty DocumentFragment.

DOCUMENT_NODE
Document nodes cannot be imported.

DOCUMENT_TYPE_NODE
DocumentType [p.92] nodes cannot be imported.

ELEMENT_NODE
Specified attribute nodes of the source element are imported, and the generated Attr
[p.76] nodes are attached to the generated Element [p.78] . Default attributes are not
copied, though if the document being imported into defines default attributes for this
element name, those are assigned. If the importNode deep parameter was set to
true, the descendants [p.151] of the source element are recursively imported and the
resulting nodes reassembled to form the corresponding subtree.

ENTITY_NODE
Entity [p.94] nodes can be imported, however in the current release of the DOM the
DocumentType [p.92] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId, systemId, and notationName attributes are copied.

41

1.2. Fundamental Interfaces

If a deep import is requested, the descendants [p.151] of the the source Entity
[p.94] are recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.96] itself is copied, even if a deep import is
requested, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.94] nodes can be imported, however in the current release of the DOM
the DocumentType [p.92] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId and systemId attributes are copied.
Note that the deep parameter has no effect on this type of nodes since they cannot
have any children.

PROCESSING_INSTRUCTION_NODE
The imported node copies its target and data values from those of the source
node.
Note that the deep parameter has no effect on this type of nodes since they cannot
have any children.

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE
These three types of nodes inheriting from CharacterData [p.72] copy their data
and length attributes from those of the source node.
Note that the deep parameter has no effect on these types of nodes since they cannot
have any children.

Parameters
importedNode of type Node [p.49]

The node to import.
deep of type boolean

If true, recursively import the subtree under the specified node; if false, import
only the node itself, as explained above. This has no effect on nodes that cannot have
any children, and on Attr [p.76] , and EntityReference [p.96] nodes.

Return Value

Node [p.49] The imported node that belongs to this Document.

Exceptions

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised if the type of node being
imported is not supported.

INVALID_CHARACTER_ERR: Raised if one the imported
names contain an illegal character. This may happen when
importing an XML 1.1 [XML 1.1] element into an XML 1.0
document, for instance.

42

1.2. Fundamental Interfaces

normalizeDocument introduced in DOM Level 3
This method acts as if the document was going through a save and load cycle, putting the
document in a "normal" form. The actual result depends on the features being set and
governing what operations actually take place. See setNormalizationFeature for
details.
Noticeably this method normalizes Text [p.86] nodes, makes the document "namespace
wellformed", according to the algorithm described below in pseudo code, by adding
missing namespace declaration attributes and adding or changing namespace prefixes,
updates the replacement tree of EntityReference [p.96] nodes, normalizes attribute
values, etc.
Mutation events, when supported, are generated to reflect the changes occuring on the
document.
See Namespace normalization [p.101] for details on how namespace declaration attributes
and prefixes are normalized.
Issue normalizeNS-1:

Any other name? Joe proposes normalizeNamespaces.
Resolution: normalizeDocument. (F2F 26 Sep 2001)

Issue normalizeNS-2:
How specific should this be? Should we not even specify that this should be done by
walking down the tree?
Resolution: Very. See above.

Issue normalizeNS-3:
What does this do on attribute nodes?
Resolution: Doesn’t do anything (F2F 1 Aug 2000).

Issue normalizeNS-4:
How does it work with entity reference subtree which may be broken?
Resolution: This doesn’t affect entity references which are not visited in this
operation (F2F 1 Aug 2000).

Issue normalizeNS-5:
Should this really be on Node?
Resolution: Yes, but this only works on Document, Element, and
DocumentFragment. On other types it is a no-op. (F2F 1 Aug 2000).
No. Now that it does much more than simply fixing namespaces it only makes sense
on Document (F2F 26 Sep 2001).

Issue normalizeNS-6:
What happens with read-only nodes?

Issue normalizeNS-7:
What/how errors should be reported? Are there any?
Resolution: Through the error reporter.

Issue normalizeNS-8:
Should this be optional?
Resolution: No.

Issue normalizeNS-9:
What happens with regard to mutation events?
Resolution: Mutation events are fired as expected. (F2F 28 Feb 2002).

No Parameters

43

1.2. Fundamental Interfaces

No Return Value
No Exceptions

renameNode introduced in DOM Level 3
Rename an existing node. When possible this simply changes the name of the given node,
otherwise this creates a new node with the specified name and replaces the existing node
with the new node as described below. This only applies to nodes of type ELEMENT_NODE
and ATTRIBUTE_NODE.
When a new node is created, the following operations are performed: the new node is
created, any registered event listener is registered on the new node, any user data attached
to the old node is removed from that node, the old node is removed from its parent if it has
one, the children are moved to the new node, if the renamed node is an Element [p.78] its
attributes are moved to the new node, the new node is inserted at the position the old node
used to have in its parent’s child nodes list if it has one, the user data that was attached to
the old node is attach to the new node, the user data event NODE_RENAMED is fired.
When the node being renamed is an Attr [p.76] that is attached to an Element [p.78] ,
the node is first removed from the Element attributes map. Then, once renamed, either by
modifying the existing node or creating a new one as described above, it is put back.
In addition, when the implementation supports the feature "MutationEvents", each
mutation operation involved in this method fires the appropriate event, and in the end the
event ElementNameChanged or AttributeNameChanged is fired.
Issue renameNode-1:

Should this throw a HIERARCHY_REQUEST_ERR?
Resolution: No. (F2F 28 Feb 2002).

Parameters
n of type Node [p.49]

The node to rename.
namespaceURI of type DOMString [p.17]

The new namespaceURI.
name of type DOMString

The new qualified name.
Return Value

Node
[p.49]

The renamed node. This is either the specified node or the new node that
was created to replace the specified node.

Exceptions

44

1.2. Fundamental Interfaces

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised when the type of the specified
node is neither ELEMENT_NODE nor ATTRIBUTE_NODE.

WRONG_DOCUMENT_ERR: Raised when the specified node
was created from a different document than this document.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed per the Namespaces in XML specification, if the
qualifiedName has a prefix and the namespaceURI is
null, or if the qualifiedName has a prefix that is "xml" and
the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [XML
Namespaces]. Also raised, when the node being renamed is an
attribute, if the qualifiedName, or its prefix, is "xmlns" and
the namespaceURI is different from
"http://www.w3.org/2000/xmlns/".

setNormalizationFeature introduced in DOM Level 3
Set the state of a feature.
Issue normalizationFeature-1:

Need to specify the list of features.
Feature names are valid XML names. Implementation specific features (extensions) should
choose an implementation specific prefix to avoid name collisions. The following lists
feature names that are recognized by all implementations. However, it is sometimes
possible for a Document to recognize a feature but not to support setting its value. The
following list of recognized features indicates the definitions of each feature state, if setting
the state to true or false must be supported or is optional and, which state is the default
one:
"canonical-form"

true
[optional]
Canonicalize the document according to the rules specified in [Canonical XML].
Note that this is limited to what can be represented in the DOM. In particular,
there is no way to specify the order of the attributes in the DOM.
Issue normalizationFeature-14:

What happen to other features? are they ignored? if yes, how do you know if
a feature is ignored?

false
[required] (default)
Do not canonicalize the document.

"cdata-sections"
true

[required] (default)
Keep CDATASection [p.92] nodes in the document.

45

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

Issue normalizationFeature-11:
Name does not work really well in this case. ALH suggests renaming this to
"cdata-sections". It works for both load and save.
Resolution: Renamed as suggested. (Telcon 27 Jan 2002).

false
[optional]
Transform CDATASection [p.92] nodes in the document into Text [p.86]
nodes. The new Text node is then combined with any adjacent Text node.

"comments"
true

[required] (default)
Keep Comment [p.88] nodes in the document.

false
[required]
Discard Comment [p.88] nodes in the Document.

"datatype-normalization"
true

[required]
Let the validation process do its datatype normalization that is defined in the used
schema language. Note that this does not affect the DTD normalization operation
which always takes place, in accordance to [XML 1.0].
Issue normalizationFeature-8:

We should define "datatype normalization".
Resolution: DTD normalization always apply because it’s part of XML 1.0.
Clarify the spec. (Telcon 27 Jan 2002).

false
[required] (default)
Disable datatype normalization. The XML 1.0 attribute value normalization
always occurs though.

"discard-default-content"
true

[required] (default)
Use whatever information available to the implementation (i.e. XML schema,
DTD, the specified flag on Attr [p.76] nodes, and so on) to decide what
attributes and content should be discarded or not. Note that the specified flag
on Attr nodes in itself is not always reliable, it is only reliable when it is set to
false since the only case where it can be set to false is if the attribute was
created by the implementation. The default content won’t be removed if an
implementation does not have any information available.
Issue normalizationFeature-2:

How does exactly work? What’s the comment about level 1
implementations?
Resolution: Remove "Level 1" (Telcon 16 Jan 2002).

false
[required]
Keep all attributes and all content.

46

1.2. Fundamental Interfaces

"entities"
true

[required] (default)
Keep EntityReference [p.96] and Entity [p.94] nodes in the document.
Issue normalizationFeature-9:

How does that interact with expand-entity-references? ALH suggests
consolidating the two to a single feature called "entity-references" that is
used both for load and save.
Resolution: Consolidate both features into a single feature called ’entities’.
(Telcon 27 Jan 2002).

false
[optional]
Remove all EntityReference [p.96] and Entity [p.94] nodes from the
document, putting the entity expansions directly in their place. Text [p.86]
nodes are into "normal" form. Only EntityReference nodes to non-defined
entities are kept in the document.

"infoset"
true

[optional]
Only keep in the document the information defined in the XML Information Set
[XML Information set].
This forces the following features to false: namespace-declarations,
validate-if-schema, entities, cdata-sections.
This forces the following features to true: datatype-normalization,
whitespace-in-element-content, comments.
Other features are not changed unless explicity specified in the description of the
features.
Note that querying this feature with getFeature returns true only if the
individual features specified above are appropriately set.
Issue normalizationFeature-12:

Name doesn’t work well here. ALH suggests renaming this to
limit-to-infoset or match-infoset, something like that.
Resolution: Renamed ’infoset’ (Telcon 27 Jan 2002).

false
Setting infoset to false has no effect.
Issue normalizationFeature-13:

Shouldn’t we change this to setting the relevant options back to their default
value?
Resolution: No, this is more like a convenience function, it’s better to keep
it simple. (F2F 28 Feb 2002).

"namespace-declarations"
true

[required] (default)
Include namespace declaration attributes, specified or defaulted from the schema
or the DTD, in the document. See also the section Declaring Namespaces in
[XML Namespaces].

47

1.2. Fundamental Interfaces

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-decl

false
[optional]
Discard all namespace declaration attributes. The Namespace prefixes are
retained even if this feature is set to false.

"normalize-characters"
true

[optional]
Perform the W3C Text Normalization of the characters [CharModel] in the
document.

false
[required] (default)
Do not perform character normalization.

"split-cdata-sections"
true

[required] (default)
Split CDATA sections containing the CDATA section termination marker ’]]>’.
When a CDATA section is split a warning is issued.

false
[required]
Signal an error if a CDATASection [p.92] contains an unrepresentable
character.

"validate"
true

[optional]
Require the validation against a schema (i.e. XML schema, DTD, [DOM Level 3
Abstract Schemas and Load and Save], any other type or representation of
schema) of the document as it is being normalized as defined by [XML 1.0]. If
validation errors are found, or no schema was found, the error handler is notified.
Note also that no datatype normalization (i.e. non-XML 1.0 normalization) is
done according to the schema used unless the feature
datatype-normalization is true.

Note: validate-if-schema and validate are mutually exclusive, setting
one of them to true will set the other one to false.

false
[required] (default)
Only XML 1.0 non-validating processing must be done. Note that validation
might still happen if validate-if-schema is true.

"validate-if-schema"
true

[optional]
Enable validation only if a declaration for the document element can be found
(independently of where it is found, i.e. XML schema, DTD, [DOM Level 3
Abstract Schemas and Load and Save], or any other type or representation of
schema). If validation errors are found, the error handler is notified. Note also
that no datatype normalization (i.e. non-XML 1.0 normalization) is done

48

1.2. Fundamental Interfaces

according to the schema used unless the feature datatype-normalization
is true.

Note: validate-if-schema and validate are mutually exclusive, setting
one of them to true will set the other one to false.

Issue normalizationFeature-6:
How does that interact with the notion of active AS?
Resolution: If document has AS model, than it "has a schema", thus
validation will be performed against the active AS model. (Telcon 16 Jan
2002).

false
[required] (default)
No validation should be performed if the document has a schema. Note that
validation must still happen if validate is true.

"whitespace-in-element-content"
true

[required] (default)
Keep all white spaces in the document.
Issue normalizationFeature-15:

How does this feature interact with "validate" and
Text.isWhitespaceInElementContent [p.86] .

false
[optional]
Discard white space in element content while normalizing. The implementation
is expected to use the isWhitespaceInElementContent flag on Text
[p.86] nodes to determine if a text node should be written out or not.

Parameters
name of type DOMString [p.17]

The name of the feature to set.
state of type boolean

The requested state of the feature (true or false).
Exceptions

DOMException
[p.23]

NOT_SUPPORTED_ERR: Raised when the feature name is
recognized but the requested value cannot be set.

NOT_FOUND_ERR: Raised when the feature name is not
recognized.

No Return Value
Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.86] nodes may not have children, and adding children to such nodes results in a

49

1.2. Fundamental Interfaces

DOMException [p.23] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element
[p.78] or attributes for a Comment [p.88]), this returns null. Note that the specialized
interfaces may contain additional and more convenient mechanisms to get and set the relevant
information.

IDL Definition

interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 // Modified in DOM Level 3:
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);

50

1.2. Fundamental Interfaces

 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
 // Introduced in DOM Level 3:
 readonly attribute DOMString baseURI;

 // TreePosition
 const unsigned short TREE_POSITION_PRECEDING = 0x01;
 const unsigned short TREE_POSITION_FOLLOWING = 0x02;
 const unsigned short TREE_POSITION_ANCESTOR = 0x04;
 const unsigned short TREE_POSITION_DESCENDANT = 0x08;
 const unsigned short TREE_POSITION_EQUIVALENT = 0x10;
 const unsigned short TREE_POSITION_SAME_NODE = 0x20;
 const unsigned short TREE_POSITION_DISCONNECTED = 0x00;

 // Introduced in DOM Level 3:
 unsigned short compareTreePosition(in Node other);
 // Introduced in DOM Level 3:
 attribute DOMString textContent;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 // Introduced in DOM Level 3:
 boolean isSameNode(in Node other);
 // Introduced in DOM Level 3:
 DOMString lookupNamespacePrefix(in DOMString namespaceURI,
 in boolean useDefault);
 // Introduced in DOM Level 3:
 boolean isDefaultNamespace(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 DOMString lookupNamespaceURI(in DOMString prefix);
 // Introduced in DOM Level 3:
 boolean isEqualNode(in Node arg);
 // Introduced in DOM Level 3:
 Node getInterface(in DOMString feature);
 // Introduced in DOM Level 3:
 DOMUserData setUserData(in DOMString key,
 in DOMUserData data,
 in UserDataHandler handler);
 // Introduced in DOM Level 3:
 DOMUserData getUserData(in DOMString key);
};

51

1.2. Fundamental Interfaces

Definition group NodeType

An integer indicating which type of node this is.

Note: Numeric codes up to 200 are reserved to W3C for possible future use.

Defined Constants
ATTRIBUTE_NODE

The node is an Attr [p.76] .
CDATA_SECTION_NODE

The node is a CDATASection [p.92] .
COMMENT_NODE

The node is a Comment [p.88] .
DOCUMENT_FRAGMENT_NODE

The node is a DocumentFragment [p.29] .
DOCUMENT_NODE

The node is a Document [p.29] .
DOCUMENT_TYPE_NODE

The node is a DocumentType [p.92] .
ELEMENT_NODE

The node is an Element [p.78] .
ENTITY_NODE

The node is an Entity [p.94] .
ENTITY_REFERENCE_NODE

The node is an EntityReference [p.96] .
NOTATION_NODE

The node is a Notation [p.94] .
PROCESSING_INSTRUCTION_NODE

The node is a ProcessingInstruction [p.96] .
TEXT_NODE

The node is a Text [p.86] node.

The values of nodeName, nodeValue, and attributes vary according to the node type as
follows:

52

1.2. Fundamental Interfaces

Interface nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection "#cdata-section" content of the
CDATA Section

null

Comment "#comment" content of the
comment

null

Document "#document" null null

DocumentFragment "#document-fragment" null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity referenced null null

Notation notation name null null

ProcessingInstruction target entire content
excluding the target

null

Text "#text" content of the text
node

null

Definition group TreePosition

A bitmask indicating the relative tree position of a node with respect to another node.

Issue TreePosition-1:
Should we use fewer bits?
Resolution: No. Simpler that way.

Issue TreePosition-2:
How does a node compare to itself?
Resolution: SAME_NODE and EQUIVALENT. (F2F 26 Sep 2001)

Defined Constants
TREE_POSITION_ANCESTOR

The node is an ancestor of the reference node.
TREE_POSITION_DESCENDANT

The node is a descendant of the reference node.
TREE_POSITION_DISCONNECTED

The two nodes are disconnected, they do not have any common ancestor. This is the
case of two nodes that are not in the same document.

TREE_POSITION_EQUIVALENT
The two nodes have an equivalent position. This is the case of two attributes that have
the same ownerElement, and two nodes that are the same.

53

1.2. Fundamental Interfaces

TREE_POSITION_FOLLOWING
The node follows the reference node.

TREE_POSITION_PRECEDING
The node precedes the reference node.

TREE_POSITION_SAME_NODE
The two nodes are the same. Two nodes that are the same have an equivalent position,
though the reverse may not be true.

Attributes
attributes of type NamedNodeMap [p.68] , readonly

A NamedNodeMap [p.68] containing the attributes of this node (if it is an Element
[p.78]) or null otherwise.
If no namespace declaration appear in the attributes, this attribute represents the property
[attributes] defined in [XML Information set]. If namespace declarations appear in the
attributes, this attribute combines the properties [attributes] and [namespace attributes]
defined in [XML Information set].

baseURI of type DOMString [p.17] , readonly, introduced in DOM Level 3
The absolute base URI of this node or null if undefined. This value is computed
according to [XML Base]. However, when the Document [p.29] supports the feature
"HTML" [DOM Level 2 HTML], the base URI is computed using first the value of the href
attribute of the HTML BASE element if any, and the value of the documentURI attribute
from the Document interface otherwise.
When the node is an Element [p.78] , a Document [p.29] or a a
ProcessingInstruction [p.96] , this attribute represents the properties [base URI]
defined in [XML Information set]. When the node is a Notation [p.94] , an Entity
[p.94] , or an EntityReference [p.96] , this attribute represents the properties
[declaration base URI] in the [XML Information set].
Issue baseURI-1:

How will this be affected by resolution of relative namespace URIs issue?
Resolution: It’s not.

Issue baseURI-2:
Should this only be on Document, Element, ProcessingInstruction, Entity, and
Notation nodes, according to the infoset? If not, what is it equal to on other nodes?
Null? An empty string? I think it should be the parent’s.
Resolution: No.

Issue baseURI-3:
Should this be read-only and computed or and actual read-write attribute?
Resolution: Read-only and computed (F2F 19 Jun 2000 and teleconference 30 May
2001).

Issue baseURI-4:
If the base HTML element is not yet attached to a document, does the insert change
the Document.baseURI?
Resolution: Yes. (F2F 26 Sep 2001)

childNodes of type NodeList [p.67] , readonly
A NodeList [p.67] that contains all children of this node. If there are no children, this is
a NodeList containing no nodes.
When the node is a Document [p.29] , or an Element [p.78] , and if the NodeList

54

1.2. Fundamental Interfaces

[p.67] does not contain EntityReference [p.96] or CDATASection [p.92] nodes,
this attribute represents the properties [children] defined in [XML Information set].

firstChild of type Node [p.49] , readonly
The first child of this node. If there is no such node, this returns null.

lastChild of type Node [p.49] , readonly
The last child of this node. If there is no such node, this returns null.

localName of type DOMString [p.17] , readonly, introduced in DOM Level 2
Returns the local part of the qualified name [p.153] of this node.
When the node is Element [p.78] , or Attr [p.76] , this attribute represents the
properties [local name] defined in [XML Information set].
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.29] interface, this is always null.

namespaceURI of type DOMString [p.17] , readonly, introduced in DOM Level 2
The namespace URI [p.153] of this node, or null if it is unspecified.
When the node is Element [p.78] , or Attr [p.76] , this attribute represents the
properties [namespace name] defined in [XML Information set].
This is not a computed value that is the result of a namespace lookup based on an
examination of the namespace declarations in scope. It is merely the namespace URI given
at creation time.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.29] interface, this is always null.

Note: Per the Namespaces in XML Specification [XML Namespaces] an attribute does not
inherit its namespace from the element it is attached to. If an attribute is not explicitly
given a namespace, it simply has no namespace.

nextSibling of type Node [p.49] , readonly
The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString [p.17] , readonly
The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly
A code representing the type of the underlying object, as defined above.

nodeValue of type DOMString [p.17]
The value of this node, depending on its type; see the table above. When it is defined to be
null, setting it has no effect.
Exceptions on setting

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

55

1.2. Fundamental Interfaces

DOMException
[p.23]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.17] variable on the
implementation platform.

ownerDocument of type Document [p.29] , readonly, modified in DOM Level 2
The Document [p.29] object associated with this node. This is also the Document object
used to create new nodes. When this node is a Document or a DocumentType [p.92]
which is not used with any Document yet, this is null.

parentNode of type Node [p.49] , readonly
The parent [p.153] of this node. All nodes, except Attr [p.76] , Document [p.29] ,
DocumentFragment [p.29] , Entity [p.94] , and Notation [p.94] may have a
parent. However, if a node has just been created and not yet added to the tree, or if it has
been removed from the tree, this is null.
When the node is an Element [p.78] , a ProcessingInstruction [p.96] , an
EntityReference [p.96] , a CharacterData [p.72] , a Comment [p.88] , or a
DocumentType [p.92] , this attribute represents the properties [parent] defined in [XML
Information set].

prefix of type DOMString [p.17] , introduced in DOM Level 2
The namespace prefix [p.153] of this node, or null if it is unspecified.
When the node is Element [p.78] , or Attr [p.76] , this attribute represents the
properties [prefix] defined in [XML Information set].
Note that setting this attribute, when permitted, changes the nodeName attribute, which
holds the qualified name [p.153] , as well as the tagName and name attributes of the
Element [p.78] and Attr [p.76] interfaces, when applicable.
Note also that changing the prefix of an attribute that is known to have a default value, does
not make a new attribute with the default value and the original prefix appear, since the
namespaceURI and localName do not change.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.29] interface, this is always null.
Exceptions on setting

56

1.2. Fundamental Interfaces

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified prefix
contains an illegal character, per the XML 1.0 specification
[XML 1.0].

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the specified prefix is
malformed per the Namespaces in XML specification, if the
namespaceURI of this node is null, if the specified prefix is
"xml" and the namespaceURI of this node is different from
"http://www.w3.org/XML/1998/namespace", if this node is an
attribute and the specified prefix is "xmlns" and the
namespaceURI of this node is different from
"http://www.w3.org/2000/xmlns/", or if this node is an attribute
and the qualifiedName of this node is "xmlns" [XML
Namespaces].

previousSibling of type Node [p.49] , readonly
The node immediately preceding this node. If there is no such node, this returns null.

textContent of type DOMString [p.17] , introduced in DOM Level 3
This attribute returns the text content of this node and its descendants. When it is defined to
be null, setting it has no effect. When set, any possible children this node may have are
removed and replaced by a single Text [p.86] node containing the string this attribute is
set to. On getting, no serialization is performed, the returned string does not contain any
markup. No whitespace normalization is performed, the returned string does not contain the
element content whitespaces Fundamental Interfaces [p.86] . Similarly, on setting, no
parsing is performed either, the input string is taken as pure textual content.
The string returned is made of the text content of this node depending on its type, as
defined below:

Node type Content

ELEMENT_NODE, ENTITY_NODE,
ENTITY_REFERENCE_NODE,
DOCUMENT_FRAGMENT_NODE

concatenation of the textContent
attribute value of every child node,
excluding COMMENT_NODE and
PROCESSING_INSTRUCTION_NODE
nodes

ATTRIBUTE_NODE, TEXT_NODE,
CDATA_SECTION_NODE,
COMMENT_NODE,
PROCESSING_INSTRUCTION_NODE

nodeValue

DOCUMENT_NODE,
DOCUMENT_TYPE_NODE,
NOTATION_NODE

null

57

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

Issue textContent-1:
Should any whitespace normalization be performed? MS’ text property doesn’t but
what about "ignorable whitespace"?
Resolution: Does not perform any whitespace normalization and ignores "ignorable
whitespace".

Issue textContent-2:
Should this be two methods instead?
Resolution: No. Keep it a read write attribute.

Issue textContent-3:
What about the name? MS uses text and innerText. text conflicts with HTML DOM.
Resolution: Keep the current name, MS has a different name and different semantic.

Issue textContent-4:
Should this be optional?
Resolution: No.

Issue textContent-5:
Setting the text property on a Document, Document Type, or Notation node is an error
for MS. How do we expose it? Exception? Which one?
Resolution: (teleconference 23 May 2001) consistency with nodeValue. Remove
Document from the list.

Exceptions on setting

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

DOMException
[p.23]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.17] variable on the
implementation platform.

Methods
appendChild

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.
Parameters
newChild of type Node [p.49]

The node to add.
If it is a DocumentFragment [p.29] object, the entire contents of the document
fragment are moved into the child list of this node

Return Value

Node [p.49] The node added.

58

1.2. Fundamental Interfaces

Exceptions

DOMException
[p.23]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to append is one of this node’s ancestors [p.151] or
this node itself.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly or if the previous parent of the node being inserted is
readonly.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent; (parentNode is null.) and no user data. User data
associated to the imported node is not carried over. However, if any
UserDataHandlers [p.88] has been specified along with the associated data these
handlers will be called with the appropriate parameters before this method returns.
Cloning an Element [p.78] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any children it contains unless it is a deep clone. This includes text contained in an the
Element since the text is contained in a child Text [p.86] node. Cloning an
Attribute directly, as opposed to be cloned as part of an Element cloning operation,
returns a specified attribute (specified is true). Cloning an Attribute always
clones its children, since they represent its value, no matter whether this is a deep clone or
not. Cloning an EntityReference [p.96] automatically constructs its subtree if a
corresponding Entity [p.94] is available, no matter whether this is a deep clone or not.
Cloning any other type of node simply returns a copy of this node.
Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.96] clone are readonly [p.153] . In addition, clones of unspecified
Attr [p.76] nodes are specified. And, cloning Document [p.29] , DocumentType
[p.92] , Entity [p.94] , and Notation [p.94] nodes is implementation dependent.
Parameters
deep of type boolean

If true, recursively clone the subtree under the specified node; if false, clone only
the node itself (and its attributes, if it is an Element [p.78]).

Return Value

Node [p.49] The duplicate node.

No Exceptions

59

1.2. Fundamental Interfaces

compareTreePosition introduced in DOM Level 3
Compares a node with this node with regard to their position in the tree and according to
the document order [p.152] . This order can be extended by module that define additional
types of nodes.
Issue compareTreePosition-1:

Should this method be optional?
Resolution: No.

Issue compareTreePosition-2:
Need reference for namespace nodes.
Resolution: No, instead avoid referencing them directly.

Parameters
other of type Node [p.49]

The node to compare against this node.
Return Value

unsigned
short

Returns how the given node is positioned relatively to this
node.

No Exceptions
getInterface introduced in DOM Level 3

This method makes available a Node’s specialized interface (see Mixed DOM
implementations [p.21]).
Issue EDOM-isSupported:

What are the relations between Node.isSupported and Node3.getInterface?
Issue EDOM-getInterface-1:

Should we rename this method (and also DOMImplementation.getInterface?)?
Issue EDOM-getInterface-2:

getInterface can return a node that doesn’t actually support the requested interface and
will lead to a cast exception. Other solutions are returning null or throwing an
exception.

Parameters
feature of type DOMString [p.17]

The name of the feature requested (case-insensitive).
Return Value

Node
[p.49]

Returns an alternate Node which implements the specialized APIs of the
specified feature, if any, or null if there is no alternate Node which
implements interfaces associated with that feature. Any alternate Node
returned by this method must delegate to the primary core Node and not
return results inconsistent with the primary core Node such as key,
attributes, childNodes, etc.

No Exceptions

60

1.2. Fundamental Interfaces

getUserData introduced in DOM Level 3
Retrieves the object associated to a key on a this node. The object must first have been set
to this node by calling setUserData with the same key.
Parameters
key of type DOMString [p.17]

The key the object is associated to.
Return Value

DOMUserData
[p.18]

Returns the DOMUserData associated to the given key on this
node, or null if there was none.

No Exceptions
hasAttributes introduced in DOM Level 2

Returns whether this node (if it is an element) has any attributes.
Return Value

boolean true if this node has any attributes, false otherwise.

No Parameters
No Exceptions

hasChildNodes
Returns whether this node has any children.
Return Value

boolean true if this node has any children, false otherwise.

No Parameters
No Exceptions

insertBefore modified in DOM Level 3
Inserts the node newChild before the existing child node refChild. If refChild is
null, insert newChild at the end of the list of children.
If newChild is a DocumentFragment [p.29] object, all of its children are inserted, in
the same order, before refChild. If the newChild is already in the tree, it is first
removed.
Parameters
newChild of type Node [p.49]

The node to insert.
refChild of type Node

The reference node, i.e., the node before which the new node must be inserted.
Return Value

Node [p.49] The node being inserted.

61

1.2. Fundamental Interfaces

Exceptions

DOMException
[p.23]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to insert is one of this node’s ancestors [p.151] or
this node itself, or if this node if of type Document [p.29] and
the DOM application attempts to insert a second
DocumentType [p.92] or Element [p.78] node.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly or if the parent of the node being inserted is readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node if of type Document
[p.29] , this exception might be raised if the DOM
implementation doesn’t support the insertion of a
DocumentType [p.92] or Element [p.78] node.

isDefaultNamespace introduced in DOM Level 3
This method checks if the specified namespaceURI is the default namespace or not.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI to look for.
Return Value

boolean true if the specified namespaceURI is the default namespace, false
otherwise.

No Exceptions
isEqualNode introduced in DOM Level 3

Tests whether two nodes are equal.
This method tests for equality of nodes, not sameness (i.e., whether the two nodes are
references to the same object) which can be tested with Node.isSameNode [p.63] . All
nodes that are the same will also be equal, though the reverse may not be true.
Two nodes are equal if and only if the following conditions are satisfied:

The two nodes are of the same type.
The following string attributes are equal: nodeName, localName,
namespaceURI, prefix, nodeValue, baseURI. This is: they are both null,
or they have the same length and are character for character identical.
The attributes NamedNodeMaps [p.68] are equal. This is: they are both null,

62

1.2. Fundamental Interfaces

or they have the same length and for each node that exists in one map there is a node
that exists in the other map and is equal, although not necessarily at the same index.
The childNodes NodeLists [p.67] are equal. This is: they are both null, or
they have the same length and contain equal nodes at the same index. Note that
normalization can affect equality; to avoid this, nodes should be normalized before
being compared.

For two DocumentType [p.92] nodes to be equal, the following conditions must also be
satisfied:

The following string attributes are equal: publicId, systemId,
internalSubset.
The entities NamedNodeMaps [p.68] are equal.
The notations NamedNodeMaps [p.68] are equal.

On the other hand, the following do not affect equality: the ownerDocument attribute,
the specified attribute for Attr [p.76] nodes, the
isWhitespaceInElementContent attribute for Text [p.86] nodes, as well as any
user data or event listeners registered on the nodes.
Issue isEqualNode-1:

Should this be optional?
Resolution: No.

Issue isEqualNode-2:
Should the deep parameter be dropped?
Resolution: Yes (Telcon Apr 3, 2002).

Parameters
arg of type Node [p.49]

The node to compare equality with.
Return Value

boolean If the nodes, and possibly subtrees are equal, true otherwise false.

No Exceptions
isSameNode introduced in DOM Level 3

Returns whether this node is the same node as the given one.
This method provides a way to determine whether two Node references returned by the
implementation reference the same object. When two Node references are references to the
same object, even if through a proxy, the references may be used completely
interchangeably, such that all attributes have the same values and calling the same DOM
method on either reference always has exactly the same effect.
Issue isSameNode-1:

Do we really want to make this different from equals?
Resolution: Yes, change name from isIdentical to isSameNode. (Telcon 4 Jul 2000).

Issue isSameNode-2:
Is this really needed if we provide a unique key?
Resolution: Yes, because the key is only unique within a document. (F2F 2 Mar
2001).

63

1.2. Fundamental Interfaces

Issue isSameNode-3:
Definition of ’sameness’ is needed.

Parameters
other of type Node [p.49]

The node to test against.
Return Value

boolean Returns true if the nodes are the same, false otherwise.

No Exceptions
isSupported introduced in DOM Level 2

Tests whether the DOM implementation implements a specific feature and that feature is
supported by this node.
Parameters
feature of type DOMString [p.17]

The name of the feature to test. This is the same name which can be passed to the
method hasFeature on DOMImplementation [p.25] .

version of type DOMString
This is the version number of the feature to test. In Level 2, version 1, this is the string
"2.0". If the version is not specified, supporting any version of the feature will cause
the method to return true.

Return Value

boolean Returns true if the specified feature is supported on this node, false
otherwise.

No Exceptions
lookupNamespacePrefix introduced in DOM Level 3

Look up the prefix associated to the given namespace URI, starting from this node.
See Namespace Prefix Lookup [p.104] for details on the algorithm used by this method.
Issue lookupNamespacePrefix-1:

Should this be optional?
Resolution: No.

Issue lookupNamespacePrefix-2:
How does the lookup work? Is it based on the prefix of the nodes, the namespace
declaration attributes, or a combination of both?
Resolution: See Namespace Prefix Lookup [p.104] .

Parameters
namespaceURI of type DOMString [p.17]

The namespace URI to look for.
useDefault of type boolean

Indicates if the lookup mechanism should take into account the default namespace or
not.

Return Value

64

1.2. Fundamental Interfaces

DOMString
[p.17]

Returns an associated namespace prefix if found, null if none is
found and useDefault is false, or null if not found or it is the
default namespace and useDefault is true. If more than one
prefix are associated to the namespace prefix, the returned
namespace prefix is implementation dependent.

No Exceptions
lookupNamespaceURI introduced in DOM Level 3

Look up the namespace URI associated to the given prefix, starting from this node.
See Namespace URI Lookup [p.107] for details on the algorithm used by this method.
Issue lookupNamespaceURI-1:

Name? May need to change depending on ending of the relative namespace URI
reference nightmare.
Resolution: No need.

Issue lookupNamespaceURI-2:
Should this be optional?
Resolution: No.

Issue lookupNamespaceURI-3:
How does the lookup work? Is it based on the namespaceURI of the nodes, the
namespace declaration attributes, or a combination of both?
Resolution: See Namespace URI Lookup [p.107] .

Parameters
prefix of type DOMString [p.17]

The prefix to look for. If this parameter is null, the method will return the default
namespace URI if any.

Return Value

DOMString
[p.17]

Returns the associated namespace URI or null if none is
found.

No Exceptions
normalize modified in DOM Level 2

Puts all Text [p.86] nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references) separates
Text nodes, i.e., there are neither adjacent Text nodes nor empty Text nodes. This can
be used to ensure that the DOM view of a document is the same as if it were saved and
re-loaded, and is useful when operations (such as XPointer [XPointer] lookups) that depend
on a particular document tree structure are to be used.

Note: In cases where the document contains CDATASections [p.92] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text
[p.86] nodes and CDATASection [p.92] nodes.

65

1.2. Fundamental Interfaces

No Parameters
No Return Value
No Exceptions

removeChild modified in DOM Level 3
Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters
oldChild of type Node [p.49]

The node being removed.
Return Value

Node [p.49] The node removed.

Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node if of type Document
[p.29] , this exception might be raised if the DOM
implementation doesn’t support the removal of the
DocumentType [p.92] child or the Element [p.78] child.

replaceChild modified in DOM Level 3
Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.
If newChild is a DocumentFragment [p.29] object, oldChild is replaced by all of
the DocumentFragment children, which are inserted in the same order. If the
newChild is already in the tree, it is first removed.
Parameters
newChild of type Node [p.49]

The new node to put in the child list.
oldChild of type Node

The node being replaced in the list.
Return Value

Node [p.49] The node replaced.

Exceptions

66

1.2. Fundamental Interfaces

DOMException
[p.23]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to put in is one of this node’s ancestors [p.151] or
this node itself.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node or
the parent of the new node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this
node.

NOT_SUPPORTED_ERR: if this node if of type Document
[p.29] , this exception might be raised if the DOM
implementation doesn’t support the replacement of the
DocumentType [p.92] child or Element [p.78] child.

setUserData introduced in DOM Level 3
Associate an object to a key on this node. The object can later be retrieved from this node
by calling getUserData with the same key.
Parameters
key of type DOMString [p.17]

The key to associate the object to.
data of type DOMUserData [p.18]

The object to associate to the given key, or null to remove any existing association
to that key.

handler of type UserDataHandler [p.88]
The handler to associate to that key, or null.

Return Value

DOMUserData
[p.18]

Returns the DOMUserData previously associated to the given
key on this node, or null if there was none.

No Exceptions
Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented. NodeList objects in the DOM are live
[p.16] .

The items in the NodeList are accessible via an integral index, starting from 0.

67

1.2. Fundamental Interfaces

IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null.
Parameters
index of type unsigned long

Index into the collection.
Return Value

Node
[p.49]

The node at the indexth position in the NodeList, or null if that is
not a valid index.

No Exceptions
Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.67] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.

NamedNodeMap objects in the DOM are live [p.16] .

IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)

68

1.2. Fundamental Interfaces

 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of nodes in this map. The range of valid child node indices is 0 to length-1
inclusive.

Methods
getNamedItem

Retrieves a node specified by name.
Parameters
name of type DOMString [p.17]

The nodeName of a node to retrieve.
Return Value

Node
[p.49]

A Node (of any type) with the specified nodeName, or null if it does
not identify any node in this map.

No Exceptions
getNamedItemNS introduced in DOM Level 2

Retrieves a node specified by local name and namespace URI.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the node to retrieve.
localName of type DOMString

The local name [p.153] of the node to retrieve.
Return Value

Node
[p.49]

A Node (of any type) with the specified local name and namespace URI,
or null if they do not identify any node in this map.

No Exceptions
item

Returns the indexth item in the map. If index is greater than or equal to the number of
nodes in this map, this returns null.
Parameters

69

1.2. Fundamental Interfaces

index of type unsigned long
Index into this map.

Return Value

Node
[p.49]

The node at the indexth position in the map, or null if that is not a
valid index.

No Exceptions
removeNamedItem

Removes a node specified by name. When this map contains the attributes attached to an
element, if the removed attribute is known to have a default value, an attribute immediately
appears containing the default value as well as the corresponding namespace URI, local
name, and prefix when applicable.
Parameters
name of type DOMString [p.17]

The nodeName of the node to remove.
Return Value

Node [p.49] The node removed from this map if a node with such a name exists.

Exceptions

DOMException
[p.23]

NOT_FOUND_ERR: Raised if there is no node named name
in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map
is readonly.

removeNamedItemNS introduced in DOM Level 2
Removes a node specified by local name and namespace URI. A removed attribute may be
known to have a default value when this map contains the attributes attached to an element,
as returned by the attributes attribute of the Node [p.49] interface. If so, an attribute
immediately appears containing the default value as well as the corresponding namespace
URI, local name, and prefix when applicable.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the node to remove.
localName of type DOMString

The local name [p.153] of the node to remove.
Return Value

70

1.2. Fundamental Interfaces

Node
[p.49]

The node removed from this map if a node with such a local name and
namespace URI exists.

Exceptions

DOMException
[p.23]

NOT_FOUND_ERR: Raised if there is no node with the
specified namespaceURI and localName in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map
is readonly.

setNamedItem
Adds a node using its nodeName attribute. If a node with that name is already present in
this map, it is replaced by the new one. Replacing a node by itself has no effect.
As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters
arg of type Node [p.49]

A node to store in this map. The node will later be accessible using the value of its
nodeName attribute.

Return Value

Node
[p.49]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

DOMException
[p.23]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.76]
that is already an attribute of another Element [p.78] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this NamedNodeMap. Examples
would include trying to insert something other than an Attr node
into an Element’s map of attributes, or a non-Entity node into the
DocumentType’s map of Entities.

71

1.2. Fundamental Interfaces

setNamedItemNS introduced in DOM Level 2
Adds a node using its namespaceURI and localName. If a node with that namespace
URI and that local name is already present in this map, it is replaced by the new one.
Replacing a node by itself has no effect.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
arg of type Node [p.49]

A node to store in this map. The node will later be accessible using the value of its
namespaceURI and localName attributes.

Return Value

Node
[p.49]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

DOMException
[p.23]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.76]
that is already an attribute of another Element [p.78] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this NamedNodeMap. Examples
would include trying to insert something other than an Attr node
into an Element’s map of attributes, or a non-Entity node into the
DocumentType’s map of Entities.

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

Interface CharacterData

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData, though
Text [p.86] and others do inherit the interface from it. All offsets in this interface start from 0.

72

1.2. Fundamental Interfaces

As explained in the DOMString [p.17] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.151] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.

IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data of type DOMString [p.17]

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString [p.17] . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
When the CharacterData is a Text [p.86] , or a CDATASection [p.92] , this
attribute contains the property [character code] defined in [XML Information set]. When
the CharacterData is a Comment [p.88] , this attribute contains the property [content]
defined by the Comment Information Item in [XML Information set].
Exceptions on setting

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

DOMException
[p.23]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.17] variable on the
implementation platform.

73

1.2. Fundamental Interfaces

length of type unsigned long, readonly
The number of 16-bit units [p.151] that are available through data and the
substringData method below. This may have the value zero, i.e., CharacterData
nodes may be empty.

Methods
appendData

Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString [p.17] specified.
Parameters
arg of type DOMString [p.17]

The DOMString to append.
Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
deleteData

Remove a range of 16-bit units [p.151] from the node. Upon success, data and length
reflect the change.
Parameters
offset of type unsigned long

The offset from which to start removing.
count of type unsigned long

The number of 16-bit units to delete. If the sum of offset and count exceeds
length then all 16-bit units from offset to the end of the data are deleted.

Exceptions

DOMException
[p.23]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
insertData

Insert a string at the specified 16-bit unit [p.151] offset.
Parameters
offset of type unsigned long

The character offset at which to insert.
arg of type DOMString [p.17]

The DOMString to insert.
Exceptions

74

1.2. Fundamental Interfaces

DOMException
[p.23]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

No Return Value
replaceData

Replace the characters starting at the specified 16-bit unit [p.151] offset with the specified
string.
Parameters
offset of type unsigned long

The offset from which to start replacing.
count of type unsigned long

The number of 16-bit units to replace. If the sum of offset and count exceeds
length, then all 16-bit units to the end of the data are replaced; (i.e., the effect is the
same as a remove method call with the same range, followed by an append method
invocation).

arg of type DOMString [p.17]
The DOMString with which the range must be replaced.

Exceptions

DOMException
[p.23]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
substringData

Extracts a range of data from the node.
Parameters
offset of type unsigned long

Start offset of substring to extract.
count of type unsigned long

The number of 16-bit units to extract.
Return Value

DOMString
[p.17]

The specified substring. If the sum of offset and count exceeds
the length, then all 16-bit units to the end of the data are
returned.

Exceptions

75

1.2. Fundamental Interfaces

DOMException
[p.23]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of text
does not fit into a DOMString [p.17] .

Interface Attr

The Attr interface represents an attribute in an Element [p.78] object. Typically the allowable
values for the attribute are defined in a document type definition.

Attr objects inherit the Node [p.49] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
attributes parentNode, previousSibling, and nextSibling have a null value for Attr
objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.
Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.29] .
However, they can be associated with Element [p.78] nodes contained within a
DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr
nodes have some things in common with other objects inheriting the Node interface, but they also
are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used
to retrieve the string version of the attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node may be either Text [p.86] or EntityReference [p.96] nodes (when these are in use; see
the description of EntityReference for discussion). Because the DOM Core is not aware of
attribute types, it treats all attribute values as simple strings, even if the DTD or schema declares
them as having tokenized [p.154] types.

The DOM implementation does not perform any attribute value normalization. While it is expected
that the value and nodeValue attributes of an Attr node initially return the normalized value,
this may not be the case after mutation. This is true, independently of whether the mutation is
performed by setting the string value directly or by changing the Attr child nodes. In particular, this
is true when character entity references are involved, given that they are not represented in the DOM
and they impact attribute value normalization.

Note: The properties [attribute type] and [references] defined in [XML Information set] are not
accessible from DOM Level 3 Core. However, [DOM Level 3 Abstract Schemas and Load and Save]
does provide a way to access the property [attribute type].

76

1.2. Fundamental Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#AVNormalize

IDL Definition

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
};

Attributes
name of type DOMString [p.17] , readonly

Returns the name of this attribute.
ownerElement of type Element [p.78] , readonly, introduced in DOM Level 2

The Element [p.78] node this attribute is attached to or null if this attribute is not in
use.
This attribute represents the property [owner element] defined in [XML Information set].

specified of type boolean, readonly
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false. Note that the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if it ends up having the same value
as the default value) then the specified flag is automatically flipped to true. To
re-specify the attribute as the default value from the DTD, the user must delete the
attribute. The implementation will then make a new attribute available with specified
set to false and the default value (if one exists).
In summary:

If the attribute has an assigned value in the document then specified is true, and
the value is the assigned value.
If the attribute has no assigned value in the document and has a default value in the
DTD, then specified is false, and the value is the default value in the DTD.
If the attribute has no assigned value in the document and has a value of #IMPLIED in
the DTD, then the attribute does not appear in the structure model of the document.
If the ownerElement attribute is null (i.e. because it was just created or was set to
null by the various removal and cloning operations) specified is true.

This attribute represents the property [specified] defined [XML Information set].
value of type DOMString [p.17]

On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values. See also the method getAttribute on the
Element [p.78] interface.
On setting, this creates a Text [p.86] node with the unparsed contents of the string. I.e.
any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method setAttribute on the Element [p.78] interface.
If the value does contain the normalized attribute value, this attribute represents the
property [normalized value] defined in [XML Information set].
Exceptions on setting

77

1.2. Fundamental Interfaces

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Interface Element

The Element interface represents an element [p.152] in an HTML or XML document. Elements
may have attributes associated with them; since the Element interface inherits from Node [p.49] ,
the generic Node interface attribute attributes may be used to retrieve the set of all attributes
for an element. There are methods on the Element interface to retrieve either an Attr [p.76] object
by name or an attribute value by name. In XML, where an attribute value may contain entity
references, an Attr object should be retrieved to examine the possibly fairly complex sub-tree
representing the attribute value. On the other hand, in HTML, where all attributes have simple string
values, methods to directly access an attribute value can safely be used as a convenience [p.151] .

Note: In DOM Level 2, the method normalize is inherited from the Node [p.49] interface where
it was moved.

Note: The property [in-scope namespaces] defined in [XML Information set] are not accessible from
DOM Level 3 Core. However, [DOM Level 3 XPath] does provide a way to access the property
[in-scope namespaces].

IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);

78

1.2. Fundamental Interfaces

 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);
 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
};

Attributes
tagName of type DOMString [p.17] , readonly

The name of the element. For example, in:

 <elementExample id="demo">
 ...
 </elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters
name of type DOMString [p.17]

The name of the attribute to retrieve.
Return Value

DOMString
[p.17]

The Attr [p.76] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions
getAttributeNS introduced in DOM Level 2

Retrieves an attribute value by local name and namespace URI.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the attribute to retrieve.
localName of type DOMString

The local name [p.153] of the attribute to retrieve.

79

1.2. Fundamental Interfaces

Return Value

DOMString
[p.17]

The Attr [p.76] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions
getAttributeNode

Retrieves an attribute node by name.
To retrieve an attribute node by qualified name and namespace URI, use the
getAttributeNodeNS method.
Parameters
name of type DOMString [p.17]

The name (nodeName) of the attribute to retrieve.
Return Value

Attr
[p.76]

The Attr node with the specified name (nodeName) or null if there
is no such attribute.

No Exceptions
getAttributeNodeNS introduced in DOM Level 2

Retrieves an Attr [p.76] node by local name and namespace URI.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the attribute to retrieve.
localName of type DOMString

The local name [p.153] of the attribute to retrieve.
Return Value

Attr
[p.76]

The Attr node with the specified attribute local name and namespace
URI or null if there is no such attribute.

No Exceptions
getElementsByTagName

Returns a NodeList [p.67] of all descendant [p.151] Elements with a given tag name,
in document order [p.152] .
Parameters
name of type DOMString [p.17]

The name of the tag to match on. The special value "*" matches all tags.
Return Value

80

1.2. Fundamental Interfaces

NodeList [p.67] A list of matching Element nodes.

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.67] of all the descendant [p.151] Elements with a given local
name and namespace URI in document order [p.152] .
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the elements to match on. The special value "*"
matches all namespaces.

localName of type DOMString
The local name [p.153] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.67]

A new NodeList object containing all the matched
Elements.

No Exceptions
hasAttribute introduced in DOM Level 2

Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.
Parameters
name of type DOMString [p.17]

The name of the attribute to look for.
Return Value

boolean true if an attribute with the given name is specified on this element or
has a default value, false otherwise.

No Exceptions
hasAttributeNS introduced in DOM Level 2

Returns true when an attribute with a given local name and namespace URI is specified
on this element or has a default value, false otherwise.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters

81

1.2. Fundamental Interfaces

namespaceURI of type DOMString [p.17]
The namespace URI [p.153] of the attribute to look for.

localName of type DOMString
The local name [p.153] of the attribute to look for.

Return Value

boolean true if an attribute with the given local name and namespace URI is
specified or has a default value on this element, false otherwise.

No Exceptions
removeAttribute

Removes an attribute by name. If the removed attribute is known to have a default value,
an attribute immediately appears containing the default value as well as the corresponding
namespace URI, local name, and prefix when applicable. If the attribute does not have a
specified or default value, calling this method has no effect.
To remove an attribute by local name and namespace URI, use the
removeAttributeNS method.
Parameters
name of type DOMString [p.17]

The name of the attribute to remove.
Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
removeAttributeNS introduced in DOM Level 2

Removes an attribute by local name and namespace URI. If the removed attribute has a
default value it is immediately replaced. The replacing attribute has the same namespace
URI and local name, as well as the original prefix. If the attribute does not have a specified
or default value, calling this method has no effect.
Documents which do not support the "XML" feature will permit only the DOM Level 1
calls for creating/setting elements and attributes. Hence, if you specify a non-null
namespace URI, these DOMs will never find a matching node.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the attribute to remove.
localName of type DOMString

The local name [p.153] of the attribute to remove.
Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

82

1.2. Fundamental Interfaces

No Return Value
removeAttributeNode

Removes the specified attribute node. If the removed Attr [p.76] has a default value it is
immediately replaced. The replacing attribute has the same namespace URI and local
name, as well as the original prefix, when applicable.
Parameters
oldAttr of type Attr [p.76]

The Attr node to remove from the attribute list.
Return Value

Attr [p.76] The Attr node that was removed.

Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an attribute
of the element.

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string; it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.76] node plus any Text [p.86] and
EntityReference [p.96] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
To set an attribute with a qualified name and namespace URI, use the setAttributeNS
method.
Parameters
name of type DOMString [p.17]

The name of the attribute to create or alter.
value of type DOMString

Value to set in string form.
Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

83

1.2. Fundamental Interfaces

No Return Value
setAttributeNS introduced in DOM Level 2

Adds a new attribute. If an attribute with the same local name and namespace URI is
already present on the element, its prefix is changed to be the prefix part of the
qualifiedName, and its value is changed to be the value parameter. This value is a
simple string; it is not parsed as it is being set. So any markup (such as syntax to be
recognized as an entity reference) is treated as literal text, and needs to be appropriately
escaped by the implementation when it is written out. In order to assign an attribute value
that contains entity references, the user must create an Attr [p.76] node plus any Text
[p.86] and EntityReference [p.96] nodes, build the appropriate subtree, and use
setAttributeNodeNS or setAttributeNode to assign it as the value of an
attribute.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.153] of the attribute to create or alter.
qualifiedName of type DOMString

The qualified name [p.153] of the attribute to create or alter.
value of type DOMString

The value to set in string form.
Exceptions

DOMException
[p.23]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character, per the XML 1.0 specification
[XML 1.0].

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed per the Namespaces in XML specification, if the
qualifiedName has a prefix and the namespaceURI is
null, if the qualifiedName has a prefix that is "xml" and the
namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", or if the
qualifiedName, or its prefix, is "xmlns" and the
namespaceURI is different from
"http://www.w3.org/2000/xmlns/".

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

No Return Value

84

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2000/xmlns/

setAttributeNode
Adds a new attribute node. If an attribute with that name (nodeName) is already present in
the element, it is replaced by the new one. Replacing an attribute node by itself has no
effect.
To add a new attribute node with a qualified name and namespace URI, use the
setAttributeNodeNS method.
Parameters
newAttr of type Attr [p.76]

The Attr node to add to the attribute list.
Return Value

Attr
[p.76]

If the newAttr attribute replaces an existing attribute, the replaced
Attr node is returned, otherwise null is returned.

Exceptions

DOMException
[p.23]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.76] nodes to re-use them in other
elements.

setAttributeNodeNS introduced in DOM Level 2
Adds a new attribute. If an attribute with that local name and that namespace URI is
already present in the element, it is replaced by the new one. Replacing an attribute node by
itself has no effect.
Per [XML Namespaces], applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.
Parameters
newAttr of type Attr [p.76]

The Attr node to add to the attribute list.
Return Value

Attr
[p.76]

If the newAttr attribute replaces an existing attribute with the same local
name [p.153] and namespace URI [p.153] , the replaced Attr node is
returned, otherwise null is returned.

Exceptions

85

1.2. Fundamental Interfaces

DOMException
[p.23]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.76] nodes to re-use them in other
elements.

NOT_SUPPORTED_ERR: Always thrown if the current
document does not support the "XML" feature, since namespaces
were defined by XML.

Interface Text

The Text interface inherits from CharacterData [p.72] and represents the textual content
(termed character data in XML) of an Element [p.78] or Attr [p.76] . If there is no markup inside
an element’s content, the text is contained in a single object implementing the Text interface that is
the only child of the element. If there is markup, it is parsed into the information items [p.152]
(elements, comments, etc.) and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize method on Node [p.49] merges any such adjacent Text objects into a
single node for each block of text.

IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute boolean isWhitespaceInElementContent;
 // Introduced in DOM Level 3:
 readonly attribute DOMString wholeText;
 // Introduced in DOM Level 3:
 Text replaceWholeText(in DOMString content)
 raises(DOMException);
};

Attributes
isWhitespaceInElementContent of type boolean, readonly, introduced in DOM
Level 3

Returns whether this text node contains whitespace in element content, often abusively
called "ignorable whitespace".

86

1.2. Fundamental Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#syntax

Note: An implementation can only return true if, one way or another, it has access to the
relevant information (e.g., the DTD or schema).

This attribute represents the property [element content whitespace] defined in [XML
Information set].

wholeText of type DOMString [p.17] , readonly, introduced in DOM Level 3
Returns all text of Text nodes logically-adjacent text nodes [p.152] to this node,
concatenated in document order.

Methods
replaceWholeText introduced in DOM Level 3

Substitutes the a specified text for the text of the current node and all logically-adjacent
text nodes [p.152] .
This method returns the node in the hierarchy which received the replacement text, which
is null if the text was empty or is the current node if the current node is not read-only or
otherwise is a new node of the same type as the current node inserted at the site of the
replacement. All logically-adjacent text nodes [p.152] are removed including the current
node unless it was the recipient of the replacement text.
Where the nodes to be removed are read-only descendants of an EntityReference
[p.96] , the EntityReference must be removed instead of the read-only nodes. If any
EntityReference to be removed has descendants that are not EntityReference,
Text, or CDATASection [p.92] nodes, the replaceWholeText method must fail
before performing any modification of the document, raising a DOMException [p.23]
with the code NO_MODIFICATION_ALLOWED_ERR [p.24] .
Parameters
content of type DOMString [p.17]

The content of the replacing Text node.
Return Value

Text [p.86] The Text node created with the specified content.

Exceptions

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised if one of the
Text nodes being replaced is readonly.

splitText
Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings [p.153] . After being split, this node will contain all the content up to the offset
point. A new node of the same type, which contains all the content at and after the
offset point, is returned. If the original node had a parent node, the new node is inserted
as the next sibling [p.153] of the original node. When the offset is equal to the length of
this node, the new node has no data.
Parameters
offset of type unsigned long

The 16-bit unit [p.151] offset at which to split, starting from 0.
Return Value

87

1.2. Fundamental Interfaces

Text [p.86] The new node, of the same type as this node.

Exceptions

DOMException
[p.23]

INDEX_SIZE_ERR: Raised if the specified offset is negative or
greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

Interface Comment

This interface inherits from CharacterData [p.72] and represents the content of a comment, i.e.,
all the characters between the starting ’<!--’ and ending ’-->’. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools may implement the full
SGML comment structure.

IDL Definition

interface Comment : CharacterData {
};

Interface UserDataHandler

When associating an object to a key on a node using setUserData the application can provide a
handler that gets called when the node the object is associated to is being cloned or imported. This
can be used by the application to implement various behaviors regarding the data it associates to the
DOM nodes. This interface defines that handler.

IDL Definition

interface UserDataHandler {

 // OperationType
 const unsigned short NODE_CLONED = 1;
 const unsigned short NODE_IMPORTED = 2;
 const unsigned short NODE_DELETED = 3;
 const unsigned short NODE_RENAMED = 4;

 void handle(in unsigned short operation,
 in DOMString key,
 in DOMObject data,
 in Node src,
 in Node dst);
};

Definition group OperationType

88

1.2. Fundamental Interfaces

An integer indicating the type of operation being performed on a node.

Defined Constants
NODE_CLONED

The node is cloned.
NODE_DELETED

The node is deleted.
NODE_IMPORTED

The node is imported.
NODE_RENAMED

The node is renamed.
Methods

handle
This method is called whenever the node for which this handler is registered is imported or
cloned.
Parameters
operation of type unsigned short

Specifies the type of operation that is being performed on the node.
key of type DOMString [p.17]

Specifies the key for which this handler is being called.
data of type DOMObject [p.19]

Specifies the data for which this handler is being called.
src of type Node [p.49]

Specifies the node being cloned, imported, or renamed. This is null when the node is
being deleted.

dst of type Node
Specifies the node newly created if any, or null.

No Return Value
No Exceptions

Interface DOMError

DOMError is an interface that describes an error.

IDL Definition

interface DOMError {
 const unsigned short SEVERITY_WARNING = 0;
 const unsigned short SEVERITY_ERROR = 1;
 const unsigned short SEVERITY_FATAL_ERROR = 2;
 readonly attribute unsigned short severity;
 readonly attribute DOMString message;
 readonly attribute Object relatedException;
 readonly attribute DOMLocator location;
};

Constant SEVERITY_WARNING
The severity of the error described by the DOMError is warning

89

1.2. Fundamental Interfaces

Constant SEVERITY_ERROR
The severity of the error described by the DOMError is error

Constant SEVERITY_FATAL_ERROR
The severity of the error described by the DOMError is fatal error

Attributes
location of type DOMLocator [p.91] , readonly

The location of the error.
message of type DOMString [p.17] , readonly

An implementation specific string describing the error that occured.
relatedException of type Object, readonly

The related platform dependent exception if any.
Issue Error-1:

exception is a reserved word, we need to rename it.
Resolution: Change to "relatedException". (F2F 26 Sep 2001)

severity of type unsigned short, readonly
The severity of the error, either SEVERITY_WARNING, SEVERITY_ERROR, or
SEVERITY_FATAL_ERROR.

Interface DOMErrorHandler

DOMErrorHandler is a callback interface that the DOM implementation can call when reporting
errors that happens while processing XML data, or when doing some other processing (e.g.
validating a document).

The application that is using the DOM implementation is expected to implement this interface.

Issue ErrorHandler-1:
How does one register an error handler in the core? Passed as an argument to
super-duper-normalize or registered on the DOMImplementation?
Resolution: Document interface has an attribute errorHandler.

IDL Definition

interface DOMErrorHandler {
 boolean handleError(in DOMError error);
};

Methods
handleError

This method is called on the error handler when an error occures.
Parameters
error of type DOMError [p.89]

The error object that describes the error, this object may be reused by the DOM
implementation across multiple calls to the handleEvent method.

Return Value

90

1.2. Fundamental Interfaces

boolean If the handleError method returns true the DOM implementation should
continue as if the error didn’t happen when possible, if the method
returns false then the DOM implementation should stop the current
processing when possible.

No Exceptions
Interface DOMLocator

DOMLocator is an interface that describes a location (e.g. where an error occured).

IDL Definition

interface DOMLocator {
 readonly attribute long lineNumber;
 readonly attribute long columnNumber;
 readonly attribute long offset;
 readonly attribute Node errorNode;
 readonly attribute DOMString uri;
};

Attributes
columnNumber of type long, readonly

The column number where the error occured, or -1 if there is no column number available.
errorNode of type Node [p.49] , readonly

The DOM Node where the error occured, or null if there is no Node available.
lineNumber of type long, readonly

The line number where the error occured, or -1 if there is no line number available.
offset of type long, readonly

The byte or character offset into the input source, if we’re parsing a file or a byte stream
then this will be the byte offset into that stream, but if a character media is parsed then the
offset will be the character offset. The value is -1 if there is no offset available.

uri of type DOMString [p.17] , readonly
The URI where the error occured, or null if there is no URI available.

1.3. Extended Interfaces
The interfaces defined here form part of the DOM Core specification, but objects that expose these
interfaces will never be encountered in a DOM implementation that deals only with HTML.

The interfaces found within this section are not mandatory. A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation [p.25] interface with
parameter values "XML" and "3.0" (respectively) to determine whether or not this module is supported by
the implementation. In order to fully support this module, an implementation must also support the "Core"
feature defined in Fundamental Interfaces [p.22] . Please refer to additional information about
Conformance [p.12] in this specification. The DOM Level 3 XML module is backward compatible with
the DOM Level 2 XML [DOM Level 2 Core] and DOM Level 1 XML [DOM Level 1] modules, i.e. a
DOM Level 3 XML implementation who returns true for "XML" with the version number "3.0"
must also return true for this feature when the version number is "2.0", "1.0", "" or, null.

91

1.3. Extended Interfaces

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

The DOMString [p.17] attribute of the Text [p.86] node holds the text that is contained by the
CDATA section. Note that this may contain characters that need to be escaped outside of CDATA
sections and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData [p.72] interface through the
Text [p.86] interface. Adjacent CDATASection nodes are not merged by use of the normalize
method of the Node [p.49] interface.

Note: Because no markup is recognized within a CDATASection, character numeric references
cannot be used as an escape mechanism when serializing. Therefore, action needs to be taken when
serializing a CDATASection with a character encoding where some of the contained characters
cannot be represented. Failure to do so would not produce well-formed XML.
One potential solution in the serialization process is to end the CDATA section before the character,
output the character using a character reference or entity reference, and open a new CDATA section
for any further characters in the text node. Note, however, that some code conversion libraries at the
time of writing do not return an error or exception when a character is missing from the encoding,
making the task of ensuring that data is not corrupted on serialization more difficult.

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

Each Document [p.29] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Core provides an interface to the list of entities
that are defined for the document, and little else because the effect of namespaces and the various
XML schema efforts on DTD representation are not clearly understood as of this writing.

The DOM Level 2 doesn’t support editing DocumentType nodes.

Note: The property [children] defined by the Document Type Declaration Information Item in [XML
Information set] is not accessible from DOM Level 3 Core.

IDL Definition

92

1.3. Extended Interfaces

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
};

Attributes
entities of type NamedNodeMap [p.68] , readonly

A NamedNodeMap [p.68] containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are discarded. For
example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. Every node in this map also implements the Entity [p.94]
interface.
The DOM Level 2 does not support editing entities, therefore entities cannot be altered
in any way.

internalSubset of type DOMString [p.17] , readonly, introduced in DOM Level 2
The internal subset as a string, or null if there is none. This is does not contain the
delimiting square brackets.

Note: The actual content returned depends on how much information is available to the
implementation. This may vary depending on various parameters, including the XML
processor used to build the document.

name of type DOMString [p.17] , readonly
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

notations of type NamedNodeMap [p.68] , readonly
A NamedNodeMap [p.68] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.94] interface.
The DOM Level 2 does not support editing notations, therefore notations cannot be
altered in any way.
This attribute represents the property [notations] defined by the Document Information
Item in [XML Information set].

publicId of type DOMString [p.17] , readonly, introduced in DOM Level 2
The public identifier of the external subset.
This attribute represents the property [public identifier] defined by the Document Type

93

1.3. Extended Interfaces

Declaration Information Item in [XML Information set].
systemId of type DOMString [p.17] , readonly, introduced in DOM Level 2

The system identifier of the external subset. This may be an absolute URI or not.
This attribute represents the property [system identifier] defined by the Document Type
Declaration Information Item in [XML Information set].

Interface Notation

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification [XML 1.0]), or is used for
formal declaration of processing instruction targets (see section 2.6 of the XML 1.0 specification
[XML 1.0]). The nodeName attribute inherited from Node [p.49] is set to the declared name of the
notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore readonly [p.153] .

A Notation node does not have any parent.

Issue Notation-1:
adds a namespaceURI for notations?
Resolution: No. 1- notations are attached to a DocumentType [p.92] . 2- what would be the
key for notations in namednodemap?

IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId of type DOMString [p.17] , readonly

The public identifier of this notation. If the public identifier was not specified, this is
null.
This attribute represents the property [public identifier] defined by the Notation
Information Item in [XML Information set].

systemId of type DOMString [p.17] , readonly
The system identifier of this notation. If the system identifier was not specified, this is
null. This may be an absolute URI or not.
This attribute represents the property [system identifier] defined by the Notation
Information Item in [XML Information set].

Interface Entity

This interface represents an entity, either parsed or unparsed, in an XML document. Note that this
models the entity itself not the entity declaration. Entity declaration modeling has been left for a
later Level of the DOM specification.

The nodeName attribute that is inherited from Node [p.49] contains the name of the entity.

94

1.3. Extended Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#Notations
http://www.w3.org/TR/2000/REC-xml-20001006#sec-pi

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.96] nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement text of the entity may not be available. When the replacement text is available, the
corresponding Entity node’s child list represents the structure of that replacement value.
Otherwise, the child list is empty.

The DOM Level 2 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference [p.96] node has to be replaced in the
structure model by a clone of the Entity’s contents, and then the desired changes must be made to
each of those clones instead. Entity nodes and all their descendants [p.151] are readonly [p.153] .

An Entity node does not have any parent.

Note: If the entity contains an unbound namespace prefix [p.153] , the namespaceURI of the
corresponding node in the Entity node subtree is null. The same is true for
EntityReference [p.96] nodes that refer to this entity, when they are created using the
createEntityReference method of the Document [p.29] interface. The DOM Level 2 does
not support any mechanism to resolve namespace prefixes.

Note: The properties [notation name] and [notation] defined in [XML Information set] are not
accessible from DOM Level 3 Core. However, [DOM Level 3 Abstract Schemas and Load and Save]
does provide a way to access them.

IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 // Introduced in DOM Level 3:
 attribute DOMString actualEncoding;
 // Introduced in DOM Level 3:
 attribute DOMString encoding;
 // Introduced in DOM Level 3:
 attribute DOMString version;
};

Attributes
actualEncoding of type DOMString [p.17] , introduced in DOM Level 3

An attribute specifying the actual encoding of this entity, when it is an external parsed
entity. This is null otherwise.

encoding of type DOMString [p.17] , introduced in DOM Level 3
An attribute specifying, as part of the text declaration, the encoding of this entity, when it is
an external parsed entity. This is null otherwise.

95

1.3. Extended Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#intern-replacement

notationName of type DOMString [p.17] , readonly
For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null.

publicId of type DOMString [p.17] , readonly
The public identifier associated with the entity if specified, and null otherwise.
This attribute represents the property [public identifier] defined by the Unparsed Entity
Information Item in [XML Information set].

systemId of type DOMString [p.17] , readonly
The system identifier associated with the entity if specified, and null otherwise. This may
be an absolute URI or not.
This attribute represents the property [system identifier] defined by the Unparsed Entity
Information Item in [XML Information set].

version of type DOMString [p.17] , introduced in DOM Level 3
An attribute specifying, as part of the text declaration, the version number of this entity,
when it is an external parsed entity. This is null otherwise.

Interface EntityReference

EntityReference objects may be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Note that character
references and references to predefined entities are considered to be expanded by the HTML or XML
processor so that characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to entities while
building the structure model, instead of providing EntityReference objects. If it does provide
such objects, then for a given EntityReference node, it may be that there is no Entity [p.94]
node representing the referenced entity. If such an Entity exists, then the subtree of the
EntityReference node is in general a copy of the Entity node subtree. However, this may not
be true when an entity contains an unbound namespace prefix [p.153] . In such a case, because the
namespace prefix resolution depends on where the entity reference is, the descendants [p.151] of the
EntityReference node may be bound to different namespace URIs [p.153] .

As for Entity [p.94] nodes, EntityReference nodes and all their descendants [p.151] are
readonly [p.153] .

Note: The properties [system identifier] and [public identifier] defined by the Unexpanded Entity
Reference Information Item in [XML Information set] are accessible through the Entity [p.94]
interface. The property [all declarations processed] is not accessible through the DOM API.

IDL Definition

interface EntityReference : Node {
};

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.

96

1.3. Extended Interfaces

Note: The property [notation] defined in [XML Information set] is not accessible from DOM Level 3
Core.

IDL Definition

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

};

Attributes
data of type DOMString [p.17]

The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
This attribute represents the property [content] defined by the Processing Instruction
Information Item in [XML Information set].
Exceptions on setting

DOMException
[p.23]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

target of type DOMString [p.17] , readonly
The target of this processing instruction. XML defines this as being the first token [p.153]
following the markup that begins the processing instruction.
This attribute represents the property [target] defined in [XML Information set].

97

1.3. Extended Interfaces

98

1.3. Extended Interfaces

Appendix A: Changes
Editors:

Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C

A.1: Changes between DOM Level 2 Core and DOM Level 3
Core
To be completed...

A.2: Changes between DOM Level 1 Core and DOM Level 2
Core
OMG IDL

The DOM Level 2 specifications are now using Corba 2.3.1 instead of Corba 2.2.
Type DOMString [p.17]

The definition of DOMString [p.17] in IDL is now a valuetype.

A.2.1: Changes to DOM Level 1 Core interfaces and exceptions

Interface Attr [p.76]
The Attr [p.76] interface has one new attribute: ownerElement.

Interface Document [p.29]
The Document [p.29] interface has five new methods: importNode, createElementNS,
createAttributeNS, getElementsByTagNameNS and getElementById.

Interface NamedNodeMap [p.68]
The NamedNodeMap [p.68] interface has three new methods: getNamedItemNS,
setNamedItemNS, removeNamedItemNS.

Interface Node [p.49]
The Node [p.49] interface has two new methods: isSupported and hasAttributes.
normalize, previously in the Element [p.78] interface, has been moved in the Node [p.49]
interface.
The Node [p.49] interface has three new attributes: namespaceURI, prefix and localName.
The ownerDocument attribute was specified to be null when the node is a Document [p.29] . It
now is also null when the node is a DocumentType [p.92] which is not used with any
Document yet.

Interface DocumentType [p.92]
The DocumentType [p.92] interface has three attributes: publicId, systemId and
internalSubset.

Interface DOMImplementation [p.25]
The DOMImplementation [p.25] interface has two new methods: createDocumentType and
createDocument.

99

Appendix A: Changes

Interface Element [p.78]
The Element [p.78] interface has eight new methods: getAttributeNS, setAttributeNS,
removeAttributeNS, getAttributeNodeNS, setAttributeNodeNS,
getElementsByTagNameNS, hasAttribute and hasAttributeNS.
The method normalize is now inherited from the Node [p.49] interface where it was moved.

Exception DOMException [p.23]
The DOMException [p.23] has five new exception codes: INVALID_STATE_ERR [p.24] ,
SYNTAX_ERR [p.24] , INVALID_MODIFICATION_ERR [p.24] , NAMESPACE_ERR [p.24] and
INVALID_ACCESS_ERR [p.24] .

A.2.2: New features

A.2.2.1: New types

DOMTimeStamp [p.18]
The DOMTimeStamp [p.18] type was added to the Core module.

100

A.2.2: New features

Appendix B: Namespaces Algorithms
Editor:

Arnaud Le Hors, IBM

B.1: Namespace normalization
Namespace declaration attributes and prefixes are normalized as part of the normalizeDocument
method of the Document [p.29] interface as if the following method described in pseudo code was called
on the document element.

void Element.normalizeNamespaces()
{
 if (Element’s namespaceURI != null)
 {
 if (Element’s prefix/namespace pair (or default namespace,
 if no prefix) are within the scope of a binding)
 {
 ==> do nothing, declaration in scope is inherited
 See example 1
 }
 else
 {
 ==> Create a local namespace declaration attr for this namespace,
 with Element’s current prefix (or a default namespace, if
 no prefix). If there’s a conflicting local declaration
 already present, change its value to use this namespace.
 See example 2
 // NOTE that this may break other nodes within this Element’s
 // subtree, if they’re already using this prefix.
 // They will be repaired when we reach them.
 }
 }
 else
 {
 // Element has no namespace URI:
 if (Element has a colon in its name)
 {
 if (Level 2 node)
 {
 ==> report an error
 }
 else
 {
 // Level 1 node

 if (Name is not a QName)
 {
 ==> report an error
 }
 else
 {
 if (Prefix is bound to something)

101

Appendix B: Namespaces Algorithms

 {
 ==> report a warning
 }
 else
 {
 ==> report an error
 }
 }
 }
 }
 else
 {
 // Element has no namespace URI
 // Element has no pseudo-prefix
 if (default Namespace in scope is "no namespace")
 {
 ==> do nothing, we’re fine as we stand
 }
 else
 {
 if (there’s a conflicting local default namespace declaration
 already present)
 {
 ==> change its value to use this empty namespace.
 See example 3
 }
 else
 {
 ==> Set the default namespace to "no namespace" by creating or
 changing a local declaration attribute: xmlns="".
 See example 4
 }
 // NOTE that this may break other nodes within this Element’s
 // subtree, if they’re already using the default namespaces.
 // They will be repaired when we reach them.
 }
 }
 }

 //////// EXAMINE AND POLISH THE ATTRS ////////
 for (all Attrs of Element)
 {
 if (Attr[i] has a namespace URI)
 {
 if (Attr has no prefix, or has a prefix that conflicts with
 a binding already active in scope)
 {
 if (Element is in the scope of a non default binding for this
 namespace)
 {
 if (one or more prefix bindings are available)
 {
 if (one is locally defined)
 {
 ==> pick that one.
 }
 else

102

B.1: Namespace normalization

 {
 ==> pick one arbitrarily
 }
 ==> Change the Attr to use that prefix.
 }
 else
 {
 ==> Create a local namespace declaration attr for this namespace
 with a prefix not already used in the current scope and following
 the pattern "NS" + index (starting at 1).
 Change the Attr to use this prefix.

 // NOTE that this may break other nodes within this Element’s
 // subtree, if they’re already using this prefix.
 // They will be repaired when we reach them.
 }
 }
 }
 else
 {
 // prefix does match but....

 if (namespace is "http://www.w3.org/2000/xmlns/" AND attribute does
 not have the prefix "xmlns:" or the nodeName "xmlns")
 {
 // While all Namespace Declarations belong to a reserved NSURI,
 // it is _not_ true that all attributes having that NSURI are to be
 // considered Namespace Declarations.
 // According to the namespace spec, only "xmlns" and names having
 // the xmlns: prefix should be interpreted as declarations. So:
 if (there is a non default binding for this namespace in scope
 with a prefix other than "xmlns")
 {
 if (one is locally defined)
 {
 ==> pick that one.
 }
 else
 {
 ==> pick one arbitrarily
 }
 ==> Change the Attr to use that prefix.
 }
 else
 {
 ==> Create a local namespace declaration attr for this namespace
 with a prefix not already used in the current scope and following
 the pattern "NS" + index (starting at 1).
 Change the Attr to use this prefix.

 // NOTE that this may break other nodes within thisElement’s
 // subtree, if they’re already using this prefix.
 // They will be repaired when we reach them.
 }
 // end non-namespace-decl with namespace-decl URI
 }
 }

103

B.1: Namespace normalization

 // end namespaced Attr
 }
 else
 {
 // Attr[i] has no namespace URI
 if (Attr[i] has a colon in its name)
 {
 if (Level 2 node)
 {
 ==> report an error
 }
 else
 {
 // Level 1 node
 if (Name is not a QName)
 {
 ==> report an error
 }
 else
 {
 if (Prefix is bound to something)
 {
 ==> report a warning
 }
 else
 {
 ==> report an error
 }
 }
 }
 }
 else
 {
 // attr has no namespace URI and no prefix
 // we’re fine as we stand, since attrs don’t use default
 ==> do nothing
 }
 }
 } // end for-all-Attrs

 // do this recursively
 for (all child elements of Element)
 {
 childElement.normalizeNamespaces()
 }
} // end Element.normalizeNamespaces

B.2: Namespace Prefix Lookup
The following describes in pseudo code the algorithm used in the lookupNamespacePrefix method
of the Node [p.49] interface.

104

B.2: Namespace Prefix Lookup

DOMString lookupNamespacePrefix(in DOMString specifiedNamespaceURI,
 in DOMString useDefault)
{
 switch (nodeType) {
 case ELEMENT_NODE:
 if ((Element’s namespaceURI == specifiedNamespaceURI) and
 ((Element has prefix) or
 (Element has no prefix and
 useDefault is true)))
 {
 return Element’s prefix
 }
 else if (Element has an Attr and
 Attr’s namespaceURI == "http://www.w3.org/2000/xmlns/" and
 Attr’s prefix == "xmlns" and
 Attr’s value == specifiedNamespaceURI)
 {
 return Attr’s localName.
 }
 else if (Element has an Attr and
 Attr’s namespaceURI == "http://www.w3.org/2000/xmlns/" and
 Attr’s localName == "xmlns" and
 Attr’s value == specifiedNamespaceURI and
 useDefault is true)
 {
 return (null)
 }
 else if (Element has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.lookupNamespacePrefix(specifiedNamespaceURI,
 useDefault)
 }
 else {
 return unknown (null)
 }
 case DOCUMENT_NODE:
 return documentElement.lookupNamespacePrefix(specifiedNamespaceURI,
 useDefault)
 case ENTITY_NODE:
 case NOTATION_NODE:
 case DOCUMENT_TYPE_NODE:
 case DOCUMENT_FRAGMENT_NODE:
 return unknown (null);
 case ATTRIBUTE_NODE:
 if (Attr has an owner Element)
 {
 return ownerElement.lookupNamespacePrefix(specifiedNamespaceURI,
 useDefault)
 }
 else {
 return unknown (null)
 }
 default:
 if (Node has an ancestor Element)
 {
 return ancestorElement.lookupNamespacePrefix(specifiedNamespaceURI,

105

B.2: Namespace Prefix Lookup

 useDefault)
 }
 else {
 return unknown (null)
 }
 }
}

Issue lookupNamespacePrefixAlgo-1:
Isn’t the name the opposite of what it stands for?
Resolution: No.

Issue lookupNamespacePrefixAlgo-2:
How does one differentiate the case where it’s the default namespace (prefix == null) from the case
where the namespaceURI was not found?
Resolution: Use isDefaultNamespace.

Issue lookupNamespacePrefixAlgo-3:
How does one specify this is for an attribute and therefore the default namespace is not applicable?
Resolution: The algorithm goes directly to the owner element. Use useDefault to prevent using the
default namespace.

B.3: Default Namespace Lookup
The following describes in pseudo code the algorithm used in the isDefaultNamespace method of
the Node [p.49] interface.

DOMString isDefaultNamespace(in DOMString specifiedNamespaceURI)
{
 switch (nodeType) {
 case ELEMENT_NODE:
 if (Element has no prefix)
 {
 return (Element’s namespaceURI == specifiedNamespaceURI)
 }
 else if (Element has an Attr and
 Attr’s namespaceURI == "http://www.w3.org/2000/xmlns/" and
 Attr’s localName == "xmlns")
 {
 return Attr’s value == specifiedNamespaceURI
 }

 if (Element has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.isDefaultNamespace(specifiedNamespaceURI)
 }
 else {
 return unknown (null)
 }
 case DOCUMENT_NODE:
 return documentElement.isDefaultNamespace(specifiedNamespaceURI)
 case ENTITY_NODE:
 case NOTATION_NODE:
 case DOCUMENT_TYPE_NODE:

106

B.3: Default Namespace Lookup

 case DOCUMENT_FRAGMENT_NODE:
 return unknown (null);
 case ATTRIBUTE_NODE:
 if (Attr has an owner Element)
 {
 return ownerElement.isDefaultNamespace(specifiedNamespaceURI)
 }
 else {
 return unknown (null)
 }
 default:
 if (Node has an ancestor Element)
 {
 return ancestorElement.isDefaultNamespace(specifiedNamespaceURI)
 }
 else {
 return unknown (null)
 }
 }
}

B.4: Namespace URI Lookup
The following describes in pseudo code the algorithm used in the lookupNamespaceURI method of
the Node [p.49] interface.

DOMString lookupNamespaceURI(in DOMString specifiedPrefix)
{
 switch (nodeType) {
 case ELEMENT_NODE:
 return lookupNamespaceURI(specifiedPrefix, this);
 case DOCUMENT_NODE:
 return documentElement.lookupNamespaceURI(specifiedPrefix)
 case ENTITY_NODE:
 case NOTATION_NODE:
 case DOCUMENT_TYPE_NODE:
 case DOCUMENT_FRAGMENT_NODE:
 return unknown (null)
 case ATTRIBUTE_NODE:
 if (Attr has an owner Element)
 {
 return ownerElement.lookupNamespaceURI(specifiedPrefix)
 }
 else {
 return unknown (null)
 }
 default:
 if (Node has an ancestor Element)
 {
 return ancestorElement.lookupNamespaceURI(specifiedPrefix)
 }
 else {
 return unknown (null)
 }
 }

107

B.4: Namespace URI Lookup

}

DOMString lookupNamespaceURI(in DOMString specifiedPrefix, Element el)
{
 if (Element’s namespace URI != null and
 Element’s prefix == specifiedPrefix and
 specifiedPrefix != null and
 el.lookupNamespacePrefix(Element’s namespace URI, false) == specifiedPrefix)
 return Element’s namespace URI
 }
 else if (Element’s namespace URI != null and
 Element’s prefix == specifiedPrefix and
 specifiedPrefix == null and
 el.lookupNamespacePrefix(Element’s namespace URI, true) == null)
 return Element’s namespace URI
 }
 else if (Element has an Attr and
 Attr’s namespaceURI == "http://www.w3.org/2000/xmlns/" and
 Attr’s prefix == "xmlns" and
 Attr’s localName == specifiedPrefix and
 el.lookupNamespacePrefix(Attr’s value URI, false) == specifiedPrefix)
 {
 return Attr’s value.
 }
 else if (Element has an Attr and
 Attr’s namespaceURI == "http://www.w3.org/2000/xmlns/" and
 Attr’s localName == "xmlns" and
 specifiedPrefix == null and
 el.lookupNamespacePrefix(Attr’s value URI, true) == null)
 {
 return Attr’s value.
 }
 else if (Element has an ancestor Element)
 // EntityReferences may have to be skipped to get to it
 {
 return ancestorElement.lookupNamespaceURI(specifiedPrefix, el)
 }
 else {
 return unknown (null)
 }
}

Issue lookupNamespaceURIAlgo-1:
How does one look for the default namespace?
Resolution: use lookupNamespaceURI(null)

108

B.4: Namespace URI Lookup

Appendix C: Accessing code point boundaries
Mark Davis, IBM
Lauren Wood, SoftQuad Software Inc.

C.1: Introduction
This appendix is an informative, not a normative, part of the Level 2 DOM specification.

Characters are represented in Unicode by numbers called code points (also called scalar values). These
numbers can range from 0 up to 1,114,111 = 10FFFF16 (although some of these values are illegal). Each

code point can be directly encoded with a 32-bit code unit. This encoding is termed UCS-4 (or UTF-32).
The DOM specification, however, uses UTF-16, in which the most frequent characters (which have values
less than FFFF16) are represented by a single 16-bit code unit, while characters above FFFF16 use a

special pair of code units called a surrogate pair. For more information, see [Unicode 2.0] or the Unicode
Web site.

While indexing by code points as opposed to code units is not common in programs, some specifications
such as XPath (and therefore XSLT and XPointer) use code point indices. For interfacing with such
formats it is recommended that the programming language provide string processing methods for
converting code point indices to code unit indices and back. Some languages do not provide these
functions natively; for these it is recommended that the native String type that is bound to DOMString
[p.17] be extended to enable this conversion. An example of how such an API might look is supplied
below.

Note: Since these methods are supplied as an illustrative example of the type of functionality that is
required, the names of the methods, exceptions, and interface may differ from those given here.

C.2: Methods
Interface StringExtend

Extensions to a language’s native String class or interface

IDL Definition

interface StringExtend {
 int findOffset16(in int offset32)
 raises(StringIndexOutOfBoundsException);
 int findOffset32(in int offset16)
 raises(StringIndexOutOfBoundsException);
};

Methods
findOffset16

Returns the UTF-16 offset that corresponds to a UTF-32 offset. Used for random access.

109

Appendix C: Accessing code point boundaries

Note: You can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You
can round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16
is not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset32 of type int

UTF-32 offset.
Return Value

int UTF-16 offset

Exceptions

StringIndexOutOfBoundsException if offset32 is out of bounds.

findOffset32
Returns the UTF-32 offset corresponding to a UTF-16 offset. Used for random access. To
find the UTF-32 length of a string, use:

len32 = findOffset32(source, source.length());

Note: If the UTF-16 offset is into the middle of a surrogate pair, then the UTF-32 offset of
the end of the pair is returned; that is, the index of the char after the end of the pair. You
can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You can
round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16 is
not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset16 of type int

UTF-16 offset
Return Value

int UTF-32 offset

Exceptions

StringIndexOutOfBoundsException if offset16 is out of bounds.

110

C.2: Methods

Appendix D: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Core definitions.

The IDL files are also available as:
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/idl.zip

dom.idl:
// File: dom.idl

#ifndef _DOM_IDL_
#define _DOM_IDL_

#pragma prefix "w3c.org"
module dom
{

 valuetype DOMString sequence<unsigned short>;

 typedef unsigned long long DOMTimeStamp;

 typedef Object DOMUserData;

 typedef Object DOMObject;

 interface DOMImplementation;
 interface DocumentType;
 interface Document;
 interface NodeList;
 interface NamedNodeMap;
 interface UserDataHandler;
 interface Element;
 interface DOMLocator;

 exception DOMException {
 unsigned short code;
 };
 // ExceptionCode
 const unsigned short INDEX_SIZE_ERR = 1;
 const unsigned short DOMSTRING_SIZE_ERR = 2;
 const unsigned short HIERARCHY_REQUEST_ERR = 3;
 const unsigned short WRONG_DOCUMENT_ERR = 4;
 const unsigned short INVALID_CHARACTER_ERR = 5;
 const unsigned short NO_DATA_ALLOWED_ERR = 6;
 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
 const unsigned short NOT_FOUND_ERR = 8;
 const unsigned short NOT_SUPPORTED_ERR = 9;
 const unsigned short INUSE_ATTRIBUTE_ERR = 10;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_STATE_ERR = 11;
 // Introduced in DOM Level 2:
 const unsigned short SYNTAX_ERR = 12;

111

Appendix D: IDL Definitions

 // Introduced in DOM Level 2:
 const unsigned short INVALID_MODIFICATION_ERR = 13;
 // Introduced in DOM Level 2:
 const unsigned short NAMESPACE_ERR = 14;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_ACCESS_ERR = 15;
 // Introduced in DOM Level 3:
 const unsigned short VALIDATION_ERR = 16;

 interface DOMImplementationSource {
 DOMImplementation getDOMImplementation(in DOMString features);
 };

 interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 // Introduced in DOM Level 3:
 DOMImplementation getInterface(in DOMString feature);
 };

 interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;

112

dom.idl:

 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 // Modified in DOM Level 3:
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 // Modified in DOM Level 3:
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
 // Introduced in DOM Level 3:
 readonly attribute DOMString baseURI;

 // TreePosition
 const unsigned short TREE_POSITION_PRECEDING = 0x01;
 const unsigned short TREE_POSITION_FOLLOWING = 0x02;
 const unsigned short TREE_POSITION_ANCESTOR = 0x04;
 const unsigned short TREE_POSITION_DESCENDANT = 0x08;
 const unsigned short TREE_POSITION_EQUIVALENT = 0x10;
 const unsigned short TREE_POSITION_SAME_NODE = 0x20;
 const unsigned short TREE_POSITION_DISCONNECTED = 0x00;

 // Introduced in DOM Level 3:
 unsigned short compareTreePosition(in Node other);
 // Introduced in DOM Level 3:
 attribute DOMString textContent;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 // Introduced in DOM Level 3:
 boolean isSameNode(in Node other);
 // Introduced in DOM Level 3:

113

dom.idl:

 DOMString lookupNamespacePrefix(in DOMString namespaceURI,
 in boolean useDefault);
 // Introduced in DOM Level 3:
 boolean isDefaultNamespace(in DOMString namespaceURI);
 // Introduced in DOM Level 3:
 DOMString lookupNamespaceURI(in DOMString prefix);
 // Introduced in DOM Level 3:
 boolean isEqualNode(in Node arg);
 // Introduced in DOM Level 3:
 Node getInterface(in DOMString feature);
 // Introduced in DOM Level 3:
 DOMUserData setUserData(in DOMString key,
 in DOMUserData data,
 in UserDataHandler handler);
 // Introduced in DOM Level 3:
 DOMUserData getUserData(in DOMString key);
 };

 interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 };

 interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);

114

dom.idl:

 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 };

 interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
 };

 interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);
 // Introduced in DOM Level 2:

115

dom.idl:

 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 };

 interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 // Introduced in DOM Level 3:
 readonly attribute boolean isWhitespaceInElementContent;
 // Introduced in DOM Level 3:
 readonly attribute DOMString wholeText;
 // Introduced in DOM Level 3:
 Text replaceWholeText(in DOMString content)
 raises(DOMException);
 };

 interface Comment : CharacterData {
 };

 interface UserDataHandler {

 // OperationType
 const unsigned short NODE_CLONED = 1;
 const unsigned short NODE_IMPORTED = 2;
 const unsigned short NODE_DELETED = 3;
 const unsigned short NODE_RENAMED = 4;

 void handle(in unsigned short operation,
 in DOMString key,
 in DOMObject data,
 in Node src,
 in Node dst);
 };

 interface DOMError {
 const unsigned short SEVERITY_WARNING = 0;
 const unsigned short SEVERITY_ERROR = 1;
 const unsigned short SEVERITY_FATAL_ERROR = 2;
 readonly attribute unsigned short severity;
 readonly attribute DOMString message;
 readonly attribute Object relatedException;
 readonly attribute DOMLocator location;
 };

 interface DOMErrorHandler {
 boolean handleError(in DOMError error);
 };

 interface DOMLocator {
 readonly attribute long lineNumber;
 readonly attribute long columnNumber;
 readonly attribute long offset;
 readonly attribute Node errorNode;
 readonly attribute DOMString uri;
 };

 interface CDATASection : Text {

116

dom.idl:

 };

 interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
 };

 interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 };

 interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 // Introduced in DOM Level 3:
 attribute DOMString actualEncoding;
 // Introduced in DOM Level 3:
 attribute DOMString encoding;
 // Introduced in DOM Level 3:
 attribute DOMString version;
 };

 interface EntityReference : Node {
 };

 interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

 };

 interface DocumentFragment : Node {
 };

 interface Document : Node {
 // Modified in DOM Level 3:
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,

117

dom.idl:

 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 // Introduced in DOM Level 3:
 attribute DOMString actualEncoding;
 // Introduced in DOM Level 3:
 attribute DOMString encoding;
 // Introduced in DOM Level 3:
 attribute boolean standalone;
 // Introduced in DOM Level 3:
 attribute DOMString version;
 // raises(DOMException) on setting

 // Introduced in DOM Level 3:
 attribute boolean strictErrorChecking;
 // Introduced in DOM Level 3:
 attribute DOMErrorHandler errorHandler;
 // Introduced in DOM Level 3:
 attribute DOMString documentURI;
 // Introduced in DOM Level 3:
 Node adoptNode(in Node source)
 raises(DOMException);
 // Introduced in DOM Level 3:
 void normalizeDocument();
 // Introduced in DOM Level 3:
 boolean canSetNormalizationFeature(in DOMString name,
 in boolean state);
 // Introduced in DOM Level 3:
 void setNormalizationFeature(in DOMString name,
 in boolean state)
 raises(DOMException);
 // Introduced in DOM Level 3:
 boolean getNormalizationFeature(in DOMString name)
 raises(DOMException);
 // Introduced in DOM Level 3:
 Node renameNode(in Node n,

118

dom.idl:

 in DOMString namespaceURI,
 in DOMString name)
 raises(DOMException);
 };
};

#endif // _DOM_IDL_

119

dom.idl:

120

dom.idl:

Appendix E: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Core.

The Java files are also available as
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/java-binding.zip

E.1: Java Binding Extension
This section defines the DOMImplementationRegistry object, discussed in Bootstrapping [p.22] ,
for Java.

The DOMImplementationRegistry is first initialized by the application or the implementation,
depending on the context, through the Java system property
"org.w3c.dom.DOMImplementationSourceList". The value of this property is a space separated list of
names of available classes implementing the DOMImplementationSource [p.24] interface.

org/w3c/dom/DOMImplementationRegistry.java:
package org.w3c.dom;

import java.util.StringTokenizer;
import java.util.Vector;

/**
 * This class holds the list of registered DOMImplementations. It is first
 * initialized based on the content of the space separated list of classnames
 * contained in the System Property "org.w3c.dom.DOMImplementationSourceList".
 *
 * <p>Subsequently, additional sources can be registered and implementations
 * can be queried based on a list of requested features.
 *
 * <p>This provides an application with an implementation independent starting
 * point.
 *
 * @see DOMImplementation
 * @see DOMImplementationSource
 */
public class DOMImplementationRegistry
{

 // The system property to specify the DOMImplementationSource class names.
 public static String PROPERTY = "org.w3c.dom.DOMImplementationSourceList";

 private static Vector sources = new Vector();
 private static boolean initialized = false;

 private static void initialize() throws ClassNotFoundException,
 InstantiationException, IllegalAccessException
 {
 initialized = true;
 String p = System.getProperty(PROPERTY);

121

Appendix E: Java Language Binding

 if (p == null) {
 return;
 }
 StringTokenizer st = new StringTokenizer(p);
 while (st.hasMoreTokens()) {
 Object source = Class.forName(st.nextToken()).newInstance();
 sources.addElement(source);
 }
 }

 /**
 * Return the first registered implementation that has the desired features,
 * or null if none is found.
 *
 * @param features A string that specifies which features are required.
 * This is a space separated list in which each feature is
 * specified by its name optionally followed by a space
 * and a version number.
 * This is something like: "XML 1.0 Traversal Events 2.0"
 * @return An implementation that has the desired features, or
 * <code>null</code> if this source has none.
 */
 public static DOMImplementation getDOMImplementation(String features)
 throws ClassNotFoundException,
 InstantiationException, IllegalAccessException
 {
 if (!initialized) {
 initialize();
 }
 int len = sources.size();
 for (int i = 0; i < len; i++) {
 DOMImplementationSource source =
 (DOMImplementationSource) sources.elementAt(i);

 DOMImplementation impl = source.getDOMImplementation(features);
 if (impl != null) {
 return impl;
 }
 }
 return null;
 }

 /**
 * Register an implementation.
 */
 public static void addSource(DOMImplementationSource s)
 throws ClassNotFoundException,
 InstantiationException, IllegalAccessException
 {
 if (!initialized) {
 initialize();
 }
 sources.addElement(s);
 // update system property accordingly
 StringBuffer b = new StringBuffer(System.getProperty(PROPERTY));

122

org/w3c/dom/DOMImplementationRegistry.java:

 b.append(" " + s.getClass().getName());
 System.setProperty(PROPERTY, b.toString());
 }
}

With this, the first line of an application typically becomes something like (modulo exception handling):

 DOMImplementation impl = DOMImplementationRegistry.getDOMImplementation("XML 1.0");

Issue Level-3-Java-Bootstrap-1:
Should this provides for handling more than one implementation at a time?
Resolution: Yes.

Issue Level-3-Java-Bootstrap-2:
Should this be even simpler and force the implementation to provide this class (and not necessarily
rely on any system property)?
Resolution: No.

Issue Level-3-Java-Bootstrap-3:
This requires all DOMImplementationSources to be pre-instantiated.
Resolution: Proposed: It’s ok.

Issue Level-3-Java-Bootstrap-4:
Some people may like to be able to enumerate available implementations. DOMImplementation
objects may be too dynamic to enumerate. We should explore any significant use case that cannot be
solved by this proposal.
Resolution: No real need. Additional features can be used to further differentiate implementations.

Issue Level-3-Java-Bootstrap-5:
A space-separated feature string may not be the optimal way to pass a feature list. It was motivated
by the lack of an array construct.
Resolution: Proposed: It’s ok.

Issue Level-3-Java-Bootstrap-6:
Should "*" given as the version number be interpreted as "any version". hasFeature() does not allow
this, it requires a specific version to be given.
Resolution: No. (telcon xxxx)

E.2: Other Core interfaces

org/w3c/dom/DOMException.java:
package org.w3c.dom;

public class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;

123

E.2: Other Core interfaces

 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;
 public static final short INVALID_STATE_ERR = 11;
 public static final short SYNTAX_ERR = 12;
 public static final short INVALID_MODIFICATION_ERR = 13;
 public static final short NAMESPACE_ERR = 14;
 public static final short INVALID_ACCESS_ERR = 15;
 public static final short VALIDATION_ERR = 16;

}

org/w3c/dom/DOMImplementationSource.java:
package org.w3c.dom;

public interface DOMImplementationSource {
 public DOMImplementation getDOMImplementation(String features);

}

org/w3c/dom/DOMImplementation.java:
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);

 public DocumentType createDocumentType(String qualifiedName,
 String publicId,
 String systemId)
 throws DOMException;

 public Document createDocument(String namespaceURI,
 String qualifiedName,
 DocumentType doctype)
 throws DOMException;

 public DOMImplementation getInterface(String feature);

}

org/w3c/dom/DocumentFragment.java:
package org.w3c.dom;

public interface DocumentFragment extends Node {
}

124

org/w3c/dom/DOMImplementationSource.java:

org/w3c/dom/Document.java:
package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)
 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)
 throws DOMException;

 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference(String name)
 throws DOMException;

 public NodeList getElementsByTagName(String tagname);

 public Node importNode(Node importedNode,
 boolean deep)
 throws DOMException;

 public Element createElementNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public Attr createAttributeNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public Element getElementById(String elementId);

 public String getActualEncoding();
 public void setActualEncoding(String actualEncoding);

 public String getEncoding();

125

org/w3c/dom/Document.java:

 public void setEncoding(String encoding);

 public boolean getStandalone();
 public void setStandalone(boolean standalone);

 public String getVersion();
 public void setVersion(String version)
 throws DOMException;

 public boolean getStrictErrorChecking();
 public void setStrictErrorChecking(boolean strictErrorChecking);

 public DOMErrorHandler getErrorHandler();
 public void setErrorHandler(DOMErrorHandler errorHandler);

 public String getDocumentURI();
 public void setDocumentURI(String documentURI);

 public Node adoptNode(Node source)
 throws DOMException;

 public void normalizeDocument();

 public boolean canSetNormalizationFeature(String name,
 boolean state);

 public void setNormalizationFeature(String name,
 boolean state)
 throws DOMException;

 public boolean getNormalizationFeature(String name)
 throws DOMException;

 public Node renameNode(Node n,
 String namespaceURI,
 String name)
 throws DOMException;

}

org/w3c/dom/Node.java:
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;
 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;

126

org/w3c/dom/Node.java:

 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

 public String getNodeName();

 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild,
 Node refChild)
 throws DOMException;

 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public Node removeChild(Node oldChild)
 throws DOMException;

 public Node appendChild(Node newChild)
 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep);

 public void normalize();

 public boolean isSupported(String feature,
 String version);

 public String getNamespaceURI();

 public String getPrefix();
 public void setPrefix(String prefix)
 throws DOMException;

127

org/w3c/dom/Node.java:

 public String getLocalName();

 public boolean hasAttributes();

 public String getBaseURI();

 // TreePosition
 public static final short TREE_POSITION_PRECEDING = 0x01;
 public static final short TREE_POSITION_FOLLOWING = 0x02;
 public static final short TREE_POSITION_ANCESTOR = 0x04;
 public static final short TREE_POSITION_DESCENDANT = 0x08;
 public static final short TREE_POSITION_EQUIVALENT = 0x10;
 public static final short TREE_POSITION_SAME_NODE = 0x20;
 public static final short TREE_POSITION_DISCONNECTED = 0x00;

 public short compareTreePosition(Node other);

 public String getTextContent()
 throws DOMException;
 public void setTextContent(String textContent)
 throws DOMException;

 public boolean isSameNode(Node other);

 public String lookupNamespacePrefix(String namespaceURI,
 boolean useDefault);

 public boolean isDefaultNamespace(String namespaceURI);

 public String lookupNamespaceURI(String prefix);

 public boolean isEqualNode(Node arg);

 public Node getInterface(String feature);

 public Object setUserData(String key,
 Object data,
 UserDataHandler handler);

 public Object getUserData(String key);

}

org/w3c/dom/NodeList.java:
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);

 public int getLength();

}

128

org/w3c/dom/NodeList.java:

org/w3c/dom/NamedNodeMap.java:
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg)
 throws DOMException;

 public Node removeNamedItem(String name)
 throws DOMException;

 public Node item(int index);

 public int getLength();

 public Node getNamedItemNS(String namespaceURI,
 String localName);

 public Node setNamedItemNS(Node arg)
 throws DOMException;

 public Node removeNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

}

org/w3c/dom/CharacterData.java:
package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;

 public int getLength();

 public String substringData(int offset,
 int count)
 throws DOMException;

 public void appendData(String arg)
 throws DOMException;

 public void insertData(int offset,
 String arg)
 throws DOMException;

 public void deleteData(int offset,
 int count)
 throws DOMException;

129

org/w3c/dom/NamedNodeMap.java:

 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;

}

org/w3c/dom/Attr.java:
package org.w3c.dom;

public interface Attr extends Node {
 public String getName();

 public boolean getSpecified();

 public String getValue();
 public void setValue(String value)
 throws DOMException;

 public Element getOwnerElement();

}

org/w3c/dom/Element.java:
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name,
 String value)
 throws DOMException;

 public void removeAttribute(String name)
 throws DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;

 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;

 public NodeList getElementsByTagName(String name);

 public String getAttributeNS(String namespaceURI,
 String localName);

 public void setAttributeNS(String namespaceURI,
 String qualifiedName,
 String value)

130

org/w3c/dom/Attr.java:

 throws DOMException;

 public void removeAttributeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Attr getAttributeNodeNS(String namespaceURI,
 String localName);

 public Attr setAttributeNodeNS(Attr newAttr)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public boolean hasAttribute(String name);

 public boolean hasAttributeNS(String namespaceURI,
 String localName);

}

org/w3c/dom/Text.java:
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;

 public boolean getIsWhitespaceInElementContent();

 public String getWholeText();

 public Text replaceWholeText(String content)
 throws DOMException;

}

org/w3c/dom/Comment.java:
package org.w3c.dom;

public interface Comment extends CharacterData {
}

org/w3c/dom/UserDataHandler.java:
package org.w3c.dom;

public interface UserDataHandler {
 // OperationType
 public static final short NODE_CLONED = 1;
 public static final short NODE_IMPORTED = 2;
 public static final short NODE_DELETED = 3;

131

org/w3c/dom/Text.java:

 public static final short NODE_RENAMED = 4;

 public void handle(short operation,
 String key,
 Object data,
 Node src,
 Node dst);

}

org/w3c/dom/DOMError.java:
package org.w3c.dom;

public interface DOMError {
 public static final short SEVERITY_WARNING = 0;
 public static final short SEVERITY_ERROR = 1;
 public static final short SEVERITY_FATAL_ERROR = 2;
 public short getSeverity();

 public String getMessage();

 public Object getRelatedException();

 public DOMLocator getLocation();

}

org/w3c/dom/DOMErrorHandler.java:
package org.w3c.dom;

public interface DOMErrorHandler {
 public boolean handleError(DOMError error);

}

org/w3c/dom/DOMLocator.java:
package org.w3c.dom;

public interface DOMLocator {
 public int getLineNumber();

 public int getColumnNumber();

 public int getOffset();

 public Node getErrorNode();

 public String getUri();

}

132

org/w3c/dom/DOMError.java:

org/w3c/dom/CDATASection.java:
package org.w3c.dom;

public interface CDATASection extends Text {
}

org/w3c/dom/DocumentType.java:
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

 public String getPublicId();

 public String getSystemId();

 public String getInternalSubset();

}

org/w3c/dom/Notation.java:
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();

 public String getSystemId();

}

org/w3c/dom/Entity.java:
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

 public String getActualEncoding();
 public void setActualEncoding(String actualEncoding);

 public String getEncoding();
 public void setEncoding(String encoding);

133

org/w3c/dom/CDATASection.java:

 public String getVersion();
 public void setVersion(String version);

}

org/w3c/dom/EntityReference.java:
package org.w3c.dom;

public interface EntityReference extends Node {
}

org/w3c/dom/ProcessingInstruction.java:
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();

 public String getData();
 public void setData(String data)
 throws DOMException;

}

134

org/w3c/dom/EntityReference.java:

Appendix F: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Core definitions.

F.1: ECMAScript Binding Extension
This section defines the DOMImplementationRegistry object, discussed in Bootstrapping [p.22] ,
for ECMAScript.

Objects that implements the DOMImplementationRegistry interface
DOMImplementationRegistry is a global variable which has the following functions:

getDOMImplementation(features)
This method returns the first registered object that implements the DOMImplementation
interface and has the desired features, or null if none is found.
The features parameter is a String.

sources
This property is an Array. It contains all registered objects that implement the
DOMImplementationSource interface.

F.2: Other Core interfaces
Properties of the DOMException Constructor function:

DOMException.INDEX_SIZE_ERR
The value of the constant DOMException.INDEX_SIZE_ERR is 1.

DOMException.DOMSTRING_SIZE_ERR
The value of the constant DOMException.DOMSTRING_SIZE_ERR is 2.

DOMException.HIERARCHY_REQUEST_ERR
The value of the constant DOMException.HIERARCHY_REQUEST_ERR is 3.

DOMException.WRONG_DOCUMENT_ERR
The value of the constant DOMException.WRONG_DOCUMENT_ERR is 4.

DOMException.INVALID_CHARACTER_ERR
The value of the constant DOMException.INVALID_CHARACTER_ERR is 5.

DOMException.NO_DATA_ALLOWED_ERR
The value of the constant DOMException.NO_DATA_ALLOWED_ERR is 6.

DOMException.NO_MODIFICATION_ALLOWED_ERR
The value of the constant DOMException.NO_MODIFICATION_ALLOWED_ERR is 7.

DOMException.NOT_FOUND_ERR
The value of the constant DOMException.NOT_FOUND_ERR is 8.

DOMException.NOT_SUPPORTED_ERR
The value of the constant DOMException.NOT_SUPPORTED_ERR is 9.

DOMException.INUSE_ATTRIBUTE_ERR
The value of the constant DOMException.INUSE_ATTRIBUTE_ERR is 10.

135

Appendix F: ECMAScript Language Binding

DOMException.INVALID_STATE_ERR
The value of the constant DOMException.INVALID_STATE_ERR is 11.

DOMException.SYNTAX_ERR
The value of the constant DOMException.SYNTAX_ERR is 12.

DOMException.INVALID_MODIFICATION_ERR
The value of the constant DOMException.INVALID_MODIFICATION_ERR is 13.

DOMException.NAMESPACE_ERR
The value of the constant DOMException.NAMESPACE_ERR is 14.

DOMException.INVALID_ACCESS_ERR
The value of the constant DOMException.INVALID_ACCESS_ERR is 15.

DOMException.VALIDATION_ERR
The value of the constant DOMException.VALIDATION_ERR is 16.

Objects that implement the DOMException interface:
Properties of objects that implement the DOMException interface:

code
This property is a Number.

Objects that implement the DOMImplementationSource interface:
Functions of objects that implement the DOMImplementationSource interface:

getDOMImplementation(features)
This function returns an object that implements the DOMImplementation interface.
The features parameter is a String.

Objects that implement the DOMImplementation interface:
Functions of objects that implement the DOMImplementation interface:

hasFeature(feature, version)
This function returns a Boolean.
The feature parameter is a String.
The version parameter is a String.

createDocumentType(qualifiedName, publicId, systemId)
This function returns an object that implements the DocumentType interface.
The qualifiedName parameter is a String.
The publicId parameter is a String.
The systemId parameter is a String.
This function can raise an object that implements the DOMException interface.

createDocument(namespaceURI, qualifiedName, doctype)
This function returns an object that implements the Document interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
The doctype parameter is an object that implements the DocumentType interface.
This function can raise an object that implements the DOMException interface.

getInterface(feature)
This function returns an object that implements the DOMImplementation interface.
The feature parameter is a String.

Objects that implement the DocumentFragment interface:
Objects that implement the DocumentFragment interface have all properties and functions of the
Node interface.

136

F.2: Other Core interfaces

Objects that implement the Document interface:
Objects that implement the Document interface have all properties and functions of the Node
interface as well as the properties and functions defined below.
Properties of objects that implement the Document interface:

doctype
This read-only property is an object that implements the DocumentType interface.

implementation
This read-only property is an object that implements the DOMImplementation interface.

documentElement
This read-only property is an object that implements the Element interface.

actualEncoding
This property is a String.

encoding
This property is a String.

standalone
This property is a Boolean.

version
This property is a String and can raise an objewct that implements DOMException
interface on setting.

strictErrorChecking
This property is a Boolean.

errorHandler
This property is an object that implements the DOMErrorHandler interface.

documentURI
This property is a String.

Functions of objects that implement the Document interface:
createElement(tagName)

This function returns an object that implements the Element interface.
The tagName parameter is a String.
This function can raise an object that implements the DOMException interface.

createDocumentFragment()
This function returns an object that implements the DocumentFragment interface.

createTextNode(data)
This function returns an object that implements the Text interface.
The data parameter is a String.

createComment(data)
This function returns an object that implements the Comment interface.
The data parameter is a String.

createCDATASection(data)
This function returns an object that implements the CDATASection interface.
The data parameter is a String.
This function can raise an object that implements the DOMException interface.

createProcessingInstruction(target, data)
This function returns an object that implements the ProcessingInstruction interface.
The target parameter is a String.
The data parameter is a String.

137

F.2: Other Core interfaces

This function can raise an object that implements the DOMException interface.
createAttribute(name)

This function returns an object that implements the Attr interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

createEntityReference(name)
This function returns an object that implements the EntityReference interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

getElementsByTagName(tagname)
This function returns an object that implements the NodeList interface.
The tagname parameter is a String.

importNode(importedNode, deep)
This function returns an object that implements the Node interface.
The importedNode parameter is an object that implements the Node interface.
The deep parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

createElementNS(namespaceURI, qualifiedName)
This function returns an object that implements the Element interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
This function can raise an object that implements the DOMException interface.

createAttributeNS(namespaceURI, qualifiedName)
This function returns an object that implements the Attr interface.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
This function can raise an object that implements the DOMException interface.

getElementsByTagNameNS(namespaceURI, localName)
This function returns an object that implements the NodeList interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

getElementById(elementId)
This function returns an object that implements the Element interface.
The elementId parameter is a String.

adoptNode(source)
This function returns an object that implements the Node interface.
The source parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

normalizeDocument()
This function has no return value.

canSetNormalizationFeature(name, state)
This function returns a Boolean.
The name parameter is a String.
The state parameter is a Boolean.

setNormalizationFeature(name, state)
This function has no return value.

138

F.2: Other Core interfaces

The name parameter is a String.
The state parameter is a Boolean.
This function can raise an object that implements the DOMException interface.

getNormalizationFeature(name)
This function returns a Boolean.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

renameNode(n, namespaceURI, name)
This function returns an object that implements the Node interface.
The n parameter is an object that implements the Node interface.
The namespaceURI parameter is a String.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

Properties of the Node Constructor function:
Node.ELEMENT_NODE

The value of the constant Node.ELEMENT_NODE is 1.
Node.ATTRIBUTE_NODE

The value of the constant Node.ATTRIBUTE_NODE is 2.
Node.TEXT_NODE

The value of the constant Node.TEXT_NODE is 3.
Node.CDATA_SECTION_NODE

The value of the constant Node.CDATA_SECTION_NODE is 4.
Node.ENTITY_REFERENCE_NODE

The value of the constant Node.ENTITY_REFERENCE_NODE is 5.
Node.ENTITY_NODE

The value of the constant Node.ENTITY_NODE is 6.
Node.PROCESSING_INSTRUCTION_NODE

The value of the constant Node.PROCESSING_INSTRUCTION_NODE is 7.
Node.COMMENT_NODE

The value of the constant Node.COMMENT_NODE is 8.
Node.DOCUMENT_NODE

The value of the constant Node.DOCUMENT_NODE is 9.
Node.DOCUMENT_TYPE_NODE

The value of the constant Node.DOCUMENT_TYPE_NODE is 10.
Node.DOCUMENT_FRAGMENT_NODE

The value of the constant Node.DOCUMENT_FRAGMENT_NODE is 11.
Node.NOTATION_NODE

The value of the constant Node.NOTATION_NODE is 12.
Node.TREE_POSITION_PRECEDING

The value of the constant Node.TREE_POSITION_PRECEDING is 0x01.
Node.TREE_POSITION_FOLLOWING

The value of the constant Node.TREE_POSITION_FOLLOWING is 0x02.
Node.TREE_POSITION_ANCESTOR

The value of the constant Node.TREE_POSITION_ANCESTOR is 0x04.
Node.TREE_POSITION_DESCENDANT

The value of the constant Node.TREE_POSITION_DESCENDANT is 0x08.

139

F.2: Other Core interfaces

Node.TREE_POSITION_EQUIVALENT
The value of the constant Node.TREE_POSITION_EQUIVALENT is 0x10.

Node.TREE_POSITION_SAME_NODE
The value of the constant Node.TREE_POSITION_SAME_NODE is 0x20.

Node.TREE_POSITION_DISCONNECTED
The value of the constant Node.TREE_POSITION_DISCONNECTED is 0x00.

Objects that implement the Node interface:
Properties of objects that implement the Node interface:

nodeName
This read-only property is a String.

nodeValue
This property is a String, can raise an object that implements DOMException interface on
setting and can raise an object that implements the DOMException interface on retrieval.

nodeType
This read-only property is a Number.

parentNode
This read-only property is an object that implements the Node interface.

childNodes
This read-only property is an object that implements the NodeList interface.

firstChild
This read-only property is an object that implements the Node interface.

lastChild
This read-only property is an object that implements the Node interface.

previousSibling
This read-only property is an object that implements the Node interface.

nextSibling
This read-only property is an object that implements the Node interface.

attributes
This read-only property is an object that implements the NamedNodeMap interface.

ownerDocument
This read-only property is an object that implements the Document interface.

namespaceURI
This read-only property is a String.

prefix
This property is a String and can raise an objewct that implements DOMException
interface on setting.

localName
This read-only property is a String.

baseURI
This read-only property is a String.

textContent
This property is a String, can raise an object that implements DOMException interface on
setting and can raise an object that implements the DOMException interface on retrieval.

Functions of objects that implement the Node interface:
insertBefore(newChild, refChild)

This function returns an object that implements the Node interface.

140

F.2: Other Core interfaces

The newChild parameter is an object that implements the Node interface.
The refChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

replaceChild(newChild, oldChild)
This function returns an object that implements the Node interface.
The newChild parameter is an object that implements the Node interface.
The oldChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeChild(oldChild)
This function returns an object that implements the Node interface.
The oldChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

appendChild(newChild)
This function returns an object that implements the Node interface.
The newChild parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

hasChildNodes()
This function returns a Boolean.

cloneNode(deep)
This function returns an object that implements the Node interface.
The deep parameter is a Boolean.

normalize()
This function has no return value.

isSupported(feature, version)
This function returns a Boolean.
The feature parameter is a String.
The version parameter is a String.

hasAttributes()
This function returns a Boolean.

compareTreePosition(other)
This function returns a Number.
The other parameter is an object that implements the Node interface.

isSameNode(other)
This function returns a Boolean.
The other parameter is an object that implements the Node interface.

lookupNamespacePrefix(namespaceURI, useDefault)
This function returns a String.
The namespaceURI parameter is a String.
The useDefault parameter is a Boolean.

isDefaultNamespace(namespaceURI)
This function returns a Boolean.
The namespaceURI parameter is a String.

lookupNamespaceURI(prefix)
This function returns a String.
The prefix parameter is a String.

141

F.2: Other Core interfaces

isEqualNode(arg)
This function returns a Boolean.
The arg parameter is an object that implements the Node interface.

getInterface(feature)
This function returns an object that implements the Node interface.
The feature parameter is a String.

setUserData(key, data, handler)
This function returns an object that implements the any type interface.
The key parameter is a String.
The data parameter is an object that implements the any type interface.
The handler parameter is an object that implements the UserDataHandler interface.

getUserData(key)
This function returns an object that implements the any type interface.
The key parameter is a String.

Objects that implement the NodeList interface:
Properties of objects that implement the NodeList interface:

length
This read-only property is a Number.

Functions of objects that implement the NodeList interface:
item(index)

This function returns an object that implements the Node interface.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that
index.

Objects that implement the NamedNodeMap interface:
Properties of objects that implement the NamedNodeMap interface:

length
This read-only property is a Number.

Functions of objects that implement the NamedNodeMap interface:
getNamedItem(name)

This function returns an object that implements the Node interface.
The name parameter is a String.

setNamedItem(arg)
This function returns an object that implements the Node interface.
The arg parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeNamedItem(name)
This function returns an object that implements the Node interface.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

item(index)
This function returns an object that implements the Node interface.
The index parameter is a Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item function with that

142

F.2: Other Core interfaces

index.
getNamedItemNS(namespaceURI, localName)

This function returns an object that implements the Node interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

setNamedItemNS(arg)
This function returns an object that implements the Node interface.
The arg parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface.

removeNamedItemNS(namespaceURI, localName)
This function returns an object that implements the Node interface.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

Objects that implement the CharacterData interface:
Objects that implement the CharacterData interface have all properties and functions of the Node
interface as well as the properties and functions defined below.
Properties of objects that implement the CharacterData interface:

data
This property is a String, can raise an object that implements DOMException interface on
setting and can raise an object that implements the DOMException interface on retrieval.

length
This read-only property is a Number.

Functions of objects that implement the CharacterData interface:
substringData(offset, count)

This function returns a String.
The offset parameter is a Number.
The count parameter is a Number.
This function can raise an object that implements the DOMException interface.

appendData(arg)
This function has no return value.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

insertData(offset, arg)
This function has no return value.
The offset parameter is a Number.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

deleteData(offset, count)
This function has no return value.
The offset parameter is a Number.
The count parameter is a Number.
This function can raise an object that implements the DOMException interface.

replaceData(offset, count, arg)
This function has no return value.
The offset parameter is a Number.

143

F.2: Other Core interfaces

The count parameter is a Number.
The arg parameter is a String.
This function can raise an object that implements the DOMException interface.

Objects that implement the Attr interface:
Objects that implement the Attr interface have all properties and functions of the Node interface as
well as the properties and functions defined below.
Properties of objects that implement the Attr interface:

name
This read-only property is a String.

specified
This read-only property is a Boolean.

value
This property is a String and can raise an objewct that implements DOMException
interface on setting.

ownerElement
This read-only property is an object that implements the Element interface.

Objects that implement the Element interface:
Objects that implement the Element interface have all properties and functions of the Node interface
as well as the properties and functions defined below.
Properties of objects that implement the Element interface:

tagName
This read-only property is a String.

Functions of objects that implement the Element interface:
getAttribute(name)

This function returns a String.
The name parameter is a String.

setAttribute(name, value)
This function has no return value.
The name parameter is a String.
The value parameter is a String.
This function can raise an object that implements the DOMException interface.

removeAttribute(name)
This function has no return value.
The name parameter is a String.
This function can raise an object that implements the DOMException interface.

getAttributeNode(name)
This function returns an object that implements the Attr interface.
The name parameter is a String.

setAttributeNode(newAttr)
This function returns an object that implements the Attr interface.
The newAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

removeAttributeNode(oldAttr)
This function returns an object that implements the Attr interface.
The oldAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

144

F.2: Other Core interfaces

getElementsByTagName(name)
This function returns an object that implements the NodeList interface.
The name parameter is a String.

getAttributeNS(namespaceURI, localName)
This function returns a String.
The namespaceURI parameter is a String.
The localName parameter is a String.

setAttributeNS(namespaceURI, qualifiedName, value)
This function has no return value.
The namespaceURI parameter is a String.
The qualifiedName parameter is a String.
The value parameter is a String.
This function can raise an object that implements the DOMException interface.

removeAttributeNS(namespaceURI, localName)
This function has no return value.
The namespaceURI parameter is a String.
The localName parameter is a String.
This function can raise an object that implements the DOMException interface.

getAttributeNodeNS(namespaceURI, localName)
This function returns an object that implements the Attr interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

setAttributeNodeNS(newAttr)
This function returns an object that implements the Attr interface.
The newAttr parameter is an object that implements the Attr interface.
This function can raise an object that implements the DOMException interface.

getElementsByTagNameNS(namespaceURI, localName)
This function returns an object that implements the NodeList interface.
The namespaceURI parameter is a String.
The localName parameter is a String.

hasAttribute(name)
This function returns a Boolean.
The name parameter is a String.

hasAttributeNS(namespaceURI, localName)
This function returns a Boolean.
The namespaceURI parameter is a String.
The localName parameter is a String.

Objects that implement the Text interface:
Objects that implement the Text interface have all properties and functions of the CharacterData
interface as well as the properties and functions defined below.
Properties of objects that implement the Text interface:

isWhitespaceInElementContent
This read-only property is a Boolean.

wholeText
This read-only property is a String.

145

F.2: Other Core interfaces

Functions of objects that implement the Text interface:
splitText(offset)

This function returns an object that implements the Text interface.
The offset parameter is a Number.
This function can raise an object that implements the DOMException interface.

replaceWholeText(content)
This function returns an object that implements the Text interface.
The content parameter is a String.
This function can raise an object that implements the DOMException interface.

Objects that implement the Comment interface:
Objects that implement the Comment interface have all properties and functions of the
CharacterData interface.

Properties of the UserDataHandler Constructor function:
UserDataHandler.NODE_CLONED

The value of the constant UserDataHandler.NODE_CLONED is 1.
UserDataHandler.NODE_IMPORTED

The value of the constant UserDataHandler.NODE_IMPORTED is 2.
UserDataHandler.NODE_DELETED

The value of the constant UserDataHandler.NODE_DELETED is 3.
UserDataHandler.NODE_RENAMED

The value of the constant UserDataHandler.NODE_RENAMED is 4.
Objects that implement the UserDataHandler interface:

Functions of objects that implement the UserDataHandler interface:
handle(operation, key, data, src, dst)

This function has no return value.
The operation parameter is a Number.
The key parameter is a String.
The data parameter is an object that implements the Object interface.
The src parameter is an object that implements the Node interface.
The dst parameter is an object that implements the Node interface.

Properties of the DOMError Constructor function:
DOMError.SEVERITY_WARNING

The value of the constant DOMError.SEVERITY_WARNING is 0.
DOMError.SEVERITY_ERROR

The value of the constant DOMError.SEVERITY_ERROR is 1.
DOMError.SEVERITY_FATAL_ERROR

The value of the constant DOMError.SEVERITY_FATAL_ERROR is 2.
Objects that implement the DOMError interface:

Properties of objects that implement the DOMError interface:
severity

This read-only property is a Number.
message

This read-only property is a String.
relatedException

This read-only property is an object that implements the Object interface.

146

F.2: Other Core interfaces

location
This read-only property is an object that implements the DOMLocator interface.

Objects that implement the DOMErrorHandler interface:
Functions of objects that implement the DOMErrorHandler interface:

handleError(error)
This function returns a Boolean.
The error parameter is an object that implements the DOMError interface.

Objects that implement the DOMLocator interface:
Properties of objects that implement the DOMLocator interface:

lineNumber
This read-only property is a Number.

columnNumber
This read-only property is a Number.

offset
This read-only property is a Number.

errorNode
This read-only property is an object that implements the Node interface.

uri
This read-only property is a String.

Objects that implement the CDATASection interface:
Objects that implement the CDATASection interface have all properties and functions of the Text
interface.

Objects that implement the DocumentType interface:
Objects that implement the DocumentType interface have all properties and functions of the Node
interface as well as the properties and functions defined below.
Properties of objects that implement the DocumentType interface:

name
This read-only property is a String.

entities
This read-only property is an object that implements the NamedNodeMap interface.

notations
This read-only property is an object that implements the NamedNodeMap interface.

publicId
This read-only property is a String.

systemId
This read-only property is a String.

internalSubset
This read-only property is a String.

Objects that implement the Notation interface:
Objects that implement the Notation interface have all properties and functions of the Node interface
as well as the properties and functions defined below.
Properties of objects that implement the Notation interface:

publicId
This read-only property is a String.

systemId
This read-only property is a String.

147

F.2: Other Core interfaces

Objects that implement the Entity interface:
Objects that implement the Entity interface have all properties and functions of the Node interface as
well as the properties and functions defined below.
Properties of objects that implement the Entity interface:

publicId
This read-only property is a String.

systemId
This read-only property is a String.

notationName
This read-only property is a String.

actualEncoding
This property is a String.

encoding
This property is a String.

version
This property is a String.

Objects that implement the EntityReference interface:
Objects that implement the EntityReference interface have all properties and functions of the Node
interface.

Objects that implement the ProcessingInstruction interface:
Objects that implement the ProcessingInstruction interface have all properties and functions of the
Node interface as well as the properties and functions defined below.
Properties of objects that implement the ProcessingInstruction interface:

target
This read-only property is a String.

data
This property is a String and can raise an objewct that implements DOMException
interface on setting.

148

F.2: Other Core interfaces

Appendix G: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including members of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin Nicol (INSO), Ian
Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Jeroen van
Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C team contact and Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray Whitmer (iMall,
Excite@Home, and Netscape/AOL), Rezaur Rahman (Intel), Rich Rollman (Microsoft), Rick Gessner
(Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs (Microsoft), Sharon Adler
(INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom Pixley (Netscape/AOL),
Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

G.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

149

Appendix G: Acknowledgements

http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://www.tdb.uu.se/~jan/html2ps.html

150

G.1: Production Systems

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString [p.17] . This indicates that indexing on a DOMString occurs in
units of 16 bits. This must not be misunderstood to mean that a DOMString can store arbitrary
16-bit units. A DOMString is a character string encoded in UTF-16; this means that the restrictions
of UTF-16 as well as the other relevant restrictions on character strings must be maintained. A single
character, for example in the form of a numeric character reference, may correspond to one or two
16-bit units.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model [COM], a technology for building applications from
binary software components.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "below"
means "away from the root."

document element
There is only one document element in a Document [p.29] . This element node is a child of the
Document node. See Well-Formed XML Documents in XML [XML 1.0].

151

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#dt-root

document order
There is an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occurs in the XML
representation of the document after expansion of general entities. Thus, the document element
[p.151] node will be the first node. Element nodes occur before their children. Thus, document order
orders element nodes in order of the occurrence of their start-tag in the XML (after expansion of
entities). The attribute nodes of an element occur after the element and before its children. The
relative order of attribute nodes is implementation-dependent.

ECMAScript
The programming language defined by the ECMA-262 standard [ECMAScript]. As stated in the
standard, the originating technology for ECMAScript was JavaScript [JavaScript]. Note that in the
ECMAScript binding, the word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML 1.0].

information item
An information item is an abstract representation of some component of an XML document. See the
[XML Information set] for details.

logically-adjacent text nodes
Logically-adjacent text nodes are Text [p.86] or CDataSection nodes that may be visited
sequentially in document order [p.152] without entering, exiting, or passing over Element [p.78] ,
Comment [p.88] , or ProcessingInstruction [p.96] nodes.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML 4.01]

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually
inherit from one another.

language binding
A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document

152

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#sec-logical-struct

Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [XML Namespaces].

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

namespace prefix
A namespace prefix is a string that associates an element or attribute name with a namespace URI in
XML. See namespace prefix in Namespaces in XML [XML Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. This is called the namespace name in
Namespaces in XML [XML Namespaces].

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

partially valid
A node in a DOM tree is partially valid if it is well formed [p.154] (this part is for comments and
processing instructions) and its immediate children are those expected by the content model. The
node may be missing trailing required children yet still be considered partially valid.

qualified name
A qualified name is the name of an element or attribute defined as the concatenation of a local name
(as defined in this specification), optionally preceded by a namespace prefix and colon character. See
Qualified Names in Namespaces in XML [XML Namespaces].

read only node
A read only node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a read only node can
possibly be moved, when it is not itself contained in a read only node.

root node
The root node is a node that is not a child of any other node. All other nodes are children or other
descendants of the root node.

sibling
Two nodes are siblings if they have the same parent node.

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from [Unicode 2.0].

token
An information item such as an XML Name which has been tokenized [p.154] .

153

Glossary

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML which is completely
described in this document. The goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML. [XML 1.0]

XML name
See XML name in the XML specification ([XML 1.0]).

XML namespace
An XML namespace is a collection of names, identified by a URI reference [IETF RFC 2396], which
are used in XML documents as element types and attribute names. [XML Namespaces]

154

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

I.1: Normative references
[CharModel]

Character Model for the World Wide Web 1.0, M. D¨rst, et al., Editors. World Wide Web
Consortium, January 2001. This version of the Character Model for the World Wide Web
Specification is http://www.w3.org/TR/2002/WD-charmod-20020220. The latest version of
Character Model is available at http://www.w3.org/TR/charmod.

[DOM Level 1]
DOM Level 1 Specification, V. Apparao, et al., Editors. World Wide Web Consortium, 1 October
1998. This version of the DOM Level 1 Recommendation is
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001. The latest version of DOM Level 1 is
available at http://www.w3.org/TR/REC-DOM-Level-1.

[DOM Level 2 Core]
Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level
2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core.

[ECMAScript]
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
December 1999. This version of the ECMAScript Language is available at
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM.

[ISO/IEC 10646]
ISO/IEC 10646-1993 (E). Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International Organization for
Standardization, 1993 (plus amendments AM 1 through AM 7).

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

[Unicode 2.0]
The Unicode Standard, Version 2.0.. The Unicode Consortium, 1996. Reading, Mass.:
Addison-Wesley Developers Press. ISBN 0-201-48345-9.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, and E. Maler, Editors. World Wide Web Consortium, 10 February 1998, revised
6 October 2000. This version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

155

References

http://www.w3.org/TR
http://www.w3.org/TR/2002/WD-charmod-20020220
http://www.w3.org/TR/charmod
http://www.w3.org/TR/charmod
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml

[XML Base]
XML Base, J. Marsh, Editor. World Wide Web Consortium, June 2001. This version of the XML
Base Recommendation is http://www.w3.org/TR/xmlbase. The latest version of XML Base is
available at http://www.w3.org/TR/xmlbase.

[XML Information set]
XML Information Set, J. Cowan and R. Tobin, Editors. World Wide Web Consortium, 24 October
2001. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

I.2: Informative references
[Canonical XML]

Canonical XML Version 1.0, J. Boyer, Editor. World Wide Web Consortium, 15 March 2001. This
version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML is
available at http://www.w3.org/TR/xml-c14n.

[COM]
The Microsoft Component Object Model, Microsoft Corporation. Available at
http://www.microsoft.com/com.

[CORBA]
The Common Object Request Broker: Architecture and Specification, version 2. Object Management
Group. The latest version of CORBA version 2.0 is available at
http://www.omg.org/technology/documents/formal/corba_2.htm.

[DOM Level 3 Abstract Schemas and Load and Save]
Document Object Model Level 3 Abstract Schemas and Load and Save Specification, B. Chang, J.
Stenback, J. van Rotterdam, A. Heninger, J. Kesselman, R. Rahman, Editors. World Wide Web
Consortium, January 2002. This version of the DOM Level 3 Abstract Schemas and Load and Save
Specification is http://www.w3.org/TR/DOM-Level-3-ASLS. The latest version of DOM Level 3
Abstract Schemas and Load and Save is available at http://www.w3.org/TR/DOM-Level-3-ASLS.

[DOM Level 3 Events]
Document Object Model Level 3 Events Specification, T. Pixley, Editor. World Wide Web
Consortium, February 2002. This version of the Document Object Model Level 3 Events
Specification is http://www.w3.org/TR/DOM-Level-3-Events. The latest version of Document
Object Model Level 3 Events is available at http://www.w3.org/TR/DOM-Level-3-Events.

[DOM Level 2 HTML]
Document Object Model Level 2 HTML Specification, J. Stenback, et al., Editors. World Wide Web
Consortium, December 2001. This version of the Document Object Model Level 2 HTML
Specification is http://www.w3.org/TR/2001/WD-DOM-Level-2-HTML-20011210. The latest
version of Document Object Model Level 2 HTML is available at
http://www.w3.org/TR/DOM-Level-2-HTML.

156

I.2: Informative references

http://www.w3.org/TR/xmlbase
http://www.w3.org/TR/xmlbase
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://www.microsoft.com/com
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.w3.org/TR/DOM-Level-3-ASLS
http://www.w3.org/TR/DOM-Level-3-ASLS
http://www.w3.org/TR/DOM-Level-3-ASLS
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2001/WD-DOM-Level-2-HTML-20011210
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML

[DOM Level 3 XPath]
Document Object Model Level 3 XPath Specification, R. Whitmer, Editor. World Wide Web
Consortium, February 2002. This version of the Document Object Model Level 3 XPath
Specification is http://www.w3.org/TR/DOM-Level-3-XPath. The latest version of Document Object
Model Level 3 XPath is available at http://www.w3.org/TR/DOM-Level-3-XPath.

[HTML 4.01]
HTML 4.01 Specification, D. Raggett, A. Le Hors, and I. Jacobs, Editors. World Wide Web
Consortium, 17 December 1997, revised 24 April 1998, revised 24 December 1999. This version of
the HTML 4.01 Recommendation is http://www.w3.org/TR/1998/REC-html40-19980424. The latest
version of HTML 4 is available at http://www.w3.org/TR/html4.

[Java IDL]
Java IDL. Sun Microsystems. Available at http://java.sun.com/products/jdk/1.2/docs/guide/idl

[JavaScript]
JavaScript Resources. Netscape Communications Corporation. Available at
http://developer.netscape.com/tech/javascript/resources.html

[JScript]
JScript Resources. Microsoft. Available at http://msdn.microsoft.com/scripting/default.htm

[MathML 2.0]
Mathematical Markup Language (MathML) Version 2.0, D. Carlisle, P. Ion, R. Miner, N. Poppelier,
Editors. World Wide Web Consortium, 21 February 2001. This version of the Math 2.0
Recommendation is http://www.w3.org/TR/MathML2. The latest version of MathML 2.0 is available
at http://www.w3.org/TR/MathML2.

[MIDL]
MIDL Language Reference. Microsoft. Available at
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm.

[IETF RFC 2396]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

[SVG 1.0]
Scalable Vector Graphics (SVG) 1.0 Specification, J. Ferraiolo, Editor. World Wide Web
Consortium, 4 September 2001. This version of the SVG 1.0 Recommendation is
http://www.w3.org/TR/SVG. The latest version of SVG 1.0 is available at
http://www.w3.org/TR/SVG.

[XML 1.1]
XML 1.1, J. Cowan, Editor. World Wide Web Consortium, 13 December 2001. This version of the
XML 1.1 Specification is http://www.w3.org/TR/2001/WD-xml11-20011213/. The latest version of
XML 1.1 is available at http://www.w3.org/TR/xml11.

[XPointer]
XML Pointer Language (XPointer) Version 1.0, S. DeRose, E. Maler, and R. Daniel Jr., Editors.
World Wide Web Consortium, September 2001. This version of the XPath 1.0 Specification is
http://www.w3.org/TR/2001/WD-xptr-20010911. The latest version of XPointer 1.0 is available at
http://www.w3.org/TR/xptr.

157

I.2: Informative references

http://www.w3.org/TR/DOM-Level-3-XPath
http://www.w3.org/TR/DOM-Level-3-XPath
http://www.w3.org/TR/DOM-Level-3-XPath
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/html4
http://www.w3.org/TR/html4
http://java.sun.com/products/jdk/1.2/docs/guide/idl
http://developer.netscape.com/tech/javascript/resources.html
http://msdn.microsoft.com/scripting/default.htm
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG
http://www.w3.org/TR/2001/WD-xml11-20011213/
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xml11
http://www.w3.org/TR/2001/WD-xptr-20010911
http://www.w3.org/TR/xptr

158

I.2: Informative references

Index
16-bit unit 17, 19, 72, 74, 74, 74, 75,
87, 151

[attributes] [base URI] [character encoding scheme]

[character code] [children] [content] 73, 97

[declaration base URI] [document element] [element content whitespace]

[in-scope namespaces] [local name] [namespace attributes]

[namespace name] [normalized value] [notations]

[owner element] [parent] [prefix]

[public identifier] 93, 94, 96 [specified] [standalone]

[system identifier] 94, 94, 96 [target] [version]

actualEncoding 31, 95 adoptNode ancestor 61, 66, 58, 151

API 9, 9, 11, 15, 17, 17, 151 appendChild appendData

Attr ATTRIBUTE_NODE attributes

baseURI

Canonical XML 45, 156 canSetNormalizationFeature CDATA_SECTION_NODE

CDATASection CharacterData CharModel 19, 45, 155

child 15, 19, 151 childNodes client application 9, 151

cloneNode columnNumber COM 9, 11, 17, 151, 156

Comment COMMENT_NODE compareTreePosition

convenience 31, 78, 151 CORBA 9, 156 createAttribute

createAttributeNS createCDATASection createComment

createDocument createDocumentFragment createDocumentType

createElement createElementNS createEntityReference

createProcessingInstruction createTextNode

data 73, 97 data model 9, 151 deleteData

descendant 19, 41, 80, 81, 94, 96, 151 doctype Document

document element 31, 151
document order 40, 40, 60, 80, 81,
152

DOCUMENT_FRAGMENT_NODE

159

Index

DOCUMENT_NODE DOCUMENT_TYPE_NODE documentElement

DocumentFragment DocumentType documentURI

DOM Level 1 91, 155 DOM Level 2 Core 21, 22, 91, 155
DOM Level 2 HTML 22, 26, 31, 32, 54,
156

DOM Level 3 Abstract Schemas and
Load and Save 12, 19, 24, 45, 76, 94,
156

DOM Level 3 Events 12, 156 DOM Level 3 XPath 12, 19, 78, 157

DOMError DOMErrorHandler DOMException

DOMImplementation DOMImplementationSource DOMLocator

DOMObject DOMString DOMSTRING_SIZE_ERR

DOMTimeStamp DOMUserData

ECMAScript 9, 16, 152, 155 Element 78, 15, 16, 19, 19, 152 ELEMENT_NODE

encoding 32, 95 entities Entity

ENTITY_NODE ENTITY_REFERENCE_NODE EntityReference

errorHandler errorNode

firstChild

getAttribute getAttributeNode getAttributeNodeNS

getAttributeNS getDOMImplementation getElementById

getElementsByTagName 40, 80 getElementsByTagNameNS 40, 81 getInterface 28, 60

getNamedItem getNamedItemNS getNormalizationFeature

getUserData

handle handleError hasAttribute

hasAttributeNS hasAttributes hasChildNodes

hasFeature HIERARCHY_REQUEST_ERR hosting implementation 12, 152

HTML 9, 152 HTML 4.01 152, 157

IETF RFC 2396 154, 157 implementation importNode

INDEX_SIZE_ERR information item 86, 152 inheritance 17, 152

insertBefore insertData interface 9, 152

internalSubset INUSE_ATTRIBUTE_ERR INVALID_ACCESS_ERR

INVALID_CHARACTER_ERR INVALID_MODIFICATION_ERR INVALID_STATE_ERR

160

Index

isDefaultNamespace isEqualNode ISO/IEC 10646 17, 155

isSameNode isSupported isWhitespaceInElementContent

item 68, 69

Java 9, 155 Java IDL 9, 157 JavaScript 9, 152, 157

JScript 9, 157

language binding 9, 152 lastChild length 68, 69, 74

lineNumber live 16, 67, 68
local name 37, 34, 40, 69, 70, 79, 82, 80,
85, 81, 81, 153

localName location logically-adjacent text nodes 87, 87, 152

lookupNamespacePrefix lookupNamespaceURI

MathML 2.0 21, 157 message method 12, 153

MIDL 9, 157 model 9, 153

name 77, 93 NamedNodeMap namespace prefix 19, 38, 56, 94, 96, 153

namespace URI 19, 26, 37, 34, 40, 55,
69, 70, 79, 84, 82, 80, 85, 81, 81, 96,
153

NAMESPACE_ERR namespaceURI

nextSibling NO_DATA_ALLOWED_ERR NO_MODIFICATION_ALLOWED_ERR

Node NODE_CLONED NODE_DELETED

NODE_IMPORTED NODE_RENAMED NodeList

nodeName nodeType nodeValue

normalize normalizeDocument NOT_FOUND_ERR

NOT_SUPPORTED_ERR Notation NOTATION_NODE

notationName notations

object model 9, 11, 153 offset OMG IDL 9, 17, 155

ownerDocument ownerElement

parent 56, 153 parentNode partially valid 24, 153

prefix previousSibling PROCESSING_INSTRUCTION_NODE

ProcessingInstruction publicId 93, 94, 96

161

Index

qualified name 19, 27, 26, 37, 34, 56,
55, 84, 153

read only node 59, 94, 94, 96, 153 relatedException removeAttribute

removeAttributeNode removeAttributeNS removeChild

removeNamedItem removeNamedItemNS renameNode

replaceChild replaceData replaceWholeText

root node 29, 153

setAttribute setAttributeNode setAttributeNodeNS

setAttributeNS setNamedItem setNamedItemNS

setNormalizationFeature setUserData severity

SEVERITY_ERROR SEVERITY_FATAL_ERROR SEVERITY_WARNING

sibling 29, 87, 153 specified splitText

standalone strictErrorChecking string comparison 19, 19, 153

substringData SVG 1.0 21, 157 SYNTAX_ERR

systemId 94, 94, 96

tagName target Text

TEXT_NODE textContent token 97, 153

tokenized 76, 154 TREE_POSITION_ANCESTOR TREE_POSITION_DESCENDANT

TREE_POSITION_DISCONNECTED TREE_POSITION_EQUIVALENT TREE_POSITION_FOLLOWING

TREE_POSITION_PRECEDING TREE_POSITION_SAME_NODE

Unicode 2.0 17, 153, 155 uri UserDataHandler

VALIDATION_ERR value version 32, 96

well-formed document 29, 154 wholeText WRONG_DOCUMENT_ERR

XML 9, 154
XML 1.0 37, 34, 45, 56, 84, 94,
151, 152, 154, 154, 155

XML 1.1 41, 157

162

Index

XML Base 54, 156

XML Information set 9, 11, 19, 29,
31, 31, 32, 32, 45, 56, 54, 54, 54,
55, 56, 55, 54, 54, 73, 73, 76, 77,
77, 77, 78, 87, 92, 93, 93, 94, 94,
94, 94, 96, 96, 96, 96, 97, 97, 152,
156

XML name 28, 154

XML namespace 19, 154

XML Namespaces 19, 26, 37, 34,
45, 44, 55, 56, 69, 72, 70, 79, 84,
82, 80, 85, 81, 153, 153, 153, 153,
154, 156

XPointer 65, 157

163

Index

	Document Object Model †DOM‡ Level 3 Core Specification
	Version 1.0
	W3C Working Draft 09 April 2002
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	Conformance
	DOM Interfaces and DOM Implementations

	1. Document Object Model Core
	1.1. Overview of the DOM Core Interfaces
	1.1.1. The DOM Structure Model
	1.1.2. Memory Management
	1.1.3. Naming Conventions
	1.1.4. Inheritance vs. Flattened Views of the API
	1.1.5. The DOMString type
	1.1.6. The DOMTimeStamp type
	1.1.7. The DOMUserData type
	1.1.8. The DOMObject type
	1.1.9. String comparisons in the DOM
	1.1.10. XML Namespaces
	1.1.11. Mixed DOM implementations
	1.1.12. Bootstrapping

	1.2. Fundamental Interfaces
	1.3. Extended Interfaces

	Appendix A: Changes
	A.1: Changes between DOM Level 2 Core and DOM Level 3 Core
	A.2: Changes between DOM Level 1 Core and DOM Level 2 Core
	A.2.1: Changes to DOM Level 1 Core interfaces and exceptions
	A.2.2: New features
	A.2.2.1: New types

	Appendix B: Namespaces Algorithms
	B.1: Namespace normalization
	B.2: Namespace Prefix Lookup
	B.3: Default Namespace Lookup
	B.4: Namespace URI Lookup

	Appendix C: Accessing code point boundaries
	C.1: Introduction
	C.2: Methods

	Appendix D: IDL Definitions
	
	dom.idl:

	Appendix E: Java Language Binding
	E.1: Java Binding Extension
	org/w3c/dom/DOMImplementationRegistry.java:

	E.2: Other Core interfaces
	org/w3c/dom/DOMException.java:
	org/w3c/dom/DOMImplementationSource.java:
	org/w3c/dom/DOMImplementation.java:
	org/w3c/dom/DocumentFragment.java:
	org/w3c/dom/Document.java:
	org/w3c/dom/Node.java:
	org/w3c/dom/NodeList.java:
	org/w3c/dom/NamedNodeMap.java:
	org/w3c/dom/CharacterData.java:
	org/w3c/dom/Attr.java:
	org/w3c/dom/Element.java:
	org/w3c/dom/Text.java:
	org/w3c/dom/Comment.java:
	org/w3c/dom/UserDataHandler.java:
	org/w3c/dom/DOMError.java:
	org/w3c/dom/DOMErrorHandler.java:
	org/w3c/dom/DOMLocator.java:
	org/w3c/dom/CDATASection.java:
	org/w3c/dom/DocumentType.java:
	org/w3c/dom/Notation.java:
	org/w3c/dom/Entity.java:
	org/w3c/dom/EntityReference.java:
	org/w3c/dom/ProcessingInstruction.java:

	Appendix F: ECMAScript Language Binding
	F.1: ECMAScript Binding Extension
	F.2: Other Core interfaces

	Appendix G: Acknowledgements
	G.1: Production Systems

	Glossary
	References
	I.1: Normative references
	I.2: Informative references

	Index

