
Document Object Model (DOM) Level 3 Content Models
and Load and Save Specification

Version 1.0

W3C Working Draft 09 February 2001
This version:

http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209
(PostScript file , PDF file , plain text , ZIP file , single HTML file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-CMLS

Previous version:
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/

Editors:
Ben Chang, Oracle
Andy Heninger, IBM
Joe Kesselman, IBM
Rezaur Rahman, Intel Corporation

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Content Models and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Content Models and
Load and Save Level 3 builds on the Document Object Model Core Level 3.

Status of this document
This document is an early release of the Document Object Model Level 3 Content Model and Load and
Save specification.

1

Document Object Model (DOM) Level 3 Content Models and Load and Save Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/
http://www.w3.org/TR/DOM-Level-3-CMLS
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209
http://www.w3.org/

It is guaranteed to change; anyone implementing it should realize that we will not allow ourselves to be
restricted by experimental implementations of Level 3 when deciding whether to change the
specifications.

This is a W3C Working Draft for review by W3C members and other interested parties. It is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in progress". This is
work in progress and does not imply endorsement by, or the consensus of, either W3C or members of the
DOM working group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

............. 9Chapter 1: Content Models and Validation

........... 39Chapter 2: Document Object Model Load and Save

................ 61Appendix A: IDL Definitions

.............. 67Appendix B: Java Language Binding

............ 77Appendix C: ECMA Script Language Binding

.................... 87References

..................... 89Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

............. 9Chapter 1: Content Models and Validation

.................. 91.1. Overview

.............. 91.1.1. General Characteristics

............ 101.1.2. Use Cases and Requirements

........... 121.2. Content Model and CM-Editing Interfaces

............. 191.3. Validation and Other Interfaces

.............. 231.4. Document-Editing Interfaces

............. 321.5. DOM Error Handler Interfaces

........... 351.6. Editing and Generating a Content Model

......... 361.7. Content Model-directed Document Manipulation

......... 361.8. Validating a Document Against a Content Model

............... 371.9. Well-formedness Testing

........... 39Chapter 2: Document Object Model Load and Save

.............. 392.1. Load and Save Requirements

.............. 392.1.1. General Requirements

.............. 402.1.2. Load Requirements

............. 402.1.3. XML Writer Requirements

............ 412.1.4. Other Items Under Consideration

.................. 422.2. Issue List

................ 422.2.1. Open Issues

............... 432.2.2. Resolved Issues

.................. 472.3. Interfaces

............... 472.3.1. Interface Summary

................. 472.3.2. Interfaces

................ 61Appendix A: IDL Definitions

.............. 67Appendix B: Java Language Binding

............ 77Appendix C: ECMA Script Language Binding

.................... 87References

................ 871. Normative references

..................... 89Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2001 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Content Models and Validation
Editors

Ben Chang, Oracle
Joe Kesselman, IBM
Rezaur Rahman, Intel Corporation

1.1. Overview
This chapter describes the optional DOM Level 3 Content Model (CM) feature. This module provides a
representation for XML content models, e.g., DTDs and XML Schemas, together with operations on the
content models, and how such information within the content models could be applied to XML documents
used in both the document-editing and CM-editing worlds. It also provides additional tests for
well-formedness of XML documents, including Namespace well-formedness. A DOM application can use
the hasFeature method of theDOMImplementation interface to determine whether a given DOM
supports these capabilities or not. One feature string for the CM-editing interfaces listed in this section is
"CM-EDIT" and another feature string for document-editing interfaces is "CM-DOC".

This chapter interacts strongly with the Load and Save chapter, which is also under development in DOM
Level 3. Not only will that code serialize/deserialize content models, but it may also wind up defining its
well-formedness and validity checks in terms of what is defined in this chapter. In addition, the CM and
Load/Save functional areas will share a common error-reporting mechanism allowing user-registered error
callbacks. Note that this may not imply that the parser actually calls the DOM’s validation code -- it may
be able to achieve better performance via its own -- but the appearance to the user should probably be "as
if" the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded DOM CM.

Finally, this chapter will have separate sections to address the needs of the document-editing and
CM-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the CM are made
distinct from the CM-editing world’s focuses on defining and manipulating the information in the CM.

1.1.1. General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Level 1.

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well. It is
anticipated that lowest common denominator general APIs generated in this chapter can support both
DTDs and XML Schemas, and other XML content models down the road.

9

1. Content Models and Validation

The kinds of information that a Content Model must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. Note that some kinds of information on which the DOM
already relies, e.g., default values for attributes, will finally be given a visible representation here,
however.

1.1.2. Use Cases and Requirements

The content model referenced in these use cases/requirements is an abstraction and does not refer solely to
DTDs or XML Schemas.

For the CM-editing and document-editing worlds, the following use cases and requirements are common
to both and could be labeled as the "Validation and Other Common Functionality" section:

Use Cases:

1. CU1. Associating a content model (external and/or internal) with a document, or changing the current
association.

2. CU2. Using the same external content model with several documents, without having to reload it.

Requirements:

1. CR1. Validate against the content model.
2. CR2. Retrieve information from content model.
3. CR3. Load an existing content model, perhaps independently from a document.
4. CR4. Being able to determine if a document has a content model associated with it.
5. CR5. Associate a CM with a document and make it the active CM.

Specific to the CM-editing world, the following are use cases and requirements and could be labeled as
the "CM-editing" section:

Use Cases:

1. CMU1. Clone/map all or parts of an existing content model to a new or existing content model.
2. CMU2. Save a content model in a separate file. For example, if a DTD can be broken up into

reusable pieces, which are then brought in via entity references, these can then be saved in a separate
file. Note that the external subset of a DTD, which includes both an internal and external subset, is a
special case of dividing a content model into entities.

3. CMU3. Modify an existing content model.
4. CMU4. Create a new content model.
5. CMU5. Partial content model checking. For example, the document need only be validated against a

selected portion of the content model.

Requirements:

1. CMR1. View and modify all parts of the content model.
2. CMR2. Validate the content model itself.
3. CMR3. Serialize the content model.

10

1.1.2. Use Cases and Requirements

4. CMR4. Clone all or parts of an existing content model.
5. CMR5. Create a new content model object.
6. CMR6. Validate portions of the XML document against the content model.

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editing" section:

Use Cases:

1. DU1. For editing documents with an associated content model, provide the guidance necessary so
that valid documents can be modified and remain valid.

2. DU2. For editing documents with an associated content model, provide the guidance necessary to
transform an invalid document into a valid one.

Requirements:

1. DR1. Be able to determine if the document is well-formed, and if not, be given enough guidance to
locate the error.

2. DR2. Be able to determine if the document is namespace well-formed, and if not, be given enough
guidance to locate the error.

3. DR3. Be able to determine if the document is valid with respect to its associated content model, and
if not, give enough guidance to locate the error.

4. DR4. Be able to determine if specific modifications to a document would make it become invalid.
5. DR5. Retrieve information from all content models. One example might be getting a list of all the

defined element names for document editing purposes.

General Issues:

1. I1. Some concerns exist regarding whether a single abstract Content Model structure can successfully
represent both namespace-unaware, e.g., DTD, and namespace-aware, e.g., XML Schema, models of
document’s content. For example, when you ask what elements can be inserted in a specific place,
the former will report the element’s QName, e.g., foo:bar, whereas the latter will report its
namespace and local name, e.g., {http://my.namespace}bar. We have added the
isNamespaceAware attribute to the generic CM object to help applications determine which of
these fields are important, but we are still analyzing this challenge.

2. I2. An XML document may be associated with multiple CMs. We have decided that only one of
these is "active" (for validation and guidance) at a time. DOM applications may switch which CM is
active, remove CMs that are no longer relevant, or add CMs to the list. If it becomes necessary to
simultaneously consult more than one CM, it should be possible to write a "union" CM which
provides that capability within this framework.

3. I3. Content model being able to handle more datatypes than strings. Currently, this functionality is
not available and should be dealt with in the future.

4. I4. Round-trippability for include/ignore statements and other constructs such as parameter entities,
e.g., "macro-like" constructs, will not be supported since no data representation exists to support
these constructs without having to re-parse them.

5. I5. Basic interface for a common error handler for both CM and Load/Save. Agreement has been to
utilize user-registered callbacks but other details to be worked out.

11

1.1.2. Use Cases and Requirements

1.2. Content Model and CM-Editing Interfaces
A list of the proposed Content Model data structures and functions follow, starting off with the data
structures and "CM-editing" methods.

Interface CMModel

CMModel is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It’s a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with the external subset (if present) being represented as a
link to one or more CMExternalModel [p.14] s. It is possible, however, that none of these
CMExternalModels are active.

IDL Definition

interface CMModel : CMNode {
 readonly attribute boolean isNamespaceAware;
 readonly attribute ElementDeclaration rootElementDecl;
 DOMString getLocation();
 nsElement getCMNamespace();
 CMNamedNodeMap getCMNodes();
 boolean removeNode(in CMNode node);
 boolean insertBefore(in CMNode newNode,
 in CMNode refNode);
 boolean validate();
};

Attributes
isNamespaceAware of type boolean, readonly

True if this content model defines the document structure in terms of namespaces and local
names; false if the document structure is defined only in terms of QNames.

rootElementDecl of type ElementDeclaration [p.16] , readonly
The root element declaration for the content model.

Methods
getCMNamespace

Determines namespace of CMModel.
Return Value

nsElement Namespace of CMModel.

No Parameters
No Exceptions

getCMNodes
Returns CMNode [p.14] list of all the constituent nodes in the content model.
Return Value

CMNamedNodeMap [p.15] List of all CMNodes [p.14] of the content model.

12

1.2. Content Model and CM-Editing Interfaces

No Parameters
No Exceptions

getLocation
Location of the document describing the content model defined in this CMModel.
Return Value

DOMString This method returns a DOMString defining the absolute location from
which this document is retrieved including the document name.

No Parameters
No Exceptions

insertBefore
Insert CMNode [p.14] .
Parameters
newNode of type CMNode [p.14]

CMNode to be inserted.
refNode of type CMNode

CMNode to be inserted before.
Return Value

boolean Success or failure..

No Exceptions
removeNode

Removes the specifiedCMNode [p.14] .
Parameters
node of type CMNode [p.14]

CMNode to be removed.
Return Value

boolean Success or failure..

No Exceptions
validate

Determines if a CMModel and CMExternalModel itself is valid, i.e., confirming that it’s
well-formed and valid per its own formal grammar. Note that within a CMModel, a pointer
to a CMExternalModel can exist.
Return Value

boolean Is the CM valid?

No Parameters
No Exceptions

13

1.2. Content Model and CM-Editing Interfaces

Interface CMExternalModel

CMExternalModel is an abstract object that could map to a DTD, an XML Schema, a database
schema, etc. It’s a generalized content model object that is not bound to a particular XML document.

IDL Definition

interface CMExternalModel : CMModel {
};

Interface CMNode

CMNodeis analogous to a Node in the Core DOM, e.g., an element declaration. This can exist for
both CMExternalModel [p.14] (include/ignore must be handled here) and CMModel [p.12] . It
should handle the following:

interface CommentsPIsDeclaration { attribute ProcessingInstruction
pis; attribute Comment comments; }; interface Conditional
Declaration { attribute boolean includeIgnore; };

Opaque.

IDL Definition

interface CMNode {
 const unsigned short ELEMENT_DECLARATION = 1;
 const unsigned short ATTRIBUTE_DECLARATION = 2;
 const unsigned short CM_NOTATION_DECLARATION = 3;
 const unsigned short ENTITY_DECLARATION = 4;
 const unsigned short CM_CHILDREN = 5;
 const unsigned short CM_MODEL = 6;
 const unsigned short CM_EXTERNALMODEL = 7;
 readonly attribute unsigned short cmNodeType;
 CMNode cloneCM();
 CMNode cloneExternalCM();
};

Constant ELEMENT_DECLARATION
The node is an ElementDeclaration [p.16] .

Constant ATTRIBUTE_DECLARATION
The node is an AttributeDeclaration [p.18] .

Constant CM_NOTATION_DECLARATION
The node is a CMNotationDeclaration [p.19] .

Constant ENTITY_DECLARATION
The node is an EntityDeclaration [p.19] .

Constant CM_CHILDREN
The node is a CMChildren [p.18] .

Constant CM_MODEL
The node is a CMModel [p.12] .

14

1.2. Content Model and CM-Editing Interfaces

Constant CM_EXTERNALMODEL
The node is a CMExternalModel [p.14] .

Attributes
cmNodeType of type unsigned short, readonly

A code representing the underlying object as defined above.
Methods

cloneCM
Creates a copy of CMModel [p.12] . No document refers to the CMNode returned.
Return Value

CMNode [p.14] Cloned CMNode.

No Parameters
No Exceptions

cloneExternalCM
Creates a copy of CMExternalModel [p.14] . It is possible that a document would not
refer to the CMNode returned.
Return Value

CMNode [p.14] Cloned CMNode.

No Parameters
No Exceptions

Interface CMNodeList

CMNodeList is the CM analogue to NodeList; the document order is meaningful, as opposed to
CMNamedNodeMap [p.15] .

IDL Definition

interface CMNodeList {
};

Interface CMNamedNodeMap

CMNamedNodeMap is the CM analogue to NamedNodeMap. The order is not meaningful.

IDL Definition

interface CMNamedNodeMap {
};

Interface CMDataType

The primitive datatypes supported currently are: string, boolean, float, double, decimal.

15

1.2. Content Model and CM-Editing Interfaces

IDL Definition

interface CMDataType {
 const short STRING_DATATYPE = 1;
 const short BOOLEAN_DATATYPE = 2;
 const short FLOAT_DATATYPE = 3;
 const short DOUBLE_DATATYPE = 4;
 const short LONG_DATATYPE = 5;
 const short INT_DATATYPE = 6;
 const short SHORT_DATATYPE = 7;
 const short BYTE_DATATYPE = 8;
 attribute int lowValue;
 attribute int highValue;
 short getPrimitiveType();
};

Constant STRING_DATATYPE
code representing the string data type as defined in XML Schema Datatypes.

Constant BOOLEAN_DATATYPE
code representing the boolean data type as defined in XML Schema Datatypes.

Constant FLOAT_DATATYPE
code representing the float data type as defined in XML Schema Datatypes.

Constant DOUBLE_DATATYPE
code representing the double data type as defined in XML Schema Datatypes.

Constant LONG_DATATYPE
code representing a long data type as defined in XML Schema Datatypes.

Constant INT_DATATYPE
code representing an integer data type as defined in XML Schema Datatypes.

Constant SHORT_DATATYPE
code representing a short data type as defined in XML Schema Datatypes.

Constant BYTE_DATATYPE
code representing a byte data type as defined in XML Schema Datatypes.

Attributes
highValue of type int

The high value for the data type in the value range.
lowValue of type int

The low value for the data type in the value range.
Methods

getPrimitiveType
Returns one of the enumerated code representing the primitive data type.
Return Value

short code representing the primitive type of the attached data item.

No Parameters
No Exceptions

Interface ElementDeclaration

16

1.2. Content Model and CM-Editing Interfaces

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#byte
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#short
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#int
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#long
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#double
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#float
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#boolean
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#string

The element name along with the content specification in the context of a CMNode [p.14] .

IDL Definition

interface ElementDeclaration {
 int getContentType();
 CMChildren getCMChildren();
 CMNamedNodeMap getCMAttributes();
 CMNamedNodeMap getCMGrandChildren();
};

Methods
getCMAttributes

Returns a CMNamedNodeMap [p.15] containing AttributeDeclarations [p.18] for
all the attributes that can appear on this type of element.
Return Value

CMNamedNodeMap [p.15] Attributes list for this CMNode [p.14] .

No Parameters
No Exceptions

getCMChildren
Gets content model of element.
Return Value

CMChildren [p.18] Content model of element.

No Parameters
No Exceptions

getCMGrandChildren
Returns a CMNamedNodeMap [p.15] containing ElementDeclarations for all the
Elements that can appear as children of this type of element. Note that which ones can
actually appear, and in what order, is defined by the CMChildren [p.18] .
Return Value

CMNamedNodeMap [p.15] Children list for this CMNode [p.14] .

No Parameters
No Exceptions

getContentType
Gets content type, e.g., empty, any, mixed, elements, PCDATA, of an element.
Return Value

int Content type constant.

17

1.2. Content Model and CM-Editing Interfaces

No Parameters
No Exceptions

Interface CMChildren

An element in the context of a CMNode [p.14] .

IDL Definition

interface CMChildren {
 attribute DOMString listOperator;
 attribute CMDataType elementType;
 attribute int multiplicity;
 attribute CMNamedNodeMap subModels;
 readonly attribute boolean isPCDataOnly;
};

Attributes
elementType of type CMDataType [p.15]

Datatype of the element.
isPCDataOnly of type boolean, readonly

Boolean defining whether the element type contains child elements and PCDATA or
PCDATA only for mixed element types. True if the element is of type PCDATA only.
Relevant only for mixed content type elements.
(ED: Do we really need this attribute ?)

listOperator of type DOMString
Operator list.

multiplicity of type int
0 or 1 or many.

subModels of type CMNamedNodeMap [p.15]
Additional CMNode [p.14] s in which the element can be defined.

Interface AttributeDeclaration

An attribute in the context of a CMNode [p.14] .

IDL Definition

interface AttributeDeclaration {
 const short NO_VALUE_CONSTRAINT = 0;
 const short DEFAULT_VALUE_CONSTRAINT = 1;
 const short FIXED_VALUE_CONSTRAINT = 2;
 readonly attribute DOMString attrName;
 attribute CMDataType attrType;
 attribute DOMString attributeValue;
 attribute DOMString enumAttr;
 attribute CMNodeList ownerElement;
 attribute short constraintType;
};

Constant NO_VALUE_CONSTRAINT
Describes that the attribute does not have any value constraint.

18

1.2. Content Model and CM-Editing Interfaces

Constant DEFAULT_VALUE_CONSTRAINT
Indicates that the there is a default value constraint.

Constant FIXED_VALUE_CONSTRAINT
Indicates that there is a fixed value constraint for this attribute.

Attributes
attrName of type DOMString, readonly

Name of attribute.
attrType of type CMDataType [p.15]

Datatype of the attribute.
attributeValue of type DOMString

Default value.
constraintType of type short

Constraint type if any for this attribute.
enumAttr of type DOMString

Enumeration of attribute.
ownerElement of type CMNodeList [p.15]

Owner element CMNode of attribute.
Interface EntityDeclaration

As in current DOM.

IDL Definition

interface EntityDeclaration {
};

Interface CMNotationDeclaration

This interface represents a notation declaration.

IDL Definition

interface CMNotationDeclaration {
 attribute DOMString strSystemIdentifier;
 attribute DOMString strPublicIdentifier;
};

Attributes
strPublicIdentifier of type DOMString

The string representing the public identifier for this notation declaration.
strSystemIdentifier of type DOMString

the URI representing the system identifier for the notation declaration, if present, null
otherwise.

19

1.2. Content Model and CM-Editing Interfaces

1.3. Validation and Other Interfaces
This section contains "Validation and Other" methods common to both the document-editing and
CM-editing worlds (includes Document [p.20] , DOMImplementation, and DOMErrorHandler
[p.32] methods).

Interface Document

The setErrorHandler method is off of the Document interface.

IDL Definition

interface Document {
 void setErrorHandler(in DOMErrorHandler handler);
};

Methods
setErrorHandler

Allow an application to register an error event handler.
Parameters
handler of type DOMErrorHandler [p.32]

The error handler
No Return Value
No Exceptions

Interface DocumentCM

This interface extends the Document [p.20] interface with additional methods for both document
and CM editing.

IDL Definition

interface DocumentCM : Document {
 int numCMs();
 CMModel getInternalCM();
 CMExternalModel * getCMs();
 CMModel getActiveCM();
 void addCM(in CMModel cm);
 void removeCM(in CMModel cm);
 boolean activateCM(in CMModel cm);
};

Methods
activateCM

Make the given CMModel [p.12] active. Note that if a user wants to activate one CM to get
default attribute values and then activate another to do validation, a user can do that;
however, only one CM is active at a time.
Parameters
cm of type CMModel [p.12]

CM to be active for the document. The CMModel points to a list of
CMExternalModel [p.14] s; with this call, only the specified CM will be active.

20

1.3. Validation and Other Interfaces

Return Value

boolean True if the CMModel has already been associated with the document
using addCM(); false if not.

No Exceptions
addCM

Associate a CMModel [p.12] with a document. Can be invoked multiple times to result in a
list of CMExternalModel [p.14] s. Note that only one sole internal CMModel is
associated with the document, however, and that only one of the possible list of
CMExternalModels is active at any one time.
Parameters
cm of type CMModel [p.12]

CM to be associated with the document.
No Return Value
No Exceptions

getActiveCM
Find the active CMExternalModel [p.14] for a document.
Return Value

CMModel
[p.12]

CMModel with a pointer to the active CMExternalModel [p.14]
of document.

No Parameters
No Exceptions

getCMs
Obtains a list of CMExternalModel [p.14] s associated with a document from the
CMModel [p.12] . This list arises when addCM() is invoked.
Return Value

CMExternalModel
*

A list of CMExternalModel [p.14] s associated with a
document.

No Parameters
No Exceptions

getInternalCM
Find the sole CMModel [p.12] of a document. Only one CMModel may be associated with
the document.
Return Value

CMModel [p.12] CMModel.

No Parameters
No Exceptions

21

1.3. Validation and Other Interfaces

numCMs
Determines number of CMExternalModel [p.14] s associated with the document. Only
one CMModel [p.12] can be associated with the document, but it may point to a list of
CMExternalModels.
Return Value

int Non-negative number of external CM objects.

No Parameters
No Exceptions

removeCM
Removes a CM associated with a document; actually removes a CMExternalModel
[p.14] . Can be invoked multiple times to remove a number of these in the list of
CMExternalModels.
Parameters
cm of type CMModel [p.12]

CM to be removed.
No Return Value
No Exceptions

Interface DOMImplementationCM

This interface extends the DOMImplementation interface with additional methods.

IDL Definition

interface DOMImplementationCM : DOMImplementation {
 CMModel createCM();
 CMExternalModel createExternalCM();
};

Methods
createCM

Creates a CMModel.
Return Value

CMModel [p.12] A NULL return indicates failure.

No Parameters
No Exceptions

createExternalCM
Creates a CMExternalModel.
Return Value

CMExternalModel [p.14] A NULL return indicates failure.

22

1.3. Validation and Other Interfaces

No Parameters
No Exceptions

1.4. Document-Editing Interfaces
This section contains "Document-editing" methods (includes Node, Element, Text and Document
[p.20] methods).

Interface NodeCM

This interface extends the Node interface with additional methods for guided document editing.

IDL Definition

interface NodeCM : Node {
 boolean canInsertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 boolean canRemoveChild(in Node oldChild)
 raises(DOMException);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 boolean canAppendChild(in Node newChild)
 raises(DOMException);
 boolean isValid();
};

Methods
canAppendChild

Has the same args as AppendChild.
Parameters
newChild of type Node

Node to be appended.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

canInsertBefore
Determines whether the Node::InsertBefore operation would make this document
invalid with respect to the currently active CM. ISSUE: Describe "valid" when referring to
partially completed documents.
Parameters

23

1.4. Document-Editing Interfaces

newChild of type Node
Node to be inserted.

refChild of type Node
Reference Node.

Return Value

boolean A boolean that is true if the Node::InsertBefore operation is
allowed.

Exceptions

DOMException DOMException.

canRemoveChild
Has the same args as RemoveChild.
Parameters
oldChild of type Node

Node to be removed.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

canReplaceChild
Has the same args as ReplaceChild.
Parameters
newChild of type Node

New Node.
oldChild of type Node

Node to be replaced.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

24

1.4. Document-Editing Interfaces

isValid
Determines if the Node is valid relative to currently active CM.
Return Value

boolean True if the node is valid in the current context, false if not.

No Parameters
No Exceptions

Interface ElementCM

This interface extends the Element interface with additional methods for guided document editing.

IDL Definition

interface ElementCM : Element {
 int contentType();
 ElementDeclaration getElementDeclaration()
 raises(DOMException);
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Node node);
 boolean canSetAttributeNodeNS(in Node node,
 in DOMString namespaceURI,
 in DOMString localName);
 boolean canSetAttributeNS(in DOMString attrname,
 in DOMString attrval,
 in DOMString namespaceURI,
 in DOMString localName);
};

Methods
canSetAttribute

Sets value for specified attribute.
Parameters
attrname of type DOMString

Name of attribute.
attrval of type DOMString

Value to be assigned to the attribute.
Return Value

boolean Success or failure.

No Exceptions
canSetAttributeNS

Determines if namespace of attribute can be set.
Parameters
attrname of type DOMString

Name of attribute.

25

1.4. Document-Editing Interfaces

attrval of type DOMString
Value to be assigned to the attribute.

namespaceURI of type DOMString
namespaceURI of namespace.

localName of type DOMString
localName of namespace.

Return Value

boolean Success or failure.

No Exceptions
canSetAttributeNode

Determines if attribute can be set.
Parameters
node of type Node

Node in which the attribute can possibly be set.
Return Value

boolean Success or failure.

No Exceptions
canSetAttributeNodeNS

Determines if namespace of attribute’s node can be set.
Parameters
node of type Node

Attribute’s Node in which to set the namespace.
namespaceURI of type DOMString

namespaceURI of namespace.
localName of type DOMString

localName of namespace.
Return Value

boolean Success or failure.

No Exceptions
contentType

Determines element content type.
Return Value

int Constant for mixed, empty, any, etc.

No Parameters
No Exceptions

26

1.4. Document-Editing Interfaces

getElementDeclaration
gets the CM editing object describing this element
Return Value

ElementDeclaration [p.16] ElementDeclaration object

Exceptions

DOMException If no DTD is present raises this exception

No Parameters
Interface CharacterDataCM

This interface extends the CharacterData interface with additional methods for document
editing.

IDL Definition

interface CharacterDataCM : Text {
 boolean isWhitespaceOnly();
 boolean canSetData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 boolean canAppendData(in DOMString arg)
 raises(DOMException);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 boolean canDeleteData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
};

Methods
canAppendData

Determines if data can be appended.
Parameters
arg of type DOMString

Argument to be appended.
Return Value

boolean Success or failure.

27

1.4. Document-Editing Interfaces

Exceptions

DOMException DOMException.

canDeleteData
Determines if data can be deleted.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

canInsertData
Determines if data can be inserted.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

canReplaceData
Determines if data can be replaced.
Parameters
offset of type unsigned long

Offset.
count of type unsigned long

Replacement.
arg of type DOMString

Argument to be set.
Return Value

28

1.4. Document-Editing Interfaces

boolean Success or failure.

Exceptions

DOMException DOMException.

canSetData
Determines if data can be set.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean Success or failure.

Exceptions

DOMException DOMException.

isWhitespaceOnly
Determines if content is only whitespace.
Return Value

boolean True if content only whitespace; false for non-whitespace if it is a text
node in element content.

No Parameters
No Exceptions

Interface DocumentTypeCM

This interface extends the DocumentType interface with additional methods for document editing.

IDL Definition

interface DocumentTypeCM : DocumentType {
 boolean isElementDefined(in DOMString elemTypeName);
 boolean isElementDefinedNS(in DOMString elemTypeName,
 in DOMString namespaceURI,
 in DOMString localName);
 boolean isAttributeDefined(in DOMString elemTypeName,
 in DOMString attrName);
 boolean isAttributeDefinedNS(in DOMString elemTypeName,
 in DOMString attrName,

29

1.4. Document-Editing Interfaces

 in DOMString namespaceURI,
 in DOMString localName);
 boolean isEntityDefined(in DOMString entName);
};

Methods
isAttributeDefined

Determines if this attribute is defined for this element in the currently active CM.
Parameters
elemTypeName of type DOMString

Name of element.
attrName of type DOMString

Name of attribute.
Return Value

boolean Success or failure.

No Exceptions
isAttributeDefinedNS

Determines if this attribute’s namespace is defined in the currently active CM.
Parameters
elemTypeName of type DOMString

Name of element.
attrName of type DOMString

Name of attribute.
namespaceURI of type DOMString

namespaceURI of namespace.
localName of type DOMString

localName of namespace.
Return Value

boolean Success or failure.

No Exceptions
isElementDefined

Determines if this element is defined in the currently active CM.
Parameters
elemTypeName of type DOMString

Name of element.
Return Value

boolean Success or failure.

No Exceptions

30

1.4. Document-Editing Interfaces

isElementDefinedNS
Determines if this element’s namespace is defined in the currently active CM.
Parameters
elemTypeName of type DOMString

Name of element.
namespaceURI of type DOMString

namespaceURI of namespace.
localName of type DOMString

localName of namespace.
Return Value

boolean Success or failure.

No Exceptions
isEntityDefined

Determines if an entity is defined in the document.
ISSUE: Should methods be added to the DocumentTypeCM for the complete list of
defined elements and for a particular element type, the complete list of defined attributes.
These two methods might return a list of strings which is a type not yet described in the
DOM spec.
Parameters
entName of type DOMString

Name of entity.
Return Value

boolean Success or failure.

No Exceptions
Interface AttributeCM

This interface extends Attr to provide guided editing of an XML document.

IDL Definition

interface AttributeCM {
 AttributeDeclaration getAttributeDeclaration();
 CMNotationDeclaration getNotation()
 raises(DOMException);
};

Methods
getAttributeDeclaration

returns the corresponding attribute declaration in the content model.
Return Value

31

1.4. Document-Editing Interfaces

AttributeDeclaration
[p.18]

The attribute declaration corresponding to this
attribute

No Parameters
No Exceptions

getNotation
Returns the notation declaration for the attributes defined of type NOTATION.
Return Value

CMNotationDeclaration
[p.19]

Returns the notation declaration for this attribute
if the type is of notation type, null otherwise.

Exceptions

DOMException DOMException

No Parameters

1.5. DOM Error Handler Interfaces
This section contains DOM error handling interfaces.

Interface DOMErrorHandler

Basic interface for DOM error handlers. If an application needs to implement customized error
handling for DOM such as CM or Load/Save, it must implement this interface and then register an
instance using the setErrorHandler method. All errors and warnings will then be reported
through this interface. Application writers can override the methods in a subclass to take
user-specified actions.

IDL Definition

interface DOMErrorHandler {
 void warning(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(DOMSystemException);
 void fatalError(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(DOMSystemException);
 void error(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(DOMSystemException);
};

32

1.5. DOM Error Handler Interfaces

Methods
error

Receive notification of a recoverable error per section 1.2 of the W3C XML 1.0
recommendation. The default behavior if the user doesn’t register a handler is to report
conditions that are not fatal errors, and allow the calling application to continue processing.
Parameters
where of type DOMLocator [p.34]

Location of the error, which could be either a source position in the case of loading, or
a node reference for later validation. The public ID and system ID for the error
location could be some of the information.

how of type DOMString
How the error occurred.

why of type DOMString
Why the error occurred.

Exceptions

DOMSystemException A subclass of DOMException.

No Return Value
fatalError

Report a fatal, non-recoverable CM or Load/Save error per section 1.2 of the W3C XML
1.0 recommendation. The default behavior if the user doesn’t register a handler is to throw
a DOMSystemException and stop all further processing.
Parameters
where of type DOMLocator [p.34]

Location of the fatal error, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of the information.

how of type DOMString
How the fatal error occurred.

why of type DOMString
Why the fatal error occurred.

Exceptions

DOMSystemException A subclass of DOMException.

No Return Value
warning

Receive notification of a warning per the W3C XML 1.0 recommendation. The default
behavior if the user doesn’t register a handler is to report conditions that are not errors or
fatal errors, and then allow the calling application to continue even after invoking this
method.
Parameters

33

1.5. DOM Error Handler Interfaces

where of type DOMLocator [p.34]
Location of the warning, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of the information.

how of type DOMString
How the warning occurred.

why of type DOMString
Why the warning occurred.

Exceptions

DOMSystemException A subclass of DOMException.

No Return Value
Interface DOMLocator

This interface provides document location information and is similar to a SAX locator object.

IDL Definition

interface DOMLocator {
 int getColumnNumber();
 int getLineNumber();
 DOMString getPublicID();
 DOMString getSystemID();
 Node getNode();
};

Methods
getColumnNumber

Return the column number.
Return Value

int The column number, or -1 if none is available.

No Parameters
No Exceptions

getLineNumber
Return the line number.
Return Value

int The line number, or -1 if none is available.

No Parameters
No Exceptions

getNode
Return the Node.
Return Value

34

1.5. DOM Error Handler Interfaces

Node The NODE, or null if none is available.

No Parameters
No Exceptions

getPublicID
Return the public identifier.
Return Value

DOMString A string containing the public identifier, or null if none is available.

No Parameters
No Exceptions

getSystemID
Return the system identifier.
Return Value

DOMString A string containing the system identifier, or null if none is available.

No Parameters
No Exceptions

1.6. Editing and Generating a Content Model
Editing and generating a content model falls in the CM-editing world. The most obvious requirement for
this set of requirements is for tools that author content models, either under user control, i.e., explicitly
designed document types, or generated from other representations. The latter class includes transcoding
tools, e.g., synthesizing an XML representation to match a database schema.

It’s important to note here that a DTD’s "internal subset" is part of the Content Model, yet is loaded,
stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the CM. It also means that our representation of the CM must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability
to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of content models, so a single DOM representation of a DTD can be shared among several
documents, each potentially also having its own internal subset; it’s possible that entity layering may be
represented the same way.

The API for altering the content model may also be the CM’s official interface with parsers. One of the
ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"
API. Particular pairs of DOMs and parsers may bypass it, but it’s required as a portability mechanism.

35

1.6. Editing and Generating a Content Model

Note that several of these applications require that a CM be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we’d want to be able to share a
single representation of a CM among several documents, both for storage efficiency and so that changes in
the CM can quickly be tested by validating it against a set of known-good documents. Similarly, there is a
known problem in DOM Level 2 where we assume that the DocumentType will be created before the
Document, which is fine for newly-constructed documents but not a good match for the order in which an
XML parser encounters this data; being able to "rebind" a Document to a new CM, after it has been
created may be desirable.

As noted earlier, questions about whether one can alter the content of the CM via its syntax, via
higher-level abstractions, or both, exist. It’s also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of a CM, remove and re-insert parts,
and so on.

1.7. Content Model-directed Document Manipulation
In addition to using the content model to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
queries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if I insert this here, will the document still be valid". The former is
better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume the latter.

It has been proposed that in addition to asking questions about specific parts of the content model, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you’re about to conflict with or overwrite
another attribute with the same namespaceURI/localName but different prefix... or same nodeName but
different namespaceURI.

As mentioned above, we have to deal with the fact that the shortest distance between two valid documents
may be through an invalid one. Users may want to know several levels of detail (all the possible children,
those which would be valid given what precedes this point, those which would be valid given both
preceding and following siblings). Also, once XML Schemas introduce context sensitive validity, we may
have to consider the effect of children as well as the individual node being inserted.

1.8. Validating a Document Against a Content Model
The most obvious use for a content model (DTD or XML Schema or any Content Model) is to use it to
validate that a given XML document is in fact a properly constructed instance of the document type
described by this CM. This again falls into the document-editing world. The XML spec only discusses

36

1.7. Content Model-directed Document Manipulation

performing this test at the time the document is loaded into the "processor", which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
validate again a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This
issue also arises if the "internal subset" is altered -- or if the whole Content Model changes.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily
invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which
permit a user to check the validity of a node on demand.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actually exist.

1.9. Well-formedness Testing
XML defined the "well-formed" (WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the CM feature will permit both full validity checking (see next section) and
"lightweight" WF checking, as requested by the caller, as well as processing entity declarations in the CM
even if validation is not turned on. This falls within the document-editing world.

While the DOM inherently enforces some of XML’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. These include:

Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities
The three-character sequence "]]>" in CDATASections.
The two-character sequence "--" in comments. (Which, be it noted, some XML validators don’t
currently remember to test...)

In addition, Namespaces introduce their own concepts of well-formedness. Specifically:

No two attributes on a single Element may have the same combination of namespaceURI and
localName, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.
NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)
The mapping of namespace prefixes to their URIs must be declared and consistent. That isn’t

37

1.9. Well-formedness Testing

required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their namespaceURIs and localName. But it does become an issue when we want
to serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
namespaceNormalize operation, which would create the implied declarations and reconcile
conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existing normalize method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.
First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occurring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possibly provide some of the primitive (e.g.,
string-checking) functions directly.

38

1.9. Well-formedness Testing

2. Document Object Model Load and Save
Editors

Andy Heninger, IBM

2.1. Load and Save Requirements
DOM Level 3 will provide an API for loading XML source documents into a DOM representation and for
saving a DOM representation as a XML document.

Some environments, such as the Java platform or COM, have their own ways to persist objects to streams
and to restore them. There is no direct relationship between these mechanisms and the DOM load/save
mechanism. This specification defines how to serialize documents only to and from XML format.

2.1.1. General Requirements

Requirements that apply to both loading and saving documents.

2.1.1.1. Document Sources

Documents must be able to be parsed from and saved to the following sources:

Input and Output Streams
URIs
Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the document are resolved.

2.1.1.2. Content Model Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Content Model and to cause that Content Model to be loaded.

Note that while DOM Level 2 creation can specify a Content Model when creating a document (public
and system IDs for the external subset, and a string for the subset), DOM Level 2 implementations do not
process the Content Model’s content. For DOM Level 3, the Content Model’s content must be read.

2.1.1.3. Content Model Reuse

When processing a series of documents, all of which use the same Content Model, implementations
should be able to reuse the already parsed and loaded Content Model rather than parsing it again for each
new document.

39

2. Document Object Model Load and Save

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Content Model section, of this specification block it or make it difficult to implement.

2.1.1.4. Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needs to be addressed.

2.1.1.5. Error Reporting

Loading a document can cause the generation of errors including:

I/O Errors, such as the inability to find or open the specified document.
XML well formedness errors.
Validity errors

Saving a document can cause the generation of errors including:

I/O Errors, such as the inability to write to a specified stream, URL, or file.
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Content Model section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Content Model section, even
though they may be commonly generated in response to an application asking that a document be loaded.

2.1.2. Load Requirements

The following requirements apply to loading documents.

2.1.2.1. Parser Properties and Options

Parsers may have properties or options that can be set by applications. Examples include:

Expansion of entity references.
Creation of entity ref nodes.
Handling of white space in element content.
Enabling of namespace handling.
Enabling of content model validation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementation is required.

40

2.1.2. Load Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal DOM API.

2.1.3.1. XML Writer Properties and Options

There are several options that can be defined when saving an XML document. Some of these are:

Saving to Canonical XML format.
Pretty Printing.
Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.
Saving of Content Models.
Handling of external entities.

2.1.3.2. Content Model Saving

Requirement from the Content Model group.

2.1.4. Other Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especially requested.

2.1.4.1. Incremental and/or Concurrent Parsing

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process was done.

Provide the ability to examine the partial DOM representation before it has been fully loaded.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to be loaded.

2.1.4.2. Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

41

2.1.3. XML Writer Requirements

2.1.4.3. Document Fragments

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts of memory.

XPath should also be considered as a way to identify XML Document fragments to load.

2.1.4.4. Document Fragments in Context of Existing DOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments as a new Node.

2.2. Issue List

2.2.1. Open Issues

Issue LS-Issue-10:
Error Reporting. Loading will be reporting well-formedness and validation errors, just like CM. A
common error reporting mechanism needs to be developed.

Issue LS-Issue-12:
Definition of "Non-validating". Exactly how much processing is done by "non-validating" parsers is
not fully defined by the XML specification. In particular, they are not required to read any external
entities, but are not prohibited from doing so.
Another common user request: a mode that completely ignores DTDs, both and external. Such a
parser would not conform to XML 1.0, however.
For the documents produced by a non-validating load to be the same, we need to tie down exactly
what processing must be done. The XML Core WG also has question as an open issue .
Some discussion is at http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000JanMar/0192.html
Here is proposal: Have three classes of parsers

Minimal. No external entities of any type are accessed. DTD subset is processes normally, as
required by XML 1.0, including all entity definitions it contains.
Non-Validating. All external entities are read. Does everything except validation.
Validating. As defined by XML 1.0 rec.

Tentative resolution: use the options from SAX2. These provide separate flags for validation, reading
of external general entities and reading of external parameter entities.

Issue LS-Issue-14:
Should there be separate DOM modules for browser or scripting style loading
(document.load("whatever")) and server style parsers? It’s probably easy for the server style parsers
to implement the browser style interface, but the reverse may not be true.

Issue LS-Issue-16:
Loading and saving of content models - DTDs or Schemas - outside of the context of a document is
not addressed.

42

2.2. Issue List

Issue LS-Issue-17:
Loading while validating using an already loaded content model is not addressed. Applications
should be able to load a content model (issue 16), and then repeatedly reuse it during the loading of
additional documents.

Issue LS-Issue-20:
Action from September f2f to "add issues raised by schema discussion. What were these?

Issue LS-Issue-22:
What do the bindings for things like InputStream look like in ECMA Script?

Issue LS-Issue-27:
How is validation handled when there are multiple possible content models associated with the
document? How is one selected?

Issue LS-Issue-31:
We now have an option for fixing up name space declarations and prefixes on serialization. Should
we specify how this is done, so that the documents from different implementations of serialization
will use the same declarations and prefixes, or should we leave the details up to the implementation?

Issue LS-Issue-32:
Mimetypes. If the input being parsed is from http or something else that supplies types, and the type
is something other than text/xml, should we parse it anyhow, or should we complain. Should there be
an option? My preference - always parse, never complain. Reasons: 1. This is what all parsers do
now, and no one has ever complained, at least not that I’m aware of. 2. Applications must have a
pretty good reason to suspect that they’re getting xml or they wouldn’t have invoked the parser. 3.
All the test would do is to take something that might have worked (xml that is not known to the
server) and turn it into an error.

Issue LS-Issue-33:
Unicode Character Normalization Problems. It turns out that for some code pages, normalizing a
Unicode representation, translating to the code page, then translating back to Unicode can result in
un-normalized Unicode. Mark Davis says that this can happen with Vietnamese and maybe with
Hebrew.
This means that the suggested W3C model of normalization on serialization (early normalization)
may not work, and that the receiver of the data may need to normalize it again, just in case.

2.2.2. Resolved Issues

Issue LS-Issue-1:
Should these methods be in a new interface, or should they be added to the existing
DOMImplementation Interface? I think that adding them to the existing interface is cleaner, because
it helps avoid an explosion of new interfaces.
The methods are in a separate interface in this description for convenience in preparing the doc, so
that I don’t need to edit Core to add the methods. (The same argument could perhaps be made for
implementations.)
Resolution: The methods are in a separate DOMImplementationLS interface. Because Load/Save is
an optional module, we don’t want to add its to the core DOMImplementation interface.

Issue LS-Issue-2:
SAX handles the setting of parser attributes differently. Rather than having distinct getters and setters
for each attribute, it has a generic setter and getter of named properties, where properties are
specified by a URL. This has an advantage in that implementations do not need to extend the

43

2.2.2. Resolved Issues

interface when providing additional attributes.
If we choose to use strings, their syntax needs to be chosen. URIs would make sense, except for the
fact that these are just names that do not refer to any resources. Dereferencing them would be
meaningless. Yet the direction of the W3C is that all URIs must be dereferencable, and refer to
something on the web.
Resolution: Use strings for properties. Use Java package name syntax for the identifying names. The
question was revisited at the July f2f, with the same conclusion. But some discussion of using URLs
continues.
This issue was revisited once again at the 9/2000 meeting. Now all DOM properties or features will
be short, descriptive names, and we will recommend that all vendor-specific extensions be prefixed
to avoid collisions, but will not make specific recommendations for the syntax of the prefix.

Issue LS-Issue-3:
It’s not obvious what name to choose for the parser interface. Taking any of the names already in use
by parser implementations would create problems when trying to support both the new API and the
existing old API. That leaves out DocumentBuilder (Sun) and DOMParser (Xerces).
Resolution: This is issue really just a comment. The "resolution" is in the names appearing in the
API.

Issue LS-Issue-4:
Question: should ResolveEntity pass a baseURI string back to the application, in addition to the
publicId, systemId, and/or stream? Particularly in the case of an input stream.
Resolution: No. Sax2 explicitly says that the system ID URI must be fully resolved before passing it
out to the entity resolve. We will follow SAX’s lead on this unless some additional use case surfaces.
This is from the 9/2000 f2f, and reverses an earlier decision.

Issue LS-Issue-5:
When parsing a document that contains errors, should the whole document be decreed unusable, or
should we say that portions prior to the point where the error was detected are OK?
Resolution: In the case of errors in the XML source, what, if any, document is returned is
implementation dependent.

Issue LS-Issue-6:
The relationship between SAXExceptions and DOM exceptions seems confusing.
Resolution: This issue goes away because we are no longer using SAX. Any exceptions will be
DOM Exceptions.

Issue LS-Issue-7:
Question: In the original Java definition, are the strings returned from the methods
SAXException.toString() and SAXException.getMessage() always the same? If not,
we need to add another attribute.
Resolution: No longer an issue because we are no longer using SAX.

Issue LS-Issue-8:
JAXP defines a mechanism, based on Java system properties, by which the Document Builder
Factory locates the specific parser implementation to be used. This ability to redirect to different
parsers is a key feature of JAXP. How this redirection works in the context of this design may be
something that needs to be defined separately for each language binding.
This question was discussed at the July f2f, without resolution. Agreed that the feature is not critical
to the rest of the API, and can be postponed.
Resolution: The issue is moving to core, where it is part of the bigger question of where does the
DOM implementation come from, and how do multiple implementations coexist. Allowing separate,

44

2.2.2. Resolved Issues

or mix-and-match, specification of the parser and the rest of the DOM is not generally practical
because parsers generally have some degree of private knowledge about their DOMs.

Issue LS-Issue-9:
The use of interfaces from SAX2 raises some questions. The Java bindings for these interfaces need
to be exactly the SAX2 definitions, including the original org.xml.sax package name.
The IDL presented here for these interfaces is an attempt to map the Java into IDL, but it will
certainly not round-trip accurately - Java bindings generated from the IDL will not match the original
Java.
The reasons for using the SAX interfaces are that they are well designed, widely implemented and
used, and provide what is needed. Designing something new would create confusion for application
developers (which should be used?) and make extra work for implementers of the DOM, most of
whom probably already provide SAX, all for no real gain.
Resolution: Problem is gone. We are not using SAX2. The design will borrow features and concepts
from SAX2 when it makes sense to do so.

Issue LS-Issue-11:
Another Error Reporting Question. We decided at the June f2f that validity errors should not be
exceptions. This means that a document load operation could encounter multiple errors. Should these
be collected and delivered as some sort of collection at the (otherwise) successful completion of the
load, or should there be some sort of callback? Callbacks are harder for applications to deal with.
Resolution: Provide a callback mechanism. Provide a default error handler that throws an exception
and stops further processing. From July f2f.

Issue LS-Issue-13:
Use of System or Language specific types for Input and Output
Loading and Saving requires that one of the possible sources or destinations of the XML data be
some sort of stream that can be used with io streams or memory buffers, or anything else that might
take or supply data. The type will vary, depending on the language binding.
The question is, what should be put into the IDL interfaces for these? Should we define an XML
stream to abstract out the dependency, or use system classes directly in the bindings?
Resolution: Define IDL types for use in the rest of the interface definitions. These types will be
mapped directly to system types for each language binding

Issue LS-Issue-15:
System Exceptions. Loading involves file opens and reads, and these can result in a variety of system
errors that may already have associated system exceptions. Should these system exceptions pass
through as is, or should they be some how wrapped in DOMExceptions, or should there be a parallel
set DOM Exceptions, or what?
Resolution: Introduce a new DOMSystemException to standardize the reporting of common I/O
errors across different DOM environments. Let it wrap an underlying system exception or error code
when appropriate. To be defined in the common ErrorReporting module, to be shared with
ContentModel.

Issue LS-Issue-18:
For the list of parser properties, which must all implementations recognize, which settings must all
implementations support, and which are optional?
Resolution: Done

Issue LS-Issue-19:
DOMOutputStream: should this be an interface with methods, or just an opaque type that maps onto
an appropriate binding-specific stream type?

45

2.2.2. Resolved Issues

If we specify an actual interface with methods, applications can implement it to wrap any arbitrary
destination that they may have. If we go with the system type it’s simpler to output to that type of
stream, but harder otherwise.
Resolution: Opaque.

Issue LS-Issue-21:
Define exceptions. A DOMSystemException needs to be defined as part of the error handling
module that is to be shared with CM. Common I/O type errors need to be defined for it, so that they
can be reported in a uniform way. A way to embed errors or exceptions from the OS or language
environment is needed, to provide full information to applications that want it.
Resolution: Duplicate of issue #15

Issue LS-Issue-23:
To Do: Add a method or methods to DOMBuilder that will provide information about a parser
feature - is the name recognized, which (boolean) values are supported - without throwing
exceptions.
Resolution: Done. Added canSetFeature.

Issue LS-Issue-24:
Clearly identify which of the parser properties must be recognized, and which of their settings must
be supported by all conforming implementations.
Resolution: Done. All must be recognized.

Issue LS-Issue-25:
How does the validation property work in SAX, and how should it work for us? The default value in
SAX2 is "true". Non-validating parsers only support a value of false. Does this mean that the default
depends on the parser, or that some sort of an error happens if a parse is attempted before resetting
the property, or what?
The same question applies to the External Entities properties too.
Resolution: Make the default value for the validation property be false.

Issue LS-Issue-26:
Do we want to rename the "auto-validation" property to "validate-if-cm"? Proposed at f2f. Resolution
unclear.
Resolution: Changed the name to "validate-if-cm".

Issue LS-Issue-29:
Should all properties except namespaces default to false? Discussed at f2f. I’m not so sure now.
Some of the properties have somewhat non-standard behavior when false - leaving out ER nodes or
whitespace, for example - and support of false will probably not even be required.
Resolution: Not all properties should default to false. But validation should.

Issue LS-Issue-28:
To do: add new parser property "createEntityNodes". default is true. Illegal for it to be false and
createEntityReferenceNodes to be true.
Is this really what we want?
Resolution: new feature added.

Issue LS-Issue-30:
Possible additional parser features - option to not create CDATA nodes, and to merge CDATA
contents with adjacent TEXT nodes if they exist. Otherwise just create a TEXT node.
Option to omit Comments.
Resolution: new feature added.

46

2.2.2. Resolved Issues

2.3. Interfaces
This section defines an API for loading (parsing) XML source documents into a DOM representation and
for saving (serializing) a DOM representation as an XML document.

The proposal for loading is influenced by Sun’s JAXP API for XML Parsing in Java,
http://java.sun.com/xml/download.html, and by SAX2, available at
http://www.megginson.com/SAX/index.html

2.3.1. Interface Summary

Here is a list of each of the interfaces involved with the Loading and Saving XML documents.

DOMImplementationLS [p.47] -- A new DOMImplementation interface that provides the
factory methods for creating the objects required for loading and saving.
DOMBuilder [p.48] -- A parser interface.
DOMInputSource [p.53] -- Encapsulate information about the source of the XML to be loaded.
DOMEntityResolver [p.55] -- During loading, provides a way for applications to redirect
references to external entities.
DOMBuilderFilter [p.56] -- Provide the ability to examine and optionally remove Element
nodes as they are being processed during the parsing of a document.
DOMWriter [p.57] -- An interface for writing out or serializing DOM documents.

2.3.2. Interfaces

Interface DOMImplementationLS

DOMImplementationLS contains the factory methods for creating objects implementing the
DOMBuilder [p.48] (parser) and DOMWriter [p.57] interfaces.

IDL Definition

interface DOMImplementationLS {
 DOMBuilder createDOMBuilder();
 DOMWriter createDOMWriter();
};

Methods
createDOMBuilder

Create a new DOMBuilder [p.48] . The newly constructed parser may then be configured
by means of its setFeature() method, and used to parse documents by means of its
parse() method.
Return Value

DOMBuilder [p.48] The newly created parser object.

47

2.3. Interfaces

http://www.megginson.com/SAX/index.html
http://java.sun.com/xml/download.html

No Parameters
No Exceptions

createDOMWriter
Create a new DOMWriter [p.57] object. DOMWriters are used to serialize a DOM tree
back into source XML form.
Return Value

DOMWriter [p.57] The newly created DOMWriter object.

No Parameters
No Exceptions

Interface DOMBuilder

A parser interface.

DOMBuilder provides an API for parsing XML documents and building the corresponding DOM
document tree. A DOMBuilder instance is obtained from the DOMImplementationLS [p.47]
interface by invoking its createDOMBuilder()method.

DOMBuilders have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized by all implementations.

namespaces
true: perform Namespace processing.
false: do not perform name space processing.
default: true.
supported values: true: required; false: optional
namespace-declarations
true: include namespace declarations (xmlns attributes) in the DOM document.
false: discard all namespace declarations. In either case, namespace prefixes will be retained.
default: true.
supported values: true: required; false: optional
validation
true: report validation errors (setting true also will force the external-general-entities and
external-parameter-entities properties to be set true.) Also note that the validate-if-cm
feature will alter the validation behavior when this feature is set true.
false: do not report validation errors.
default: false.
supported values: true: optional; false: required
external-general-entities
true: include all external general (text) entities.
false: do not include external general entities.
default: true.
supported values: true: required; false: optional
external-parameter-entities
true: include all external parameter entities.

48

2.3.2. Interfaces

false: do not include external parameter entities.
default: true.
supported values: true: required; false: optional
validate-if-cm
true: when both this feature and validation are true, enable validation only when the document
being processed has a content model. Documents without content models are parsed without
validation.
false: the validation feature alone controls whether the document is checked for validity.
Documents without content models are not valid.
default: false.
supported values: true: optional; false: required
create-entity-ref-nodes
true: create entity reference nodes in the DOM document. Setting this value true will also set
create-entity-nodes to be true
false: omit all entity reference nodes from the DOM document, putting the entity expansions
directly in their place.
default: true.
supported values: true: required; false: optional
entity-nodes
true: create entity nodes in the DOM document.
false: omit all entity nodes from the DOM document. Setting this value false will also set
create-entity-ref-nodes false.
default: true.
supported values: true: required; false: optional
white-space-in-element-content
true: include white space in element content in the DOM document. This is sometimes referred
to as ignorable white space
false: omit said white space. Note that white space in element content will only be omitted if it
can be identified as such, and not all parsers may be able to do so.
default: true.
supported values: true: required; false: optional
cdata-nodes
true: Create DOM CDATA nodes in response to the appearance of CDATA sections in the
source XML.
false: Do not create CDATA nodes in the DOM document. The content of any CDATA sections
in the source XML appears in the DOM as if it had been normal (non-CDATA) content. If a
CDATA section is adjacent to other content, the combined content appears in a single TEXT
node. The DOM Document produced by the DOMBuilder will not have adjacent TEXT nodes.
default: true
supported values: false: optional; true: required
comments
true: Include XML comments in the DOM document
false: Discard XML comments, do not create Comment nodes in the DOM Document resulting
from a parse.
default: true
supported values: false: required; true: required

49

2.3.2. Interfaces

charset-overrides-xml-encoding
true: If a higher level protocol such as http provides an indication of the character encoding of
the input stream being processed, that will override any encoding specified in the XML or
TEXT declaration of the XML. Explicitly setting an encoding in the DOMInputSource overrides
encodings from the protocol.
false: Any character set encoding information from higher level protocols is ignored by the
parser.
default: true
supported values: false: required; true: required

IDL Definition

interface DOMBuilder {
 attribute DOMEntityResolver entityResolver;
 attribute DOMErrorHandler errorHandler;
 attribute DOMBuilderFilter filter;
 void setFeature(in DOMString name,
 in boolean state)
 raises(DOMException);
 boolean supportsFeature(in DOMString name);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(DOMException);
 Document parseURI(in DOMString uri)
 raises(DOMException,
 DOMSystemException);
 Document parseDOMInputSource(in DOMInputSource is)
 raises(DOMException,
 DOMSystemException);
};

Attributes
entityResolver of type DOMEntityResolver [p.55]

If a DOMEntityResolver [p.55] has been specified, each time a reference to an
external entity is encountered the DOMBuilder will pass the public and system IDs to the
entity resolver, which can then specify the actual source of the entity.

errorHandler of type DOMErrorHandler [p.32]
In the event that an error is encountered in the XML document being parsed, the
DOMDcoumentBuilder will call back to the errorHandler with the error
information.

Note: The DOMErrorHandler interface is being developed separately, in conjunction with
the design of the content model and validation module.

filter of type DOMBuilderFilter [p.56]
When the application provides a filter, the parser will call out to the filter at the completion
of the construction of each Element node. The filter implementation can choose to
remove the element from the document being constructed or to terminate the parse early.

Methods

50

2.3.2. Interfaces

canSetFeature
query whether setting a feature is supported.
The feature name has the same form as a DOM hasFeature string.
It is possible for a DOMBuilder to recognize a feature name but to be unable to set its
value.
Parameters
name of type DOMString

The feature name, which is a DOM has-feature style string.
state of type boolean

The requested state of the feature (true or false).
Return Value

boolean true if the feature could be successfully set to the specified value, or false
if the feature is not recognized or the requested value is not supported.
The value of the feature itself is not changed.

No Exceptions
getFeature

Look up the value of a feature.
The feature name has the same form as a DOM hasFeature string
Parameters
name of type DOMString

The feature name, which is a string with DOM has-feature syntax.
Return Value

boolean The current state of the feature (true or false).

Exceptions

DOMException Raise a NOT_FOUND_ERR When the DOMBuilder does not
recognize the feature name.

parseDOMInputSource
Parse an XML document from a location identified by an DOMInputSource [p.53] .
Parameters
is of type DOMInputSource [p.53]

The DOMInputSource from which the source document is to be read.
Return Value

Document [p.20] The newly created and populatedDocument.

Exceptions

51

2.3.2. Interfaces

DOMException Exceptions raised by parseDOMInputSource()
originate with the installed ErrorHandler, and thus
depend on the implementation of the
DOMErrorHandler [p.32] interfaces. The default
ErrorHandlers will raise a DOMException if any form
of XML validation or well formedness error or warning
occurs during the parse, but application defined
errorHandlers are not required to do so.

DOMSystemException Exceptions raised by parseDOMInputSource()
originate with the installed ErrorHandler, and thus
depend on the implementation of the
DOMErrorHandler [p.32] interfaces. The default
ErrorHandlers will raise a DOMSystemException if
any form I/O or other system error occurs during the
parse, but application defined ErrorHandlers are not
required to do so.

parseURI
Parse an XML document from a location identified by an URI.
Parameters
uri of type DOMString

The location of the XML document to be read.
Return Value

Document [p.20] The newly created and populatedDocument.

Exceptions

DOMException Exceptions raised by parseURI() originate with the
installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler [p.32]
interfaces. The default error handlers will raise a
DOMException if any form of XML validation or well
formedness error or warning occurs during the parse, but
application defined errorHandlers are not required to do
so.

DOMSystemException Exceptions raised by parseURI() originate with the
installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler [p.32]
interfaces. The default error handlers will raise a
DOMSystemException if any form I/O or other system
error occurs during the parse, but application defined
error handlers are not required to do so.

52

2.3.2. Interfaces

setFeature
Set the state of a feature.
The feature name has the same form as a DOM hasFeature string.
It is possible for a DOMBuilder to recognize a feature name but to be unable to set its
value.
Parameters
name of type DOMString

The feature name, which is a DOM has-feature style string.
state of type boolean

The requested state of the feature (true or false).
Exceptions

DOMException Raise a NOT_SUPPORTED_ERR exception When the
DOMBuilder recognizes the feature name but cannot set the
requested value.

Raise a NOT_FOUND_ERR When the DOMBuilder does not
recognize the feature name.

No Return Value
supportsFeature

query whether the DOMBuilder recognizes a feature name.
The feature name has the same form as a DOM hasFeature string.
It is possible for a DOMBuilder to recognize a feature name but to be unable to set its
value. For example, a non-validating parser would recognize the feature "validation",
would report that its value was false, and would raise an exception if an attempt was made
to enable validation by setting the feature to true.
Parameters
name of type DOMString

The feature name, which has the same syntax as a DOM has-feature string.
Return Value

boolean true if the feature name is recognized by the DOMBuilder. False if the
feature name is not recognized.

No Exceptions
Interface DOMInputSource

This interface represents a single input source for an XML entity.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), and/or a character stream.

53

2.3.2. Interfaces

The exact definitions of a byte stream and a character stream are binding dependent.

There are two places that the application will deliver this input source to the parser: as the argument
to the parseDOMInputSource method, or as the return value of the
DOMEntityResolver.resolveEntity [p.55] method.

The DOMBuilder [p.48] will use the DOMInputSource object to determine how to read XML
input. If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is available,
the parser will attempt to open a URI connection to the resource identified by the system identifier.

An DOMInputSource object belongs to the application: the parser shall never modify it in any
way (it may modify a copy if necessary).

IDL Definition

interface DOMInputSource {
 attribute DOMInputStream byteStream;
 attribute DOMReader characterStream;
 attribute DOMString encoding;
 attribute DOMString publicId;
 attribute DOMString systemId;
};

Attributes
byteStream of type DOMInputStream

An attribute of a language-binding dependent type that represents a stream of bytes.
The parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connection itself.
If the application knows the character encoding of the byte stream, it should set the
encoding property. Setting the encoding in this way will override any encoding specified in
the XML declaration itself.

characterStream of type DOMReader
An attribute of a language-binding dependent type that represents a stream of 16 bit values
(utf-16 encoded characters).
If a character stream is specified, the parser will ignore any byte stream and will not
attempt to open a URI connection to the system identifier.

encoding of type DOMString
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration (see section 4.3.3 of the XML 1.0 recommendation).
This attribute has no effect when the application provides a character stream. For other
sources of input, an encoding specified by means of this attribute will override any
encoding specified in the XML or text declaration of the XML, or an encoding obtained
from a higher level protocol, such as http.

publicId of type DOMString
The public identifier for this input source. The public identifier is always optional: if the
application writer includes one, it will be provided as part of the location information.

54

2.3.2. Interfaces

systemId of type DOMString
The system identifier for this input source. The system identifier is optional if there is a
byte stream or a character stream, but it is still useful to provide one, since the application
can use it to resolve relative URIs and can include it in error messages and warnings (the
parser will attempt to open a connection to the URI only if there is no byte stream or
character stream specified).
If the application knows the character encoding of the object pointed to by the system
identifier, it can register the encoding by setting the encoding attribute.
If the system ID is a URL, it must be fully resolved.

Interface DOMEntityResolver

DOMEntityResolver Provides a way for applications to redirect references to external entities.

Applications needing to implement customized handling for external entities must implement this
interface and register their implementation by setting the entityResolver property of the
DOMBuilder [p.48] .

The DOMBuilder [p.48] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before including them.

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URI types other than URLs.

DOMEtityResolver is based on the SAX2 EntityResolver interface, described at
http://www.megginson.com/SAX/Java/javadoc/org/xml/sax/EntityResolver.html

IDL Definition

interface DOMEntityResolver {
 DOMInputSource resolveEntity(in DOMString publicId,
 in DOMString systemId)
 raises(DOMSystemException);
};

Methods
resolveEntity

Allow the application to resolve external entities.
The DOMBuilder [p.48] will call this method before opening any external entity except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that the DOMBuilder resolve the entity itself, that it use an
alternative URI, or that it use an entirely different input source.
Application writers can use this method to redirect external system identifiers to secure
and/or local URIs, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog box).
If the system identifier is a URL, the DOMBuilder [p.48] must resolve it fully before
reporting it to the application through this interface.

55

2.3.2. Interfaces

http://www.megginson.com/SAX/Java/javadoc/org/xml/sax/EntityResolver.html

Note: See issue #4. An alternative would be to pass the URL out without resolving it, and
to provide a base as an additional parameter. SAX resolves URLs first, and does not
provide a base.

Parameters
publicId of type DOMString

The public identifier of the external entity being referenced, or null if none was
supplied.

systemId of type DOMString
The system identifier of the external entity being referenced.

Return Value

DOMInputSource
[p.53]

A DOMInputSource object describing the new input
source, or null to request that the parser open a regular URI
connection to the system identifier.

Exceptions

DOMSystemException Any DOMSystemException, possibly wrapping
another exception.

Interface DOMBuilderFilter

DOMBuilderFilters provide applications the ability to examine Element nodes as they are being
constructed during a parse. As each elements is examined, it may be modified or removed, or the
entire parse may be terminated early.

IDL Definition

interface DOMBuilderFilter {
 boolean endElement(in Element element);
};

Methods
endElement

This method will be called by the parser at the completion of the parse of each element.
The element node will exist and be complete, as will all of its children, and their children,
recursively. The element’s parent node will also exist, although that node may be
incomplete, as it may have additional children that have not yet been parsed.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. This node may also be removed from its parent node,
which will prevent it from appearing in the final document at the completion of the parse.
Aside from this one operation on the node’s parent, the state of the rest of the document
outside of this node is not defined, and the affect of any attempt to navigate to or modify
any other part of the document is undefined.
For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications

56

2.3.2. Interfaces

made by the filter.
Parameters
element of type Element

The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to its parent.

Return Value

boolean return true

No Exceptions
Interface DOMWriter

DOMWriter provides an API for serializing (writing) a DOM document out in the form of a source
XML document. The XML data is written to an output stream, the type of which depends on the
specific language bindings in use.

Three options are available for the general appearance of the formatted output: As-is, canonical and
reformatted.

As-is formatting leaves all "white space in element content" and new-lines unchanged. If the
DOM document originated as XML source, and if all white space was retained, this option will
come the closest to recovering the format of the original document. (There may still be
differences due to normalization of attribute values and new-line characters or the handling of
character references.)
Canonical formatting writes the document according to the rules specified by W3C Canonical
XML Version 1.0. http://www.w3.org/TR/xml-c14n
Reformatted output has white space and newlines adjusted to produce a pretty-printed, indented,
human-readable form. The exact form of the transformations is not specified.

DOMWriter accepts any node type for serialization. For nodes of type Document [p.20] or
Entity, well formed XML will be created. The serialized output for these node types is either as a
Document or an External Entity, respectively, and is acceptable input for an XML parser. For all
other types of nodes the serialized form is not specified, but should be something useful to a human
for debugging or diagnostic purposes. Note: rigorously designing an external (source) form for
stand-alone node types that don’t already have one defined by the XML rec seems a bit much to take
on here.

Within a Document or Entity being serialized, Nodes are processed as follows

Documents are written including an XML declaration and a DTD subset, if one exists in the
DOM. Writing a document node serializes the entire document.
Entity nodes, when written directly by DOMWriter.writeNode(), output a Text Decl and
the entity expansion. The resulting output will be valid as an external entity.
No output is generated for any entity nodes when writing a Document [p.20] .
Entity References nodes are serializes as an entity reference of the form "&entityName;") in
the output. Child nodes (the expansion) of the entity reference are ignored.

57

2.3.2. Interfaces

http://www.w3.org/TR/xml-c14n

CDATA sections containing content characters that can not be represented in the specified
output encoding are handled handled according to the "split-cdata-sections" option.
If the option is true, CDATA sections are split, and the unrepresentable characters are serialized
as numeric character references in ordinary content. The exact position and number of splits is
not specified.
If the option is false, unrepresentable characters in a CDATA section are reported as errors. The
error is not recoverable - there is no mechanism for supplying alternative characters and
continuing with the serialization.
All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of ’<’ and ’&’ are replaced
by the predefined entities < and &. The other predefined entities (>, &apos, etc.) are not
used; these characters can be included directly. Any character that can not be represented directly in
the output character encoding is serialized as a numeric character reference.

Attributes not containing quotes are serialized in quotes. Attributes containing quotes but no
apostrophes are serialized in apostrophes (single quotes). Attributes containing both forms of quotes
are serialized in quotes, with quotes within the value represented by the predefined entity ".
Any character that can not be represented directly in the output character encoding is serialized as a
numeric character reference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCañada/> with the encoding=US-ASCII

Unicode Character Normalization. When requested by setting the normalizeCharacters option
on DOMWriter, all data to be serialized, both markup and character data, is normalized according to
the rules defined by Unicode Canonical Composition, Normalization Form C. The normalization
process affects only the data as it is being written; it does not alter the DOM’s view of the document
after serialization has completed. The W3C character model and normalization are described at
http://www.w3.org/TR/charmod/#TextNormalization. Unicode normalization forms are described at
http://www.unicode.org/unicode/reports/tr15/

Name space checking and fixup during serialization is a user option. When the option is selected, the
serialization process will verify that name space declarations, name space prefixes and the name
space URIs associated with Elements and Attributes are consistent. If inconsistencies are found, the
serialized form of the document will be altered to remove them. The exact form of the alterations are
not defined, and are implementation dependent.

Any changes made affect only the name space prefixes and declarations appearing in the serialized
data. The DOM’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to name space declarations or prefixes in the serialized output.

58

2.3.2. Interfaces

http://www.unicode.org/unicode/reports/tr15/
http://www.w3.org/TR/2001/WD-charmod-20010126/#sec-TextNormalization

DOMWriters have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized by all implementations.

normalizeCharacters
true: Perform Unicode Normalization of the characters in document as they are written out.
Only the characters being written are (potentially) altered. The DOM document itself is
unchanged.
false: do not perform character normalization.
default: true.
supported values: true: required; false: required.
namespaceFixup
true: Check namespace declarations and prefixes for consistency, and fix them in the serialized
data if they are inconsistent.
false: Perform no special checks on name space declarations, prefixes or URIs.
default: true;
supported values: true: required; false: required.
split-cdata-sections
true: Split CDATA sections containing characters that can not be represented in the output
encoding, and output the characters using numeric character references.
false: Signal an error if a CDATA section contains an unrepresentable character.
supported values: true: required; false: required.

IDL Definition

interface DOMWriter {
 attribute DOMString encoding;
 readonly attribute DOMString lastEncoding;
 attribute unsigned short format;
 // Modified in DOM Level 3:
 attribute DOMString newLine;
 void writeNode(in DOMOutputStream destination,
 in Node node)
 raises(DOMSystemException);
};

Attributes
encoding of type DOMString

The character encoding in which the output will be written.
The encoding to use when writing is determined as follows:

If the encoding attribute has been set, that value will be used.
If the encoding attribute is null or empty, but the item to be written includes an
encoding declaration, that value will be used.
If neither of the above provides an encoding name, a default encoding of "utf-8" will
be used.

The default value is null.
format of type unsigned short

As-is, canonical or reformatted. Need to add constants for these.
The default value is as-is.

59

2.3.2. Interfaces

lastEncoding of type DOMString, readonly
The actual character encoding that was last used by this formatter. This convenience
method allows the encoding that was used when serializing a document to be directly
obtained.

newLine of type DOMString, modified in DOM Level 3
The end-of-line character(s) to be used in the XML being written out. The only permitted
values are these:

null: Use a default end-of-line sequence. DOM implementations should choose the
default to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
the XML Recommendation, http://www.w3.org/TR/REC-xml#sec-line-ends
CR
CR-LF
LF

The default value for this attribute is null.
Methods

writeNode
Write out the specified node as described above in the description of DOMWriter. Writing
a Document or Entity node produces a serialized form that is well formed XML. Writing
other node types produces a fragment of text in a form that is not fully defined by this
document, but that should be useful to a human for debugging or diagnostic purposes.
Parameters
destination of type DOMOutputStream

The destination for the data to be written.
node of type Node

The Document [p.20] or Entity node to be written. For other node types,
something sensible should be written, but the exact serialized form is not specified.

Exceptions

DOMSystemException This exception will be raised in response to any sort of
IO or system error that occurs while writing to the
destination. It may wrap an underlying system exception.

No Return Value

60

2.3.2. Interfaces

http://www.w3.org/TR/REC-xml#sec-line-ends

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 3 Document Object Model
Content Model and Load and Save definitions.

The IDL files are also available as:
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/idl.zip

content-models.idl:
// File: content-models.idl

#ifndef _CONTENT-MODELS_IDL_
#define _CONTENT-MODELS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module content-models
{

 typedef dom::int int;
 typedef dom::DOMString DOMString;
 typedef dom::CMExternalModel * CMExternalModel *;
 typedef dom::Node Node;
 typedef dom::nsElement nsElement;
 typedef dom::DOMImplementation DOMImplementation;
 typedef dom::Element Element;
 typedef dom::Text Text;
 typedef dom::DocumentType DocumentType;

 interface CMChildren;
 interface DOMErrorHandler;
 interface CMModel;
 interface DOMLocator;

 interface CMNode {
 const unsigned short ELEMENT_DECLARATION = 1;
 const unsigned short ATTRIBUTE_DECLARATION = 2;
 const unsigned short CM_NOTATION_DECLARATION = 3;
 const unsigned short ENTITY_DECLARATION = 4;
 const unsigned short CM_CHILDREN = 5;
 const unsigned short CM_MODEL = 6;
 const unsigned short CM_EXTERNALMODEL = 7;
 readonly attribute unsigned short cmNodeType;
 CMNode cloneCM();
 CMNode cloneExternalCM();
 };

 interface CMNodeList {
 };

 interface CMNamedNodeMap {
 };

61

Appendix A: IDL Definitions

 interface CMDataType {
 const short STRING_DATATYPE = 1;
 const short BOOLEAN_DATATYPE = 2;
 const short FLOAT_DATATYPE = 3;
 const short DOUBLE_DATATYPE = 4;
 const short LONG_DATATYPE = 5;
 const short INT_DATATYPE = 6;
 const short SHORT_DATATYPE = 7;
 const short BYTE_DATATYPE = 8;
 attribute int lowValue;
 attribute int highValue;
 short getPrimitiveType();
 };

 interface ElementDeclaration {
 int getContentType();
 CMChildren getCMChildren();
 CMNamedNodeMap getCMAttributes();
 CMNamedNodeMap getCMGrandChildren();
 };

 interface CMChildren {
 attribute DOMString listOperator;
 attribute CMDataType elementType;
 attribute int multiplicity;
 attribute CMNamedNodeMap subModels;
 readonly attribute boolean isPCDataOnly;
 };

 interface AttributeDeclaration {
 const short NO_VALUE_CONSTRAINT = 0;
 const short DEFAULT_VALUE_CONSTRAINT = 1;
 const short FIXED_VALUE_CONSTRAINT = 2;
 readonly attribute DOMString attrName;
 attribute CMDataType attrType;
 attribute DOMString attributeValue;
 attribute DOMString enumAttr;
 attribute CMNodeList ownerElement;
 attribute short constraintType;
 };

 interface EntityDeclaration {
 };

 interface CMNotationDeclaration {
 attribute DOMString strSystemIdentifier;
 attribute DOMString strPublicIdentifier;
 };

 interface Document {
 void setErrorHandler(in DOMErrorHandler handler);
 };

 interface DocumentCM : Document {
 int numCMs();
 CMModel getInternalCM();

62

content-models.idl:

 CMExternalModel * getCMs();
 CMModel getActiveCM();
 void addCM(in CMModel cm);
 void removeCM(in CMModel cm);
 boolean activateCM(in CMModel cm);
 };

 interface AttributeCM {
 AttributeDeclaration getAttributeDeclaration();
 CMNotationDeclaration getNotation()
 raises(dom::DOMException);
 };

 interface DOMErrorHandler {
 void warning(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(dom::DOMSystemException);
 void fatalError(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(dom::DOMSystemException);
 void error(in DOMLocator where,
 in DOMString how,
 in DOMString why)
 raises(dom::DOMSystemException);
 };

 interface DOMLocator {
 int getColumnNumber();
 int getLineNumber();
 DOMString getPublicID();
 DOMString getSystemID();
 Node getNode();
 };

 interface CMModel : CMNode {
 readonly attribute boolean isNamespaceAware;
 readonly attribute ElementDeclaration rootElementDecl;
 DOMString getLocation();
 nsElement getCMNamespace();
 CMNamedNodeMap getCMNodes();
 boolean removeNode(in CMNode node);
 boolean insertBefore(in CMNode newNode,
 in CMNode refNode);
 boolean validate();
 };

 interface CMExternalModel : CMModel {
 };

 interface DOMImplementationCM : DOMImplementation {
 CMModel createCM();
 CMExternalModel createExternalCM();
 };

 interface NodeCM : Node {

63

content-models.idl:

 boolean canInsertBefore(in Node newChild,
 in Node refChild)
 raises(dom::DOMException);
 boolean canRemoveChild(in Node oldChild)
 raises(dom::DOMException);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild)
 raises(dom::DOMException);
 boolean canAppendChild(in Node newChild)
 raises(dom::DOMException);
 boolean isValid();
 };

 interface ElementCM : Element {
 int contentType();
 ElementDeclaration getElementDeclaration()
 raises(dom::DOMException);
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Node node);
 boolean canSetAttributeNodeNS(in Node node,
 in DOMString namespaceURI,
 in DOMString localName);
 boolean canSetAttributeNS(in DOMString attrname,
 in DOMString attrval,
 in DOMString namespaceURI,
 in DOMString localName);
 };

 interface CharacterDataCM : Text {
 boolean isWhitespaceOnly();
 boolean canSetData(in unsigned long offset,
 in DOMString arg)
 raises(dom::DOMException);
 boolean canAppendData(in DOMString arg)
 raises(dom::DOMException);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(dom::DOMException);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg)
 raises(dom::DOMException);
 boolean canDeleteData(in unsigned long offset,
 in DOMString arg)
 raises(dom::DOMException);
 };

 interface DocumentTypeCM : DocumentType {
 boolean isElementDefined(in DOMString elemTypeName);
 boolean isElementDefinedNS(in DOMString elemTypeName,
 in DOMString namespaceURI,
 in DOMString localName);
 boolean isAttributeDefined(in DOMString elemTypeName,
 in DOMString attrName);
 boolean isAttributeDefinedNS(in DOMString elemTypeName,
 in DOMString attrName,

64

content-models.idl:

 in DOMString namespaceURI,
 in DOMString localName);
 boolean isEntityDefined(in DOMString entName);
 };
};

#endif // _CONTENT-MODELS_IDL_

load-save.idl:
// File: load-save.idl

#ifndef _LOAD-SAVE_IDL_
#define _LOAD-SAVE_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module load-save
{

 typedef dom::DOMErrorHandler DOMErrorHandler;
 typedef dom::DOMString DOMString;
 typedef dom::Document Document;
 typedef dom::DOMInputStream DOMInputStream;
 typedef dom::DOMReader DOMReader;
 typedef dom::Element Element;
 typedef dom::DOMOutputStream DOMOutputStream;
 typedef dom::Node Node;

 interface DOMBuilder;
 interface DOMWriter;
 interface DOMEntityResolver;
 interface DOMBuilderFilter;
 interface DOMInputSource;

 interface DOMImplementationLS {
 DOMBuilder createDOMBuilder();
 DOMWriter createDOMWriter();
 };

 interface DOMBuilder {
 attribute DOMEntityResolver entityResolver;
 attribute DOMErrorHandler errorHandler;
 attribute DOMBuilderFilter filter;
 void setFeature(in DOMString name,
 in boolean state)
 raises(dom::DOMException);
 boolean supportsFeature(in DOMString name);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(dom::DOMException);
 Document parseURI(in DOMString uri)
 raises(dom::DOMException,
 dom::DOMSystemException);

65

load-save.idl:

 Document parseDOMInputSource(in DOMInputSource is)
 raises(dom::DOMException,
 dom::DOMSystemException);
 };

 interface DOMInputSource {
 attribute DOMInputStream byteStream;
 attribute DOMReader characterStream;
 attribute DOMString encoding;
 attribute DOMString publicId;
 attribute DOMString systemId;
 };

 interface DOMEntityResolver {
 DOMInputSource resolveEntity(in DOMString publicId,
 in DOMString systemId)
 raises(dom::DOMSystemException);
 };

 interface DOMBuilderFilter {
 boolean endElement(in Element element);
 };

 interface DOMWriter {
 attribute DOMString encoding;
 readonly attribute DOMString lastEncoding;
 attribute unsigned short format;
 // Modified in DOM Level 3:
 attribute DOMString newLine;
 void writeNode(in DOMOutputStream destination,
 in Node node)
 raises(dom::DOMSystemException);
 };
};

#endif // _LOAD-SAVE_IDL_

66

load-save.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model
Content Model and Load and Save.

The Java files are also available as
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/java-binding.zip

org/w3c/dom/contentModel/CMModel.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.nsElement;

public interface CMModel extends CMNode {
 public boolean getIsNamespaceAware();

 public ElementDeclaration getRootElementDecl();

 public String getLocation();

 public nsElement getCMNamespace();

 public CMNamedNodeMap getCMNodes();

 public boolean removeNode(CMNode node);

 public boolean insertBefore(CMNode newNode,
 CMNode refNode);

 public boolean validate();

}

org/w3c/dom/contentModel/CMExternalModel.java:
package org.w3c.dom.contentModel;

public interface CMExternalModel extends CMModel {
}

org/w3c/dom/contentModel/CMNode.java:
package org.w3c.dom.contentModel;

public interface CMNode {
 public static final short ELEMENT_DECLARATION = 1;
 public static final short ATTRIBUTE_DECLARATION = 2;
 public static final short CM_NOTATION_DECLARATION = 3;
 public static final short ENTITY_DECLARATION = 4;
 public static final short CM_CHILDREN = 5;
 public static final short CM_MODEL = 6;
 public static final short CM_EXTERNALMODEL = 7;

67

Appendix B: Java Language Binding

 public short getCmNodeType();

 public CMNode cloneCM();

 public CMNode cloneExternalCM();

}

org/w3c/dom/contentModel/CMNodeList.java:
package org.w3c.dom.contentModel;

public interface CMNodeList {
}

org/w3c/dom/contentModel/CMNamedNodeMap.java:
package org.w3c.dom.contentModel;

public interface CMNamedNodeMap {
}

org/w3c/dom/contentModel/CMDataType.java:
package org.w3c.dom.contentModel;

public interface CMDataType {
 public static final short STRING_DATATYPE = 1;
 public static final short BOOLEAN_DATATYPE = 2;
 public static final short FLOAT_DATATYPE = 3;
 public static final short DOUBLE_DATATYPE = 4;
 public static final short LONG_DATATYPE = 5;
 public static final short INT_DATATYPE = 6;
 public static final short SHORT_DATATYPE = 7;
 public static final short BYTE_DATATYPE = 8;
 public int getLowValue();
 public void setLowValue(int lowValue);

 public int getHighValue();
 public void setHighValue(int highValue);

 public short getPrimitiveType();

}

org/w3c/dom/contentModel/ElementDeclaration.java:
package org.w3c.dom.contentModel;

public interface ElementDeclaration {
 public int getContentType();

 public CMChildren getCMChildren();

68

org/w3c/dom/contentModel/CMNodeList.java:

 public CMNamedNodeMap getCMAttributes();

 public CMNamedNodeMap getCMGrandChildren();

}

org/w3c/dom/contentModel/CMChildren.java:
package org.w3c.dom.contentModel;

public interface CMChildren {
 public String getListOperator();
 public void setListOperator(String listOperator);

 public CMDataType getElementType();
 public void setElementType(CMDataType elementType);

 public int getMultiplicity();
 public void setMultiplicity(int multiplicity);

 public CMNamedNodeMap getSubModels();
 public void setSubModels(CMNamedNodeMap subModels);

 public boolean getIsPCDataOnly();

}

org/w3c/dom/contentModel/AttributeDeclaration.java:
package org.w3c.dom.contentModel;

public interface AttributeDeclaration {
 public static final short NO_VALUE_CONSTRAINT = 0;
 public static final short DEFAULT_VALUE_CONSTRAINT = 1;
 public static final short FIXED_VALUE_CONSTRAINT = 2;
 public String getAttrName();

 public CMDataType getAttrType();
 public void setAttrType(CMDataType attrType);

 public String getAttributeValue();
 public void setAttributeValue(String attributeValue);

 public String getEnumAttr();
 public void setEnumAttr(String enumAttr);

 public CMNodeList getOwnerElement();
 public void setOwnerElement(CMNodeList ownerElement);

 public short getConstraintType();
 public void setConstraintType(short constraintType);

}

69

org/w3c/dom/contentModel/CMChildren.java:

org/w3c/dom/contentModel/EntityDeclaration.java:
package org.w3c.dom.contentModel;

public interface EntityDeclaration {
}

org/w3c/dom/contentModel/CMNotationDeclaration.java:
package org.w3c.dom.contentModel;

public interface CMNotationDeclaration {
 public String getStrSystemIdentifier();
 public void setStrSystemIdentifier(String strSystemIdentifier);

 public String getStrPublicIdentifier();
 public void setStrPublicIdentifier(String strPublicIdentifier);

}

org/w3c/dom/contentModel/Document.java:
package org.w3c.dom.contentModel;

public interface Document {
 public void setErrorHandler(DOMErrorHandler handler);

}

org/w3c/dom/contentModel/DocumentCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.CMExternalModel *;

public interface DocumentCM extends Document {
 public int numCMs();

 public CMModel getInternalCM();

 public CMExternalModel * getCMs();

 public CMModel getActiveCM();

 public void addCM(CMModel cm);

 public void removeCM(CMModel cm);

 public boolean activateCM(CMModel cm);

}

70

org/w3c/dom/contentModel/EntityDeclaration.java:

org/w3c/dom/contentModel/DOMImplementationCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.DOMImplementation;

public interface DOMImplementationCM extends DOMImplementation {
 public CMModel createCM();

 public CMExternalModel createExternalCM();

}

org/w3c/dom/contentModel/NodeCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface NodeCM extends Node {
 public boolean canInsertBefore(Node newChild,
 Node refChild)
 throws DOMException;

 public boolean canRemoveChild(Node oldChild)
 throws DOMException;

 public boolean canReplaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public boolean canAppendChild(Node newChild)
 throws DOMException;

 public boolean isValid();

}

org/w3c/dom/contentModel/ElementCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

public interface ElementCM extends Element {
 public int contentType();

 public ElementDeclaration getElementDeclaration()
 throws DOMException;

 public boolean canSetAttribute(String attrname,
 String attrval);

71

org/w3c/dom/contentModel/DOMImplementationCM.java:

 public boolean canSetAttributeNode(Node node);

 public boolean canSetAttributeNodeNS(Node node,
 String namespaceURI,
 String localName);

 public boolean canSetAttributeNS(String attrname,
 String attrval,
 String namespaceURI,
 String localName);

}

org/w3c/dom/contentModel/CharacterDataCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Text;
import org.w3c.dom.DOMException;

public interface CharacterDataCM extends Text {
 public boolean isWhitespaceOnly();

 public boolean canSetData(int offset,
 String arg)
 throws DOMException;

 public boolean canAppendData(String arg)
 throws DOMException;

 public boolean canReplaceData(int offset,
 int count,
 String arg)
 throws DOMException;

 public boolean canInsertData(int offset,
 String arg)
 throws DOMException;

 public boolean canDeleteData(int offset,
 String arg)
 throws DOMException;

}

org/w3c/dom/contentModel/DocumentTypeCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.DocumentType;

public interface DocumentTypeCM extends DocumentType {
 public boolean isElementDefined(String elemTypeName);

 public boolean isElementDefinedNS(String elemTypeName,

72

org/w3c/dom/contentModel/CharacterDataCM.java:

 String namespaceURI,
 String localName);

 public boolean isAttributeDefined(String elemTypeName,
 String attrName);

 public boolean isAttributeDefinedNS(String elemTypeName,
 String attrName,
 String namespaceURI,
 String localName);

 public boolean isEntityDefined(String entName);

}

org/w3c/dom/contentModel/AttributeCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.DOMException;

public interface AttributeCM {
 public AttributeDeclaration getAttributeDeclaration();

 public CMNotationDeclaration getNotation()
 throws DOMException;

}

org/w3c/dom/contentModel/DOMErrorHandler.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.DOMSystemException;

public interface DOMErrorHandler {
 public void warning(DOMLocator where,
 String how,
 String why)
 throws DOMSystemException;

 public void fatalError(DOMLocator where,
 String how,
 String why)
 throws DOMSystemException;

 public void error(DOMLocator where,
 String how,
 String why)
 throws DOMSystemException;

}

73

org/w3c/dom/contentModel/AttributeCM.java:

org/w3c/dom/contentModel/DOMLocator.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Node;

public interface DOMLocator {
 public int getColumnNumber();

 public int getLineNumber();

 public String getPublicID();

 public String getSystemID();

 public Node getNode();

}

org/w3c/dom/loadSave/DOMImplementationLS.java:
package org.w3c.dom.loadSave;

public interface DOMImplementationLS {
 public DOMBuilder createDOMBuilder();

 public DOMWriter createDOMWriter();

}

org/w3c/dom/loadSave/DOMBuilder.java:
package org.w3c.dom.loadSave;

import org.w3c.dom.DOMErrorHandler;
import org.w3c.dom.Document;
import org.w3c.dom.DOMSystemException;
import org.w3c.dom.DOMException;

public interface DOMBuilder {
 public DOMEntityResolver getEntityResolver();
 public void setEntityResolver(DOMEntityResolver entityResolver);

 public DOMErrorHandler getErrorHandler();
 public void setErrorHandler(DOMErrorHandler errorHandler);

 public DOMBuilderFilter getFilter();
 public void setFilter(DOMBuilderFilter filter);

 public void setFeature(String name,
 boolean state)
 throws DOMException;

 public boolean supportsFeature(String name);

74

org/w3c/dom/contentModel/DOMLocator.java:

 public boolean canSetFeature(String name,
 boolean state);

 public boolean getFeature(String name)
 throws DOMException;

 public Document parseURI(String uri)
 throws DOMException, DOMSystemException;

 public Document parseDOMInputSource(DOMInputSource is)
 throws DOMException, DOMSystemException;

}

org/w3c/dom/loadSave/DOMInputSource.java:
package org.w3c.dom.loadSave;

public interface DOMInputSource {
 public java.io.InputStream getByteStream();
 public void setByteStream(java.io.InputStream byteStream);

 public java.io.Reader getCharacterStream();
 public void setCharacterStream(java.io.Reader characterStream);

 public String getEncoding();
 public void setEncoding(String encoding);

 public String getPublicId();
 public void setPublicId(String publicId);

 public String getSystemId();
 public void setSystemId(String systemId);

}

org/w3c/dom/loadSave/DOMEntityResolver.java:
package org.w3c.dom.loadSave;

import org.w3c.dom.DOMSystemException;

public interface DOMEntityResolver {
 public DOMInputSource resolveEntity(String publicId,
 String systemId)
 throws DOMSystemException;

}

75

org/w3c/dom/loadSave/DOMInputSource.java:

org/w3c/dom/loadSave/DOMBuilderFilter.java:
package org.w3c.dom.loadSave;

import org.w3c.dom.Element;

public interface DOMBuilderFilter {
 public boolean endElement(Element element);

}

org/w3c/dom/loadSave/DOMWriter.java:
package org.w3c.dom.loadSave;

import org.w3c.dom.Node;
import org.w3c.dom.DOMSystemException;

public interface DOMWriter {
 public String getEncoding();
 public void setEncoding(String encoding);

 public String getLastEncoding();

 public short getFormat();
 public void setFormat(short format);

 public String getNewLine();
 public void setNewLine(String newLine);

 public void writeNode(java.io.OutputStream destination,
 Node node)
 throws DOMSystemException;

}

76

org/w3c/dom/loadSave/DOMBuilderFilter.java:

Appendix C: ECMA Script Language Binding
This appendix contains the complete ECMA Script [ECMAScript] binding for the Level 3 Document
Object Model Content Model and Load and Save definitions.

Object CMModel
CMModel has the all the properties and methods of the CMNode object as well as the properties and
methods defined below.
The CMModel object has the following properties:

isNamespaceAware
This read-only property is of type Boolean.

rootElementDecl
This read-only property is a ElementDeclaration object.

The CMModel object has the following methods:
getLocation()

This method returns a String.
getCMNamespace()

This method returns a nsElement object.
getCMNodes()

This method returns a CMNamedNodeMap object.
removeNode(node)

This method returns a Boolean.
The node parameter is a CMNode object.

insertBefore(newNode, refNode)
This method returns a Boolean.
The newNode parameter is a CMNode object.
The refNode parameter is a CMNode object.

validate()
This method returns a Boolean.

Object CMExternalModel
CMExternalModel has the all the properties and methods of the CMModel object as well as the
properties and methods defined below.

Prototype Object CMNode
The CMNode class has the following constants:

CMNode.ELEMENT_DECLARATION
This constant is of type Number and its value is 1.

CMNode.ATTRIBUTE_DECLARATION
This constant is of type Number and its value is 2.

CMNode.CM_NOTATION_DECLARATION
This constant is of type Number and its value is 3.

CMNode.ENTITY_DECLARATION
This constant is of type Number and its value is 4.

CMNode.CM_CHILDREN
This constant is of type Number and its value is 5.

77

Appendix C: ECMA Script Language Binding

CMNode.CM_MODEL
This constant is of type Number and its value is 6.

CMNode.CM_EXTERNALMODEL
This constant is of type Number and its value is 7.

Object CMNode
The CMNode object has the following properties:

cmNodeType
This read-only property is of type Number.

The CMNode object has the following methods:
cloneCM()

This method returns a CMNode object.
cloneExternalCM()

This method returns a CMNode object.
Object CMNodeList
Object CMNamedNodeMap
Prototype Object CMDataType

The CMDataType class has the following constants:
CMDataType.STRING_DATATYPE

This constant is of type short and its value is 1.
CMDataType.BOOLEAN_DATATYPE

This constant is of type short and its value is 2.
CMDataType.FLOAT_DATATYPE

This constant is of type short and its value is 3.
CMDataType.DOUBLE_DATATYPE

This constant is of type short and its value is 4.
CMDataType.LONG_DATATYPE

This constant is of type short and its value is 5.
CMDataType.INT_DATATYPE

This constant is of type short and its value is 6.
CMDataType.SHORT_DATATYPE

This constant is of type short and its value is 7.
CMDataType.BYTE_DATATYPE

This constant is of type short and its value is 8.
Object CMDataType

The CMDataType object has the following properties:
lowValue

This property is a int object.
highValue

This property is a int object.
The CMDataType object has the following methods:

getPrimitiveType()
This method returns a short object.

Object ElementDeclaration
The ElementDeclaration object has the following methods:

getContentType()
This method returns a int object.

78

Appendix C: ECMA Script Language Binding

getCMChildren()
This method returns a CMChildren object.

getCMAttributes()
This method returns a CMNamedNodeMap object.

getCMGrandChildren()
This method returns a CMNamedNodeMap object.

Object CMChildren
The CMChildren object has the following properties:

listOperator
This property is of type String.

elementType
This property is a CMDataType object.

multiplicity
This property is a int object.

subModels
This property is a CMNamedNodeMap object.

isPCDataOnly
This read-only property is of type Boolean.

Prototype Object AttributeDeclaration
The AttributeDeclaration class has the following constants:

AttributeDeclaration.NO_VALUE_CONSTRAINT
This constant is of type short and its value is 0.

AttributeDeclaration.DEFAULT_VALUE_CONSTRAINT
This constant is of type short and its value is 1.

AttributeDeclaration.FIXED_VALUE_CONSTRAINT
This constant is of type short and its value is 2.

Object AttributeDeclaration
The AttributeDeclaration object has the following properties:

attrName
This read-only property is of type String.

attrType
This property is a CMDataType object.

attributeValue
This property is of type String.

enumAttr
This property is of type String.

ownerElement
This property is a CMNodeList object.

constraintType
This property is a short object.

Object EntityDeclaration
Object CMNotationDeclaration

The CMNotationDeclaration object has the following properties:
strSystemIdentifier

This property is of type String.

79

Appendix C: ECMA Script Language Binding

strPublicIdentifier
This property is of type String.

Object Document
The Document object has the following methods:

setErrorHandler(handler)
This method has no return value.
The handler parameter is a DOMErrorHandler object.

Object DocumentCM
DocumentCM has the all the properties and methods of the Document object as well as the
properties and methods defined below.
The DocumentCM object has the following methods:

numCMs()
This method returns a int object.

getInternalCM()
This method returns a CMModel object.

getCMs()
This method returns a CMExternalModel * object.

getActiveCM()
This method returns a CMModel object.

addCM(cm)
This method has no return value.
The cm parameter is a CMModel object.

removeCM(cm)
This method has no return value.
The cm parameter is a CMModel object.

activateCM(cm)
This method returns a Boolean.
The cm parameter is a CMModel object.

Object DOMImplementationCM
DOMImplementationCM has the all the properties and methods of the DOMImplementation
object as well as the properties and methods defined below.
The DOMImplementationCM object has the following methods:

createCM()
This method returns a CMModel object.

createExternalCM()
This method returns a CMExternalModel object.

Object NodeCM
NodeCM has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The NodeCM object has the following methods:

canInsertBefore(newChild, refChild)
This method returns a Boolean.
The newChild parameter is a Node object.
The refChild parameter is a Node object.
This method can raise a DOMException object.

80

Appendix C: ECMA Script Language Binding

canRemoveChild(oldChild)
This method returns a Boolean.
The oldChild parameter is a Node object.
This method can raise a DOMException object.

canReplaceChild(newChild, oldChild)
This method returns a Boolean.
The newChild parameter is a Node object.
The oldChild parameter is a Node object.
This method can raise a DOMException object.

canAppendChild(newChild)
This method returns a Boolean.
The newChild parameter is a Node object.
This method can raise a DOMException object.

isValid()
This method returns a Boolean.

Object ElementCM
ElementCM has the all the properties and methods of the Element object as well as the properties
and methods defined below.
The ElementCM object has the following methods:

contentType()
This method returns a int object.

getElementDeclaration()
This method returns a ElementDeclaration object.
This method can raise a DOMException object.

canSetAttribute(attrname, attrval)
This method returns a Boolean.
The attrname parameter is of type String.
The attrval parameter is of type String.

canSetAttributeNode(node)
This method returns a Boolean.
The node parameter is a Node object.

canSetAttributeNodeNS(node, namespaceURI, localName)
This method returns a Boolean.
The node parameter is a Node object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

canSetAttributeNS(attrname, attrval, namespaceURI, localName)
This method returns a Boolean.
The attrname parameter is of type String.
The attrval parameter is of type String.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

Object CharacterDataCM
CharacterDataCM has the all the properties and methods of the Text object as well as the
properties and methods defined below.

81

Appendix C: ECMA Script Language Binding

The CharacterDataCM object has the following methods:
isWhitespaceOnly()

This method returns a Boolean.
canSetData(offset, arg)

This method returns a Boolean.
The offset parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

canAppendData(arg)
This method returns a Boolean.
The arg parameter is of type String.
This method can raise a DOMException object.

canReplaceData(offset, count, arg)
This method returns a Boolean.
The offset parameter is of type Number.
The count parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

canInsertData(offset, arg)
This method returns a Boolean.
The offset parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

canDeleteData(offset, arg)
This method returns a Boolean.
The offset parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

Object DocumentTypeCM
DocumentTypeCM has the all the properties and methods of the DocumentType object as well as
the properties and methods defined below.
The DocumentTypeCM object has the following methods:

isElementDefined(elemTypeName)
This method returns a Boolean.
The elemTypeName parameter is of type String.

isElementDefinedNS(elemTypeName, namespaceURI, localName)
This method returns a Boolean.
The elemTypeName parameter is of type String.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

isAttributeDefined(elemTypeName, attrName)
This method returns a Boolean.
The elemTypeName parameter is of type String.
The attrName parameter is of type String.

isAttributeDefinedNS(elemTypeName, attrName, namespaceURI, localName)
This method returns a Boolean.

82

Appendix C: ECMA Script Language Binding

The elemTypeName parameter is of type String.
The attrName parameter is of type String.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

isEntityDefined(entName)
This method returns a Boolean.
The entName parameter is of type String.

Object AttributeCM
The AttributeCM object has the following methods:

getAttributeDeclaration()
This method returns a AttributeDeclaration object.

getNotation()
This method returns a CMNotationDeclaration object.
This method can raise a DOMException object.

Object DOMErrorHandler
The DOMErrorHandler object has the following methods:

warning(where, how, why)
This method has no return value.
The where parameter is a DOMLocator object.
The how parameter is of type String.
The why parameter is of type String.
This method can raise a DOMSystemException object.

fatalError(where, how, why)
This method has no return value.
The where parameter is a DOMLocator object.
The how parameter is of type String.
The why parameter is of type String.
This method can raise a DOMSystemException object.

error(where, how, why)
This method has no return value.
The where parameter is a DOMLocator object.
The how parameter is of type String.
The why parameter is of type String.
This method can raise a DOMSystemException object.

Object DOMLocator
The DOMLocator object has the following methods:

getColumnNumber()
This method returns a int object.

getLineNumber()
This method returns a int object.

getPublicID()
This method returns a String.

getSystemID()
This method returns a String.

getNode()
This method returns a Node object.

83

Appendix C: ECMA Script Language Binding

Object DOMImplementationLS
The DOMImplementationLS object has the following methods:

createDOMBuilder()
This method returns a DOMBuilder object.

createDOMWriter()
This method returns a DOMWriter object.

Object DOMBuilder
The DOMBuilder object has the following properties:

entityResolver
This property is a DOMEntityResolver object.

errorHandler
This property is a DOMErrorHandler object.

filter
This property is a DOMBuilderFilter object.

The DOMBuilder object has the following methods:
setFeature(name, state)

This method has no return value.
The name parameter is of type String.
The state parameter is of type Boolean.
This method can raise a DOMException object.

supportsFeature(name)
This method returns a Boolean.
The name parameter is of type String.

canSetFeature(name, state)
This method returns a Boolean.
The name parameter is of type String.
The state parameter is of type Boolean.

getFeature(name)
This method returns a Boolean.
The name parameter is of type String.
This method can raise a DOMException object.

parseURI(uri)
This method returns a Document object.
The uri parameter is of type String.
This method can raise a DOMException object or a DOMSystemException object.

parseDOMInputSource(is)
This method returns a Document object.
The is parameter is a DOMInputSource object.
This method can raise a DOMException object or a DOMSystemException object.

Object DOMInputSource
The DOMInputSource object has the following properties:

byteStream
This property is a DOMInputStream object.

characterStream
This property is a DOMReader object.

84

Appendix C: ECMA Script Language Binding

encoding
This property is of type String.

publicId
This property is of type String.

systemId
This property is of type String.

Object DOMEntityResolver
The DOMEntityResolver object has the following methods:

resolveEntity(publicId, systemId)
This method returns a DOMInputSource object.
The publicId parameter is of type String.
The systemId parameter is of type String.
This method can raise a DOMSystemException object.

Object DOMBuilderFilter
The DOMBuilderFilter object has the following methods:

endElement(element)
This method returns a Boolean.
The element parameter is a Element object.

Object DOMWriter
The DOMWriter object has the following properties:

encoding
This property is of type String.

lastEncoding
This read-only property is of type String.

format
This property is of type Number.

newLine
This property is of type String.

The DOMWriter object has the following methods:
writeNode(destination, node)

This method has no return value.
The destination parameter is a DOMOutputStream object.
The node parameter is a Node object.
This method can raise a DOMSystemException object.

85

Appendix C: ECMA Script Language Binding

86

Appendix C: ECMA Script Language Binding

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

D.1: Normative references
ECMAScript

ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

87

References

http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

88

D.1: Normative references

Index
activateCM addCM ATTRIBUTE_DECLARATION

AttributeCM AttributeDeclaration attributeValue

attrName attrType

BOOLEAN_DATATYPE BYTE_DATATYPE byteStream

canAppendChild canAppendData canDeleteData

canInsertBefore canInsertData canRemoveChild

canReplaceChild canReplaceData canSetAttribute

canSetAttributeNode canSetAttributeNodeNS canSetAttributeNS

canSetData canSetFeature CharacterDataCM

characterStream cloneCM cloneExternalCM

CM_CHILDREN CM_EXTERNALMODEL CM_MODEL

CM_NOTATION_DECLARATION CMChildren CMDataType

CMExternalModel CMModel CMNamedNodeMap

CMNode CMNodeList cmNodeType

CMNotationDeclaration constraintType contentType

createCM createDOMBuilder createDOMWriter

createExternalCM

DEFAULT_VALUE_CONSTRAINT Document DocumentCM

DocumentTypeCM DOMBuilder DOMBuilderFilter

DOMEntityResolver DOMErrorHandler DOMImplementationCM

DOMImplementationLS DOMInputSource DOMLocator

DOMWriter DOUBLE_DATATYPE

ECMAScript ELEMENT_DECLARATION ElementCM

ElementDeclaration elementType encoding 54, 59

89

Index

endElement ENTITY_DECLARATION EntityDeclaration

entityResolver enumAttr error

errorHandler

fatalError filter FIXED_VALUE_CONSTRAINT

FLOAT_DATATYPE format

getActiveCM getAttributeDeclaration getCMAttributes

getCMChildren getCMGrandChildren getCMNamespace

getCMNodes getCMs getColumnNumber

getContentType getElementDeclaration getFeature

getInternalCM getLineNumber getLocation

getNode getNotation getPrimitiveType

getPublicID getSystemID

highValue

insertBefore INT_DATATYPE isAttributeDefined

isAttributeDefinedNS isElementDefined isElementDefinedNS

isEntityDefined isNamespaceAware isPCDataOnly

isValid isWhitespaceOnly

Java

lastEncoding listOperator LONG_DATATYPE

lowValue

multiplicity

newLine NO_VALUE_CONSTRAINT NodeCM

90

Index

numCMs

OMGIDL ownerElement

parseDOMInputSource parseURI publicId

removeCM removeNode resolveEntity

rootElementDecl

setErrorHandler setFeature SHORT_DATATYPE

STRING_DATATYPE strPublicIdentifier strSystemIdentifier

subModels supportsFeature systemId

validate

warning writeNode

91

Index

	Document Object Model †DOM‡ Level 3 Content Models and Load and Save Specification
	Version 1.0
	W3C Working Draft 09 February 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Content Models and Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements

	1.2. Content Model and CM-Editing Interfaces
	1.3. Validation and Other Interfaces
	1.4. Document-Editing Interfaces
	1.5. DOM Error Handler Interfaces
	1.6. Editing and Generating a Content Model
	1.7. Content Model-directed Document Manipulation
	1.8. Validating a Document Against a Content Model
	1.9. Well-formedness Testing

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Content Model Loading
	2.1.1.3. Content Model Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Content Model Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	2.2. Issue List
	2.2.1. Open Issues
	2.2.2. Resolved Issues

	2.3. Interfaces
	2.3.1. Interface Summary
	2.3.2. Interfaces

	Appendix A: IDL Definitions
	
	content-models.idl:
	load-save.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/contentModel/CMModel.java:
	org/w3c/dom/contentModel/CMExternalModel.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/CMNodeList.java:
	org/w3c/dom/contentModel/CMNamedNodeMap.java:
	org/w3c/dom/contentModel/CMDataType.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/CMChildren.java:
	org/w3c/dom/contentModel/AttributeDeclaration.java:
	org/w3c/dom/contentModel/EntityDeclaration.java:
	org/w3c/dom/contentModel/CMNotationDeclaration.java:
	org/w3c/dom/contentModel/Document.java:
	org/w3c/dom/contentModel/DocumentCM.java:
	org/w3c/dom/contentModel/DOMImplementationCM.java:
	org/w3c/dom/contentModel/NodeCM.java:
	org/w3c/dom/contentModel/ElementCM.java:
	org/w3c/dom/contentModel/CharacterDataCM.java:
	org/w3c/dom/contentModel/DocumentTypeCM.java:
	org/w3c/dom/contentModel/AttributeCM.java:
	org/w3c/dom/contentModel/DOMErrorHandler.java:
	org/w3c/dom/contentModel/DOMLocator.java:
	org/w3c/dom/loadSave/DOMImplementationLS.java:
	org/w3c/dom/loadSave/DOMBuilder.java:
	org/w3c/dom/loadSave/DOMInputSource.java:
	org/w3c/dom/loadSave/DOMEntityResolver.java:
	org/w3c/dom/loadSave/DOMBuilderFilter.java:
	org/w3c/dom/loadSave/DOMWriter.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

