
W
3C

W
o

rk
in

g
D

ra
ft

Mathematical Markup Language (MathML) Version 2.0

W3C Working Draft 22 December 1999

This version: http://www.w3.org/TR/1999/WD-MathML2-19991222
Also available as: HTML zip archive, XHTML zip archive, XML zip archive, PDF (screen), PDF (paper)

Latest version: http://www.w3.org/TR/MathML2
Previous versions: http://www.w3.org/TR/1999/WD-MathML2-19991201
Editors: Nico Poppelier (Salience)

Robert Miner (Geometry Technologies, Inc.)
Patrick Ion (Mathematical Reviews, American Mathematical Society)

Principal Writers: Stephen Buswell, Stan Devitt, Angel Diaz, Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt, StÈphane Dalmas, David
Carlisle, Roger Hunter, Ron Ausbrooks

Copyright c 1998, 1999 W3C R (MIT, INRIA, Keio), All Rights Reserved.W3C liability, trademark, document use and software licensing rules apply.

Abstract

This speci�cation de�nes the Mathematical Markup Language, or MathML. MathML is an XML application for describing mathematical notation and
capturing both its structure and content. The goal of MathML is to enable mathematics to be served, received, and processed on the World Wide
Web, just as HTML has enabled this functionality for text.

This speci�cation of the markup language MathML is intended primarily for a readership consisting of those who will be developing or implementing
renderers or editors using it, or software that will communicate using MathML as a protocol for input or output. It is not a User's Guide but rather a
reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philosophy underlying the solutions
MathML proposes. MathML can be used to encode both mathematical notation and mathematical content. About thirty of the MathML tags describe
abstract notational structures, while another one hundred provide a way of unambiguously specifying the intended meaning of an expression.
Additional chapters discuss how the MathML content and presentation elements interact, and how MathML renderers might be implemented and
should interact with browsers. Finally, this document addresses the issue of MathML entities (extended characters) and their relation to fonts.

While MathML is human-readable it is anticipated that, in all but the simplest cases, authors will use equation editors, conversion programs, and
other specialized software tools to generate MathML. Several early versions of such MathML tools already exist, and a number of others, both freely
available software and commercial products, are under development.

Status of this document

This is a W3C working draft for review by W3C members and other interested parties. It is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to use W3C working drafts as reference material or to cite them as other than `work in
progress'. This is work in progress and does not imply endorsement by, or the consensus of, either W3C or members of the Math working group.

This document has been produced by the W3C Math Working Group.

http://www.w3.org
http://www.w3.org/TR/1999/WD-MathML2-19991222
file:WD-MathML2-19991222.zip
file:XHTML-MathML-;19991222.zip
file:XML-MathML-19991222.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/1999/WD-MathML2-19991201
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/Math

A list of current W3C Technical Reports can be found at http://www.w3.org/TR.

It is expected that there will be at least two more Working Drafts, appearing at roughly one month intervals, before finalization of the Working Group’s
proposed specification MathML 2.0.

The present draft is a revision of the earlier corrected W3C Recommendation MathML 1.01. It differs from it in that several chapters have been
modified and one added. The introductory Chapters 1 and Chapter 2 are almost unchanged in this draft. They remain essentially correct, but will
later be revised to reflect the changes in the rest of the document when these have settled down.

Chapters 3 and 4 have been extended to describe new functionalities added, as well as smaller improvements of material already proposed. Chapter
5 has been newly written to reflect changes in the technology available. The major tables in Chapter 6 are being regenerated to reflect an improved
list of characters useful for mathematics. However, since the outcomes of several initiatives with respect to math in Unicode are not yet clear, the
main text of this Chapter has not yet been revised, and the character tables are omitted. Chapter 7 has been completely revised. A new Chapter 8
on the DOM for MathML has been added; the latter points to a new Appendix E for a detailed listing.

The appendices have been reorganized into normative and non-normative groups. The former have draft updates. Appendices E and H are completely
new.

Comments on this document should be sent to the Math WG public mailing list.

2

http://www.w3.org/TR
http://www.w3.org/1999/07/REC-MathML-19990707
mailto:www-math@w3.org

Contents

1 Introduction 7
1.1 Mathematics and its Notation 7
1.2 Origins and Goals 7
1.2.1 The History of MathML 8
1.2.2 Limitations of HTML 8
1.2.3 Requirements for Mathematics Markup 9
1.2.4 Design Goals of MathML 10
1.3 The Role of MathML on the Web 10
1.3.1 Layered Design of Mathematical Web Services 10
1.3.2 Relation to Other Web Technology 11
2 MathML Fundamentals 14
2.1 MathML Overview 14
2.1.1 Taxonomy of MathML Elements 14
2.1.2 Expression Trees and Token Elements 15
2.1.3 Presentation Markup 16
2.1.4 Content Markup 17
2.1.5 Mixing Presentation and Content 17
2.2 Some MathML Examples 17
2.2.1 Presentation Examples 18
2.2.2 Content Examples 20
2.2.3 Mixed Markup Examples 23
2.3 MathML Syntax and Grammar 25
2.3.1 An XML Syntax Primer 26
2.3.2 Children versus Arguments 26
2.3.3 MathML Attribute Values 26
2.3.4 Attributes Shared by all MathML Elements 31
2.3.5 Collapsing Whitespace in Input 32
3 Presentation Markup 33
3.1 Introduction 33
3.1.1 What Presentation Elements Represent 33
3.1.2 Terminology Used In This Chapter 34
3.1.3 Required Arguments 35
3.1.4 Elements with Special Behaviors 36
3.1.5 Summary of Presentation Elements 37
3.2 Token Elements 38
3.2.1 Attributes common to token elements 38
3.2.2 Identifiers 39

3

3.2.3 Numbers 40
3.2.4 Operator, Fence, Separator or Accent 42
3.2.5 Text 51
3.2.6 Space 53
3.2.7 String Literal 54
3.2.8 <mchar/> – refering to non-ASCII characters 54
3.2.9 <mglyph/> – adding new characters to MathML 55
3.3 General Layout Schemata 56
3.3.1 Horizontally Group Any Number of Subexpressions 56
3.3.2 Fractions 58
3.3.3 Radicals 60
3.3.4 Style Change 60
3.3.5 Error Message 64
3.3.6 Adjust Space Around Content 65
3.3.7 Making Content Invisible 68
3.3.8 Content Inside Pair of Fences 70
3.3.9 Enclose Content Inside Notation 73
3.4 Script and Limit Schemata 75
3.4.1 Subscript 75
3.4.2 Superscript 76
3.4.3 Subscript-superscript Pair 76
3.4.4 Underscript 77
3.4.5 Overscript 78
3.4.6 Underscript-overscript Pair 80
3.4.7 Prescripts and Tensor Indices 81
3.5 Tables and Matrices 83
3.5.1 Table or Matrix 84
3.5.2 Row in Table or Matrix 86
3.5.3 Labeled Row in Table or Matrix 87
3.5.4 Entry in Table or Matrix 88
3.5.5 Alignment Markers 89
3.6 Enlivening Expressions 97
3.6.1 Bind Action to Subexpression 97
4 Content Markup 99
4.1 Introduction 99
4.1.1 The Intent of Content Markup 99
4.1.2 The Scope of Content Markup 99
4.1.3 Basic Concepts of Content Markup 100
4.2 Content Element Usage Guide 101
4.2.1 Overview of Syntax and Usage 101
4.2.2 Containers 110
4.2.3 Functions, Operators and Qualifiers 114
4.2.4 Operators taking Qualifiers 115
4.2.5 Relations 117
4.2.6 Conditions 118
4.2.7 Syntax and Semantics 120
4.2.8 Semantic Mappings 121

4

5

4.2.9 MathML element types 122
4.3 Content Element Attributes 122
4.3.1 Content Element Attribute Values 122
4.3.2 Attributes Modifying Content Markup Semantics 122
4.3.3 Attributes Modifying Content Markup Rendering 124
4.4 The Content Markup Elements 125
4.4.1 Token Elements 129
4.4.2 Basic Content Elements 131
4.4.3 Arithmetic, Algebra and Logic 141
4.4.4 Relations 154
4.4.5 Calculus and Vector Calculus 157
4.4.6 Theory of Sets 167
4.4.7 Sequences and Series 172
4.4.8 Elementary classical functions 176
4.4.9 Statistics 179
4.4.10 Linear Algebra 181
4.4.11 Semantic Mapping Elements 187
5 Combining Presentation and Content Markup 190
5.1 Why Two Different Kinds of Markup? 190
5.2 Mixed Markup 191
5.2.1 Reasons to Mix Markup 191
5.2.2 How to Mix Markup 193
5.2.3 Presentation Markup Contained in Content Markup 193
5.2.4 Content Markup Contained in Presentation Markup 194
5.3 Parallel Markup 195
5.3.1 Top-level Parallel Markup 195
5.3.2 Fine-grained Parallel Markup 195
5.3.3 Parallel Markup via Cross-References: id and xref 196
5.4 Tools, Style Sheets and Macros for Combined Markup 198
5.4.1 Notational Style Sheets 198
5.4.2 Content-Faithful Transformations 200
5.4.3 Style Sheets for Extensions 201
6 Entities, Characters and Fonts 203
6.1 Introduction 203
6.1.1 The Intent of Entity Names 203
6.1.2 The STIX Project 203
6.1.3 Entity Listings 204
6.1.4 Non-Marking Entities 204
6.1.5 Printing Entity Listings 204
6.1.6 Special Constants 205
6.1.7 Alphabetical Lists 205
6.1.8 ISO Entity Set Groupings 206
6.1.9 Additional Entity Set Grouping 207
7 The MathML Interface 209
7.1 Embedding MathML in HTML 209
7.1.1 The Top-Level math Element 210
7.1.2 Requirements for a MathML Browser Interface 210

5

7.1.3 Invoking Embedded Objects as Renderers 211
7.1.4 Invoking Other Applications 212
7.1.5 Mixing and Linking MathML and HTML 212
7.2 Generating, Processing and Rendering MathML 214
7.2.1 MathML Compliance 214
7.2.2 Handling of Errors 215
7.2.3 An Attribute for Unspecified Data 215
7.3 Future Extensions 215
7.3.1 Macros and Style Sheets 216
7.3.2 XML Extensions to MathML 216
8 Document Object Model for MathML 217
8.1 Introduction 217
8.1.1 Scope of Level 1 and Level 2 218
A Parsing MathML 219
A.1 The MathML DTD 219
B Operator Dictionary 245
B.1 Format of operator dictionary entries 245
B.2 Indexing of operator dictionary 246
B.3 Choice of entity names 246
B.4 Notes on lspace and rspace attributes 246
B.5 Operator dictionary entries 246
C Content Markup Validation Grammar 255
D Content Element Definitions 260
D.1 About Content Markup Elements 260
D.1.1 The Structure of an MMLdefinition. 261
D.2 Definitions of MathML Content Elements 262
D.2.1 Leaf Elements 262
D.2.2 Basic Content Element 265
D.2.3 Arithmetic, Algebra and Logic 273
D.2.4 Relations 286
D.2.5 Calculus 288
D.2.6 Theory of Sets 292
D.2.7 Sequences and Series 295
D.2.8 Trigonometry 296
D.2.9 Statistics 302
D.2.10 Lineary Algebra 306
E Document Object Model for MathML (Non-Normative) 311
E.1 IDL Interfaces 311
E.1.1 Miscellaneous Object Definitions 311
E.1.2 Generic MathML Elements 312
E.1.3 Specific Style Methods (currfontsize, etc.) 313
E.1.4 Presentation Elements 314
E.1.5 Content Elements 326
F Glossary (Non-Normative) 338
G Working Group Membership (Non-Normative) 341
H Changes (Non-Normative) 343
I References (Non-Normative) 345

6

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symbolic notations. As J.R. Pierce
has written in his book on communication theory, mathematics and its notations should not be viewed as one and the same thing [Pierce1961].
Mathematical ideas exist independently of the notations that represent them. However, the relation between meaning and notation is subtle, and part
of the power of mathematics to describe and analyze derives from its ability to represent and manipulate ideas in symbolic form. The challenge in
putting mathematics on the World Wide Web is to capture both notation and content (that is: meaning) in such a way that documents can utilize the
highly-evolved notational forms of written and printed mathematics, and the potential for interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to discover innovative ways of approaching and expressing ideas. Even the com-
monplace notations of arithmetic have gone through an amazing variety of styles, including many defunct ones advocated by leading mathematical
figures of their day [Cajori1928]. Modern mathematical notation is the product of centuries of refinement, and the notational conventions for high-
quality typesetting are quite complicated. For example, variables, or letters which stand for numbers, are usually typeset today in a special italic
font subtly distinct from the usual text italic. Spacing around symbols for operations such as +, -, × and / is slightly different from that of text, to
reflect conventions about operator precedence. Entire books have been devoted to the conventions of mathematical typesetting, from the alignment
of superscripts and subscripts, to rules for choosing parenthesis sizes, to specialized notational practices for subfields of mathematics (for instance,
[Chaudry1954], [Swanson1979], [Higham1993], or in the TEX literature [Knuth1986] and [Spivak1986]).

Notational conventions in mathematics, and printed text in general, guide the eye and make printed expressions much easier to read and understand.
Though we usually take them for granted, we rely on hundreds of conventions such as paragraphs, capital letters, font families and cases, and even
the device of decimal-like numbering of sections such as we are using in this document (an invention due to G. Peano, who is probably better known
for his axioms for the natural numbers). Such notational conventions are even more important for electronic media, where one must contend with the
difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathematical notation in a Web browser.
The Web represents a fundamental change in the underlying metaphor for knowledge storage, a change in which interconnectivity plays a central
role. It is becoming increasingly important to find ways of communicating mathematics which facilitate automatic processing, searching and indexing,
and reuse in other mathematical applications and contexts. With this advance in communication technology, there is an opportunity to expand our
ability to represent, encode, and ultimately to communicate our mathematical insights and understanding with each other. We believe that MathML
is an important step in developing mathematics on the Web.

1.2 Origins and Goals

7

1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than the Web. The common practice
among scientists before the Web was to write papers in some encoded form based on the ASCII character set, and e-mail them to each other.
Several markup methods for mathematics, in particular TEX [Knuth1986], were already in wide use in 1992, just before the Web rose to prominence,
[Poppelier1992].

Since its inception, the Web has demonstrated itself to be a very effective method of making information available to widely separated groups of
individuals. However, even though the World Wide Web was initially conceived and implemented by scientists for scientists, the capability to include
mathematical expressions in HTML is very limited. At present, most mathematics on the Web consists of text with images (in GIF or JPEG format) of
scientific notation, which are difficult to read and to author.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious problem. Dave Raggett included
a proposal for HTML Math in the HTML 3.0 working draft in 1994. A panel discussion on mathematical markup was held at the WWW Conference
in Darmstadt in April 1995. In November 1995, representatives from Wolfram Research presented a proposal for doing math in HTML to the W3C
team. In May 1996, the Digital Library Initiative meeting in Champaign-Urbana played an important role in bringing together many interested par-
ties. Following the meeting, an HTML Math Editorial Review Board was formed. In the intervening years, this group has grown, and was formally
reconstituted as the W3C Math working group in March 1997.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the development of MathML deserve special
mention, some of which we touch on here. One such contribution concerns the question of accessibility, especially for the visually handicapped.
T.V. Raman is particularly notable in this regard. Neil Soiffer and Bruce Smith from Wolfram Research shared their experience with the problems
of representing mathematics in connection with the design of Mathematica 3.0, which was an important influence in the design of the presentation
elements. Paul Topping from Design Science also contributed his expertise in mathematical formatting and editing. MathML has benefited from the
participation of a number of working group members involved in other mathematical encoding efforts in the SGML and computer-algebra communities,
including Stephen Buswell from Stilo Technologies, Nico Poppelier from Elsevier Science, Stéphane Dalmas from INRIA, Sophia Antipolis, Stan Devitt
from Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the University of Western Ontario. In particular, MathML
has been influenced by the OpenMath project, the work of the ISO 12083 working group, and Stilo Technologies’ work on a ‘semantic’ mathematics
DTD fragment. The American Mathematical Society has played a key role in the development of MathML. Among other things, it has provided two
working group chairs: Ron Whitney led the group from May 1996 to March 1997, and Patrick Ion, who has co-chaired the group with Robert Miner
from The Geometry Center, from March 1997 to the present.

The working group has benefited from the help of many people. We would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins,
Ira Polans, Arthur Smith, Robby Villegas and Joe Yurvati for help and information in assembling the character tables in chapter 6, as well as Peter
Flynn, Russel S.S. O’Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their careful proofreading and constructive
criticisms.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication is high. Increasingly, researchers, scientists, engineers, educators, students
and technicians find themselves working at dispersed locations and relying on electronic communication. At the same time, the image-based methods
that are currently the predominant means of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor,
authoring is difficult, and mathematical information contained in images is not available for searching, indexing, or reuse in other applications.

The most obvious problems with HTML for mathematical communication are of two types.

Display Problems. Consider the equation 22x = 10. This equation is sized to match the surrounding line in 14pt type on the system where it was
authored. Of course, on other systems, or for other font sizes, the equation is too small or too large. A second point to observe is that the equation
image was generated against a white background. Thus, if a reader or browser resets the page background to another color, the anti-aliasing in the
image results in white ‘halos’. Next, consider the equation x = −b±

√
b2−4ac

2a shown with the equation’s horizontal alignment axis above the tops of the
lower-case letters in surrounding text.

8

9

This equation has a descender which places the baseline for the equation at a point about a third of the way from the bottom of the image. One can
pad the image like this: x = −b±

√
b2−4ac

2a , so that the centerline of the image and the baseline of the equation coincide, but this causes problems with
the inter-line spacing, which also makes the equation difficult to read. Moreover, center alignment of images is handled in slightly different ways by
different browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the browser window. Moreover, these
problems become worse when the document is printed. The resolution of the equations will be around 70 dots per inch, while the surrounding text
will typically be 300 or more dots per inch. The disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this page for part of an equation, for example, the ‘=10’ from the first equation above. In a similar vein,
consider trying to cut and paste an equation into another application; even more demanding is to cut and paste a subexpression. Using image-based
methods, neither of these common needs can be adequately addressed. Although the use of the alt in the document source can help, it is clear that
highly interactive Web documents must provide a more sophisticated interface between browsers and mathematical notation. Another problem with
encoding mathematics as images is that it requires more bandwidth. By using markup-based encoding, more of the rendering process is moved to
the client machine. Markup describing an equation is typically smaller and more compressible than an image of the equation.

1.2.3 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could be addressed by improving browser
image handling. However, even if image handling were improved, the problem of making the information contained in mathematical expressions
available to other applications would remain. Therefore, in planning for the future, it is not sufficient to merely upgrade image-based methods. To fully
integrate mathematical material into Web documents, a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to carefully consider the needs of its potential users. In the case of MathML, the needs of potential
users cover a broad spectrum, from education to research, and on to commerce:

The education community is a large and important group that must be able to put scientific curriculum materials on the Web. At the same time,
educators often have limited resources of time and equipment, and are severely hampered by the difficulty of authoring technical Web documents.
Students and teachers need to be able to create mathematical content quickly and easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Management consultant Peter Drucker
has recently been prophesying the end of big-campus residential higher education and its distribution over the Web [Drucker1997]. Electronic
textbooks will need to be active, allowing intercommunication between the text and scientific software and graphics.

The academic and commercial research communities generates large volumes of dense scientific material. Increasingly, research publications are
being stored in databases, such as the highly successful physics preprint server at Los Alamos National Laboratory. This is especially true in some
areas of physics and mathematics where academic journal prices have been increasing at an unsustainable rate. In mathematics there are large
collections at Duke, MSRI and SISSA, and on the AMS e-MATH server. In addition, databases of information on mathematical research, such as
Mathematical Reviews and Zentralblatt für Mathematik, offer on the Web millions of records containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and operation of large document
collections, where automatic searching and indexing are important. Because of the large collection of legacy data, especially TEX documents, the
ability to convert between existing formats and new formats is also very important to the research community. Finally, the ability to maintain information
for archival purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to record results of experiments and
computer simulations, and to verify calculations. For such uses, mathematics on the Web must provide a standard way of sharing information that
can be easily read, processed and generated using commonly available, easy to use tools.

Another design requirement is the ability to render mathematical material in other media such as speech or braille, which is extremely important for
the visually impaired.

9

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of print books to interactive textbooks
to academic journals. Publishers require a method of putting mathematics on the Web that is capable of high-quality output, robust enough for
large-scale commercial use, and preferably compatible with their current, usually SGML-based, production systems.

1.2.4 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate goals in mind.

MathML should:

• Encode mathematical material suitable for teaching and scientific communication at all levels.
• Encode both mathematical notation and mathematical meaning.
• Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output formats should include:

– graphical displays
– speech synthesizers
– computer algebra systems’ input
– other mathematics typesetting languages, such as TEX
– plain text displays, e.g. VT100 emulators
– print media, including braille
It is recognized that conversion to and from other notational systems or media may entail loss of information in the process.

• Allow the passing of information intended for specific renderers and applications.
• Support efficient browsing for lengthy expressions.
• Provide for extensibility.
• Be well suited to template and other mathematics editing techniques.
• Be human legible, and simple for software to generate and process.

No matter how successfully MathML might achieve its goals as a markup language, it is clear that MathML will only be useful if it is implemented well.
To this end, the W3C Math working group has identified a short list of additional implementation goals. These goals attempt to describe concisely the
minimal functionality MathML rendering and processing software should try to provide.

• MathML equations in HTML pages should render properly in popular Web browsers, in accordance with reader and author viewing prefer-
ences, and at the highest quality possible given the capabilities of the platform.

• HTML documents containing MathML equations should print properly and at high-quality printer resolutions.
• MathML equations in Web pages should be able to react to mouse gestures, and coordinate communication with other applications through

the browser.
• Equation editors and converters should be developed to facilitate the creation of Web pages containing MathML equations.

These goals can probably be adequately addressed in the near term by using embedded elements such as Java applets, plug-ins and ActiveX
controls to render MathML. However, the extent to which these goals are ultimately met depends on the cooperation and support of browser vendors,
and other software developers. The W3C Math working group will continue to work with the working groups for the Document Object Model (DOM)
and the Extensible Style Language (XSL) to ensure that the needs of the scientific community will be met in the future.

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and extensible, suitable for interaction
with external software, and capable of producing high-quality rendering in several media. Any markup language that encodes enough information to
do all these tasks well will of necessity involve some complexity.

10

11

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in Web pages by hand. Similarly,
other groups, such as the TEX community, would be best served by a system which allowed the direct entry of markup languages like TEX in Web
pages. In general, specific user groups are better served by more specialized kinds of input and output tailored to their needs. Therefore, the
ideal system for communicating mathematics on the Web should provide both specialized services for input and output, and general services for
interchange of information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general need naturally leads to the idea of
a layered architecture. One layer consists of powerful, general software tools exchanging, processing and rendering suitably encoded mathematical
data. A second layer consists of specialized software tools aimed at specific user groups, and which are capable of easily generating encoded
mathematical data which can then be shared with a general audience.

MathML is designed to provide the encoding of mathematical data for the bottom, more general layer in a two-layer architecture. It is intended to
encode complex notational and semantic structure in an explicit, regular, and easy to process way for renderers, searching and indexing software,
and other mathematical applications.

As a consequence, MathML is not primarily intended for direct use by authors. While MathML is human-readable, in all but the simplest cases it
is too verbose and error-prone for hand generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and other
specialized software tools to generate MathML. Alternatively, some renderers may convert other kinds of input directly included in Web pages into
MathML on the fly, in response to a cut-and-paste operation, for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language. You can create a PostScript
file in a variety of ways, depending on your needs; experts write and modify them by hand, authors create them with word processors, graphic artists
with illustration programs, and so on. Once you have a PostScript file, however, you can share it with a very large audience, since devices which
render PostScript, such as printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is to stimulate mathematical Web
software development in the layers above. MathML provides a way of coordinating the development of modular authoring tools and rendering
software. By making it easier to develop a functional piece of a larger system, MathML can stimulate a ‘critical mass’ of software development,
greatly to the benefit of potential users of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using the tools best suited to their needs.
For example, a student might prefer to use a menu-driven equation editor that can write out MathML to an HTML file. A researcher might use
a computer algebra package that automatically encodes the mathematical content of an expression, so that it can be cut from a Web page and
evaluated by a colleague. An academic journal publisher might use a program that converts TEX markup to HTML and MathML. Regardless of the
method used to create a Web page containing MathML, once it exists, all the advantages of a powerful and general communication layer become
available. A variety of MathML software could all be used with the same document to render it in speech or print, to send it to a computer algebra
system, or to manage it as part of a large Web document collection. One may expect that eventually MathML can be integrated into other arenas
where mathematical formulas occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math working group is working with vendors to ensure that a wide variety of MathML software will soon be available, including both
rendering and authoring tools. A current list of MathML software is maintained at the World Wide Web Consortium.

1.3.2 Relation to Other Web Technology

The original conception of HTML Math was a simple, straightforward extension to HTML that would be natively implemented in browsers. However,
very early on, the explosive growth of the Web made it clear that a general extension mechanism was required, and that mathematics was only one
of many kinds of structured data which would have to be integrated into the Web using such a mechanism.

11

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML and MathML software can interact well with
the existing Web environment. In particular, MathML has been designed with three kinds of interaction in mind. First, in order to create mathematical
Web content, it is important that existing mathematical markup languages can be converted to MathML, and that existing authoring tools can be
modified to generate MathML. Second, it must be possible to embed MathML markup seamlessly in HTML markup in such a way that it will be
accessible to future browsers, search engines, and all kinds of Web applications which now manipulate HTML. Finally, it must be possible to render
MathML embedded in HTML in today’s Web browsers in some fashion, even if it is less than ideal.

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decades is the TEX typesetting system developed by Donald
Knuth [Knuth1986]. TEX is a de facto standard in the mathematical research community, and it is pervasive in the scientific community at large. TEX
sets a standard for quality of visual rendering, and a great deal of effort has gone into ensuring MathML can provide the same visual rendering
quality. Moreover, because of the many legacy documents in TEX, and because of the large authoring community versed in TEX, a priority in the
design of MathML was the ability to convert TEX mathematics input into MathML format. The feasibility of such conversion has been demonstrated
by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encoding schemes are widely used by
commercial publishers. ISO 12083 is an important markup language which contains a DTD fragment primarily intended for describing the visual
presentation of mathematical notation. Because ISO 12083 mathematical notation and its derivatives share many presentational aspects with TEX,
and because SGML enforces structure and regularity more than TEX, much of the work in ensuring MathML is compatible with TEX also applies well
to ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with computer algebra systems. Many of the
presentation elements of MathML are derived in part from the mechanism of typesetting boxes. The MathML content elements are heavily indebted
to the OpenMath project and the work by Stilo Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the
SGML and computer algebra communities, and has laid a foundation for an SGML-based means of communication between mathematical software
packages, among other things. The feasibility of both generating and interpreting MathML in computer algebra systems has been demonstrated by
prototype software.

1.3.2.2 HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types and software applications into the
Web. Each new format or application potentially places new demands on HTML and on browser vendors. For some time, it has been clear that a
general extension mechanism is necessary to accommodate new extensions to HTML. We began our work thinking of a plain extension to HTML in
the spirit of the first mathematics support suggested for HTML 3.2. But for various reasons, once we got into the details this proved to be not so good
an idea. Since work first began on MathML, XML has emerged as the leading candidate for such a general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML (Standard Generalized Markup Language), the meta-
language used to define the grammar and syntax of HTML. One of the goals of XML is to be suitable for use on the Web, and in the context of this
discussion it can be viewed as a general mechanism for extending HTML. As its name implies, extensibility is a key feature of XML; authors are
free to declare and use new tags and attributes. At the same time, XML grammar and syntax rules carefully enforces document structure to facilitate
automatic processing and maintenance of large document collections.

Though details about how XML markup will ultimately be embedded in HTML remain to be resolved, XML has garnered broad industry support
including major browser vendors. Devising a standard way of embedding XML in HTML is also important with the W3C. Furthermore, other applica-
tions of XML for all kinds of document publishing and processing promise to become increasingly important. Consequently, both on theoretical and
pragmatic grounds, it makes a great deal of sense to specify MathML as an XML application, and we have done so.

12

13

1.3.2.3 Browser Extension Mechanisms

While details of a general model for rendering and processing XML extensions to HTML is still being being resolved, broad features of the model are
already fairly clear. Formatting Properties developed by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made
available through the Document Object Model (DOM) will be applied to MathML elements to obtain some stylistic control over the presentation of
MathML. Further development of these Formatting Properties falls within the charter of both the CSS&FP and the XSL working groups. Thus, it may
soon be possible to write a style sheet which will largely describe the correct display of MathML.

MathML was designed with the goal of style sheet-based rendering in mind. It is the intention of the W3C Math Working Group to work closely with
W3C style sheet activities to ensure both that adequate support for MathML is incorporated into future style sheet mechanisms, and that MathML
style sheets are developed. In particular, providing for adequate follow-on activities beyond the scope of the W3C Math working group charter is a
high priority.

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary to extend browser capabilities
by using embedded elements to render MathML. It may soon be possible to instruct a browser to use a particular embedded renderer to process
embedded XML markup such as MathML, and coordinate the resulting output with the surrounding Web page. Indeed, for specialized processing,
such as connecting to a computer algebra system, this capability is likely to remain highly desirable. However, for this kind of interaction to be
really satisfactory, it will be necessary to define a document object model rich enough to facilitate complicated interactions between browsers and
embedded elements. For this reason, the W3C Math working group is coordinating its efforts closely with the Document Object Model working group.

For processing by embedded elements, and for inter-communication between scientific software generally, a style sheet-based layout model is
less than ideal in some ways. It can impose an additional implementation burden in a setting where it may offer few advantages, and it imposes
implementation requirements for coordination between browsers and embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effective for high-quality rendering of
complicated mathematical expressions in several independent implementations. MathML presentation attributes utilize W3C Formatting Properties
where possible. Also, MathML elements accept class, style and id attributes to facilitate their use with CSS style sheets. However, at present, there
are few settings where CSS machinery is currently available to MathML renderers.

Issue (sheet-use): Now that XSL and CSS are available, the following text should be revised.

When style sheet mechanisms become available to MathML, it is anticipated their use will become the dominant method of stylistic control of MathML
presentation meant for use in rendering environments which support those mechanisms.

13

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The second section presents a number
of motivating examples, to give the reader something concrete to refer to while reading subsequent chapters of the MathML Specification. The final
section describes basic features of the MathML syntax and grammar, which apply to all MathML markup. In particular, section 2.3 should be read
before chapter 3, chapter 4 and chapter 5.

A fundamental challenge in defining a mathematics markup language for the Web is reconciling the need to encode both the presentation of a
mathematical notation and the content of the mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, the results of mathematical logic
raise unsettling questions about the correspondence between symbolic logic systems and the phenomena they model. At a more intuitive level,
anyone who uses mathematical notation knows the difference that a good choice of notation can make; the symbolic structure of the notation
suggests the logical structure. For example, the Leibniz notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation
of fractions: ∂f∂x

∂x
∂t = ∂f

∂t .

Mathematicians and teachers understand this very well; part of their expertise lies in choosing notation that emphasizes key aspects of a problem
while hiding or diminishing extraneous aspects. It is commonplace in mathematics and science to write one thing when technically something else is
meant, because long experience shows this actually communicates the idea better at some higher level.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematical object. Mathematical notation
is capable of prodigious rigor, and when used carefully, it is virtually free of ambiguity. Moreover, it is precisely this lack of ambiguity which makes it
possible to describe mathematical objects so that they can be used by software applications such as computer algebra systems and voice renderers.
In situations where such inter-application communication is of paramount importance, the nuances of visual presentation generally play a minimal
role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematical structure of the object itself.
Moreover, authors can mix both kinds of encoding in order to specify both the presentation and content of a mathematical idea. The remainder of
this section gives a basic overview of how MathML can be used in each of these ways.

2.1.1 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elements. Each of these categories is
described in detail in chapter 3, chapter 4 and chapter 7 respectively.

14

15

Presentation elements describe mathematical notation structure. Typical examples are the mrow element, which is used to indicate a horizontal row
of pieces of expressions, and the msup element, which is used to indicate a base and superscript. As a general rule, each presentation element
corresponds to a single kind of notational ‘schema’ such as a row, a superscript, an underscript and so on. Since many notational schemata have
a number of frequently occurring variants, most presentation elements accept a number of attributes which can be used to select between variants.
For example, the superscript element accepts a ‘superscript shift’ attribute which specifies the minimum amount the superscript should shift upward.

Content elements describe mathematical objects directly, as opposed to describing the notation which represents them. Typical examples include the
plus element, which denotes the usual addition operator for real numbers, and the vector element, which denotes a vector from linear algebra. Each
content element corresponds to some mathematical concept. Some elements represent mathematical objects like vectors, while others represent
functions or operations like addition.

Every MathML element but one is either a presentation element or a content element. The math element is neither, since its role is to serve as a
top-level, interface element. One function of the math element is to pass on parameters to a MathML processor that affect an entire expression, such
as style preferences. A second function is to communicate parameters to a Web browser about what software to use to render a MathML expression,
and how the expression should be integrated into the surrounding HTML page. (As XML support is added to browsers, it may ultimately be necessary
to introduce one or two more interface elements, to handle these functions separately. See chapter 7 for details.)

2.1.2 Expression Trees and Token Elements

Presentation and content expressions both share a number of formal properties. In both cases, most expressions naturally decompose into pieces,
or subexpressions. For example, the expression (a + b)2 naturally breaks into a ‘base’, the (a + b), and a ‘script’, which is the single character ‘2’ in
this case. Furthermore, as this example shows, the subexpressions may themselves decompose into further subexpressions, and so on. Of course,
the decomposition process eventually terminates with indivisible expressions such as digits, letters, or other symbol characters.

Although this particular example involves mathematical notation, and hence presentation markup, the same observation applies equally well to
abstract mathematical objects, and hence to content markup. For example, in a context of content markup our superscript example would typically
be denoted by an exponentiation operation that would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, since as a general
rule, mathematical notation closely mirrors the logical structure of the underlying mathematical objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. Most presentation or content elements contain
some number of other MathML elements corresponding to the constituent pieces out of which the original object is recursively built. The original
schema is commonly called the parent schema, and the constituent pieces are called child schemata. More generally, MathML expressions can be
regarded as trees, where each node corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and the
leaves in the tree correspond to indivisible notation or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are either canonically empty elements, or token elements. Canonically empty elements directly
represent symbols in MathML, such as the content element plus. MathML token elements are the only MathML elements permitted to directly
contain character data. The character data may consist of ASCII characters and MathML entities, which are escape sequences of the form &name;.
MathML entities typically denote non-ASCII Unicode characters such as α, → and ∑. A third kind of leaf node permitted in
MathML is the annotation element, which is used to hold data in a non-MathML format.

The most important presentation token elements are mi, mn and mo for representing identifiers, numbers and operators respectively. Typically a ren-
derer will employ slightly different typesetting styles for each of these kinds of character data: numbers are usually in upright font, identifiers in italics,
and operators have extra space around them. In content markup, there are only two tokens, ci and cn for identifiers and numbers respectively. In
content markup, separate elements are provided for commonly used functions and operators. The fn element is provided for user-defined extensions
to the base set.

In terms of markup, most MathML elements have a start tag and an end tag, which enclose the markup for their contents. In the case of tokens,
the content is character data, and in most other cases, the content is the markup for child elements. A third category of elements, called canonically
empty elements, don’t require any contents, and are marked up using a single tag of the form <name/>. An example of this kind of markup is <plus/>
in content markup.

15

Returning to the example of (a + b)2, we can now see how the principles discussed above play out in practice. One form of presentation markup for
this example is:

<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</mfenced>
<mn>2</mn>

</msup>

The content markup for the same example is:

<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>

</apply>
<cn>2</cn>

</apply>

While a full discussion of presentation and content markup must wait until chapter 3 and chapter 4, the main features of these sample encodings
should now be relatively clear.

2.1.3 Presentation Markup

MathML presentation markup consists of 30 elements which accept over 50 attributes. Most of the elements correspond to layout schemata, which
contain other presentation elements. Each layout schema corresponds to a two-dimensional notational device, such as a superscript or subscript,
fraction or table. In addition, there are the presentation token elements mi, mn and mo introduced above, as well as several other less commonly used
token elements. The remaining few presentation elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains elements such as msub, munder, and
mmultiscripts. Another group focuses on more general layout and includes mrow, mstyle, and mfrac. A third group deals with tables. The maction
element is a category by itself, and represents various kinds of actions on notation, such as in an expression which toggles between two pieces of
notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the first child of an mfrac element is
the numerator and the second child is the denominator. Since the order of child schemata is not enforced at the XML level by the MathML DTD,
the information added by ordering is only available to a MathML processor, as opposed to a generic XML processor. When we want to emphasize
that a MathML element such as mfrac requires children in a specific order, we will refer to them as arguments, and think of the mfrac element as a
notational ‘constructor’.

16

17

2.1.4 Content Markup

Content markup consists of about 100 elements accepting roughly a dozen attributes. The majority of these elements are empty elements corre-
sponding to a wide variety of operators, relations and named functions. Examples of this sort include partialdiff, leq and tan. Others such as
matrix and set are used to encode various mathematical data types, and a third, important category of content elements such as apply are used to
make new mathematical objects from others.

The apply element is perhaps the single most important content element. It is used to apply a function to a collection of arguments. The positions of
the child schemata is again significant, with the first child denoting the function to be applied, and the remaining children denoting the arguments of
the function, with order preserved. Note that the apply construct always uses prefix notation, like the programming language LISP. In particular, even
binary operations like subtraction are marked up by applying a prefix subtraction operator to two arguments. For example, a - b would be marked up
as

<apply>
<minus/>
<ci>a</ci>
<ci>b</ci>

</apply>

A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition to an integrand, a definite integral
must specify the limits of integration and the bound variable. For this reason, there are several qualifier schemata such as bvar and lowlimit. They
are used with operators such as diff and int.

The declare construct is especially important for content markup that might be evaluated by a computer algebra system. The declare element
provides a basic assignment mechanism, where a variable can be declared to be of a certain type, with a certain value. Typically, declarations are
ignored for visual rendering, and are used when an expression is evaluated.

2.1.5 Mixing Presentation and Content

Different kinds of markup will be most appropriate for different kinds of tasks. Legacy data is probably best translated into pure presentation markup,
since semantic information about what the author meant can only be guessed at heuristically. By contrast, some mathematical applications and
pedagogically-oriented authoring tools will likely choose to be entirely content-based. However, the majority of applications fall somewhere in between
these extremes. For these applications, the most appropriate markup is a mixture of both presentation and content markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content should only be allowed in places where
it makes sense. For content markup embedded in presentation markup this basically means that any content fragments should be semantically
meaningful, and should not require additional arguments or quantifiers to be fully specified. For presentation markup embedded in content markup,
this usually means that presentation markup must be contained in a content token element, so that it will be treated as an indivisible notational unit
used as a variable or function name.

Another option is to use a semantics element. The semantics element is used to bind MathML expressions to various kinds of annotations. One
common use for the semantics element is to bind a content expression to a presentation expression as a semantic annotation. In this way, an author
can specify a non-standard notation to be used when displaying a particular content expression. Another use of the semantics element is to bind
some other kind of semantic specification, such as an OpenMath expression, to a MathML expression. In this way, the semantics element can be
used to extend the scope of MathML content markup.

2.2 Some MathML Examples

17

2.2.1 Presentation Examples

Notation: x2 + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>

Note the use of nested mrow elements to denote terms, in this case the left-hand side of the equation functioning as an operand of ‘=’. Marking terms
greatly facilitates things like spacing for visual rendering, voice rendering, and line breaking.

Notation: x = −b±
√
b2−4ac

2a .

Markup:

18

19

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>

</mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>

</mrow>
</mrow>

</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>

Notice that the plus/minus sign is given by a special named entity ±. MathML provides a very comprehensive list of entity names for
mathematical symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols to facilitate audio
rendering. For audio rendering, it is important to be able to automatically determine whether

19

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>

</mrow>
</mfenced>

</mrow>

should be read as ‘z times the quantity x plus y’ or ‘z of x plus y’. The entities ⁢ and ⁡ provide a way for authors to
directly encode the distinction for audio renderers. For instance, in the first case ⁢ should be inserted after the line containing the z.
MathML also introduces entities like ⅆ which represents a ‘differential d’ which renders with slightly different spacing in print, and can be rendered
as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are used to eliminate the ambiguity, authors should always use
these entities, in order to make their documents more accessible.

Notation: A =
[
x y
z w

]
.

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>

<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>

</mtr>
<mtr>

<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>

</mtr>
</mtable>

</mfenced>
</mrow>

Most elements have a number of attributes that control the details of their screen and print rendering. For example, there are several attributes for
the mfenced element that control what delimiters should be used at the beginning and the end of the expression. The attributes for operator elements
given using <mo> are set to default values determined by a dictionary. (For the suggested MathML operator dictionary, see appendix B.)

2.2.2 Content Examples

Notation: x2 + 4x + 4 = 0.

Markup:

20

21

<apply>
<eq/>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>
<cn>0</cn>

</apply>

Note that the apply element is used for relations, operators and functions.

Notation: x = −b±
√
b2−4ac

2a .

Markup:

21

<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<fn><mo>±</mo></fn>
<apply>
<minus/>
<ci>b</ci>

</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>

</apply>
</apply>
<cn>2</cn>

</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>

</apply>
</apply>

</apply>

MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the fn element to declare that we
want the presentation markup for this operator to act as a content operator. This is a simple example of how presentation and content markup can
be mixed to extend content markup.

Notation: A =
(
x y
z w

)
.

Markup:

22

23

<apply>
<eq/>
<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>

</matrixrow>
<matrixrow>
<ci>z</ci>
<ci>w</ci>

</matrixrow>
</matrix>

</apply>

Note that by default, the rendering of the content element matrix includes enclosing parentheses, so we need not directly encode them. This is quite
different from the presentation element mtable which may or may not refer to a matrix, and hence requires explicit encoding of the parentheses if
they are desired.

2.2.3 Mixed Markup Examples

Notation:

∞∫
0

dt
t

.

Markup:

23

<semantics>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

In this example, we use the semantics element to provide a MathML content expression to serve as a ‘semantic annotation’ for a presentation
expression. The semantics element has as its first child the expression being annotated, and the subsequent children are the annotations. There is
no restriction on the kind of annotation that can be attached using the semantics element. For example, one might give a TEX encoding, or computer
algebra input in an annotation. The type of annotation is specified by the encoding attribute and the annotation and annotation-xml elements.

Another common use of the semantics element arises when one wants to use a content coding, and provide a suggestion for its presentation. In this
case, we would have the markup:

24

25

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>

</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. For example, by default, some
renderers might layout the integrand something like ‘1/x dx’. Specifying that the integrand should by preference render as ‘dx/x’ instead can be
accomplished with the use of a MathML Presentation annotation as shown. Be aware, however, that renderers are not required to take into account
information contained in annotations, and what use is made of them, if any, will depend on the renderer.

2.3 MathML Syntax and Grammar

MathML is an application of XML, or Extensible Markup Language [Bray1998], and as such its syntax is governed by the rules of XML syntax, and
its grammar is in part specified by a DTD, or Document Type Definition. In other words, the details of using tags, attributes, entity references and so
on are defined in the XML language specification, and the details about MathML element and attribute names, which elements can be nested inside
each other, and so on are specified in the MathML DTD.
Issue (rewrite-for-schema): The following needs to be revised pending creation of a schema for MathML.
However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XML application. These rules allow
MathML to encode a great deal more information than would ordinarily be possible with pure XML, without introducing many more elements, and
using a substantially more complex DTD. A grammar for content markup expressions is given in appendix C. Of course, one drawback to using
MathML specific rules is that they are invisible to generic XML processors and validators.

25

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional criteria on attribute values. For
example, it is not possible in pure XML to require that an attribute value be a positive integer. The second kind of rule specifies more detailed
restrictions on the child elements (for example on ordering) than are given in the DTD. For example, it is not possible in XML to specify that the first
child be interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular. Throughout the remainder of the
MathML specification, we will usually take care to distinguish between usage required by XML syntax and the MathML DTD and usage required by
MathML specific rules. However, we will frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.3.1 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology of XML to describe it. Briefly, XML data is composed of
Unicode characters (which include ordinary ASCII characters), ‘entity references’ (informally called ‘entities’) such as → which usually
represent ‘extended characters’, and ‘elements’ such as <mi fontstyle="normal"> x </mi>. Elements enclose other XML data called their ‘content’
between a ‘start tag’ (sometimes called a ‘begin tag’) and an ‘end tag’, much like in HTML. There are also ‘empty elements’ such as <plus/>, whose
start tag ends with /> to indicate that the element has no content or end tag. The start tag can contain named parameters called ‘attributes’, such as
fontstyle="normal" in the example above. For further details on XML, consult the XML specification [Bray1998].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, the MathML defines them almost all in
lowercase.

In formal discussions of XML markup a distinction is maintained between an element, such as an mrow element, and the tags <mrow> and </mrow>
marking it. What is between the <mrow> start tag and the </mrow> end tag is the content of the mrow element. An ‘empty element’ such as none is
defined to have no content and so has a single tag of the form <none/>. Usually, the distinction between elements and tags will not be so finely drawn
in this specification. For instance, we will sometimes refer to the <mrow> and <none/> elements, really meaning the elements whose tags these are,
in order that references to elements are visually distinguishable from references to attributes. However, the words ‘element’ and ‘tag’ themselves will
be used strictly in accordance with XML terminology.

2.3.2 Children versus Arguments

Many MathML elements require a specific number of child elements and/or attach additional meanings to children in certain positions. As noted
above, these kinds of requirements are MathML specific, and cannot be specified entirely in terms of XML syntax and grammar. When the children
of a given MathML element are subject to these kinds of additional conditions, we will often refer to them as arguments instead of merely children in
order to emphasize their MathML specific usage. Note that especially in chapter 3 the term ‘argument’ is usually used in this technical sense, unless
otherwise noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the number of required arguments and
their order is implicitly indicated by giving names for the arguments at various positions. This information is also given for presentation elements in
the table of argument requirements in section 3.1.3, and for content elements in appendix C.

A few elements have other requirements on the number or type of arguments. These additional requirements are described together with the
individual elements.

2.3.3 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute-name = "value"

or

26

27

attribute-name = ’value’

where whitespace around the ’=’ is optional.

Attribute names are generally shown in a monospaced font within descriptive text in this specification, but not within examples.

The attribute value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pair of either double quotes (") or
single quotes (’). The kind of quotes not used to surround the value may be included within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML DTD. These additional rules are
intended for use by MathML applications, and it is a MathML error to violate them, though they are not enforced by XML processing. The MathML
syntax of each attribute value is specified in the table of attributes provided with the description of each element it can be used with, using a notation
described below. In MathML applications these attribute values should be further processed as follows, unless otherwise specified: whitespace is
ignored except to separate letter and/or digit sequences into individual words or numbers; and the same entity references (listed in chapter 6) which
can be used within token elements to represent characters can be used to represent those characters in attribute values (whenever those characters
would be permitted by that attribute value’s syntax).

In particular, the characters ", ’, & and < can be included in MathML attribute values (when permitted by the attribute value syntax) using the entity
references ", ', ' and <, respectively.

The MathML DTD provided in appendix A declares most attribute value types as CDATA strings. This permits increased interoperability with existing
SGML and XML software and allows extension to the lists of predefined values.

2.3.3.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are used for most attributes in the
present document.

Issue (rgb-notation): Do we need to explain what RGB colour notation is?

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

• form + or form *
• f1 f2 ... fn (sequence of forms)
• f1 | f2 | ... | fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XML CDATA attribute values; it must use entity references for certain characters,
as described earlier. It can contain XML-format entity or character references for any of the characters listed in chapter 6. No syntax rule in MathML
includes string as only part of an attribute value, only as the entire value.

Issue (character): This needs to be revised for the introduction of the mchar element.

A character consists of a single non-whitespace character or entity reference.

As a simple example, the permissible values of boolean attributes are specified as true | false, meaning that the entire attribute value should be
either true or false.

Adjacent keywords and/or numbers must be separated by whitespace in the actual attribute values, except for unit identifiers (symbolized by h-unit
or v-unit syntax symbols) following numbers. Whitespace is not otherwise required, but is permitted between any of the tokens listed above, except
(for compatibility with CSS1) immediately before unit identifiers, between the ’-’ signs and digits of negative numbers, or between # and rgb or rrggbb.

Numeric attribute values for dimensions that should depend upon the current font can be given in font-related units, or in named absolute units
(described in a separate subsection below). Horizontal dimensions are conventionally given in em’s, and vertical dimensions in ex’s, by immediately
following a number by one of the unit identifiers em or ex. For example, the horizontal spacing around an operator such as ‘+’ is conventionally given
in ems, though other units can be used. Using font-related units is usually preferable to using absolute units, since it allows renderings to grow or
shrink proportionately to the current font size.

27

Notation What it matches
number decimal integer or rational number (digits with one decimal point), optionally starting with ’-’
unsigned-number decimal integer or real number, no sign
integer decimal integer, optionally starting with ’-’
positive-integer decimal integer, unsigned, not 0
string arbitrary string (always the entire attribute value)
character single non-whitespace character, or MathML entity reference; whitespace separation is optional
#rgb RGB color value
#rrggbb RGB color value
h-unit unit of horizontal length (allowable units are listed below)
v-unit unit of vertical length (allowable units are listed below)
css-fontfamily explained in CSS subsection, below
html-color-name explained in CSS subsection, below
other italicized words explained in the text for each attribute
form + one or more instances of form
form * zero or more instances of form
f1 f2 ... fn one instance of each form, in sequence, perhaps separated by whitespace
f1 | f2 | ... | fn any one of the specified forms
[form] optional instance of form
(form) same as form
word in plain text that word, literally present in attribute value (unless it is obviously part of an explanatory phrase)
quoted symbol that symbol, literally present in attribute value (e.g. "+" or ’+’)

For most numeric attributes, only those in a subset of the expressible values are sensible; values outside this subset are not errors, unless otherwise
specified, but rather are rounded up or down (at the discretion of the renderer) to the closest value within the allowed subset. The set of allowed
values may depend on the renderer, and is not specified by MathML.

If a numeric value within an attribute value syntax description is declared to allow a minus sign (’-’), e.g. number or integer, it is not a syntax
error when one is provided in cases where a negative value is not sensible. Instead, the value should be handled by the processing application as
described in the preceding paragraph. An explicit plus sign (’+’) is not allowed as part of a numeric value except when it is specifically listed in the
syntax (as a quoted ’+’ or "+"), and its presence can change the meaning of the attribute value (as documented with each attribute which permits it).

Issue (html-color): The phrase html-color-name is used but never explained.

The symbols h-unit, v-unit, css-fontfamily, and html-color-name are explained in the following subsections.

2.3.3.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’). The syntax symbols h-unit
and v-unit refer to a unit for horizontal or vertical length, respectively. The possible units and the lengths they refer to are shown in the table below;
they are the same for horizontal and vertical lengths, but the syntax symbols are distinguished in attribute syntaxes as a reminder of the direction
they are each used in.

The unit identifiers and meanings are taken from CSS1. (However, the syntax of numbers followed by unit identifiers in MathML is not identical to the
syntax of length values with units in CSS style sheets, since numbers in CSS can’t end with decimal points, and are allowed to start with ’+’ signs.)

The possible horizontal or vertical units in MathML are:

The typesetting units em and ex are defined in appendix F, and discussed further under ‘Additional notes’ below.

28

29

Unit identifier Unit description
em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)
px pixels, or pixel size of the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of default value

% is a ‘relative unit’; when an attribute value is given as n% (for any numeric value n), the value being specified is the default value for the property
being controlled multiplied by n divided by 100. The default value (or the way in which it is obtained, when it is not constant) is listed in the table of
attributes for each element, and its meaning is described in the subsequent documentation about that attribute. (The mpadded element has its own
syntax for % and does not allow it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosed in square brackets in the attribute
syntax, following the number it applies to, e.g. number [h-unit]. The meaning of specifying no unit is given in the documentation for each attribute;
in general it is that the number given is a multiplier for the default value of the attribute. (In such cases, specifying the number nnn without a unit is
equivalent to specifying the number nnn times 100 followed by %. For example, <mo maxsize="2"> (</mo> is equivalent to <mo maxsize="200%">
(</mo>.)

As a special exception (also consistent with CSS), a numeric value equal to 0 need not be followed by a unit identifier even if the syntax specified
here requires one. In such cases, the unit identifier (or lack of one) would not matter, since 0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is the same as the one used in that attribute’s default value
in this specification; when a specific default value is not given, the typical unit is usually mentioned in the syntax table or in the documentation for that
attribute. The typical unit is usually em or ex. However, any unit can be used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes, e.g. framespacing on <mtable>, can contain more than one numeric value, each followed by its own unit.

It is conventional to use the font-relative unit ex mainly for vertical lengths, and em mainly for horizontal lengths, but this is not required. These units
are relative to the font and fontsize which would be used for rendering the element in whose attribute value they are specified, which means they
should be interpreted after attributes such as fontfamily and fontsize are processed, if those occur on the same element, since changing the
current font or fontsize can change the length of these units.

The definition of the length of each unit (but not the MathML syntax for length values) is as specified in CSS1, except that if a font provides specific
values for em and/or ex which differ from the values defined by CSS1 (the font size and ‘x’-height respectively), those values should be used.

2.3.3.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely with text rendering properties defined by Cascading Style Sheets, Level 1 (CSS1).

The names and acceptable values of these attributes have been aligned with the CSS1 recommendation where possible. In general, the MathML
syntax for each attribute is intended to be a subset of the CSS syntax for the corresponding property. Differences at the detail level, where they exist,
are explained with the documentation about each attribute, in the sections of this specification listed in the table.

29

The syntax of certain attributes is partially specified, in the tables of attribute syntax in this specification, using one of the symbols css-fontfamily
or html-color-name, as shown in the following table. These symbols refer to syntaxes from other W3C Recommendations, and are explained in the
sections of this specification referred to in the table.

MathML attribute CSS property syntax symbol MathML elements refer to
fontsize font-size - presentation tokens; mstyle section 3.2.1
fontweight font-weight - presentation tokens; mstyle section 3.2.1
fontstyle font-style - presentation tokens; mstyle section 3.2.1
fontfamily font-family css-fontfamily presentation tokens; mstyle section 3.2.1
color color html-color-name presentation tokens; mstyle section 3.3.4
background background html-color-name mstyle section 3.3.4

See also section 2.3.4 below for a discussion of the class, style and id attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets specify changes to rendering properties of selected MathML elements (selecting the elements in various ways).
Either the properties listed above, or any other MathML rendering attributes or properties supported by a style sheet mechanism, can be affected,
in principle for any element. Since rendering properties can also be changed by attributes on an element, or automatically (which can happen to
fontsize, as explained in the discussion on scriptlevel in section 3.3.4), it is necessary to specify the relative order in which changes from various
sources occur. In the case of ‘absolute’ changes, i.e. setting a new property value independent of the old value (as opposed to ‘relative’ changes,
such as increments or multiplications by a factor), the absolute change performed last will be the only absolute change which is effective, so the
sources of changes which should have the highest priority must be processed last.

In the case of CSS1, the order of processing of changes from various sources which affect one MathML element’s rendering properties should be as
follows:

(first changes; lowest priority)

• automatic changes to properties or attributes based on the type of the parent element, and this element’s position in the parent, as for the
changes to fontsize in relation to scriptlevel mentioned above; such changes will usually be implemented by the parent element itself
before it passes a set of rendering properties to this element

• style sheet from reader: styles which are not declared ‘important’
• explicit attribute settings on this MathML element
• style sheet from author: styles which are not declared ‘important’
• style sheet from reader: styles which are declared ‘important’
• style sheet from author: styles which are declared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself. The following rationale is related only to the issue of
where in this pre-existing order the changes caused by explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such as align, which the CSS1 section on cascading order
specifies should be processed with the same priority. Furthermore, this choice of priority permits readers, by declaring certain CSS styles as
‘important’, to decide which of their style preferences should override explicit attribute settings in MathML. Since MathML expressions, whether
composed of ‘presentation’ or ‘content’ elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to
aid in that purpose but not to be essential in it, it is likely that readers will often want their own style preferences to have priority; the main exception
will be when a rendering attribute is intended to alter the meaning conveyed by an expression, which is generally discouraged in the presentation
attributes of MathML.

30

31

2.3.3.4 Default values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements in the text. Default values shown
in plain text, in the tables of attributes for an element, are literal (unless they are obviously explanatory phrases), but when italicized are descriptions
of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described under mstyle, or in some cases (described individually)
from the values of other attributes of surrounding elements, or from certain parts of those values. The value used will always be one which could have
been specified explicitly, had it been known; it will never depend on the content or attributes of the same element, only on its environment. (What it
means when used may, however, depend on those.)

Default values described as automatic should be computed by a MathML renderer in a way which will produce a high-quality rendering; how to do
this is not usually specified by MathML. The value computed will always be one which could have been specified explicitly, had it been known, but it
will usually depend on the element content and/or the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribute individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the tables of attribute value syntax for
each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the effect of not specifying the attribute
at all, for attributes which are inherited or automatic. Giving the words ‘inherited’ or ‘automatic’ explicitly will not work, and is not generally allowed.
Furthermore, even for presentation attributes for which a specific default value is documented here, the mstyle element (section 3.3.4) can be used
to change this for the elements it contains. Therefore, the MathML DTD declares most presentation attribute default values as #IMPLIED, which
prevents XML preprocessors from adding them with any specific default value.

2.3.3.5 Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various ways, either by enumerating the
possible values, or by declaring them to be certain special data types. The choice of an XML attribute type affects the extent to which validity checks
can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including enumerations of legitimate values in some cases. In
general, however, the MathML DTD is relatively permissive, frequently declaring attribute values as strings; this is done to provide for interoperability
with SGML parsers while allowing multiple attributes on one MathML element to accept the same values (such as true and false), and also to allow
extension to the lists of predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values are legitimate in MathML, as described
above and in the rest of this specification. For example, many attributes expect numerical values. In the sections which follow, the allowed attribute
values are described for each element. To determine when these constraints are actually enforced in the MathML DTD, consult appendix A. However,
lack of enforcement of a requirement in the DTD does not imply that the requirement is not part of the MathML language itself, or that it will not be
enforced by a particular MathML renderer. (See section 7.2.2 for a description of how MathML renderers should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the text of the specification, the text
should be taken as definitive if there is a contradiction. (Any contradictions which may exist between various chapters of the text should be resolved
by favoring chapter 6 first, then chapter 3, chapter 4, then section 2.3, and then other parts of the text.)

2.3.4 Attributes Shared by all MathML Elements

In order to facilitate compatibility with Cascading Style Sheets, Level 1 (CSS1), all MathML elements accept class, style, and id attributes in addition
to the attributes described specifically for each element. MathML renderers not supporting CSS may ignore these attributes. (MathML specifies these
attribute values as general strings, even if style-sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in
MathML.)

31

Renderers supporting CSS (or analogous style sheet mechanisms) may use these attributes to help determine which MathML elements should be
subject to which style sheet-induced changes to various rendering properties. The properties that can be affected, and how these changes affect
them, are discussed in section 2.3.3.3 above.

Every MathML element also accepts the attribute other (section 7.2.3) for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in MathML.

See also section 3.2.1 for a list of MathML attributes which can be used on most presentation token elements.

2.3.5 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whitespace occurring within the
content of token elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning and end of the content is removed), and ‘collapsed’ internally
(i.e. each sequence of 1 or more whitespace characters is replaced with one blank character).

In MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecimal Unicode codes U+0020,
U+0009, U+000a, or U+000d, respectively.

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to <mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other than a single blank, without
having them ignored, must use or other ‘whitespace’ non-marking entities as described in section 6.1.4. For example, compare

<mtext>
Theorem
1:

</mtext>

with

<mtext>
 Theorem
 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one blank between ‘Theorem’ and ‘1:’, and no whitespace after ‘1:’. In
the second example, a single blank is rendered before ‘Theorem’, a new line is placed after ‘Theorem’, two blanks are rendered before ‘1:’, and there
is no whitespace after the ‘1:’.

Note that the xml:space attribute does not apply in this situation since XML processors pass whitespace in tokens to a MathML processor; it is the
MathML processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn and annotation, an mspace element should be
used, as opposed to an mtext element containing only ‘whitespace’ entities.

32

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinds of symbols and expression-
building structures out of which any particular piece of traditional mathematical notation is built. Because of the importance of traditional visual
notation, the descriptions of the notational constructs the elements represent are usually given here in visual terms. However, the elements are
medium-independent in the sense that they have been designed to contain enough information for good spoken renderings as well. Some attributes
of these elements may make sense only for visual media, but most attributes can be treated in an analogous way in audio as well (for example, by a
correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for medium-dependent rendering and
for individual preferences of style. This specification describes suggested visual rendering rules in some detail, but a particular MathML renderer is
free to use its own rules as long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same way as titles, sections, and
paragraphs capture the higher level syntactic structure of a textual document. Because of this, for example, a single row of identifiers and operators,
such as ‘x + a / b’, will often be represented not just by one mrow element (which renders as a horizontal row of its arguments), but by multiple nested
mrow elements corresponding to the nested subexpressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>

<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their base. This structure allows for
better-quality rendering of mathematics, especially when details of the rendering environment such as display widths are not known to the document
author; it also greatly eases automatic interpretation of the mathematical structures being represented.

33

Certain extended characters, represented by entity references, are used to name operators or identifiers which in traditional notation render the same
as other symbols, such as ⅆ, ⅇ, or ⅈ, or operators which usually render invisibly, such as &Invisible-
Times;, ⁡, or ⁣. These are distinct notational symbols or objects, as evidenced by their distinct spoken renderings
and in some cases by their effects on linebreaking and spacing in visual rendering, and as such should be represented by the appropriate specific
entity references. For example, the expression represented visually as ‘f (x)’ would usually be spoken in English as ‘f of x’ rather than just ‘f x’; this
is expressible in MathML by the use of the ⁡ operator after the ‘f ’, which (in this case) can be aurally rendered as ‘of’.

The complete list of MathML entities is described in chapter 6.

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read section 2.3 on MathML syntax and grammar, which contains important
information on MathML notations and conventions. In particular, in this chapter it is assumed that the reader has an understanding of basic XML
terminology described in section 2.3.1, and the attribute value notations and conventions described in section 2.3.3.

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols, names, numbers, labels, etcetera, and can
have only characters and entity references (or the vertical alignment element malignmark) as content.

Issue (token-content): This needs to be revised pending revision of the malignmark and mchar elements.

Layout schemata build expressions out of parts, and can have only elements as content (except for whitespace, which they ignore). There are also a
few empty elements used only in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token elements. The primary MathML token element types
are identifiers (e.g. variables or function names), numbers, and operators (including fences, such as parentheses, and separators, such as commas).
There are also token elements for representing text or whitespace which has more aesthetic than mathematical significance, and for representing
‘string literals’ for compatibility with computer algebra systems. Note that although a token element represents a single meaningful ‘symbol’ (name,
number, label, mathematical symbol, etcetera), such symbols may be comprised of more than one character. For example sin and 24 are represented
by the single tokens <mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimately out of single symbols, with
the parts grouped and positioned using one of a small set of notational structures, which can be thought of as ‘expression constructors’. In MathML,
expressions are constructed in the same way, with the layout schemata playing the role of the expression constructors. The layout schemata specify
the way in which subexpressions are built into larger expressions. The terminology derives from the fact that each layout schema corresponds to a
different way of ‘laying out’ its subexpressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is as follows: The presentation elements
are the MathML elements defined in this chapter. These elements are listed in section 3.1.5. The content elements are the MathML elements defined
in chapter 4. The content elements are listed in section 4.4.

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements none or mprescripts, or is a
single instance of anny of the content elements which are allowed as content of presentation elements (listed in section 5.2.4). The intuition behind
the definition of an expression is that it is an element with an unambigous rendering without some larger, enclosing construct. A subexpression of an
expression E is any MathML expression which is part of the content of E, whether directly or indirectly, i.e. whether it is a ‘child’ of E or not.

34

35

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout schema is also called an argu-
ment of that element. As a consequence of the above definitions, the content of a layout schema consists exactly of a sequence of zero or more
nonoverlapping elements which are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed descriptions of element syntax
given below, the number of required arguments is implicitly indicated by giving names for the arguments at various positions. A few elements have
additional requirements on the number or type of arguments, which are described with the individual element. For example, some elements accept
sequences of zero or more arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements they appear in. See section 3.2.6 for a discussion of
the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, mpadded, mphantom, and mtd) actually accept any number
of arguments. However, if the number of arguments is 0, or is more than 1, they treat their contents as a single inferred mrow formed from all their
arguments.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>
<mrow>

<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements which would otherwise be necessary.

35

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed to consist of exactly one expres-
sion, which may be an mrow element formed from their arguments in this manner. However, their argument counts are shown in the following table
as 1*, since they are most naturally understood as acting on a single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the roles of individual arguments when these are distinguished.
An argument count of 1* indicates an inferred mrow as described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*]
mtable 0 or more rows 0 or more mtr elements, inferred if necessary
mtr 0 or more table elements 0 or more mtd elements, inferred if necessary
mtd 1*
maction 1 or more depend on actiontype attribute

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are discussed in the detailed element
descriptions below. However, for convenience, some of the most important classes of special behavior are listed here.

Certain elements are considered space-like; these are defined in section 3.2.6. This definition affects some of the suggested rendering rules for mo
elements (section 3.2.4).

Certain elements, e.g. msup, are able to embellish operators which are their first argument. These elements are listed in section 3.2.4, which precisely
defines an ‘embellished operator’ and explains how this affects the suggested rendering rules for stretchy operators.

Certain elements treat their arguments as the arguments of an ‘inferred mrow’ if they are not given exactly one argument, as explained in section 3.1.3.

The mtable element can infer mtr elements around its arguments, and the mtr element can infer mtd elements, as explained in the sections about
those elements.

36

37

mi identifier
mn number
mo operator, fence, or separator
mtext text
mspace space
ms string literal
<mchar> referring to non-ASCII characters
<ms> adding new characters to MathML

3.1.5 Summary of Presentation Elements

3.1.5.1 Token Elements

3.1.5.2 General Layout Schemata

mrow group any number of subexpressions horizontally
mfrac form a fraction from two subexpressions
msqrt form a square root sign (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences

3.1.5.3 Script and Limit Schemata

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.5.4 Tables and Matrices

mtable table or matrix
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup and malignmark alignment markers

3.1.5.5 Enlivening Expressions

37

maction bind actions to a subexpression

3.2 Token Elements

Token elements can contain any sequence of zero or more characters, or extended characters represented by entity references. In particular, tokens
with empty content are allowed, and should typically render invisibly, with no width except for the normal extra spacing for that kind of token element.
The allowed set of entity references for extended characters is given in chapter 6.

In MathML, characters and MathML entity references are only allowed to occur as part of the content of a token element. The only exception is
whitespace between elements, which is ignored.

The malignmark element (see section 3.5.5) is the only element allowed in the content of tokens. It marks a place which can be vertically aligned
with other objects, as explained in that section.

3.2.1 Attributes common to token elements

Several attributes related to text formatting are provided on all presentation token elements except mspace, and on no other elements except mstyle.
These are:

Name values default
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on <mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

(See section 2.3.3 for terminology and notation used in attribute value descriptions.)

Token elements (other than mspace) should be rendered as their content (i.e. in the visual case, as a closely-spaced horizontal row of standard glyphs
for the characters in their content) using the attributes listed above, with surrounding spacing modified by rules or attributes specific to each type of
token element. Some of the individual attributes are further discussed below.

Issue (style-sheet-support): Now that XSL and CSS are available, the following text should be revised.

Recall that all MathML elements, including tokens, accept class, style, and id attributes for compatibility with style sheet mechanisms, as described
in section 2.3.4. In principle, the font properties controlled by the attributes listed above might be better handled using style sheets. When style sheet
support becomes available for XML, future revisions of MathML will likely revisit the issue of font control.

MathML expressions are often embedded in a textual data format such as HTML, and their renderings are likewise embedded in a rendering of the
surrounding text. The renderer of the surrounding text (e.g. a browser) should provide the MathML renderer with information about the rendering
environment, including attributes of the surrounding text such as its font size, so that the MathML can be rendered in a compatible style. For this
reason, most attribute values affecting text rendering are inherited from the rendering environment, as shown in the ‘default’ column in the table
above. (Note that it is also important for the rendering environment to provide the renderer with additional information, such as the baseline position
of surrounding text, which is not specified by any MathML attributes.)

The exception to the general pattern of inheritance is the fontstyle attribute, whose default value is normal (non-slanted) for most tokens, but for mi
depends on the content in a way described in the section about mi, section 3.2.2. Note that fontstyle is not inherited in MathML, even though the
corresponding CSS1 property ‘font-style’ is inherited in CSS.

The fontsize attribute specifies the desired font size. v-unit represents a unit of vertical length (see section 2.3.3.3). The most common unit for
specifying font sizes in typesetting is pt (points).

38

39

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lead to the most intelligible, highest
quality rendering.

Many MathML elements automatically change fontsize in some of their children; see the discussion of scriptlevel in the section on mstyle,
section 3.3.4.

The value of the fontfamily attribute should be the name of a font which may be available to a MathML renderer, or information which permits the
renderer to select a font in some manner; acceptable values and their meanings are dependent on the specific renderer and rendering environment
in use, and are not specified by MathML (but see the note about css-fontfamily below). (Note that the renderer’s mechanism for finding fonts by
name may be case-sensitive.)

If the value of fontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a MathML error; rather, the renderer
should either use a font which it considers to be a suitable substitute for the requested font, or ignore the attribute and act as if no value had been
given.

Note that any use of the fontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it should never be used to
try to achieve the effect of a reference to an extended character (for example, by using a reference to a character in some symbol font which maps
ordinary characters to glyphs for extended characters). As a corollary to this principle, MathML renderers should attempt to always produce intelligible
renderings for the extended characters listed in chapter 6, even when these characters are not available in the font family indicated. Such a rendering
is always possible - as a last resort, a character can be rendered to appear as an XML-style entity reference using one of the entity names given for
the same character in chapter 6.

The symbol css-fontfamily refers to a legal value for the font-family property in CSS1, which is a comma-separated list of alternative font family
names or generic font types in order of preference, as documented in more detail in CSS1. MathML renderers are encouraged to make use of
the CSS syntax for specifying fonts when this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the
subsection CSS-compatible attributes within section 2.3.3.3.

The syntax and meaning of the color attribute are as described for the same attribute of <mstyle> (section 3.3.4).

3.2.2 Identifiers

3.2.2.1 Description

An mi element represents a symbolic name or arbitrary text which should be rendered as an identifier. Identifiers can include variables, function
names, and symbolic constants.

Not all ‘mathematical identifiers’ are represented by mi elements - for example, subscripted or primed variables should be represented using msub
or msup respectively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis in a summed series) can be represented using an mi
element, as shown in an example in section 3.2.5.4.

It should be stressed that mi is a presentation element, and as such, it only indicates that its content should be rendered as an identifier. In the
majority of cases, the contents of an mi will actually represent a mathematical identifier such as a variable or function name. However, as the
preceding paragraph indicates, the correspondence between notations which should render like identifiers and notations which are actually intended
to represent mathematical identifiers is not perfect. For an element whose semantics is guaranteed to be that of an identifier, see the description of
ci in chapter 4.

3.2.2.2 Attributes of mi

mi elements accept the attributes listed in section 3.2.1, but in one case with a different default value:

A typical graphical renderer would render an mi element as the characters in its content, with no extra spacing around the characters (except spacing
associated with neighboring elements). The default fontstyle would (typically) be normal (non-slanted) unless the content is a single character,
in which case it would be italic. Note that this rule for fontstyle is specific to mi elements; the default value for the fontstyle attribute of other
MathML token elements is normal.

39

Name values default
fontstyle normal | italic (depends on content; described below)

3.2.2.3 Examples of mi

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an ‘expression editor’ to represent a location in a MathML
expression which requires a ‘term’ (according to conventional syntax for mathematics) but does not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such as ‘sin x’ should be written using the ⁡ operator (which also has
the short name ⁡ as shown below; see also the discussion of invisible operators in section 3.2.4.

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by an mi element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

When an mi is used in such exceptional situations, explicitly setting the fontstyle attribute may give better results than the default behavior of some
renderers.

The names of symbolic constants should be represented as mi elements:

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation elements. See chapter 6 for a complete list
of character entity references in MathML.

3.2.3 Numbers

3.2.3.1 Description

An mn element represents a ‘numeric literal’ or other data which should be rendered as a numeric literal. Generally speaking, a numeric literal is a
sequence of digits, perhaps including a decimal point, representing an unsigned integer or real number.

40

41

The concept of a mathematical ‘number’ depends on the context, and is not well-defined in the abstract. As a consequence, not all mathematical
numbers should be represented using mn; examples of mathematical numbers which should be represented differently are shown below, and include
negative numbers, complex numbers, ratios of numbers shown as fractions, and names of numeric constants.

Conversely, since mn is a presentation element, there are a few situations where it may desirable to include arbitrary text in the content of an mn
which should merely render as a numeric literal, even though that content may not be unambiguously interpretable as a number according to any
particular standard encoding of numbers as character sequences. As a general rule, however, the mn element should be reserved for situations where
its content is actually intended to represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be that of a
particular kind of mathematical number, see the description of cn in chapter 4.

3.2.3.2 Attributes of <mn>

mn elements accept the attributes listed in section 3.2.1.

A typical graphical renderer would render an mn element as the characters of its content, with no extra spacing around them (except spacing from
neighboring elements such as mo). Unlike mi, mn elements are (typically) rendered in an unslanted font by default, regardless of their content.

3.2.3.3 Examples of mn

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.3.4 Examples of numbers which should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other than mn alone; this includes negative numbers, complex
numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML representations of such numbers include:

<mrow> <mo> - </mo> <mn> 1 </mn> </mrow>
<mrow>

<mn> 2 </mn>
<mo> + </mo>
<mrow>

<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

41

3.2.4 Operator, Fence, Separator or Accent

3.2.4.1 Description

An mo element represents an operator or anything which should be rendered as an operator. In general, the notational conventions for mathematical
operators are quite complicated, and therefore MathML provides a relatively sophisticated mechanism for specifying the rendering behavior of an
mo element. As a consequence, in MathML the list of things which should ‘render as an operator’ includes a number of notations which are not
mathematical operators in the ordinary sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as
braces, parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical accents such as a bar or tilde over a
symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation which should render as an operator, and which is therefore
representable by an mo element. That is, the term ‘operator’ includes any ordinary operator, fence, separator, or accent unless otherwise specified or
clear from the context.

All such symbols are represented in MathML with mo elements since they are subject to essentially the same rendering attributes and rules; subtle
distinctions in the rendering of these classes of symbols, when they exist, are supported using the boolean attributes fence, separator and accent
which can be used to distinguish these cases.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from an ‘operator dictionary’ as explained below.
In particular, default values for fence, separator and accent can usually be found in the operator dictionary and therefore need not be specified on
each mo element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements ‘embellished’ with (for example) surrounding
superscripts; this is further described below. Conversely, as presentation elements, mo elements can contain arbitrary text, even when that text has
no standard interpretation as an operator; for an example, see the discussion ‘Mixing text and mathematics’ in section 3.2.5. See also chapter 4 for
definitions of MathML content elements which are guaranteed to have the semantics of specific mathematical operators.

42

43

3.2.4.2 Attributes of mo

mo elements accept the attributes listed in section 3.2.1, and the additional attributes listed here. Most attributes get their default values from the
section 3.2.4.7, as described later in this section. When a dictionary entry is not found for a given mo element, the default value shown here in
parentheses is used.

Name values default
form prefix | infix | postfix set by position of operator in an mrow (rule given below); used with mo content to index operator dictionary
fence true | false set by dictionary (false)
separator true | false set by dictionary (false)
lspace number h-unit | namedspace set by dictionary (thickmathspace)
rspace number h-unit | namedspace set by dictionary (thickmathspace)
stretchy true | false set by dictionary (false)
symmetric true | false set by dictionary (true)
maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)
minsize number [v-unit | h-unit] | namedspace set by dictionary (1)
largeop true | false set by dictionary (false)
movablelimits true | false set by dictionary (false)
accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, and v-unit represents a unit of vertical length (see section 2.3.3.2)p. namedspace is one of veryvery-
thinmathspace, verythinmathspace, thinmathspace, mediummathspace, thickmathspace, verythickmathspace, or veryverythickmathspace. These
values are settable by the mstyle element which is discussed in section 3.3.4. The default values of veryverythinmathspace... veryverythick-
mathspace are 1/18em...7/18em, respectively.

If no unit is given with maxsize or minsize, the number is a multiplier of the normal size of the operator in the direction (or directions) in which it
stretches. These attributes are further explained below.

Typical graphical renderers show all mo elements as the characters of their content, with additional spacing around the element determined from the
attributes listed above. Detailed rules for determining operator spacing in visual renderings are described in a subsection below. As always, MathML
does not require a specific rendering, and these rules are provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to render an mo element as precisely the characters in its
content in some cases. For example, <mo> ≤ </mo> might be rendered as <= to a terminal. However, as a general rule, renderers should attempt
to render the content of an mo element as literally as possible. That is, <mo> &le </mo> and <mo> <= </mo> should render differently. (The first one
should render as a single extended character representing a less-than-or-equal-to sign, and the second one as the two-character sequence <=.)

3.2.4.3 Examples of mo elements representing ordinary operators

<mo> + </mo>
<mo> < </mo>
<mo> ≤ </mo>
<mo> <= </mo>
<mo> ++ </mo>
<mo> ∑ </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> ⁢ </mo>

43

3.2.4.4 Examples of expressions using mo elements for fences and separators

Note that the mo elements in these examples don’t need explicit fence or separator attributes, since these can be found using the operator dictionary
as described below. Some of these examples could also be encoded using the mfenced element described in section 3.3.8.

(a+b)

<mrow>
<mo> (</mo>
<mrow>

<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>

<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

</mrow>
<mo>) </mo>

</mrow>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

44

45

Full name Short name Examples of use
⁢ ⁢ xy
⁡ ⁡ f (x) sin x
⁣ ⁣ m12

3.2.4.5 Invisible operators

Certain operators which are ‘invisible’ in traditional mathematical notation should be represented using specific entity references within mo elements,
rather than simply by nothing. The entity references used for these ‘invisible operators’ are:

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>
<mrow>

<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mrow>

<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>
<msub>

<mi> m </mi>
<mrow>

<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>

</mrow>
</msub>

The reasons for using specific mo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing and linebreaking rules) which are not the same
as either the lack of any operator, or spacing represented by <mspace/> or mtext elements;

• these operators should often have specific audio renderings different than that of the lack of any operator;
• automatic semantic interpretation of MathML presentation elements is made easier by the explicit specification of such operators.

For example, an audio renderer might render f (x) (represented as in the above examples) by speaking ‘f of x’, but use the word ‘times’ in its rendering
of xy. Although its rendering must still be different depending on the structure of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely),
its task is made much easier by the use of a different mo element for each invisible operator.

45

3.2.4.6 Entity references for other special operators

For reasons like those for including special entities for invisible operators, MathML also includes ⅆ for use in an mo element repre-
senting the differential operator symbol usually denoted by ‘d’.

3.2.4.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token elements, so the rules for rendering them are
described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, no attempt is made to specify the
rendering completely; rather, enough information is given to make the intended effect of the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictable, traditional notational usage.
Typically, this usage amounts to certain default attribute values for mo elements with specific contents and a specific form attribute. Since these
defaults vary from symbol to symbol, MathML anticipates that renderers will have an ‘operator dictionary’ of default attributes for mo elements (see
appendix B) indexed by each mo element’s content and form attribute. If an mo element is not listed in the dictionary, the default values shown in
parentheses in the table of attributes for mo should be used, since these values are typically acceptable for a generic operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix), with possibly different rendering
properties for each form. For example, ‘+’ can be either a prefix or an infix operator. Typically, a visual renderer would add space around both sides
of an infix operator, while only on the left of a prefix operator. The form attribute allows specification of which form to use, in case more than one form
is possible according to the operator dictionary and the default value described below is not suitable.

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring the value of the form attribute
from the context. If it is not specified, and there is more than one possible form in the dictionary for an mo element with given content, the renderer
should choose which form to use as follows (but see the exception for embellished operators, described later):

• If the operator is the first argument in an mrow of length (i.e. number of arguments) greater than one (ignoring all space-like arguments (see
section 3.2.6) in the determination of both the length and the first argument), the prefix form is used;

• if it is the last argument in an mrow of length greater than one (ignoring all space-like arguments), the postfix form is used;
• in all other cases, including when the operator is not part of an mrow, the infix form is used.

Note that these rules make reference to the mrow in which the mo element lies. In some situations, this mrow might be an inferred mrow implicitly
present around the arguments of an element such as msqrt or mtd.

Opening (left) fences should have form="prefix", and closing (right) fences should have form="postfix"; separators are usually ‘infix’, but not always,
depending on their surroundings. As with ordinary operators, these values do not usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms which is available there, in the
order of preference: infix, postfix, prefix; if no forms are available for the given mo element content, the renderer should use the defaults given in
parentheses in the table of attributes for mo.

46

47

Exception for embellished operators

There is one exception to the above rules for choosing an mo element’s default form attribute. An mo element which is ‘embellished’ by one or more
nested subscripts, superscripts, surrounding text or whitespace, or style changes behaves differently. It is the embellished operator as a whole (this
is defined precisely, below) whose position in an mrow is examined by the above rules and whose surrounding spacing is affected by its form, not the
mo element at its core; however, the attributes influencing this surrounding spacing are taken from the mo element at the core (or from that element’s
dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to its position in the middle of an mrow, but its rendering
attributes should be taken from the mo element representing the ‘+’, or when those are not specified explicitly, from the operator dictionary entry for
<mo form="infix"> + </mo>. The precise definition of an ‘embellished operator’ is:

• an mo element;
• or one of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or semantics (section 4.2.7), whose first

argument exists and is an embellished operator;
• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the same arguments would be an embellished operator;
• or an maction element whose selected subexpression exists and is an embellished operator;
• or an mrow whose arguments consist (in any order) of one embellished operator and zero or more space-like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cases it will not be necessary for
the author to specify a form attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be important for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>

<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that it includes embellished fences as
well as ordinary operators; thus it applies to any mo element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument is an embellished operator. This is because an
mrow with a single argument must be equivalent in all respects to that argument alone (as discussed in section 3.3.1). This means that an mo element
which is the sole argument of an mrow will determine its default form attribute based on that mrow’s position in a surrounding, perhaps inferred, mrow
(if there is one), rather than based on its own position in the mrow it is the sole argument of.

Note that the above definition defines every mo element to be ‘embellished’ - that is, ‘embellished operator’ can be considered (and implemented in
renderers) as a special class of MathML expressions, of which mo is a specific case.

47

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occurs in an mrow, can be directly specified by the lspace and
rspace attributes. These values are in ems if no units are given. By convention, operators that tend to bind tightly to their arguments have smaller
values for spacing than operators that tend to bind less tightly. This convention should be followed in the operator dictionary included with a MathML
renderer. In TEX, these values can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous ways for their rendering medium.

3.2.4.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of other elements: stretchy,
symmetric, maxsize, and minsize. If an operator has the attribute stretchy=true, then it (that is, each character in its content) obeys the stretching
rules listed below, given the constraints imposed by the fonts and font rendering system. In practice, typical renderers will only be able to stretch a
small set of characters, and quite possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character or operator; rather, when
stretchy=true it should be stretched in each direction for which stretching is possible. It is up to the renderer to know in which directions it is able
to stretch each character. (Most characters can be stretched in at most one direction by typical renderers, but some renderers may be able to stretch
certain characters, such as diagonal arrows, in both directions independently.)

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes are given as multipliers of the operator’s
normal size in the direction or directions of stretching, or as absolute sizes using units. For example, if a character has maxsize="3", then it can grow
to be no more than three times its normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the character are forced to be equal (by forcing both
height and depth to become the maximum of the two). An example of a situation where one might set symmetric=false arises with parentheses
around a matrix not aligned on the axis, which frequently occurs when multiplying non-square matrices. In this case, one wants the parentheses to
stretch to cover the matrix, whereas stretching the parentheses symmetrically would cause them to protrude beyond one edge of the matrix. The
symmetric attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched to a size based on the context of
the embellished operator as a whole, i.e. to the same size as if the embellishments were not present. For example, the parentheses in the following
example (which would typically be set to be stretchy by the operator dictionary) will be stretched to the same size as each other, and the same size
they would have if they were not underlined and overlined, and furthermore will cover the same vertical interval:

48

49

<mrow>
<munder>

<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>

<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as a whole, not just to the mo element
itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value is stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>

<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1">) </mo>

</mrow>

The above should render as (ab) as opposed to the default rendering
(
a
b

)
.

Note that each parenthesis is sized independently; if only one of them had maxsize="1", they would render with different sizes.

Vertical Stretching Rules

• If a stretchy operator is a direct subexpression of an mrow element, or is the sole direct subexpression of an mtd element in some row of a
table, then it should stretch to cover the height and depth (above and below the axis) of the non-stretchy direct subexpressions in the mrow
element or table row, unless stretching is constrained by minsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.
• If symmetric=true, then the maximum of the height and depth is used to determine the size, before application of the minsize or maxsize

attributes.
• The preceding rules also apply in situations where the mrow or mtd element is inferred (see section 3.5.1 for a discussion of inferred mtd

elements).

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stretch vertically. Also, operators such
as ∑, ∫, /, and vertical arrows stretch vertically by default.

49

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table row containing the stretchy
operator covers exactly one row. (Equivalently, the value of the rowspan attribute is assumed to be 1 for all the table cells in the table row, including
the cell containing the operator.) When this is not the case, the operator should only be stretched vertically to cover those table cells which are
entirely within the set of table rows that the operator’s cell covers. Table cells which extend into rows not covered by the stretchy operator’s table cell
should be ignored.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct subexpression of an munder, mover, or munderover element, or if it is
the sole direct subexpression of an mtd element (perhaps an inferred one) in some column of a table (see mtable), then it, or the mo element
at its core, should stretch to cover the width of the other direct subexpressions in the given element (or in the same table column), given the
constraints mentioned above.

• If a stretchy operator is a direct subexpression of an munder, mover, or munderover element, or if it is the sole direct subexpression of an
mtd element in some column of a table, then it should stretch to cover the width of the other direct subexpressions in the given element (or
in the same table column), given the constraints mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.
• The preceding rules also apply in situations where the mtd element is inferred (see section 3.5.1 for a discussion of inferred mtd elements).
By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table column containing the
stretchy operator covers exactly one column. (Equivalently, the value of the columnspan attribute is assumed to be 1 for all the table cells in the table
row, including the cell containing the operator.) When this is not the case, the operator should only be stretched horizontally to cover those table cells
which are entirely within the set of table columns that the operator’s cell covers. Table cells which extend into columns not covered by the stretchy
operator’s table cell should be ignored.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative diagrams laid out using mtable. The rules
for the horizontal stretchiness include scripts to make examples such as the following work:
<mrow>

<mi> x </mi>
<munder>

<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

This displays as x −−−−−−−→
maps to

y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are no other expressions whose size
it should stretch to match), then it has the standard (unstretched) size determined by the font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element or object (as described above) are also stretchy, all
elements that can stretch should grow to the maximum of the normal unstretched sizes of all elements in the containing object, if they can grow that
large. If the value of minsize or maxsize prevents this then that (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch to the maximum of all of their normal
unstretched sizes, provided no other attributes are set which override this behavior. Of course, limitations in fonts or font rendering may result in the
final, stretched sizes being only approximately the same.

50

51

3.2.4.9 Other attributes of mo

The largeop attribute specifies whether the operator should be drawn larger than normal if displaystyle=true in the current rendering environment.
This roughly corresponds to TEX’s \displaystyle style setting. MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal
presentation features that TEX encodes into one ‘style’ attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle.
These attributes are discussed further in section 3.3.4 describing the mstyle element. Note that these attributes can be specified directly on an
mstyle element’s begin tag, but not on most other elements. Examples of large operators include ∫ and ∏.

The movablelimits attribute specifies whether underscripts and overscripts attached to this mo element should be drawn as subscripts and su-
perscripts when displaystyle=false. movablelimits=false means that underscripts and overscripts should never be drawn as subscripts and
superscripts. In general, displaystyle is true for displayed mathematics and false for inline mathematics. Also, displaystyle is false by default
within tables, scripts and fractions, and a few other exceptional situations detailed in section 3.3.4. Thus, operators with movablelimits=true will
display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscripts in inline mathematics, tables,
scripts and so on. Examples of operators that typically have movablelimits=true are sum, prod, and lim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark) when used as an underscript or
overscript; see munder, mover, and munderover (section 3.4.4, section 3.4.5 and section 3.4.6).

The separator attribute may affect automatic linebreaking in renderers which position ordinary infix operators at the beginnings of broken lines
rather than at the ends (that is, which avoid linebreaking just after such operators), since linebreaking should be avoided just before separators, but
is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly rendering traditional notation using
these rules. It is provided so that specific MathML renderers, especially non-visual renderers, have the option of using this information.

3.2.5 Text

3.2.5.1 Description

An mtext element is used to represent arbitrary text which should be rendered as itself. In general, the mtext element is intended to denote
commentary text which is not central to the mathematical meaning or notational structure of the expression it is contained in.

Note that some text with a clearly defined notational role might be more appropriately marked up using mi or mo; this is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters which are intended to alter the positioning of surrounding
elements. In non-graphical media, such characters are intended to have an analogous effect, such as introducing positive or negative time delays or
affecting rhythm in an audio renderer. This is not related to any whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage
returns; whitespace present directly in the source is trimmed and collapsed, as described in section 2.3.5. Whitespace which is intended to be
rendered as part of an element’s content must be represented by entity references (unless it consists only of single blanks between non-whitespace
characters).

Renderable whitespace can have a positive or negative width, as in   and ​, or zero width, as in ​.
The complete list of such characters is given in chapter 6. Note that there is no formal distinction in MathML between renderable whitespace
characters and any other class of characters, in mtext or in any other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters are:

For the complete list of MathML entities, consult chapter 6.

3.2.5.2 Attributes of mtext

mtext elements accept the attributes listed in section 3.2.1.

See also the warnings about the legal grouping of ‘space-like elements’ in section 3.2.6, and about the use of such elements for ‘tweaking’ or
conveying meaning in section 3.3.6.

51

Entity name Purpose (rough description)
NewLine start a new line and do not indent
IndentingNewLine start a new line and do indent
NoBreak do not allow a linebreak here
GoodBreak if a linebreak is needed on the line, here is a good spot
BadBreak if a linebreak is needed on the line, try to avoid breaking here

3.2.5.3 Examples of mtext

<mtext> Theorem 1: </mtext>
<mtext>   </mtext>
<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

3.2.5.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi elements. For example, the expression ‘there
exists δ > 0 such that f (x) <1’ is equivalent to ∃δ > 0 3 f(x) < 1 and could be represented as:

<mrow>
<mo> there exists </mo>
<mrow>

<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>

</mrow>
<mo> such that </mo>
<mrow>

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>

</mrow>
</mrow>

</mrow>

An example involving an mi element is: x+x2+···+xn. In this example, ellipsis should be represented using an mi element, since it takes the place of
a term in the sum (see section 3.2.2, mi).

52

53

On the other hand, expository text within MathML is best represented with an mtext element. An example of this is:
Theorem 1: if x > 1, then x2 > x.
However, when MathML is embedded in HTML, the example is probably best rendered with only the two inequalities represented as MathML at all,
letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in an mo element is unlikely to be found in a
renderer’s operator dictionary, so it will be rendered with the format and spacing appropriate for an ‘unrecognized operator’, which may or may not
be better than the format and spacing for ‘text’ obtained by using an mtext element. An ellipsis entity in an mi element is apt to be spaced more
appropriately for taking the place of a term within a series than if it appeared in an mtext element.

3.2.6 Space

3.2.6.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. The default value for each attribute is 0em or 0ex, so
it will not be useful without some attributes specified.

3.2.6.2 Attributes of mspace

Name values default
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex

h-unit and v-unit represent units of horizontal or vertical length, respectively (see section 2.3.3).

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use of such elements for ‘tweaking’ or
conveying meaning in section 3.3.6. See also the other elements which can render as whitespace, namely mtext, mphantom, and maligngroup.

3.2.6.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, and do not affect the mathematical
meaning of the expressions in which they appear. As a consequence, these elements often function in somewhat exceptional ways in other MathML
expressions. For example, space-like elements are handled specially in the suggested rendering rules for mo given in section 3.2.4. The following
MathML elements are defined to be ‘space-like’:
• an mtext, mspace, maligngroup, or malignmark element;
• an mstyle, mphantom, or mpadded element, all of whose direct subexpressions are space-like;
• an maction element whose selected subexpression exists and is space-like;
• an mrow all of whose direct subexpressions are space-like.
Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is because operator spacing is affected by
whether adjacent elements are space-like. Since the mphantom element is primarily intended as an aid in aligning expressions, operators adjacent to
an mphantom should behave as if they were adjacent to the contents of the mphantom, rather than to an equivalently sized area of whitespace.

3.2.6.4 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note that such elements are counted as
arguments, in elements which require a specific number of arguments, or which interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argument of that element by introducing
an mrow for that purpose. For example, to allow for vertical alignment on the right edge of the base of a superscript, the expression

53

<msup> <mi> x </mi> <malignmark edge="right"/> <mn> 2 </mn> </msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>

<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in section 3.3.6.

3.2.7 String Literal

3.2.7.1 Description

The ms element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra systems or other systems containing
‘programming languages’. By default, string literals are displayed surrounded by double quotes. As explained in section 3.2.5, ordinary text embedded
in a mathematical expression should be marked up with mtext, or in some cases mo or mi, but never with ms.

Note that the string literals encoded by ms are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCII characters will typically be rep-
resented by entity references. For example, <ms>&</ms> represents a string literal containing a single character, &, and <ms>&amp;</ms>
represents a string literal containing 5 characters, the first one of which is &. (In fact, MathML string literals are even more general than Unicode string
literals, since not all MathML entity references necessarily refer to existing Unicode characters, as discussed in chapter 6.)

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of section 2.3.5, so whitespace intended to remain
in the content should be encoded as described in that section.

3.2.7.2 Attributes of ms

ms elements accept the attributes listed in section 3.2.1, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of an ms element is typically rendered with no extra spacing added around the string, and a quote character at the
beginning and the end of the string. By default, the left and right quote characters are both the standard double quote character ". However,
these characters can be changed with the lquote and rquote attributes respectively.

The content of ms elements should be rendered with visible ‘escaping’ of certain characters in the content, including at least ‘double quote’ itself, and
preferably whitespace other than individual blanks. The intent is for the viewer to see that the expression is a string literal, and to see exactly which
characters form its content. For example, <ms>double quote is "</ms> might be rendered as ‘double quote is \"’.

3.2.8 <mchar/> – refering to non-ASCII characters

54

55

3.2.8.1 Description

<mchar/> is used to reference characters. This provides an alternative to using entity references. Character entities are depricated for MathML 2.0
because they are not a part of the current proposal for schemas, and documents containing entities are not well-formed MathML in the absence of
the MathML DTD.

Numeric entity references are not deprecated because they do not have the problems listed above.

<mchar/> is valid inside any MathML leaf content listed in 3.5.1 (Error: mi, etc.) or 4.2.2.1 (<ci>, etc.) unless otherwise restricted by an attribute
(e.g., base=2 to <cn>).

3.2.8.2 Attributes of <mchar>

Name values default
name string required

The name attribute must be one of the names specified in chapter 6. It is an error to use a name which is not in that list.
Issue (specific-xref): The cross-reference above should be made more specific.

3.2.8.3 Example of <mchar/>

<mi> <mchar name=’alpha’/>1 </mi>

Issue (mchar-transition-instructions): Should we make a statement like ‘This is the recommended replacement for <mi> α1 </mi> in
MathML 1.x’?

3.2.9 <mglyph/> – adding new characters to MathML

3.2.9.1 Description

Unicode defines a large number of characters used in mathematics. Although these characters should meet almost all users needs, MathML rec-
ognizes that Mathematics is not static and that new characters are added when convenient. Characters that become well accepted will likely be
eventually incorporated by the Unicode Consortium or other standards bodies, but that is often a lengthy process.

<mglyph/> is the means by which users can specify characters that are not defined by Unicode. <mglyph/> names a specific character and is valid
inside any MathML leaf content listed in 3.5.1 (<mi>,etc.) or 4.2.2.1 (<ci>, etc.) unless otherwise restricted by an attribute (e.g., base=2 to <cn>). In
order for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index within that font to use.

3.2.9.2 Attributes of <mglyph>

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

The alt attribute provides an alternate name for the character. If no fontfamily or index is specified, or if the font can’t be found, the renderer may
use this name in a warning message or some unknown glyph notation. The name might also be used by an audio renderer or symbol processing
system and should be chosen to be descriptive. The fontfamily and index uniquely identify the <mglyph/> character; two mglyph/s with the same
values for fontfamily and index should be considered identical by applications that must determine whether two characters are identical. The alt
attribute should not be part of the identical test.

55

The fontfamily and index attributes name a font and position within that font. All font properties are inherited. Variants of the font (e.g., bold) that
may be inherited may be ignored if the variant of the font is not present. The fontfamily and index are not required because MathML applications
are not required to visually render MathML. Additionally, a MathML authoring application might leave off fontfamily and index if it knows that they
will be changed by some preprocessor or style sheet.

Authors should be aware that rendering requires the fonts referenced by <mglyph/>, which the MathML renderer may not have access to or may
be not be supported by the system on which the renderer runs. For these reasons, authors are encouraged to use <mglyph/> only when absolutely
necessary, and not for stylistic purposes.

Issue (missing-mglyph-example): Need an example

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with various ‘scripting’ notations, such as
subscript and superscript. Another family is concerned with matrices and tables. The remainder of the elements, discussed in this section, describe
other basic notations such as fractions and radicals, or deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Any Number of Subexpressions

3.3.1.1 Description

An mrow element is used to group together any number of subexpressions, usually consisting of one or more mo elements acting as ‘operators’ on
one or more other expressions which are their ‘operands’.

Several elements automatically treat their arguments as if they were contained in an mrow element. See the discussion of inferred mrows in sec-
tion 3.1.3. See also mfenced (section 3.3.8), which can effectively form an mrow containing its arguments separated by commas.

3.3.1.2 Attributes of mrow

None (except the attributes allowed for all MathML elements, listed in section 2.3.4).

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which the arguments occur, or audibly
as a sequence of renderings of the arguments. The description in section 3.2.4 of suggested rendering rules for mo elements assumes that all
horizontal spacing between operators and their operands is added by the rendering of mo elements (or, more generally, embellished operators), not
by the rendering of the mrows they are contained in.

MathML is designed to allow renderers to automatically linebreak expressions (that is, to break excessively long expressions into several lines),
without requiring authors to specify explicitly how this should be done. This is because linebreaking positions can’t be chosen well without knowing
the width of the display device and the current font size, which for many uses of MathML will not be known except by the renderer at the time of each
rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how it is done is up to each MathML
renderer. Typically, linebreaking will involve selection of ‘good’ points for insertion of linebreaks between successive arguments of mrow elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features designed to allow such algorithms
to produce good results. These include the use of special entities for certain operators, including invisible operators (see section 3.2.4), or for providing
hints related to linebreaking when necessary (see section 3.2.5), and the ability to use nested mrows to describe subexpression structure (see below).

56

57

mrow of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all ways to the single argument occurring
alone, provided there are no attributes on the mrow element’s begin tag. If there are attributes on the mrow element’s begin tag, no requirement of
equivalence is imposed. This equivalence condition is intended to simplify the implementation of MathML-generating software such as template-
based authoring tools. It directly affects the definitions of embellished operator and space-like element and the rules for determining the default value
of the form attribute of an mo element; see sections 3.2.4 and 3.2.6. See also the discussion of equivalence of MathML expressions in chapter 7.

3.3.1.3 Proper grouping of subexpressions using mrow

Subexpressions should be grouped by the document author in the same way as they are grouped in the mathematical interpretation of the expression;
that is, according to the underlying ‘syntax tree’ of the expression. Specifically, operators and their mathematical arguments should occur in a
single mrow; more than one operator should occur directly in one mrow only when they can be considered (in a syntactic sense) to act together on
the interleaved arguments, e.g. for a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms
separated by + and -. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligent linebreaking and indentation;
and it simplifies possible semantic interpretation of presentation elements by computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other than pure visual rendering
difficult or impossible, any grouping of expressions using mrow is allowed in MathML syntax; that is, renderers should not assume the rules for proper
grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest subexpressions using mrow is especially desirable when generating MathML automatically by conversion
from other formats for displayed mathematics, such as TEX, which don’t always specify how subexpressions nest. When a precise rule for grouping
is desired, the following rule should be used:

Two adjacent operators (i.e. mo elements, possibly embellished), possibly separated by operands (i.e. anything other than operators), should occur
in the same mrow only when the left operator has an infix or prefix form (perhaps inferred), the right operator has an infix or postfix form, and the
operators are listed in the same group of entries in the operator dictionary provided in appendix B. In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) which includes just one of two successive operators with the forms mentioned above
(which mean that either operator could in principle act on the intervening operand or operands), it is necessary to decide which operator acts on those
operands directly (or would do so, if they were present). Ideally, this should be determined from the original expression; for example, in conversion
from an operator-precedence-based format, it would be the operator with the higher precedence. If this cannot be determined directly from the
original expression, the operator which occurs later in the suggested operator dictionary (appendix B) can be assumed to have a higher precedence
for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way of generating MathML from other
formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in section 3.2.4.)

3.3.1.4 Examples of mrow

As an example, 2x+y+x should be written as:

57

<mrow>
<mrow>

<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>
<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence and separator ‘operators’, do not
act together on their arguments.

3.3.2 Fractions

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficients and Legendre symbols.
The syntax for mfrac is <mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
beveled true | false false

The linethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render fractions. A fraction with
linethickness="0" renders without the bar, and might be used within binomial coefficients. A linethickness greater than one might be used
with nested fractions. These cases are shown below:(

a
b

)
a
b

c
d

58

59

In general, the value of linethickness can be a number, as a multiplier of the default thickness of the fraction bar (the default thickness is not
specified by MathML), or a number with a unit of vertical length (see section 2.3.3), or one of the keywords medium (same as 1), thin (thinner than
1, otherwise up to the renderer), or thick (thicker than 1, otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator respectively. Typically, numerators and
denominators are centered, but a very long numerator or denominator might be displayed on several lines and a left alignment might be more
appropriate for displaying them.

Issue (align-examples): Should there be examples of left and right alignment here?

The beveled attribute determines whether the fraction is displayed with the numerator above the denominator separated by a horizontal line or
whether a diagonal line is used to separate a slightly raised numerator from a slightly lowered denominator. The later form corresponds to the
attribute value being true and provides for a more compact form for simple numerator and denominators

Issue (beveled-examples): Examples need to go here: 3/4 1/x^2

The mfrac element sets displaystyle to false, or if it was already false increments scriptlevel by 1, within numerator and denominator. These
attributes are inherited by every element from its rendering environment, but can be set explicitly only on the mstyle element. (See section 3.3.4.)

3.3.2.3 Examples of mfrac

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>

</mrow>
<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mfrac>

<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

A more generic example is:

59

<mfrac>
<mrow>

<mn> 1 </mn>
<mo> + </mo>
<msqrt>

<mn> 5 </mn>
</msqrt>

</mrow>
<mn> 2 </mn>

</mfrac>

3.3.3 Radicals

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used to draw radicals with indices, e.g. a
cube root. The syntax for these elements is

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts any number of arguments; if this number is not 1, its contents are treated
as a single ‘inferred mrow’ containing its arguments, as described in section 3.1.3.

3.3.3.2 Attributes of msqrt and mroot

None (except the attributes allowed for all MathML elements, listed in section 2.3.4).

The mroot element increments scriptlevel by 2, and sets displaystyle to false, within index, but leaves both attributes unchanged within base.
The msqrt element leaves both attributes unchanged within all its arguments. These attributes are inherited by every element from its rendering
environment, but can be set explicitly only on mstyle. (See section 3.3.4.)

3.3.4 Style Change

3.3.4.1 Description

The mstyle element is used to make style changes which affect the rendering of its contents. mstyle can be given any attribute accepted by any
MathML presentation element; it can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all its
arguments, as described in section 3.1.3.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements it contains. Style changes work in
one of two ways, depending on whether an attribute’s default value is documented as inherited. The two cases are:

• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited from the surrounding context when they are not
explicitly set. Specifying such an attribute on an mstyle element sets the value which will be inherited by its child elements. Unless a child
element overrides this inherited value, it will pass it on to its children, and they will pass it to their children, and so on. But if a child element
does override it, either by an explicit attribute setting or automatically (as is common for scriptlevel), the new (overriding) value will be
passed on to that element’s children, and then to their children, etc, until it is again overridden.

60

61

• Other attributes, such as linethickness on mfrac, have default values which are not normally inherited. That is, if the linethickness
attribute is not set on the begin tag of an mfrac element, it will normally use the default value of 1, even if it was contained in a larger
mfrac element which set this attribute to a different value. For attributes like this, specifying a value with an mstyle element has the effect
of changing the default value for all elements within its scope. The net effect is that setting the attribute value with mstyle propagates the
change to all the elements it contains directly or indirectly, except for the individual elements on which the value is overridden. Unlike in the
case of inherited attributes, elements which explicitly override this attribute have no effect on this attribute’s value in their children.

Note that attribute values inherited from an mstyle, in either manner, affect a given element in the mstyle’s content only if that attribute is not given
a value in that element’s begin tag. On any element for which the attribute is set explicitly, the value specified on the begin tag overrides the inherited
value. The only exception to this rule is when the value given on the begin tag is documented as specifying an incremental change to the value
inherited from that element’s context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above, only matters when the attribute is set on
some element within the mstyle’s contents which has children which also set it. Thus it never matters for attributes, such as color, which can only
be set on token elements (or on mstyle itself).

There is one exceptional element, mpadded, whose attributes cannot be set with mstyle. When the attributes width, height and depth are specified
on an mstyle element, they apply only to the mspace element. Similarly, when lspace is set with mstyle, it applies only to the mo element.

3.3.4.2 Attributes accepted by mstyle

As stated above, mstyle accepts all attributes of all MathML presentation elements. Additionally, mstyle can be given the following special attributes
which are implicitly inherited by every MathML element as part of its rendering environment:

Name values default
scriptlevel [’+’ | ’-’] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em

scriptlevel and displaystyle

MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that TEX encodes into one style attribute
with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The corresponding values of displaystyle and scriptlevel for those TEX
styles would be true and 0, false and 0, false and 1, and false and 2, respectively.

The main effect of the displaystyle attribute is that it determines the effect of other attributes such as the largeop and movablescripts attributes of
mo. The main effect of the scriptlevel attribute is to control the font size. Typically, the higher the scriptlevel, the smaller the font size. (Non-visual
renderers can respond to the font size in an analogous way for their medium.) More sophisticated renderers may also choose to use these attributes
in other ways, such as rendering expressions with displaystyle=false in a more vertically compressed manner.

61

These attributes are given initial values for the outermost expression of an instance of MathML based on its rendering environment. A short list of
layout schemata described below modify these values for some of their subexpressions. Otherwise, values are determined by inheritance whenever
they are not directly specified on a given element’s start tag.

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a paragraph, displaystyle = true
and scriptlevel = 0 for the outermost expression of the embedded MathML; if the MathML is embedded in ‘inline’ mode, i.e. in place of a character,
displaystyle = false and scriptlevel = 0 for the outermost expression. See chapter 7 for further discussion of the distinction between ‘display’
and ‘inline’ embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may determine these initial
values in whatever manner is appropriate for the location and context of the specific instance of MathML it is rendering, or if it has no way to determine
this, based on the way it is most likely to be used; as a last resort it is suggested that it use the most generic values displaystyle = "true" and
scriptlevel = "0".

The MathML layout schemata which typically display some of their arguments in smaller type or with less vertical spacing, namely the elements for
scripts, fractions, radicals, and tables or matrices, set displaystyle to false, and in some cases increase scriptlevel, for those arguments. The
new values are inherited by all subexpressions within those arguments, unless they are overridden.

The specific rules by which each element modifies displaystyle and/or scriptlevel are given in the specification for each element which does
so; the complete list of elements which modify either attribute are: the ‘scripting’ elements msub, msup, msubsup, munder, mover, munderover, and
mmultiscripts; and the elements mfrac, mroot, and mtable.

When mstyle is given a scriptlevel attribute with no sign, it sets the value of scriptlevel within its contents to the value given, which must
be a nonnegative integer. When the attribute value consists of a sign followed by an integer, the value of scriptlevel is incremented (for ’+’) or
decremented (for ’-’) by the amount given. The incremental syntax for this attribute is an exception to the general rules for setting inherited attributes
using mstyle, and is not allowed by any other attribute on mstyle.

Whenever the scriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set, the current font size is multiplied
by the value of scriptsizemultiplier to the power of the change in scriptlevel. For example, if scriptlevel is increased by 2, the font size
is multiplied by scriptsizemultiplier twice in succession; if scriptlevel is explicitly set to 2 when it had been 3, the font size is divided by
scriptsizemultiplier.

The default value of scriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2), resulting in a smaller font size with
increasing scriptlevel. To prevent scripts from becoming unreadably small, the font size is never allowed to go below the value of scriptminsize
as a result of a change to scriptlevel, though it can be set to a lower value using the fontsize attribute (section 3.2.1) on mstyle or on token
elements. If a change to scriptlevel would cause the font size to become lower than scriptminsize using the above formula, the font size is
instead set equal to scriptminsize within the subexpression for which scriptlevel was changed.

In the syntax for scriptminsize, v-unit represents a unit of vertical length (as described in section 2.3.3). The most common unit for specifying font
sizes in typesetting is pt (points).

Explicit changes to the fontsize attribute have no effect on the value of scriptlevel.

Further details on scriptlevel for renderers

For MathML renderers which support CSS1 style sheets, or some other analogous style sheet mechanism, absolute or relative changes to fontsize
(or other attributes) may occur implicitly on any element in response to a style sheet. Changes to fontsize of this kind also have no effect on
scriptlevel. A style sheet-induced change to fontsize overrides scriptminsize in the same way as for an explicit change to fontsize in the
element’s begin tag (discussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subsequent
scriptlevel-induced change to fontsize will still be affected by it.) As is required for inherited attributes in CSS1, the style sheet-modified fontsize
is inherited by child elements.

62

63

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel-related) change to its own fontsize, the scriptlevel-
related change is done first - in fact, in the simplest implementation of the element-specific rules for scriptlevel, this change would be done by the
element’s parent as part of producing the rendering properties it passes to the given element, since it is the parent element which knows whether
scriptlevel should be changed for each of its child elements.

If the element’s own fontsize is changed by a style sheet and it also changes scriptlevel (and thus fontsize) for one of its children, the style
sheet-induced change is done first, followed by the change inherited by that child. If more than one child’s scriptlevel is changed, the change
inherited by each child has no effect on the other children. (As a mnemonic rule which applies to a ‘parse tree’ of elements and their children, style
sheet-induced changes to fontsize can be associated to nodes of the tree, i.e. to MathML elements, and scriptlevel-related changes can be
associated to the edges between parent and child elements; then the order of the associated changes corresponds to the order of nodes and edges
in each path down the tree.) For general information on the relative order of processing of properties set by style sheets vs. by attributes, see the
appropriate subsection of CSS-compatible attributes in section 2.3.3.3.

If scriptlevel is changed incrementally by an mstyle element which also sets certain other attributes, the overall effect of the changes may depend
on the order in which they are processed. In such cases, the attributes in the following list should be processed in the following order, regardless
of the order in which they occur in the XML-format attribute list of the mstyle begin tag: scriptsizemultiplier, scriptminsize, scriptlevel,
fontsize.

Note that scriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can only be explicitly set to
nonnegative values. Negative values of scriptlevel generated in this way are legal and should work as described, generating font sizes larger than
those of the surrounding expression. Since scriptlevel is initially 0 and never decreases automatically, it will always be nonnegative unless it is
decremented past 0 using mstyle.

Explicit decrements of scriptlevel after the font size has been limited by scriptminsize as described above would produce undesirable results.
This might occur, for example, in a representation of a continued fraction, in which the scriptlevel was decremented for part of the denominator back
to its value for the fraction as a whole, if the continued fraction itself was located in a place which had a high scriptlevel. To prevent this problem,
MathML renderers should, when decrementing scriptlevel, use as the initial font size the value the font size would have had if it had never been
limited by scriptminsize. They should not, however, ignore the effects of explicit settings of fontsize, even to values below scriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modify the mapping from scriptlevel
to fontsize to produce better renderings in their judgement. In particular, if fontsizes have to be rounded to available values, or limited to values
within a range, the details of how this is done are up to the renderer. Renderers should, however, ensure that a series of incremental changes to
scriptlevel resulting in its return to the same value for some subexpression that it had in a surrounding expression results in the same fontsize for
that subexpression as for the surrounding expression.

Color and background attributes

The color attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from mstyle or from a MathML
expression’s rendering environment, it controls the color of all other drawing by MathML elements, including the lines or radical signs that can be
drawn by mfrac, mtable, or msqrt.

Note that the background attribute, though not inherited, has the default value ‘transparent’ (as in CSS1), which effectively allows an element’s parent
to control its background.

The values of color and background can be specified as a string consisting of ’#’ followed without intervening whitespace by either 1-digit or 2-
digit hexadecimal values for the red, green, and blue components, respectively, of the desired color, with the same number of digits used for each
component (or as the keyword ‘transparent’ for background). The hexadecimal digits are not case-sensitive. The possible 1-digit values range from
0 (component not present) to F (component fully present), and the possible 2-digit values range from 00 (component not present) to FF (component
fully present), with the 1-digit value x being equivalent to the 2-digit value xx (rather than x0). % x0 would be a more strictly correct notation, but
renders terribly in some browsers.

These attributes can also be specified as an html-color-name, which is defined in the following subsection.

63

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax of the color and background-color properties of CSS1. (The background-color syntax
is in turn a subset of the full CSS1 background property syntax, which also permits specification of (for example) background images with optional
repeats. The more general attribute name background is used in MathML to facilitate possible extensions to the attribute’s scope in future versions
of MathML.)

Color values on either attribute can also be specified as an html-color-name, that is, as one of the color-name keywords defined in [HTML40]. The
list of allowed color names includes most of the commonest English color words, though not orange, brown, or pink, and also includes a number
of less-common color words; see the reference for the complete list and the equivalent RGB values. Note that the color name keywords are not
case-sensitive, unlike most keywords in MathML attribute values. (The same color name keywords are defined for the CSS1 color property, but with
unspecified RGB values. See also section 2.3.3.3.)

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is affected by using the background
attribute on mstyle, except that, when mstyle’s content does not have negative dimensions and its drawing region is not overlapped by other drawing
due to surrounding negative spacing, this region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind
any of the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the extent of the
region affected by the background attribute is not defined by these rules.

3.3.4.3 Example of mstyle

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="1">
<mrow>

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>

</mrow>
</mstyle>

3.3.5 Error Message

3.3.5.1 Description

The merror element displays its contents as an ‘error message’. This might be done, for example, by displaying the contents in red, flashing the
contents, or changing the background color. The contents can be any expression or expression sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ as described in section 3.1.3.

64

65

The intent of this element is to provide a standard way for programs that generate MathML from other input to report syntax errors in their input. Since
it is anticipated that preprocessors that parse input syntaxes designed for easy hand entry will be developed to generate MathML, it is important that
they have the ability to indicate that a syntax error occurred at a certain point. See section 7.2.2.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input with an merror element
containing a description of the error, while processing the surrounding expressions normally as far as possible. By this means, the error message will
be rendered where the erroneous input would have appeared, had it been correct; this makes it easier for an author to determine from the rendered
output what portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program, the format should be designed to make as clear
as possible (to a human viewer of the rendered error message) what was wrong with the input and how it can be fixed. If the erroneous input contains
correctly formatted subsections, it may be useful for these to be preprocessed normally and included in the error message (within the contents of the
merror element), taking advantage of the ability of merror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes of merror

None (except the attributes allowed for all MathML elements, listed in section 2.3.4).

3.3.5.3 Example of merror

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it might generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML.

3.3.6 Adjust Space Around Content

3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baseline position) modified according
to its attributes. The mpadded element does not rescale (stretch or shrink) its content; its only effect is to modify the apparent size and position of
the ‘bounding box’ around its content, so as to affect the relative position of the content with respect to the surrounding elements. The name of the
element reflects the use of mpadded to effectively add ‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for the
content of mpadded to be rendered outside the mpadded element’s bounding box; see below for warnings about several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ as described in
section 3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal space (width and lspace).

65

3.3.6.2 Attributes of mpadded

Name values default
width [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
lspace [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit) 0
height [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content
depth [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ of the mpadded element. The dimensions (which have the same names as the attributes)
are defined in the next subsection. Depending on the format of the attribute value, a dimension may be set to a new value, or to an incremented or
decremented version of the content’s corresponding dimension. Values may be specified as multiples or percentages of any of the dimensions of the
normal rendering of the element’s content (using so-called ‘pseudo-units’), or as multiples of standard section 2.3.3.2.

If an attribute value begins with a + or - sign, it specifies an increment or decrement of the corresponding dimension by the following length value
(interpreted as explained below). Otherwise, the corresponding dimension is set directly to the following length value. Note that the + and - do not
mean that the following value is positive or negative, even when an explicit length unit (h-unit or v-unit) is given. In particular, these attributes cannot
directly set a dimension to a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Each format begins with an unsigned-
number, which may be followed by a % sign and an optional ‘pseudo-unit’ (denoted by pseudo-unit in the attribute syntaxes above), by a pseudo-unit
alone, or by one of the length units (denoted by h-unit or v-unit) specified in section 2.3.3.3, not including %. The possible pseudo-units are the
keywords width, lspace, height, and depth; they each represent the length of the same-named dimension of the mpadded element’s content (not of
the mpadded element itself). The lengths represented by h-unit or v-unit are described in section 2.3.3.3.

In any of these formats, the length value specified is the product of: the specified number; 0.01 if % is given; and the length represented by the unit or
pseudo-unit. If no pseudo-unit is given after %, the one with the same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows: depth="100% height" and depth="1.0 height" both set
the depth of the mpadded element to the height of its content. depth="105%" sets the depth to 1.05 times the content’s depth, and either depth="+100%"
or depth="200%" sets the depth to twice the content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negative using mpadded; a positive dimension is set to 0 if
it would otherwise become negative. Dimensions which are initially 0 can be made negative, but this should generally be avoided. See the warnings
below on the use of negative spacing for ‘tweaking’ or conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

66

67

3.3.6.3 Meanings of dimension attributes

See appendix F for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. when lspace is not modified), the bounding box of the
content of an mpadded element should be rendered flush with the left edge of the mpadded element’s bounding box. Thus, increasing width alone
effectively adds space on the right edge of the box.

The lspace attribute refers to the amount of space between the left edge of a bounding box and where the rendering of its contents’ bounding box
actually begins. Unlike the other dimensions, lspace does not correspond to a real property of a bounding box, but exists only transiently during the
computations done by each instance of mpadded. It is provided so that there is a way to add space on the left edge of a bounding box.

The rationale behind using width and lspace to control horizontal padding instead of more symmetric attributes, such as a hypothetical rspace and
lspace, is that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an actual property of a bounding box.

The height attribute refers to the amount of vertical space between the baseline (the line along the bottom of most letter glyphs in normal text
rendering) and the top of the bounding box.

The depth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents of mpadded and surrounding
MathML elements is not modified by replacing an mpadded element with an mrow element with the same content. This holds even if linebreaking
occurs within the mpadded element. However, if an mpadded element with non-default attribute values is subjected to linebreaking, MathML does not
define how its attributes or rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of the mpadded and mspace elements (and perhaps also mphantom and mtext) will be for an author to improve the
spacing generated by a specific renderer by slightly modifying it in specific expressions, i.e. to ‘tweak’ the rendering.

Authors are strongly warned that different MathML renderers may use different spacing rules for computing the relative positions of rendered symbols
in expressions which have no explicit modifications to their spacing; if renderer B improves upon renderer A’s spacing rules, explicit spacing added
to improve the output quality of renderer A may produce very poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions, so that the effect of tweaking in
a given MathML document may grow worse with time. Also, when style sheet mechanisms are extended to MathML, even one version of a renderer
may use different spacing rules for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak the rendering of specific expressions, unless the
MathML is generated solely to be viewed using one specific version of one MathML renderer, using one specific style sheet (if style sheets are
available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom, or the alignment elements (section 3.5.5)
may give more portable results than the direct insertion of extra space using mspace or mtext. Advice given to the implementors of MathML renderers
might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements which permit ‘negative spacing’, namely mspace, mpadded, and mtext, could in theory be used to simulate new notations or
‘overstruck’ characters by the visual overlap of the renderings of more than one MathML subexpression.

This practice is strongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);

67

• it is likely to appear much worse than a more standard construct supported by good renderers;
• such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, text searches for standard

symbols, or other processors of MathML input.
More generally, any construct which uses spacing to convey mathematical meaning, rather than simply as an aid to viewing expression structure, is
discouraged. That is, the constructs which are discouraged are those which would be interpreted differently by a human viewer of rendered MathML
if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in a semantics element which also provides an additional MathML
expression which can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of complex numbers for a MathML
renderer which lacks support for the standard symbol used for this purpose. This kind of construct should always be avoided in MathML, for the
reasons stated above; indeed, it should never be necessary for standard symbols, since a MathML renderer with no better method of rendering them
is free to use overstriking internally, so that it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be enclosed in a semantics element such as

<semantics>
<mrow>

<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>
<annotation-xml encoding="mathml">

<mi> ℂ </mi>
</annotation-xml>

</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted than the construct using negative
spacing. (The alternative encoding in this example uses MathML presentation elements; the content elements described in chapter 4 should also be
considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expression, with the exception of attributes
on mi (such as fontweight) used to distinguish one variable from another.)

3.3.7 Making Content Invisible

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position, that its contents would have if they
were rendered normally. mphantom can be used to align parts of an expression by invisibly duplicating subexpressions.

The mphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all
its arguments, as described in section 3.1.3.

68

69

It is suggested that audio renderers render mphantom elements in an analogous way for their medium, by rendering them as silence of the same
duration as the normal rendering of their contents.

3.3.7.2 Attributes of mphantom

None (except the attributes allowed for all MathML elements, listed in section 2.3.4).

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as in <mphantom><mpadded attribute-
settings> ... </mpadded></mphantom>, to change its size and make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the surrounding MathML elements is
the same as it would be if the mphantom element were replaced by an mrow element with the same content. This holds even if linebreaking occurs
within the mphantom element.

For the above reason, mphantom is not considered space-like (section 3.2.6) unless its content is space-like, since the suggested rendering rules for
operators are affected by whether nearby elements are space-like. Even so, the warning about the legal grouping of space-like elements may apply
to uses of mphantom.

There is one situation where the preceding rule for rendering an mphantom may not give the desired effect. When an mphantom is wrapped around
a subsequence of the arguments of an mrow, the default determination of the form attribute for an mo element within the subsequence can change.
(See the default value of the form attribute described in section 3.2.4.) It may be necessary to add an explicit form attribute to such an mo in these
cases. This is illustrated in the following example.

3.3.7.3 Example of mphantom

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a fraction:

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

This would render as something like
x+ y + z

x + z

69

rather than as
x+ y + z

x+ z
The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to what it would have been in the absence of
the surrounding mphantom. This is necessary since otherwise, the + sign would be interpreted as a prefix operator, which might have slightly different
spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments <mo>+</mo> and <mi>y</mi>
in its own mphantom element, i.e.

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo> + </mo>
</mphantom>
<mphantom>

<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.8 Content Inside Pair of Fences

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces, brackets, and parentheses),
possibly including separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as ‘(x)’and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as ‘(x, y)’ and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

70

71

Individual fences or separators are represented using mo elements, as described in section 3.2.4. Thus, any mfenced element is completely equivalent
to an expanded form described below; either form can be used in MathML, at the convenience of an author or of a MathML-generating program. A
MathML renderer is required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences in an mrow; if there is more than one
argument, it will insert separators between adjacent arguments, using an additional nested mrow around the arguments and separators for proper
grouping (section 3.3.1). The general expanded form is shown below. The fences and separators will be parentheses and comma by default, but can
be changed using attributes, as shown in the following table.

3.3.8.2 Attributes of mfenced

Name values default
open string (
close string)
separators character * ,

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1
...
arg#n

</mfenced>

The opening-fence and closing-fence are arbitrary strings. (Since they are used as the content of mo elements, any whitespace they contain will
be trimmed and collapsed as described in section 2.3.5.)

The value of separators is a sequence of zero or more separator characters (or entity references), optionally separated by whitespace. Each sep#i
consists of exactly one character or entity reference. Thus, separators=",;" is equivalent to separators=" , ; ".

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n

</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as described in section 3.3.1.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equivalent to arg#1 (as described in sec-
tion 3.3.1), this case is also equivalent to:

71

<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are too few, the last one is
repeated as necessary. Thus, the default value of separators="," is equivalent to separators="„", separators="„,", etcetera. If there are no separator
characters provided but some are needed, for example if separators=" " or "" and there is more than one argument, then no separator elements are
inserted at all - that is, the elements <mo separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators
consisting of mo elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by an mfenced element. Such exceptional expressions include those with an ‘embellished’
separator or fence or one enclosed in an mstyle element, a missing or extra separator or fence, or a separator with multiple content characters. In
these cases, it is necessary to encode the expression using an appropriately modified version of an expanded form. As discussed above, it is always
permissible to use the expanded form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocessors
won’t replace occurrences of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements which identify them as fences or separators. Since
the most common choices of fences and separators already occur in the operator dictionary with those attributes, authors would not normally need
to specify those attributes explicitly when using the expanded form directly. Also, the rules for the default form attribute (section 3.2.4) cause the
opening and closing fences to be effectively given the values form="prefix" and form="postfix" respectively, and the separators to be given the value
form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, ‘+’, as an abbreviation for an expression using ‘+’ as an ordinary
operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they were marked up as <mo separa-
tor="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples of mfenced

(a+b)

72

73

<mfenced>
<mrow>

<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render incorrectly as ‘(a, +, b)’.

[0,1)

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>

<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.9 Enclose Content Inside Notation

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation attribute. menclose accepts any number of argu-
ments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ containing its arguments, as described in section 3.1.3.

3.3.9.2 Attributes of menclose

Name values default
notation longdiv | actuarial | radical longdiv

With notation has the value longdiv, the contents are drawn enclosed by a long division symbol. A complete example of long division is accom-
plished by also using mtable and malign. When notation is specified as actuarial, the contents are drawn enclosed by an actuarial symbol. The
case of notation=radical is equivalent to the msqrt schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

73

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>

</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>

</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo>_</mo>

</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>

</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>

</mtr>
</mtable>

This might render as:

Issue (missing-graphic1): long division graphic needed

.

An example of using menclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>

</menclose>
<mo>⁢</mo>
<mi>i</mi>

</mrow>
</msub>

which renders as

74

75

a_
n|i

Issue (missing-graphic2): actuarial graphic needed

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts and embellishments to symbols
is a very common notational device in mathematics. For purely visual layout, a single general-purpose element could suffice for positioning scripts
and embellishments in any of the traditional script locations around a given base. However, in order to capture the abstract structure of common
notation better, MathML provides several more specialized scripting elements.

In addition to sub/superscript elements, MathML has over/underscript elements which place scripts above and below the base. These elements can
be used to place limits on large operators, or for placing accents and lines above or below the base. The rules for rendering accents differ from those
for overscripts and underscripts, and this difference can be controlled with the accent and accentunder attributes, as described in the appropriate
sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the environment inherited by the rendering
process of every MathML expression, and are described under mstyle (section 3.3.4). These attributes cannot be given explicitly on a scripting
element, but can be specified on the start tag of a surrounding mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscripts and superscripts in that they
must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, it is important that the base expression
in all ‘scripting’ elements (i.e. the first argument expression) should be the entire expression that is being scripted, not just the rightmost character.
For example, (x+y)2 should be written as:

<msup>
<mrow>

<mo> (</mo>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

3.4.1 Subscript

3.4.1.1 Description

The syntax for the msub element is <msub> base subscript</msub>.

75

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

3.4.1.2 Attributes of msub

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down.

v-unit represents a unit of vertical length (see section 2.3.3).

The msub element increments scriptlevel by 1, and sets displaystyle to false, within subscript, but leaves both attributes unchanged within
base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see section 3.3.4.)

3.4.2 Superscript

3.4.2.1 Description

The syntax for the msup element is <msup> base superscript </msup>.

3.4.2.2 Attributes of msup

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

The superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see section 2.3.3).

The msup element increments scriptlevel by 1, and sets displaystyle to false, within superscript, but leaves both attributes unchanged within
base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see section 3.3.4.)

3.4.3 Subscript-superscript Pair

3.4.3.1 Description

The msubsup element is used so that the subscript and superscript are both tight against the base, i.e. vertically aligned as in the second case shown
here: x1

2 versus x2
1.

The syntax for the msubsup element is <msubsup>base subscript superscript</msubsup>

3.4.3.2 Attributes of msubsup

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down. The superscriptshift attribute specifies the
minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see section 2.3.3).

The msubsup element increments scriptlevel by 1, and sets displaystyle to false, within subscript and superscript, but leaves both attributes
unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle;
see section 3.3.4.)

76

77

3.4.3.3 Examples of msubsup

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However, another important use is placing
limits on certain large operators whose limits are traditionally displayed in the script positions even when rendered in display style. The most common
of these is the integral. For example,

1∫
0

ex dx

would be represented as

<mrow>
<msubsup>

<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>

<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢ </mo>
<mrow>

<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

3.4.4 Underscript

3.4.4.1 Description

The syntax for the munder element is

<munder> base underscript </munder>

3.4.4.2 Attributes of munder

Name values default
accentunder true | false automatic

The accentunder attribute controls whether underscript is drawn as an ‘accent’ or as a limit. The main difference between an accent and a limit is
that the limit is reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the base.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator (see section 3.2.4). If underscript is an mo
element, the value of its accent attribute is used as the default value of accentunder. If underscript is an embellished operator, the accent attribute
of the mo element at its core is used as the default value. As with all attributes, an explicitly given value overrides the default.

77

Here is an example (accent versus underscript): x+ y + z︸ ︷︷ ︸ versus x+ y + z︸ ︷︷ ︸. The MathML representation for this example is shown below.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and dis-
playstyle=false, then underscript is drawn in a subscript position. In this case, the accentunder attribute is ignored. This is often used for limits on
symbols such as ∑.

Within underscript, munder always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within base, it
always leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly
only on mstyle; see section 3.3.4.)

3.4.4.3 Examples of munder

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> vs </mtext>
<munder accentunder="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

3.4.5 Overscript

3.4.5.1 Description

The syntax for the mover element is

<mover> base overscript> </mover>

.

78

79

Name values default
accent true | false automatic

3.4.5.2 Attributes of mover

The accent attribute controls whether overscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main difference between an accent and a
limit is that the limit is reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the
base. This is shown below (accent versus limit): x̂ versus x̂.

These differences also apply to ‘mathematical accents’ such as bars over expressions:
︷ ︸︸ ︷
x+ y + z versus.

︷ ︸︸ ︷
x+ y + z. The MathML representation for

each of these examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see section 3.2.4). If overscript is an mo element,
the value of its accent attribute is used as the default value of accent for mover. If overscript is an embellished operator, the accent attribute of the
mo element at its core is used as the default value.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and dis-
playstyle=false, then overscript is drawn in a superscript position. In this case, the accent attribute is ignored. This is often used for limits on
symbols such as ∑.

Within overscript, mover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always
leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only
on mstyle; see section 3.3.4.)

3.4.5.3 Examples of mover

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">

<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> vs </mtext>
<mover accent="false">

<mi> x </mi>
<mo> ^ </mo>

</mover>
</mrow>

79

<mrow>
<mover accent="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
<mtext> vs </mtext>
<mover accent="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
</mrow>

3.4.6 Underscript-overscript Pair

3.4.6.1 Description

The syntax for the munderover element is

<munderover> base underscript overscript</munderover>

3.4.6.2 Attributes of munderover

Name values default
accent true | false automatic
accentunder true | false automatic

The munderover element is used so that the underscript and overscript are vertically spaced equally in relation to the base and so that they follow
the slant of the base as in the second expression shown below:

∞∫
0

versus
∞∫

0

80

81

The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, but is noticeable on a higher resolution
device such as a printer and when using large font sizes. In addition to the visual differences, attaching both the underscript and overscript to the
same base more accurately reflects the semantics of the expression.

The accent and accentunder attributes have the same effect as the attributes with the same names on mover (section 3.4.5) and munder (sec-
tion 3.4.4), respectively. Their default values are also computed in the same manner as described for those elements, with the default value of accent
depending on overscript and the default value of accentunder depending on underscript.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and dis-
playstyle=false, then underscript and overscript are drawn in a subscript and superscript position, respectively. In this case, the accent and
accentunder attributes are ignored. This is often used for limits on symbols such as ∑.

Within underscript, munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within
overscript, munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always
leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only
on mstyle; see section 3.3.4).

3.4.6.3 Example of munderover

The MathML representation for the example shown above with the left expression made using separate munder and mover elements, and the right
one using an munderover element, is:

<mrow>
<mover>

<munder>
<mo> ∫ </mo>
<mn> 0 </mn>

</munder>
<mi> ∞ </mi>

</mover>
<mtext> vs </mtext>
<munderover>

<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>

</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices

3.4.7.1 Description

The syntax for the mmultiscripts element is

81

<mmultiscripts>
{base}
({subscript superscript})*
[<mprescripts/> ({presubscript presuperscript})*]

</mmultiscripts>

Presubscripts and tensor notations are represented by a single element, mmultiscripts. This element allows the representation of any number of
vertically-aligned pairs of subscripts and superscripts, attached to one base expression. It supports both postscripts (to the right of the base in visual
notation) and prescripts (to the left of the base in visual notation). Missing scripts can be represented by the empty element none.

The prescripts are optional, and when present are given after the postscripts, because prescripts are relatively rare compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and superscripts (in that order) that
represent all of the postscripts. This list is optionally followed by an empty element mprescripts and a list of zero or more pairs of vertically-aligned
presubscripts and presuperscripts that represent all of the prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If
no subscript or superscript should be rendered in a given position, then the empty element none should be used in that position.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the presuperscripts, are all direct subex-
pressions of the mmultiscripts element, i.e. they are all at the same level of the expression tree. Whether a script argument is a subscript or a
superscript, or whether it is a presubscript or a presuperscript is determined by whether it occurs in an even-numbered or odd-numbered argument
position, respectively, ignoring the empty element mprescripts itself when determining the position. The first argument, the base, is considered to
be in position 1. The total number of arguments must be odd, if mprescripts is not given, or even, if it is.

The empty elements mprescripts and none are only allowed as direct subexpressions of mmultiscripts.

3.4.7.2 Attributes of mmultiscripts

Same as attributes of msubsup.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to false, within each of its arguments except base, but leaves
both attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly
only on mstyle; see section 3.3.4.)

3.4.7.3 Examples of mmultiscripts

Two examples of the use of mmultiscripts are:

0F 1(;a;z).

82

83

<mrow>
<mmultiscripts>

<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>

</mmultiscripts>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mrow>

<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

Ri
j
kl (where k and l are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>
<none/>

</mmultiscripts>

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr, mlabeledtr and mtd elements. These elements are
similar to the TABLE, TR and TD elements of HTML, except that they provide specialized attributes for the fine layout control necessary for commutative
diagrams, block matrices and so on.

The mlabeledtr element represents a labeled row of a table and can be used for numbered equations. mlabeledtr first child is the label. A label is
somewhat special in that it is not considered an expression in the matrix and is not counted when determining the number of columns in that row.

83

3.5.1 Table or Matrix

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, mtr, mlabeledtr, and mtd elements can be given. If some
argument to mtable is not an mtr element, MathML applications should assume a row with a single column (i.e. the argument is effectively wrapped
with an inferred mtr). Similarly, if some argument to a (possibly inferred) mtr element is not an mtd element, that argument is treated as a table entry
by wrapping it with an inferred mtd element. The mtr or mtd elements must be given explicitly if they have attributes different from those they would
inherit from the enclosing mtable or mtr.

Note that the above rules imply that an mtable whose arguments are expressions other than mtr, mlabeledtr, or mtd elements forms a single column
of those expressions.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow them) are effectively padded on
the right with empty mtd elements so that the number of columns in each row equals the maximum number of columns in any row of the table. Note
that the use of mtd elements with non-default values of the rowspan or columnspan attributes may affect the number of mtd elements which should
be given in subsequent mtr elements to cover a given number of columns. Note also that the label in an mtlabeledtr element is not considered a
column in the table.

3.5.1.2 Attributes of mtable

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (auto | number h-unit | namedspace | fit) + auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false true
equalcolumns true | false true
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Issue (equation-numbering-examples): We need some way to specify the indentation to be used for the table and label. Here are two
possibilities: margins = ’h-unit h-unit’ Specifies a left and right margin to use around the table. Eg, one might say "margins = ’1in .5in’". This would
cause the table to be drawn with at least 1in of margin/indentation on the left and .5in of margin/indentation on the right. width = ’h-unit’ Specifies the
desired width of the entire table. When the value is a percentage value, the value is relative available horizontal space (typically the screen or page
width). The default value is for the table to be as large as necessary. For tables with labels, one might say "width = ’80%’". This would make the table
80% of the window width. If the ’math’ tag centered its contents and the window width were 10in, this would result in 1in margins on either side.

Note that the default value for each of rowlines, columnlines and frame is the literal string ‘none’, meaning that the default is to render no lines,
rather than that there is no default.

84

85

As described in section 2.3.3, the notation (x | y) + means one or more occurrences of either x or y, separated by whitespace. For example,
possible values for columnalign are left, left left, and left right center center. If there are more entries than are necessary (e.g. more
entries than columns for columnalign), then only the first entries will be used. If there are fewer entries, then the last entry is repeated as often as
necessary. For example, if columnalign="right center" and the table has three columns, the first column will be right aligned and the second and
third columns will be centered. The label in a mlabeledtr is not considered as a column in the table and the attribute values that apply to columns
do not apply to labels

The align attribute specifies where to align the table with respect to its environment. ‘axis’ means to align the center of the table on the environment’s
axis. (The axis of an equation is an alignment line used by typesetters. It is the line on which a minus sign typically lies. The center of the table is
the midpoint of the table’s vertical extent.) ‘center’ and ‘baseline’ both mean to align the center of the table on the environment’s baseline. ‘top’ or
‘bottom’ aligns the top or bottom of the table on the environment’s baseline.

If the align attribute value ends with a rownumber between 1 and n (for a table with n rows), the specified row is aligned in the way described above,
rather than the table as a whole; the top (first) row is numbered 1, and the bottom (last) row is numbered n. The same is true if the rownumber is
negative, between -1 and -n, except that the bottom row is referred to as -1 and the top row as -n. Other values of rownumber are illegal.

The rowalign attribute specifies how the entries in each row should be aligned. For example, ‘top’ means that the tops of each entry in each row
should be aligned with the tops of the other entries in that row. The columnalign attribute specifies how the entries in each column should be aligned.

The groupalign and alignmentscope attributes are described with the alignment elements, maligngroup and malignmark, in section 3.5.5.

The columnwidth attribute specifies how wide a column should be. The auto value means that the column should be as wide as needed, which is the
default. If an explicit value is given, then the column is exactly that wide and the contents of that column are made to fit in that width. The contents are
linewrapped or clipped at the discretion of the renderer. If fit is given as a value, the remaining page width after subtracting the widths for columns
specified as auto and/or specific widths is divided equally among the fit columns and this value is used for the column width. If insufficient room
remains to hold the contents of the fit columns, renderers may linewrap or clip the contents of the fit columns.

The rowspacing and columnspacing attributes specify how much space should be added between each row and column. However, spacing before
the first row and after the last row (i.e. at the top and bottom of the table) is given by the second number in the value of the framespacing attribute,
and spacing before the first column and after the last column (i.e. on the left and on the right of the table) is given by the first number in the value of
the framespacing attribute.

In those attributes’ syntaxes, h-unit or v-unit represents a unit of horizontal or vertical length, respectively (see section 2.3.3.3). The units shown in
the attributes’ default values (em or ex) are typically used.

The rowlines and columnlines attributes specify whether and what kind of lines should be added between each row and column. Lines before the
first row or column and after the last row or column are given using the frame attribute.

If a frame is desired around the table, the frame attribute is used. If the attribute value is not ‘none’, then framespacing is used to add spacing
between the lines of the frame and the first and last rows and columns of the table. If frame="none", then the framespacing attribute is ignored.
The frame and framespacing attributes are not part of the rowlines/columnlines, rowspacing/columnspacing options because having them be so
would often require that rowlines and columnlines would need to be fully specified instead of just giving a single value. For example, if a table had
five columns and we wanted lines between the columns, but no frame, then we would have to write columnlines="none solid solid solid solid
none". By separating the frame from the internal lines, we only need to write columnlines="solid".

The equalrows attribute forces the rows all to be the same total height when set to true. The equalcolumns attribute forces the columns all to be the
same width when set to true.

The displaystyle attribute specifies the value of displaystyle (described under mstyle in section 3.3.4) within each cell (mtd element, perhaps
inferred) of the table. Setting displaystyle=true can be useful for tables whose elements are whole mathematical expressions; the default value of
false is appropriate when the table is part of an expression, for example, when it represents a matrix. In either case, scriptlevel (section 3.3.4) is
not changed for the table cells.

85

The side attribute specifies what side of a table a label for a table row should should be placed. This attribute is intended to be used for labeled
expressions. If left or right is specified, the label is placed on the left or right side of the table row respectively. The other two attribute values are
variations on left and right: if the labeled row fits within the width allowed for the table without the label, but does not fit within the width if the label
is included, then the label overlaps the row and is displayed above the row if rowalign for that row is top; otherwise the label is displayed below the
row.

If there are multiple labels in a table, the aligment of the labels within the virtual column that they form is left-aligned for labels on the left side of
the table, and right-aligned for labels on the right side of the table. The alignment can be overriden by specifying columnalignment for a mlabeltr
element.

The minlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the row.

3.5.1.3 Example of mtable

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>

<mtr> <mn>1</mn> <mn>0</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>1</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>0</mn> <mn>1</mn> </mtr>

</mtable>
<mo>) </mo>

</mrow>

This might be rendered as: 1 0 0
0 1 0
0 0 1

Note that the parentheses must be represented explicitly; they are not part of the mtable element’s rendering. This allows use of other surrounding
fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct subexpression of an mtable element, and specifies
that its contents should form one row of the table. Each argument of mtr is placed in a different column of the table, starting at the leftmost column.

As described in section 3.5.1, mtr elements can be inferred, and are effectively padded on the right with mtd elements when they are shorter than
other rows in a table.

3.5.2.2 Attributes of mtr

The rowalign and columnalign attributes allow a specific row to override the alignment specified by the same attributes in the surrounding mtable
element.

As with mtable, if there are more entries than necessary in the value of columnalign (i.e. more entries than columns in the row), then the extra
entries will be ignored. If there are fewer entries than columns, then the last entry will be repeated as many times as needed.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in section 3.5.5.

86

87

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

3.5.3 Labeled Row in Table or Matrix

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as determined by the side attribute. The label
is the first child of mlabeledtr. The rest of the children represent the contents of the row and are identical to those used for mtr.

An mlabeledtr element is only allowed as a direct subexpression of an mtable element. Each argument of mlabeledtr except for the first argument
(the label) is placed in a different column of the table, starting at the leftmost column.

3.5.3.2 Attributes of mlabeledtr

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element, attributes of mlabeledtr that apply to column
elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’center baseline’>

means that the label is vertically centered on the row, and that the actual entry is baseline aligned.

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label represents the equation number and the elements in
the row are the equation being numbered. The side and minlabelspacing attributes of of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equation numbering and automati-
cally resolving references to equation numbers is outside the scope of MathML, these problems can be addressed by the use of XSL style sheet or
other means. The mlabeledtr construction provides support for both of these functions in a way that is intended to facilitate XSL processing.

Issue (incomplete-mlabeledtr-description): Description of changes not complete

The columnwidth attribute value fit allows equations to use up as much of a page as possible, after accounting for any equation number. This
allows for styles of equation numbers that are left or right justified on a page.

In cases where only a few equations in a document are numbered, using the columnwidth attribute alone is probably sufficient.

87

<mtable columnalign=’left right’ columnwidth=’fit auto’>
<mtr>

<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>

<mi>m</mi>
<mo>⁢</mo>
<msup>

<mi>c</mi>
<mn>2</mn>

</msup>
</mrow>

</mrow>
<mrow> <mo> (</mo> <mn> 2.1 </mn> <mo>) </mo> </mrow>

</mtr>
</mtable>

This should be rendered as:

E = mc2 (2.1)

Issue (equation-numbering-examples2): rendering of equation numbering needed.

3.5.4 Entry in Table or Matrix

3.5.4.1 Description

An mtd element represents one entry in a table or matrix. An mtd element is only allowed as a direct subexpression of an mtr element (perhaps an
inferred one).

As described under mtr and mtable, mtd elements can be inferred. They must be given explicitly for table elements which have attributes different
than those of the enclosing mtr or mtable.

The mtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all its
arguments, as described in section 3.1.3.

3.5.4.2 Attributes of mtd

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number of rows or columns specified. The
interpretation of how this larger element affects specifying subsequent rows and columns is meant to correspond with the similar attributes for HTML
4.0 tables.

88

89

The rowspan and columnspan attributes can be used around an mtd element that represents the label in a mlabeledtr element. Also, the label of a
mlabeledtr element is not considered to be part of a previous rowspan and columnspan.

The rowalign and columnalign attributes allow a specific matrix element to override the alignment specified by a surrounding mtable or mtr element.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in section 3.5.5.

3.5.5 Alignment Markers

3.5.5.1 Description

These are space-like elements (see section 3.2.6) which can be used to vertically align specified points within a column of MathML expressions, by
the automatic insertion of the necessary amount of horizontal space between specified subexpressions.

The discussion that follows will use the example of a set of simultaneous equations which should be rendered with vertical alignment of the coefficients
and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0
3.1x - 0.7y = -1.1

(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhythm of pronunciation so that it is
the same for several subexpressions in a column, by the insertion of the appropriate time delays in place of the extra horizontal spacing described
here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elements (i.e. as the mtd elements,
perhaps inferred) of one column of an mtable. To avoid confusion, the term ‘table cell’ rather than ‘table element’ will be used in the remainder of this
section.

All interactions between alignment elements are limited to the mtable column they arise in. That is, every column of a table specified by an mtable
element acts as an ‘alignment scope’ which contains within it all alignment effects arising from its contents. It also excludes any interaction between
its own alignment elements and the alignment elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in MathML to arrange expressions into vertical
columns. Future versions of MathML may provide an malignscope element which allows an alignment scope to be created around any MathML
element, but even then, table columns would still sometimes need to act as alignment scopes, and since they are not elements themselves, but
rather are made from corresponding parts of the content of several mtr elements, they could not individually be the content of an alignment scope
element.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. This is discussed further
at the end of this section. Otherwise, the discussion in this section assumes that this attribute has its default value of true.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with corresponding points in other
expressions, and the beginning of each alignment group of subexpressions which can be horizontally shifted as a unit to effect the alignment. Each
alignment group must contain one alignment point. It is also necessary to specify which expressions in the column have no alignment groups at all,
but are affected only by the ordinary column alignment for that column of the table, i.e. by the columnalign attribute, described elsewhere.

89

The alignment groups start at the locations of invisible maligngroup elements, which are rendered with zero width when they occur outside of an
alignment scope, but within an alignment scope are rendered with just enough horizontal space to cause the desired alignment of the alignment
group which follows them. A simple algorithm by which a MathML application can achieve this is given later. In the example above, each equation
would have one maligngroup element before each coefficient, variable, and operator on the left-hand side, one before the = sign, and one before the
constant on the right-hand side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group consisting of the elements entirely after
the ith maligngroup element and before the (i+1)-th; no element within the table cell’s content should occur entirely before its first maligngroup
element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the MathML expression containing the groups
- that is, it is permissible for one alignment group to consist of the end of one mrow, all of another one, and the beginning of a third one, for example.
This can be seen in the MathML markup for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathematical structure of the expression, not the
alignment-group structure, to make possible optimal renderings and better automatic interpretations; see the discussion of proper grouping in section
3.3.1. Insertion of alignment elements (or other space-like elements) should not alter the correspondence between the structure of a MathML
expression and the structure of the mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonetheless restrictions on where an
maligngroup element is allowed within a table cell. The maligngroup element may only be contained within elements of the following types (which
are themselves contained in the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-argument mtd element;
• an mstyle element;
• an mphantom element;
• an mfenced element;
• an maction element, though only its selected subexpression is checked;
• a semantics element.

These restrictions are intended to ensure that alignment can be unambiguously specifed, while avoiding complexities involving things like overscripts,
radical signs and fraction bars. They also ensure that a simple algorithm suffices to accomplish the desired alignment.

Note that some positions for an maligngroup element, although legal, are not useful, such as for an maligngroup element to be an argument
of an mfenced element. When inserting an maligngroup element before a given element in pre-existing MathML, it will often be necessary, and
always acceptable, to form a new mrow element to contain just the maligngroup element and the element it is inserted before. In general, this will
be necessary except when the maligngroup element is inserted directly into an mrow or into an element which can form an inferred mrow from its
contents. See the warning about the legal grouping of ‘space-like elements’ in section 3.2.6.

For the table cells which are divided into alignment groups, every element in their content must be part of exactly one alignment group, except the
elements from the above list which contain maligngroup elements inside them, and the maligngroup elements themselves. This means that, within
any table cell containing alignment groups, the first complete element must be an maligngroup element, though this may be preceded by the begin
tags of other elements.

This requirement removes a potential confusion about how to align elements before the first maligngroup element, and makes it easy to identify table
cells which are left out of their column’s alignment process entirely.

Note that it is not required that the table cells in a column which are divided into alignment groups each contain the same number of groups. If they
don’t, zero-width alignment groups are effectively added on the right side of each table cell which has fewer groups than other table cells in the same
column.

90

91

3.5.5.3 Table cells which are not divided into alignment groups

Expressions in a column which are to have no alignment groups should contain no maligngroup elements. Expressions with no alignment groups
are aligned using only the columnalign attribute which applies to the table column as a whole, and are not affected by the groupalign attribute
described below. If such an expression is wider than the column width needed for the table cells containing alignment groups, all the table cells
containing alignment groups will be shifted as a unit within the column as described by the columnalign attribute for that column. For example, a
column heading with no internal alignment could be added to the column of two equations given above by preceding them with another table row
containing an mtext element for the heading, and using the default columnalign="center" for the table, to produce:

equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by an malignmark element anywhere within the alignment group (except within
another alignment scope wholly contained inside it), or it is determined automatically from the groupalign attribute. The groupalign attribute can be
specified on the group’s preceding maligngroup element or on its surrounding mtd, mtr, or mtable elements. In typical cases, using the groupalign
attribute is sufficient to describe the desired alignment points, so no malignmark elements need to be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the preceding element, or the left edge of the following
element or character, depending on the edge attribute of malignmark. Note that it may be necessary to introduce an mrow to group an malignmark
element with a neighboring element, in order not to alter the argument count of the containing element. (See the warning about the legal grouping of
‘space-like elements’ in section 3.2.6).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested element within the group, as long
as it is not within a nested alignment scope. It is not subject to the same restrictions on location as maligngroup elements. However, its immediate
surroundings need to be such that the element to its immediate right or left (depending on its edge attribute) can be unambiguously identified. If no
such element is present, renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y to the immediate right of X, whenever
X and Y are successive arguments of one (possibly inferred) mrow element, with X coming before Y. In the case of mfenced elements, MathML
applications should evaluate this relation as if the mfenced element had been replaced by the equivalent expanded form involving mrow. Similarly, an
maction element should be treated as if it were replaced by its currently selected subexpression. In all other cases, no relation of ‘to the immediate
left or right’ is defined for two elements X and Y. However, in the case of content elements interspersed in presentation markup, MathML applications
should attempt to evaluate this relation in a sensible way. For example, if a renderer maintains an internal presentation structure for rendering content
elements, the relation could be evaluated with respect to that. (See chapter 4 and chapter 5 for further details about mixing presentation and content
markup.)

Unlike all other elements in MathML, malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or mtext. When
this occurs, the character immediately before or after the malignmark element will carry the alignment point; in all other cases, the element to its
immediate left or right will carry the alignment point. The rationale for this is that it is sometimes desirable to align on the edges of specific characters
within multi-character token elements.

91

If there is more than one malignmark element in an alignment group, all but the first one will be ignored. MathML applications may wish to provide a
mode in which they will warn about this situation, but it is not an error, and should trigger no warnings by default. (Rationale: it would be inconvenient
to have to remove all unnecessary malignmark elements from automatically generated data, in certain cases, such as when they are used to specify
alignment on ‘decimal points’ other than the ’.’ character.)

3.5.5.5 Attributes of malignmark

Name values default
edge left | right left

malignmark has one attribute, edge, which specifies whether the alignment point will be found on the left or right edge of some element or character.
The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. If edge="right", the alignment point is the right edge of the element
or character to the immediate left of the malignmark element. If edge="left", the alignment point is the left edge of the element or character to the
immediate right of the malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look for the
element whose edge will be used.

For malignmark elements which occur within the content of MathML token elements, the preceding or following character in the token element’s
content is used; if there is no such character, a zero-width character is effectively inserted for the purpose of carrying the alignment point on its edge.
For all other malignmark elements, the preceding or following element is used; if there is no such element, a zero-width element is effectively inserted
to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an edge of the character’s bounding
box) is not specified by MathML, but is at the discretion of the renderer; the renderer is allowed to let the edge position depend on the character’s
context as well as on the character itself.

For proper alignment of columns of numbers (using groupalign values of left, right, or decimalpoint), it is likely to be desirable for the effective
width (i.e. the distance between the left and right edges) of decimal digits to be constant, even if their bounding box widths are not constant (e.g. if
‘1’ is narrower than other digits). For other characters, such as letters and operators, it may be desirable for the aligned edges to coincide with the
bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render the element or group, except that
explicit space represented by mspace or mtext elements should also count as ‘glyphs’ in this context, as should glyphs which would be drawn if not
for mphantom elements around them. The ‘right edge’ of an element or alignment group is defined similarly.

3.5.5.6 Attributes of maligngroup

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute, groupalign, which is used to determine the position of its group’s alignment point when no malignmark element is
present. The following discussion assumes that no malignmark element is found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups in each table cell; thus there
are 7 columns of alignment groups, with 2 groups, one above the other, in each column. These columns of alignment groups should be given the
7 groupalign values ‘decimalpoint left left decimalpoint left left decimalpoint’, in that order. How to specify this list of values for a table cell or table
column as a whole, using attributes on elements surrounding the maligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge, or halfway between these edges,
respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed above in relation to malignmark.

92

93

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point. The decimal point is the first ‘.’
character (ASCII 0x2e) in the first mn element found along the alignment group’s baseline. More precisely, the alignment group is scanned recursively,
depth-first, for the first mn element, descending into all arguments of each element of the types mrow (including inferred mrows), mstyle, mpadded,
mphantom, mfenced, or msqrt, descending into only the first argument of each ‘scripting’ element (msub, msup, msubsup, munder, mover, munderover,
mmultiscripts) or of each mroot or semantics element, descending into only the selected subexpression of each maction element, and skipping
the content of all other elements. The first mn so found always contains the alignment point, which is the right edge of the last character before the
first decimal point in the content of the mn element. If there is no decimal point in the mn element, the alignment point is the right edge of the last
character in the content. If the decimal point is the first character of the mn element’s content, the right edge of a zero-width character inserted before
the decimal point is used. If no mn element is found, the right edge of the entire alignment group is used (as for groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert a content expression into a presentation expression
which renders the same way before searching for decimal points as described above.

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be preceded by malignmark elements within the mn token’s
content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the group, the position it specifies (described earlier)
overrides the automatic determination of alignment point from the groupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this attribute is usually the same for every group in
a column of alignment groups to be aligned, it can be inherited from an attribute on the mtable which was used to set up the alignment scope as a
whole, or from the mtr or mtd elements surrounding the alignment group. It is inherited via an ‘inheritance path’ which proceeds from mtable through
successively contained mtr, mtd, and maligngroup elements. There is exactly one element of each of these kinds in this path from an mtable to any
alignment group inside it, though the mtr and/or mtd elements might be inferred ones, as described in the sections on those elements. In general,
the value of groupalign will be inherited by any given alignment group from the innermost element which surrounds the alignment group and which
provides an explicit setting for this attribute.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each maligngroup element inside it, rather than just a
single value. Furthermore, an mtr or mtable element needs, in general, a list of lists of groupalign values, since it spans multiple mtable columns,
each potentially acting as an alignment scope. Such lists of group-alignment values are specified using the following syntax rules:

group-alignment := left | right | center | decimalpoint
group-alignment-list := group-alignment +
>group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in section 2.3.3, | separates alternatives; + represents optional repetition (i.e. 1 or more copies of what precedes it), with extra values
ignored and the last value repeated if necessary to cover additional table columns or alignment group columns; ’’ and ’’ represent literal braces;
and (and) are used for grouping, but do not literally appear in the attribute value.

93

The permissible values of the groupalign attribute of the elements that have this attribute are specified using the above syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list left
mtr group-alignment-list-list inherited from mtable attribute
mtd group-alignment-list inherited from within mtr attribute
maligngroup group-alignment inherited from within mtd attribute

In the example near the beginning of this section, the group alignment values could be specified on every mtd element using groupalign = ‘decimal-
point left left decimalpoint left left decimalpoint’, or on every mtr element using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’,
or (most conveniently) on the mtable as a whole using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single
braced list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this section. To repeat the example, the
desired rendering is:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtd>

<mrow>
<mrow>

<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>

<maligngroup/>
<mn> 55 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

94

95

</mtd>
<mtd>

<mrow>
<mrow>

<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>

<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>

<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mtd>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where they are ignored. The rationale behind this is
that in situations in which MathML is generated, or copied from another document, without knowing whether it will be placed inside an alignment
scope, it would be inconvenient for this to be an error.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. In general, this attribute
has the syntax (true | false) +; if its value is a list of boolean values, each boolean value applies to one column, with the last value repeated
if necessary to cover additional columns, or with extra values ignored. Columns which are not alignment scopes are part of the alignment scope
surrounding the mtable element, if there is one. Use of alignmentscope=false allows nested tables to contain malignmark elements for aligning the
inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not specify how content elements should
be rendered. However, many MathML applications are likely to find it convenient to internally convert content elements to presentation elements
which render the same way. Thus, as a general rule, even if a renderer does not perform such conversions internally, it is recommended that the
alignment elements should be processed as if it did perform them.

95

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the matrix content element, since this
element may or may not be internally converted to an expression containing an mtable element for rendering. To partially resolve this ambiguity, it is
suggested, but not required, that if the matrix element is converted to an expression involving an mtable element, that the mtable element be given
the attribute alignmentscope=false, which will make the interaction of the matrix element with the alignment elements no different than that of a
generic presentation element (in particular, it will allow it to contain malignmark elements which operate within the alignment scopes created by the
columns of an mtable which contains the matrix element in one of its table cells).

The effect of alignment elements within table cells which have non-default values of the columnspan or rowspan attributes is not specified, except
that such use of alignment elements is not an error. Future versions of MathML may specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here. Since the alignment specification
is deterministic (except for the definition of the left and right edges of a character), any correct MathML alignment algorithm will have the same
behavior as this one. Each mtable column (alignment scope) can be treated independently; the algorithm given here applies to one mtable column,
and takes into account the alignment elements, the groupalign attribute described in this section, and the columnalign attribute described under
mtable (section 3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero width for all maligngroup and malignmark elements.
The final rendering will be identical except for horizontal shifts applied to each alignment group and/or table cell. The positions of alignment points
specified by any malignmark elements are noted, and the remaining alignment points are determined using groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowing the width of the group on each
side of the alignment point (left and right) to be determined. The sum of these two ‘side-widths’, i.e. the sum of the widths to the left and right of the
alignment point, will equal the width of the alignment group.

Second, each column of alignment groups, from left to right, is scanned. The ith scan covers the ith alignment group in each table cell containing
any alignment groups. Table cells with no alignment groups, or with fewer than i alignment groups, are ignored. Each scan computes two maximums
over the alignment groups scanned: the maximum width to the left of the alignment point, and the maximum width to the right of the alignment point,
of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which will be the width of each table
cell containing alignment groups. Call the maximum number of alignment groups in one cell n; each such cell’s width is divided into 2n adjacent
sections, called L(i) and R(i) for i from 1 to n, using the 2n maximum side-widths computed above; for each i, the width of all sections called L(i) is
the maximum width of any cell’s ith alignment group to the left of its alignment point, and the width of all sections called R(i) is the maximum width
of any cell’s ith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way which places the part of each ith group to the left of its alignment point in a section
called L(i), and places the part of each ith group to the right of its alignment point in a section called R(i). This results in the alignment point of each
ith group being on the boundary between adjacent sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal position.

The widths of the table cells which contain no alignment groups were computed as part of the initial rendering, and may be different for each cell,
and different from the single width used for cells containing alignment groups. The maximum of all the cell widths (for both kinds of cells) gives the
width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign attribute of the innermost surrounding
mtable, mtr, or mtd element which has an explicit value for it, as described in the sections on those elements. This may mean that the cells containing
alignment groups will be shifted within their column, in addition to their alignment groups having been shifted within the cells as described above,
but since each such cell has the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the
alignment points of the corresponding alignment groups in each cell.

96

97

3.6 Enlivening Expressions

3.6.1 Bind Action to Subexpression

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML subexpressions is one basic kind
of interactivity section 7.1.5. However, many other kinds of interactivity cannot be easily accommodated by generic linking mechanisms. For example,
in lengthy mathematical expressions, the ability to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an
ellipsis and a much longer expression which it represents.

To provide a mechanism for binding actions to expressions, MathML provides the maction element. This element accepts any number of subexpres-
sions as arguments, and the following attributes:

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications which do not recognize the specified actiontype should render the selected subexpression as defined below. If
no selected subexpression exists, it is a MathML error; the appropriate rendering in that case is as described in section 7.2.2 on the treatment of
MathML errors.

Since a MathML-compliant application is not required to recognize any particular actiontypes, an application can be fully MathML compliant just by
implementing the above-described default behavior.

The selection attribute is provided for those actiontypes which permit someone viewing a document to select one of several subexpressions for
viewing. Its value should be a positive integer which indicates one of the subexpressions of the maction element, numbered from 1 to the number of
children of the element. When this is the case, the subexpression so indicated is defined to be the ‘selected subexpression’ of the maction element;
otherwise the ‘selected subexpression’ does not exist, which is an error. When the selection attribute is not specified (including for actiontypes for
which it makes no sense), its default value is 1, so the selected subexpression will be the first subexpression.

Furthermore, as described in chapter 7, if a MathML application responds to a user command to copy a MathML subexpression to the environment’s
‘clipboard’, any maction elements present in what is copied should be given selection attributes which correspond to their selection state in the
MathML rendering at the time of the copy command.

A suggested list of actiontypes and their associated actions is given below. Keep in mind, however, that this list is mainly for illustration, and
recognized values and behaviors will vary from application to application.
<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction> For this action type, a ren-

derer would alternately display the given expressions, cycling through them when a reader clicked on the active expression, starting with
the selected expression and updating the selection attribute value as described above. Typical uses would be for exercises in education,
ellipses in long computer algebra output, or to illustrate alternate notations. Note that the expressions may be of significantly different size,
so that size negotiation with the browser may be desirable. If size negotiation is not available, scrolling, elision, panning, or some other
method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction> In this case, the renderer would display the expression in context on the
screen. When a reader clicked on the expression or moved the mouse over it, the renderer would send a rendering of the message to the
browser statusline. Since most browsers in the forseeable future are likely to be limited to displaying text on their statusline, authors would
presumably use plain text in an mtext element for the message in most circumstances. For non-mtext messages, renderers might provide
a natural language translation of the markup, but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction> Here the renderer would also display the expression in context on the
screen. When the mouse pauses over the expression for a long enough delay time, the renderer displays a rendering of the message
in a pop-up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon help’ boxes. Presumably authors
would use plain text in an mtext element for the message in most circumstances. For non-mtext messages, renderers may provide a natural
language translation of the markup if full MathML rendering is not practical, but this is not required.

97

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction> <maction actiontype="highlight" other="background=’#ff0000’"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example given above, use is being made
of the ‘other’ attribute to pass non-standard attributes to renderers which support them, without violating the MathML DTD (see 7.2.3). The
‘color’ attribute changes the color of the characters in the presentation, while the ‘background’ attribute changes the color of the background
behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction> This action type instructs a renderer to provide a pop
up menu. This allows a one-to-many linking capability. Note that the menu items may be other <maction actiontype="menu">...</maction>
expressions, thereby allowing nested menus.

98

Chapter 4

Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

As has been noted in the introductory section of this recommendation, mathematics can be distinguished by its use of a (relatively) formal language,
mathematical notation. However, mathematics and its presentation should not be viewed as one and the same thing. Mathematical sums or products
exist and are meaningful to many applications completely without regard to how they are rendered aurally or visually. The intent of the content
markup in Mathematical Markup Language is to provide an explicit encoding of the underlying mathematical structure of an expression, rather than
any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of presentation tags cannot properly
capture this semantic information. This is because without additional information it is impossible to decide if a particular presentation was chosen
deliberately to encode the mathematical structure or simply to achieve a particular visual or aural effect. Furthermore, an author using the same
encoding to deal with both the presentation and mathematical structure might find a particular presentation encoding unavailable simply because
convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice versa. For example the mathematical
construct ‘H multiplied by e’ is often encoded using an explicit operator as in H × e. In different presentational contexts, the multiplication operator
might be invisible ‘H e’, or rendered as the spoken word ‘times’. Generally, many different presentations are possible depending on the context and
style preferences of the author or reader. Thus, given ‘H e’ out of context it may be impossible to decide if this is the name of a chemical or a
mathematical product of two variables H and e.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics today have one meaning to an
English mathematician, and quite another to a French mathematician. Notations may lose currency, for example the use of musical sharp and flat
symbols to denote maxima and minima. [Chaudry1954] A notation in use in 1644 for the multiplication mentioned above was squareHe [Cajori1928].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally or visually, we are able to interchange
information more precisely with those systems which are able to manipulate the mathematics. In the trivial example above, such a system could
substitute values for the variables H and e and evaluate the result. Further interesting application areas include interactive textbooks and other
teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to systematically codify most of mathe-
matics - a task which can never be complete. Instead, MathML makes explicit a relatively small number of commonplace mathematical constructs,
chosen carefully to be sufficient in a large number of applications. In addition, it provides a mechanism for associating semantics with new notational
constructs. In this way, mathematical concepts that are not in the base collection of tags can still be encoded (section 4.2.7).

99

The base set of content elements are chosen to be adequate for simple coding of most of the formulas used from kindergarten to the end of high
school in the United States, and probably beyond through the first two years of college, that is up to A-Level or Baccalaureate level in Europe. Subject
areas covered to some extent in MathML are:

• Arithmetic, Algebra, Logic and Relations
• Calculus and Vector Calculus
• Set Theory
• Sequences and Series
• Elementary Classical Functions
• Statistics
• Linear Algebra

It is not claimed, or even suggested, that the proposed element set is complete for these areas, but the provision for author extensibility greatly
alleviates any problem which omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

• The expression tree structure of a mathematical expression should be directly encoded by the MathML content elements.
• The encoding of an expression tree should be explicit, and not dependent on the special parsing of PCDATA or on additional processing such

as operator precedence parsing.
• The basic set of mathematical content constructs that are provided should have default mathematical semantics.
• There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and their mathematical meanings. The
content elements correspond directly to parts of the underlying mathematical expression tree. Each structure has an associated default semantics
and there is a mechanism for associating new mathematical definitions with new constructs.

Significant advantages to the introduction of content specific tags include:

• Presentation element usage is less constrained. When mathematical semantics are inferred from presentation markup, processing agents
must either be quite sophisticated, or they run the risk of inferring incomplete or incorrect semantics when irregular constructions are used
to achieve a particular aural or visual effect.

• It is immediately clear which kind of information is being encoded simply by the kind tags which are used.
• Combinations of semantic and presentation tags can be used to convey both the appearance and its mathematical meaning much more

effectively than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default visual presentations are usually clear.
‘Take care of the sense and the sounds will take care of themselves’ wrote Lewis Carroll [Carroll1871]. Default presentations are included in the
detailed description of each element occurring in section 4.4.

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A content expression tree is constructed
from a collection of more primitive objects, referred to herein as containers and operators. MathML possesses a rich set of predefined container and
operator objects, as well as constructs for combining containers and operators in mathematically meaningful ways. The syntax and usage of these
content elements and constructions is described in the next section.

100

101

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematical structure of the expression
is clear, the syntax and usage of content markup must be consistent enough to facilitate automated semantic interpretation. There must be no doubt
when, for example, an actual sum, product or function application is intended and if specific numbers are present there must be enough information
present to reconstruct the correct number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide what is
to be done with such a content based expression, and computation is only one of many options. A renderer or a structured editor might simply use
the data and its own built-in knowledge of mathematical structure to render the object. Alternatively, it might manipulate the object to build a new
mathematical object. A more computationally oriented system might attempt carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than just satisfying the syntactic structure
specified by an XML DTD. Failure to conform to the usage as described below will result in a MathML error, even though the expression may be
syntactically valid according to the DTD.

In addition to the usage information contained in this section, section 4.4 gives a complete listing of each content element, providing reference
information about about their attributes, syntax, examples and suggested default semantics and renderings. An informal EBNF grammar describing
the syntax for the content markup is given in appendix C.

4.2.1 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in the tree represent basic mathemat-
ical objects, such as numbers, variables, arithmetic operations and so on. The internal nodes in the tree generally represent some kind of function
application or other mathematical construction that builds up a compound object. Function application provides the most important example; an in-
ternal node might represent the application of a function to several arguments, which are themselves represented by the terminal nodes underneath
the internal node.

The MathML content elements can be grouped into the following categories based on their usage:
• Containers
• Operators
• Qualifiers
• Relations
• Conditions
• Semantic Mappings
These are the building blocks out of which MathML content expressions are constructed. Each category is discussed in a separate section below. In
the remainder of this section, we will briefly introduce some of the most common elements of each type, and consider the general constructions for
combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowest level, leaf nodes, are encapsulated in non-empty elements that
define their type. Numbers and symbols are marked by the token elements cn and ci. More elaborate constructs such as sets, vectors and matrices
are also marked using elements to denote their types, but rather than containing data directly, these container elements are constructed out of other
elements. Elements are used in order to clearly identify the underlying objects. In this way, standard XML parsing can be used and attributes can be
used to specify global properties of the objects.

The containers such as <cn>12345<cn/> , <ci>x</ci> and <csymbol definitionURL = "mySymbol.htm" encoding = "text"> S</csymbol> rep-
resent mathematical numbers , identifiers and externally defined symbols. Below, we will look at operator elements such as <plus/> or <sin/>,
which provide access to the basic mathematical operations and functions applicable to those objects. Additional containers such as <set>...</set>
for sets, and <matrix>...</matrix> for matrices are provided for representing a variety of common compound objects.

For example, the number 12345 is encoded as

101

<cn>12345</cn>

The attributes and PCDATA content together provide the data necessary for an application to parse the number. For example, a default base of 10 is
assumed, but to communicate that the underlying data was actually written in base 8, simply set the base attribute to 8 as in

<cn base="8">12345</cn>

while complex number 3 + 4 i can be encoded as

<cn type="complex">3<sep/>4</cn>

Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symbol v is encoded as

<ci>v</ci>

By default ci elements represent elements from a commutative field (see appendix D). If a vector is intended then this fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated with the vector element, namely an arbitrary element of a finite dimensional vector space.

By using the ci and csymbol elements we have made clear that we are referring to a mathematical identifier or symbol but this does not say anything
about how it shopuld be rendered. By default a symbol is rendered as if the ci or csymbol element were actually the presentation element mi
(see section 3.2.2). The actual rendering of a mathematical symbol can be made as elaborate as necessary simply by using the more elaborate
presentational constructs (as described in chapter 3) in the body of the ci or csymbol element.

The default rendering of a simple cn-tagged object is the same as for the presentation element mn with some provision for overriding the presentation
of the PCDATA by providing explicit mn tags. This is described in detail in section 4.4.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numbers and symbols. Each such
object has global properties as a mathematical object that impact how they are to be parsed. This may affect everything from the interpretation of
operations that are applied to them through to how to render the symbols representing them. These mathematical properties are captured by setting
attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. For example, the sum a + b can be
thought of as an application of the addition operator to two arguments aand b. In MathML, elements are used for operators for much the same
reason that elements are used to contain objects. They are recognized at the XML parse level and their attributes can be used to record or modify
the intended semantics. For example, with the MathML plus element, setting the definitionURL and encoding attributes as in <plus defini-
tionURL="www.vnbooks.com/VectorCalculus.htm" encoding="text"/> can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction between the function itself and the
expression resulting from applying that function to zero or more arguments which must be captured. This is addressed by making the functions
self-contained objects with their own properties and providing an explicit apply construct corresponding to function application. We will consider the
apply construct in the next section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an important class of expressions
involve unknown or user-defined functions and symbols. For these situations, MathML provides a general csymbol element, which is discussed
below.

102

103

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markup is the apply construct. An apply element typically
applies an operator to its arguments. It corresponds to a complete mathematical expression. Roughly speaking, this means a piece of mathematics
which could be surrounded by parentheses or ‘logical brackets’ without changing its meaning.

For example, (x + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most typical way of using apply is simple and
recursive. Symbolically, the content model can the described as:

<apply> op a b </apply>

where the operands a and b are containers or other content-based elements themselves, and op is an operator or function. Note that since apply is
a container, this allows apply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>

For example, (x + y + z) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For example, ax + b would be encoded as

<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression correctly. The apply tags provide
the proper grouping for the re-use of the expressions within other constructs. Any expression enclosed by an apply element is viewed as a single
coherent object.

An expression such as (F + G)(x) might be a product, as in

103

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>
<ci> x </ci>

</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>

and applying it to the argument x as in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>

<ci> x </ci>
</apply>

Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML1.0 , another construction closely related to the use of the apply with operators and arguments was the reln element. The reln element
was used to denote that a mathematical relation holds between its arguments, as opposed to applying an operator. Thus, the MathML markup for
the expression x < y was given in MathML 1.0 by:

<reln>
<lt/>
<ci> x </ci>
<ci> y </ci>

</reln>

In MathML2.0, the apply construct is used with all operators, including logical operators. The expression above becomes

<apply>
<lt/>
<ci> x </ci>
<ci> y </ci>

</apply>

104

105

in MathML 2.0. The use of reln with relational operators is supported for reasons of backwards compatibility, but deprecated. Authors creating new
content are encouraged to use apply in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions such as <plus/> and <sin/> have been predefined explicitly as empty elements (see section 4.4
attributes, and by changing these attributes, the author can record that a different sort of algebraic operation is intended. This allows essentially the
same notation to be re-used for a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user to define new functions and other
symbols to expand the terrain of mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their properties can then be inferred directly
from that usage as was done in the previous section. However such an approach would preclude being able to encode the fact that the construct
was a known symbol, or to record its mathematical properties except by actually using it. The csymbol element is used as a container to construct
a new symbol in much the same way that ci is used to construct an identifier. (Note that symbol is used here in the abstract sense and has no
connection with any presentation of the construct on screen or paper). The difference in usage is that csymbol should refer to some mathematically
defined concept with an external definition referenced via the definitionURL attribute, whereas ci is used for identifiers which are essentially ‘local’
to the MathML expression and do not use any external defintion mechanism. The target of the definitionURL attribute on the csymbol element may
encode the definition in any format: the particular encoding in use is given by the encoding attribute

To use csymbol to describe a completely new function, we write

<csymbol definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text">
<ci>Christoffel</ci>

</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for the Christoffel symbol. Suggested default definitions for pre-
defined MathML content elements appear in appendix D in a format based on OpenMath, although there is no requirement that a particular format
be used. The role of the definitionURL attribute is very similar to the role of definitions included at the beginning many mathematical papers, and
which often just refer to a definition used by a particular book.

MathML1.0 supported the use of the fn to encode the fact that a construct is explicitly being used as a function or operator. To record the fact that
F+ G is being used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</fn>

This usage, although allowed in MathML2.0 for reasons of backwards compatibility, is now deprecated. The fact that a construct is being used as
an operator is clear from the position of the construct as the first child of the apply. If it is required to add additional information to the construct, it
should be wrapped in a semantics element, for example:

105

<semantics definitionURL="www.mathslib.com/vectorfuncs/plus.htm"
encoding="Mathematica 4.0">
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</semantics>

MathML1.0 supported the use of definitionURL with fn to refer to external definitions for user-defined functions. This usage, although allowed for
reasons of backwards compatibility, is deprecated in MathML 2.0 in favour of using csymbol to define the function, and then apply to link the function
to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.defs.org/function_spaces.html#my_def"

encoding="text">
<ci>BigK</ci>

</csymbol>
<ci>x</ci>
<ci>y</ci>

</apply>

4.2.1.5 The inverse construct

Given functions, it is natural to have functional inverses. This is handled by the inverse element.

Functional inverses can be problematic from a mathematical point of view in that it implicitly involves the definition of an inverse for an arbitrary
function F . Even at the K through 12 level the concept of an inverse F −1 of many common functions F is not used in a uniform way. For example,
the definitions used for the inverse trigonometric functions may differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view:

If F is a function from a domain D to D’, then the inverse G of F is a function over D’ such that G(F (x)) = x for x in D.

This definition does not assert that such an inverse exists for all or indeed any x in D, or that it is single-valued anywhere. Also, depending on the
functions involved, additional properties such as F (G(y)) = y for y in D’ may hold.

The inverse element is applied to a function whenever an inverse is required. For example, application of the inverse sine function to x (i.e. sin −1

(x) is encoded as:

<apply>
<apply><inverse/>

<sin/>
</apply>
<ci> x </ci>

</apply>

While arcsin is one of the predefined MathML functions, an explicit reference to sin −1(x) might occur in a document discussing possible definitions
of arcsin.

106

107

4.2.1.6 The declare construct

Consider a document discussing the vectors A = (a, b, c) and B = (d, e, f) and later including the expression V = A + B. It is important to be able
communicate the fact that wherever A and B are used they represent a particular vector. The properties of that vector may determine aspects of
operators such as plus.

The simple fact that A is a vector can be communicated by using the tagging
<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

The declare construct is used to associate specific properties or meanings with an object. The actual declaration itself is not rendered visually (or in
any other form). However, it indirectly impacts the semantics of all affected uses of the declared object.

The scope of a declaration is, by default, local to the MathML element in which the declaration is made. If the scope attribute of the declare element
is set to global, the declaration applies to the entire MathML expression in which it appears.

The uses of the declare element range from resetting default attribute values to associating an expression with a particular instance of of a more
elaborate structure. Subsequent uses of the original expression (within the scope of the declare) play the same semantic role as would the paired
object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</vector>
</declare>

specifies that A stands for the particular vector (a, b, c) so that subsequent uses of A as in V = A + Bcan take this into account. When declare is
used in this way, the actual encoding

<apply><eq/>
<ci> V </ci>
<apply>
<plus/>
<ci> A </ci>
<ci> B </ci>

</apply>
</apply>

remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>

</declare>

specifies that A is a vector without indicating the number of components or the values of specific components. The possible values for the type
attribute include all the predefined container element names such as vector, matrix or set. (See 4.3.2.9 type.)

107

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lambda construct underlies the
common mathematical idiom illustrated here:

Let f be the function taking x to x2 + 2

There are various notations for this concept in mathematical literature, such as λ(x, F (x)) = F or λ(x, [F]) = F , where x is a free variable in F .

This concept is implemented in MathML with the lambda element. A lambda construct with n internal variables is encoded by a lambda element with
n+1 children. All but the last child must be bvar elements containing the identifiers of the internal variables. The last is an expression defining the
function. This is typically an apply, but can also be any container element.

The following constructs λ(x, sin(x+ 1)):
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

To use declare and lambda to construct the function f for which f (x) = x 2 + x + 3 use:

<declare type="fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</declare>

The following markup declares and constructs the function J such that J(x, y) is the integral from x to y of t 4 with respect to t.

108

109

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>

</bvar>
<lowlimit>
<ci> x </ci>

</lowlimit>
<uplimit>
<ci> y </ci>

</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>

</apply>
</apply>

</lambda>
</declare>

The function J can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the use of qualifier elements lowlimit, uplimit, and bvar used in conjunction with the int
element. A number of common mathematical constructions involve additional data which is either implicit in conventional notation, such as a bound
variable, or thought of as part of the operator rather than an argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, series, and certain differential operators.
Qualifier elements appear in the same apply element with one of these operators. In general, they must appear in a certain order, and their precise
meaning depends on the operators being used. For details, see section 4.2.4.

The bvar qualifier element is also used in another important MathML construction. The condition element is used to place conditions on bound
variables in other expressions. This allows MathML to define sets by rule, rather than enumeration, for example. The following markup, for instance,
encodes the set x | x < 1:

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</condition>

</set>

109

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of expressions independent of the notation
used to present the objects, rendering issues cannot be ignored. Each content element has a default rendering, given in section 4.4. and several
mechanisms (including section 4.3.3.2) are provided for associating a particular rendering with an object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, lambda, fn
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathematical identifiers, numbers and
symbols.

It is also possible for the canonically empty operator elements such as exp, sin and cos to be leaves in an expression tree. The usage of operator
elements is described in section 4.2.3.

cn The cn element is the MathML token element used to represent numbers. The supported types of numbers include: real, integer, rational,
complex-cartesian, and complex-polar, with real being the default type. A base attribute (defaulting to base 10) is used to help specify
how the content is to be parsed. The content itself is essentially PCDATA, separated by <sep/> when two parts are needed in order to
fully describe a number. For example, the real number 3 is constructed by <cn type="real"> 3 </cn>while the rational number 3/4 is
constructed as <cn type="rational"> 3<sep/>4 </cn>The detailed structure and specifications are provided in section 4.4.1.1.

ci The ci element, or ‘content identifier’ is used to construct a variable, or an identifier. A type attribute indicates the type of object the symbol
represents. Typically, ci represents a real scalar, but no default is specified. The content is either PCDATA or a general presentation construct
section 3.1.5. For example,

<ci>
<msub>
<mi>c</mi>
<mn>1</mn>

</msub>
</ci>
encodes an atomic symbol which displays visually as c 1which, for purposes of content, is treated as a single symbol representing a real
number. The detailed structure and specifications is provided in section 4.4.1.2.

csymbol The csymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of the core content elements
provided by MathML, but defined externally. csymbol does not make any attempt to describe how to map the arguments occurring in any
application of the function into a new MathML expression. Instead, it depends on its definitionURL attribute to point to a particular meaning,
and the encoding attribute to give the syntax of this definition. The content of a csymbol is either PCDATA or a general presentation construct
section 3.1.5. For example,

110

111

<csymbol definitionURL="www.vnbooks.com/ContDiffFuncs.htm" encoding = "text">
<msup>
<mi>C</mi>
<mn>2</mn>

</msup>
</csymbol>
encodes an atomic symbol which displays visually as C 2 and which, for purposes of content, is treated as a single symbol representing the
space of twice-differentiable continuous functions. The detailed structure and specifications is provided in section 4.4.1.3.

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound objects include things like lists, sets.
Each constructor produces a new type of object.

interval The interval element is described in detail in section 4.4.2.4. It denotes an interval on the real line with the values represented by its
children as end points. The closure attribute is used to qualify the type of interval being represented. For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often written (a,b].

set and list The set and list elements are described in detail in section 4.4.6.1 and section 4.4.6.2. Typically, the child elements of a possibly
empty list element are the actual components of an ordered list. For example, an ordered list of the three symbols a, b, and c is encoded
as
<list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list>
Alternatively, bvar and condition elements can be used to define lists where membership depends on satisfying certain conditions. An
order attribute which is used to specify what ordering is to be used. When the nature of the child elements permits, the ordering defaults
to a numeric or lexicographic ordering. Sets are structured much the same as lists except that there is no implied ordering and the type
of set may be normal or multiset with ‘multiset’ indicating that repetitions are allowed. For both sets and lists, the child elements must be
valid MathML content elements. The type of the child elements is not restricted. For example, one might construct a list of equations, or
inequalities.

matrix and matrixrow The matrix element is used to represent mathematical matrices. It is described in detail in section 4.4.10.2. It has zero or
more child elements, all of which are matrixrow elements. These in turn expect zero or more child elements which evaluate to algebraic
expressions or numbers. These sub-elements are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
The matrixrow elements must always be contained inside of a matrix and all matrixrow s in a given matrix must have the same number
of elements. Note that the behavior of the matrix and matrixrow elements is substantially different from the mtable and mtr presentation
elements.

vector The vector element is described in detail in section 4.4.10.1. It constructs vectors from a n-dimensional vector space so that its n child
elements typically represent real or complex valued scalars as in the three-element vector

111

<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>
<cn> 3 </cn>
<cn> 7 </cn>

</vector>
apply The apply element is described in detail in section 4.4.2.1. Its purpose is apply a function or operator to its arguments to produce an an

expression representing an element of the range of the function. It is involved in everything from forming sums such as a + b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>

</apply>
through to using the sine function to construct sin(a) as in

<apply><sin/>
<ci> a </ci>

</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the function (the first child element)
and as such its detailed usage is covered together with the functions and operators in section 4.2.3.

reln The reln element is described in detail in section 4.4.2.2. It was used in MathML1.0 to construct an expression such as a = b, as in

<apply><eq/>
<ci> a </ci>
<ci> b </ci>

</apply>
indicating an intended comparison between two mathematical values. MathML2.0 takes the view that this should be regarded as the
application of a boolean function, and as such could be constructed using apply. The use of reln with logical operators is supported for
reasons of backwards compatibility, but deprecated in favour of apply.

fn The fn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a function or operator. This is allowed in
MathML 2.0 for backwards compatibility, but is deprecated, as the use of an expression as a function or operator is clear from its position
as the first child of an apply. fn is discussed in detail in section 4.4.2.3.

lambda The lambda element is used to construct an user-defined function from an expression and one or more free variables. The lambda construct
with n internal variables takes n+1 children. The first (second, up to n) is a bvar containing the identifiers of the internal variables. The last
is an expression defining the function. This is typically an apply, but can also be any container element. The following constructs lambda(x,
sin x)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>

</apply>
</lambda>

112

113

The following constructs the constant function λ(x, 3)
<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

4.2.2.3 Special Constructs

The declare construct is described in detail in section 4.4.2.8. It is special in that its entire purpose is to modify the semantics of other objects. It is
not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent an instance of an object of a
particular type. For example, you may wish to declare that the symbolic identifier V represents a vector.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute of <ci>V</ci> to vector for all affected occurrences of <ci>V</ci>. This avoids having to write <ci type="vector">V</ci>
every time you use the symbol.

More generally, declare can be used to associate expressions with specific content. For example, the declaration

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply><int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>

</apply>
</lambda>

</declare>

associates the symbol F with a new function defined by the lambda construct. Within the scope where the declaration is in effect, the expression

<apply><ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral of U from 0 to a.

The declare element can also be used to change the definition of a function or operator. For example, if the URL http://.../MathML:noncommutplusdescribed
a non-commutative plus operation encoded in Maple syntax, then the declaration

<declare definitionURL="http://.../MathML:noncommutplus" encoding = "Maple V">
<plus/>

</declare>

would indicate that all affected uses of plus are to be interpreted as having that definition of plus.

113

4.2.3 Functions, Operators and Qualifiers

4.2.3.1 Table of Operators

unary arithmetic exp, factorial, abs, conjugate Error: arg Error: real Error: imaginary
unary logical not
unary functional inverse, ident
unary elemtary classical funtional sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan arccosh arccot arccoth arccsc arccsch arcsec arcsech arcsinh arctanh exp, ln, log
unary linear algebra determinant, transpose
unary calculus and vector calculus divergence, grad curl, laplacian
unary set-theoretic card
binary arithmetic quotient, divide, minus, power, rem
binary logical implies equivalent approx
binary set operators setdiff
binary linear algebra vectorproduct scalarproduct outerproduct
n-ary arithmetic plus, times, max, min, gcd
n-ary statistical mean, sdev, variance, median, mode
n-ary logical and, or, xor
n-ary linear algebra selector
n-ary set operator union, intersect
n-ary functional fn, compose
integral, sum, product operator int, sum, product
differential operator diff, partialdiff
quantifier forall, exists

From the point of view of usage, MathML regards functions (for example sin, cos) and operators (for example plus, times) in the same way. MathML
predefined functions and operators are all canonically empty elements.

Note: The csymbol element can be used to construct a user-defined symbol which can be used as a function or operator.

4.2.3.2 MathML predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator within an apply element, in which case they refer to a function
evaluated at a specific value. For example,

<apply><sin/><cn>5</cn></apply>

denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply>
<plus/><sin/><cos/>

</apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The default semantic definition of plus is such
that it infers what kind of operation is intended from the type of its arguments.)

The number of child elements in the apply is defined by the element in the first (i.e. operator) position.

Unary operators are followed by exactly one other child element within the apply.

114

115

Binary operators are followed by exactly two child elements.

N-ary operators are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first. declare elements are not counted when
satisfying the child element count for an apply containing a unary or binary operator element.

Integral, sum, product and differential operators are discussed below in Operators taking Qualifiers section 4.2.4.

4.2.4 Operators taking Qualifiers

4.2.4.1 Table of Qualifiers and Operators taking Qualifiers

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition
operators int, sum, product, root, diff, partialdiff, limit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions which differ from ordinary empty functions only in that they support the use of special
qualifier elements to specify their meaning more fully. They are used in exactly the same way as ordinary operators, except that when they are used
as operators, certain qualifier elements are also permitted to be in the enclosing apply. They always precede the argument if it is present. If more
than one qualifier is present, they appear in the order bvar, lowlimit, uplimit, interval, condition, degree, logbase. A typical example is:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting on integrable functions on the interval
[0,1] might be denoted:

<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>

</apply>
</fn>

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usage of qualifier schema with the
MathML functions taking qualifiers.

int The int function accepts the lowlimit, uplimit, bvar, interval and condition schema. If both lowlimit and uplimit schema are present,
they denote the limits of a definite integral. The domain of integration may alternatively be specified using interval or condition. The bvar
schema signifies the variable of integration. When used with int, each qualifier schema is expected to contain a single child schema;
otherwise an error is generated.

115

diff The diff function accepts the bvar schema. The bvar schema specifies with respect to which variable the derivative is being taken. The bvar
may itself contain a degree schema which is used to specify the order of the derivative, i.e. a first derivative, a second derivative, etc. For
example, the second derivative of f with respect to x is:

<apply><diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>

</apply>
</apply>

partialdiff The partialdiff function accepts zero or more bvar schema. The bvar schema specify with respect to which variables the derivative
is being taken. The bvar elements may themselves contain degree schema which are used to specify the order of the derivative. Variables
specified by multiple bvar elements will be used in order as the variable of differentiation in mixed partials. When used with partialdiff,
the degree schema is expected to contain a single child schema. For example,

<apply>
<partialdiff/>

<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<fn><ci>f</ci></fn>

</apply>
denote the mixed partial (d2 / dxdy)f .

sum, product The sum and product functions accept the bvar, lowlimit, uplimit, interval and condition schema. If both lowlimit and uplimit
schema are present, they denote the limits of the sum/product. The limits may alternatively be specified using the interval or condition
schema. The bvar schema signifies the index variable in the sum or product. A typical example might be:

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<ci>i</ci>

</apply>
</apply>
When used with sum or product, each qualifier schema is expected to contain a single child schema; otherwise an error is generated.

limit The limit function accepts zero or more bvar schema and optional condition and lowlimit schema. A condition may be used to place
constraints on the bvar. The bvar schema denotes the variable with respect to which the limit is being taken. The lowlimit schema denotes
the limit point. When used with limit, the bvar and lowlimit schemata are expected to contain a single child schema; otherwise an error
is generated.

116

117

log The log function accepts only the logbase schema. If present, the logbase schema denotes the base with respect to which the logarithm is
being taken. Otherwise, the log is assumed to be base 10. When used with log, the logbase schema is expected to contain a single child
schema; otherwise an error is generated.

moment The moment function accepts only degree schema. If present, the degree schema denotes the order of the moment. Otherwise, the moment
is assumed to be the first order moment. When used with moment, the degree schema is expected to contain a single child schema; otherwise
an error is generated.

min, max The min and max functions accept a bvar schema in cases where the max or min is being taken over a set of values specified by a
condition schema together with an expression to be evaluated on that set. The min and max functions are unique in that they provide the
only context in which the bvar element is optional when using a condition; if a condition element containing a single variable is given by
itself following a min or max operator, the variable is implicitly assumed to be bound, and the expression to be maximized or minimized is
assumed to be the identity. The min and max elements may also be applied to a list of values in which case no qualifier schemata are used.
For examples of all three usages, see section 4.4.3.4.

forall, exists The universal and existential quantifier operators forall and exists are used conjuction with one or more bvar schemata to represent
simple logical assertions. There are two ways of using the logical quantifier operators. The first usage is for representing a simple, quantified
assertion. For example, the statement ‘there exists x< 9’ would be represented as:

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</apply>
The second usage is for representing implications. Hypotheses are given by a condition element following the bound variables. For
example the statement ‘for all x < 9, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</condition>
<apply><lt/>
<ci> x </ci><cn> 10 </cn>

</apply>
</apply>
Note, in both usages one or more bvar qualifier is mandatory.

4.2.5 Relations

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical relations. Relations are characterized
by the fact that, if an external application were to evaluate them (MathML does not specify how to evaluate expressions), they would typically return
a truth value. By contrast, operators generally return a value of the same type as the operands. For example, the result of evaluating a < b is either
true or false (by contrast, 1 + 2 is again a number).

117

binary relation neq equivalent approx
binary logical relation implies
binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto
n-ary relation eq, leq, lt, geq, gt
n-ary set relation subset, prsubset

Relations are bracketed with their arguments using the apply element in the same way as other functions. In MathML1.0, relational operators were
bracketed using reln. This usage, although still supported, is now deprecated in favour of apply The relational operator element is the first child
element of the apply. Thus, the example from the preceding paragraph is properly marked up as:

<apply>
<lt/>
<ci>a</ci>
<ci>b</ci>

</apply>

It is an error to enclose a relation in an element other than apply or reln.

The number of child elements in the appy is defined by the element in the first (i.e. relation) position.

Unary relations are followed by exactly one other child element within the apply.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first. declare elements are not counted when
satisfying the child element count for an apply containing a unary or binary relation element.

4.2.6 Conditions

condition condition

The condition element is used to define the ‘such that’ construct in mathematical expressions. Condition elements are used in a number of contexts
in MathML. They are used to construct objects like sets and lists by rule instead of by enumeration. They can be used with the forall and exists
operators to form logical expressions. And finally, they can be used in various ways in conjunction with certain operators. For example, they can be
used with and int element to specify domains of integration, or to specify argument lists for operators like min and max.

The condition element is always used together with one or more bvar elements. section 4.4.3.4.

The exact interpretation depends on the context, but generally speaking, the condition element is used to restrict the permissible values of a bound
variable appearing in another expression to those which satisfy the relations contained in the condition. Similarly, when the condition element
contains a set, the values of the bound variables are restricted to that set.

A condition element contains a single child which is typically a reln element, but may also be an apply or a set element. The apply element is
allowed so that several relations can be combined by applying logical operators.

4.2.6.1 Examples

The following encodes ‘there exists x such that x 5 < 3’.

118

119

<apply><exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>

</apply>
<cn>3</cn>

</apply>
</condition>

</apply>

The next example encodes ‘for all x, y such that xy < 1 and yx < x + y, x < Q(y)’.

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<condition>
<apply><and/>
<apply>
<lt/>
<apply>
<power/>
<ci>x</ci>
<ci>y</ci>

</apply>
<cn>1</cn>

</apply>
<apply>
<lt/>
<apply>
<power/>
<ci>y</ci>
<ci>x</ci>

</apply>
<apply>
<plus/>
<ci>y</ci>
<ci>x</ci>

</apply>
</apply>

</apply>
</condition>
<apply><lt/>

<ci> x </ci>

119

<apply>
<fn><ci> x </ci></fn>
<ci> y </ci>

</apply>
</apply>

</apply>

A third example shows the use of quantifiers with condition. The following markup encodes ‘there exists x < 3 such that x2 = 4’.
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>3</cn></apply>

</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>

</apply>
<cn>4</cn>

</apply>
</apply>

4.2.7 Syntax and Semantics

mappings semantics, annotation, annotation-xml

The use of content rather than presentation tagging for mathematics is sometimes referred to as semantic tagging [Buswell1996]. The parse-tree of
a fully bracketed MathML content tagged element structure corresponds directly to the expression-tree of the underlying mathematical expression.
We therefore regard the content tagging itself as encoding the syntax of the mathematical expression. This is, in general, sufficient to obtain some
rendering and even some symbolic manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressions as X + Y , some additional information may be required for applications such as computer
algebra. Are X and Y integers, or functions, etc.? ‘Plus’ represents addition over which field? This additional information is referred to as semantic
mapping. In MathML, this mapping is provided by the semantics, annotation and annotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings. semantics expects a variable
number of child elements. The first is the element (which may itself be a complex element structure) for which this additional semantic information is
being defined. The second and subsequent children, if any, are instances of the elements annotation and/or annotation-xml.

The semantics tags also accepts the definitionURL and encoding attributes for use by external processing applications. One use might be a URI for
a semantic content dictionary, for example. Since the semantic mapping information might in some cases be provided entirely by the definitionURL
attribute, the annotation or annotation-xml elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra encodings, C programs, or whatever
a processing application expects. annotation has an attribute encoding defining the form in use. Note that the content model of annotation is
PCDATA, so care must be taken that the particular encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an XML form of the OpenMath semantics
could be given. Another possible use here is to embed, for example, the presentation tag form of a construct given in content tag form in the first
child element of semantics(or vice versa). annotation-xml has an attribute encoding defining the form in use.

120

121

For example:

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>

</apply>
<annotation encoding="Mathematica">
N[123/456, 39]

</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\ldots$

</annotation>
<annotation encoding="Maple">
evalf(123/456, 39);

</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> ‾ </mo>

</mover>
</mrow>

</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA>...</OMA>

</annotation-xml>
</semantics>

where <OMA>..</OMA> are the elements defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there is some requirement to
process or manipulate the underlying mathematics.

4.2.8 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there are no widely available, non-
proprietary standard semantic mapping schemes. In part to address this need, the goal of the OpenMath effort is to provide a platform-independent,
vendor-neutral standard for the exchange of mathematical objects between applications. Such mathematical objects include semantic mapping
information. The OpenMath group has defined an SGML syntax for the encoding of this information [OpenMath1996]. This element set could provide
the basis of one annotation-xml element set.

An attraction of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression together with its semantic annotations
can be validated using XML parsers.

121

4.2.9 MathML element types

MathML functions, operators, and relations can all be thought of as mathematical functions if viewed in a sufficiently abstract way. For example, the
standard addition operator can be regarded as a function mapping pairs of real numbers to real numbers. Similarly, a relation can be thought of as
a function from some space of ordered pairs into the set of values true, false. To be mathematically meaningful, the domain and range of a function
must be precisely specified. In practical terms, this means that functions only make sense when applied to certain kinds of operands. For example,
thinking of the standard addition operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathML content markup seeks to encode
mathematical expressions in a way that can be unambiguously evaluated, it is no surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing applications about the kinds of
arguments expected by the MathML content elements denoting functions, operators and relations. These operand types are defined in a dictionary
of Default Semantic Bindings for Content Elements given in appendix D. For example, the MathML Content dictionary specifies that for real scalar
arguments the plus operator is the standard commutative addition operator over a field. Elements such as cn and ci have type attributes with default
values of real. Thus some processors will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism for typing arguments, a MathML
compliant processor is not required to do any type checking. In other words, a MathML processor will not generate errors if argument types are
incorrect. If the processor is a computer algebra system, it may be unable to evaluate an expression, but no MathML error is generated.

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values

Content element attributes are all of the type CDATA, that is, any character string will be accepted as valid. In addition, each attribute has a list of
predefined values, which a content processor is expected to recognize and process. The reason that the attribute values are not formally restricted
to the list of predefined values is to allow for extension. A processor encountering a value (not in the predefined list) which it does not recognize may
validly process it as the default value for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. Default is 10

4.3.2.2 closure

interval indicates closure of the interval. Predefined values: open, closed, open-closed, closed-open. default is closed

122

123

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator element points to an external definition of the semantics of the symbol or construct being declared.
The value is a URL or URI which should point to some kind of definition. This definition overrides the MathML default semantics. At present,
MathML does not specify the format in which external semantic definitions should be given. In particular, there is no requirement that the
target of the URI be loadable and parsable.An external definition could, for example, define the semantics in human-readable form. Ideally,
in most situations the definition pointed to by the definitionURL attribute would be some standard, machine-readable format. However,
there are several reasons why MathML does not require such a format. First, no such format currently exists. There are several projects
underway to develop and implement standard semantic encoding formats, most notably the OpenMath effort. But by nature, the development
of a comprehensive system of semantic encoding is a very large enterprise, and while much work has been done, much additional work
remains. Therefore, even though the definitionURL is designed and intended for use with a formal semantic encoding language such
as OpenMath, it is premature to require any one particular format. Another reason for leaving the format of the definitionURL attribute
unspecified is that there will always be situations where some non-standard format is preferable. This is particularly true in situations where
authors are describing new ideas. It is anticipated that in the near term, there will be a variety of renderer-dependent implementations
of the definitionURL attribute. For example, a translation tool might simply prompt the user with the specified definition in situations
where the proper semantics have been overridden, and in this case, human-readable definitions will be most useful. Other software may
utilize OpenMath encodings. Still other software may use proprietary encodings, or look for definitions in any of several formats. As a
consequence, authors need to be aware that there is no guarantee a generic renderer will be able to take advantage of information pointed
to by the definitionURL attribute. Of course, when widely-accepted standardized semantic encodings are available, the definitions pointed
to can be replaced without modifying the original document. However, this is likely to be labor intensive. There is no default value for the
definitionURL attribute, i.e. the semantics are defined within the MathML fragment, and/or by the MathML default semantics.

4.3.2.4 encoding

annotation, annotation-xml, csymbol, semantics, all operator elements indicates the encoding of the annotation, or in the case of csymbol ,
semantics and operator elements, the syntax of the target referred to by definitionURL. Predefined values are MathML-Presentation,
MathML-Content. Other typical values: TeX, OpenMath. default is "", i.e. unspecified.

4.3.2.5 <nargs>

declare indicates number of arguments for function declarations. Pre-defined values: nary, any numeric string. default is 1

4.3.2.6 <occurrence>

declare indicates occurrence for operator declarations. Pre-defined values: prefix, infix, function-model. default is function-model

4.3.2.7 <order>

list indicates ordering on the list. Predefined values: lexicographic, numeric. default is numeric

4.3.2.8 <scope>

declare indicates scope of applicability of the declaration. Pre-defined values: local, global.
• local means the containing MathML element.
• global means the containing math element.

123

default is local. At present, declarations cannot affect anything outside of the containing math element. Ideally, one would like to make
document-wide declarations by setting the value of the scope attribute to be global-document. However, the proper mechanism for
document-wide declarations very much depends on details of the way in which XML will be embedded in HTML, future XML style sheet
mechanisms, and the underlying Document Object Model. Since these supporting technologies are still in flux at present, the MathML
specification does not include global-document as a pre-defined value of the scope attribute. It is anticipated, however, that this issue will
be revisited in future revisions of MathML as supporting technologies stabilize. In the near term, MathML implementors that wish to simulate
the effect of a document-wide declaration are encouraged to pre-process documents in order to distribute document-wide declarations to
each individual math element in the document.

4.3.2.9 <type>

cn indicates type of the number. Predefined values: integer, rational, real, float, complex, complex-polar, complex-cartesian, constant.
default is real. Notes: Each data type implies that the data adheres to certain formating conventions, detailed below. If the data fails to
conform to the expected format, an error is generated. Details of the individual formats are: real: A real number is presented in decimal
notation. Decimal notation consists of an optional sign (‘+’ or ‘-’) followed by a string of digits possibly separated into an integer and a
fractional part by a ‘decimal point’. Some examples are 0.3, 1, and -31.56. If a different base is specified, then the digits are interpreted as
being digits computed to that base. A real number may also be presented in scientific notation. Such numbers have two parts (a mantissa
and an exponent) separated by e. The first part is a real number while the second part is an integer exponent indicating a power of the base.
For example, 12.3e5 represents 12.3 times 10^5. integer: An integer is represented by an optional sign followed by a string of 1 or more
‘digits’. What a ‘digit’ is depends on the base attribute. If base is present, it specifies the base for the digit encoding, and it specifies it base
ten. Thus base=’16’ specifies a hex encoding. When base > 10, letters are added in alphabetical order as digits. The legitimate values for
base are therefore between 2 and 36. rational: A rational number is two integers separated by the <sep/> element. If base is present, it
specifies the base used for the digit encoding of both integers. complex-cartesian: A complex number is of the form two real point numbers
separated by <sep/>. complex-polar: A complex number is specified in the form of a magnitude and an angle (in radians). The raw data is
in the form of two real numbers separated by <sep/>. constant: The constant type is used to denote named constants. For example, an
instance of <cn type="constant">π</cn>should be interpreted as having the semantics of the mathematical constant Pi. The data for
a constant cn tag may be one of the following common constants:

Symbol Value
π The usual π of trigonometry: approximately 3.141592653...
ⅇ (or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
ⅈ (or ⅈ) Square root of -1.
γ Euler’s constant: approximately 0.5772156649...
∞ (or &infty;) Infinity. Proper interpretation varies with context
&true; the logical constant ‘true’
&false; the logical constant ‘false’
&NotANumber; (or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined values: integer, rational, real, float, complex, complex-polar, complex-cartesian, constant, any
content element name. The meaning of the various attribute values is the same as that listed above for the cn element. default is "" , i.e.
unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. default is ci , i.e. a generic identifier
set indicates type of the set. Predefined values: normal, multiset. multiset indicates that repetitions are allowed. default is normal.
tendsto indicates the direction from which the limiting value is approached. Predefined values: above, below, two-sided. default is above.

4.3.3 Attributes Modifying Content Markup Rendering

124

125

4.3.3.1 <type>

The type attribute, in addition to conveying semantic information, can be interpreted to provide rendering information. For example in

<ci type="vector">V</ci>

a renderer could display a bold V for the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes which can be used to modify the rendering of the markup.
• class
• style
• id
• other

The class, style and id attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in section 2.3.4.

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you can always work out a presentation
form. When an author’s main goal is to mark up re-usable, evaluatable mathematical expressions, the exact rendering of the expression is probably
not critical, provided that it is easily understandable. However, when an author’s goal is more along the lines of providing enough additional semantic
information to make a document more accessible by facilitating better visual rendering, voice rendering, or specialized processing, controlling the
exact notation used becomes more of an issue.

MathML elements accept an attribute other (see section 7.2.3) which can be used to specify things not specifically documented in MathML. On
content tags, this attribute can be used by an author to express a preference between equivalent forms for a particular content element construct,
where the selection of the presentation has nothing to do with the semantics. Examples might be
• inline or displayed equations
• script style fractions
• use of x with a dot for a derivative over dx/dt
Thus, if a particular renderer recognized a display attribute to select between script style and display style fractions, an author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering 1/x is preferred.

The information provided in the other attribute is intended for use by specific renderers or processors, and therefore, the permitted values are
determined by the renderer being used. It is legal for a renderer to ignore this information. This might be intentional, in the case of a publisher
imposing a house style, or simply because the renderer does not understand them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories which broadly reflect the area of mathematics
from which they come, and also the grouping in the MathML DTD. There is no linguistic difference in MathML between operators and functions. Their
separation here and in the DTD is for reasons of historical usage.

When working with the content elements, it can be useful to keep in mind the following.

125

• The role of the content elements is analogous to data entry in a mathematical system. The information that is provided is there to facilitate
the successful parsing of an expression as the intended mathematical object by a receiving application.

• MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They do not ‘evaluate’in a browser
and any ‘action’ that is ultimately taken on those objects is determined entirely by the receiving mathematical application. For example,
editing programs and applications geared to computation for the lower grades would typically leave 3 + 4 as is, while computational systems
targeting a more advanced audience might evaluate this to as 7. Similarly, some computational systems might evaluate sin(0) to 0 while
others would leave it unevaluated. Yet other computational systems might be unable to deal with pure symbolic expressions sin(x) and
may even regard it as a data entry error. None of this has any bearing on the correctness of the original MathML representation. Where
evaluation is mentioned at all in the descriptions below, it is merely to help clarify the meaning of the underlying operation.

• Apart from the instances where there is an explicit interaction with presentation tagging, there is no required rendering (visual or aural) –
only a suggested default. As such, the presentations that are included in this section are merely to help communicate to the reader the
intended mathematical meaning by association with the same expression written in a more traditional notation.

The available content elements are:

• Token Elements
– cn
– ci
– csymbol (MathML 2.0)

• Basic Content Elements
– apply
– reln (deprecated)
– fn (deprecated for externally defined functions)
– interval
– inverse
– sep
– condition
– declare
– lambda
– compose
– ident

• Arithmetic, Algebra and Logic
– quotient
– exp
– factorial
– divide
– max and min
– minus
– plus
– power
– rem
– times
– root
– gcd
– and
– or
– xor
– not

126

127

– implies
– forall
– exists
– abs
– conjugate
– arg (MathML 2.0)
– real (MathML 2.0)
– imaginary (MathML 2.0)

• Relations
– eq
– neq
– gt
– lt
– geq
– leq
– equivalent (MathML 2.0)
– approx (MathML 2.0)

• Calculus and Vector Calculus
– int
– diff
– partialdiff
– lowlimit
– uplimit
– bvar
– degree
– divergence (MathML 2.0)
– grad (MathML 2.0)
– curl (MathML 2.0)
– laplacian (MathML 2.0)

• Theory of Sets
– set
– list
– union
– intersect
– in
– notin
– subset
– prsubset
– notsubset
– notprsubset
– setdiff
– card (MathML 2.0)

• Sequences and Series
– sum
– product
– limit
– tendsto

127

• Elementary classical functions
– exp
– ln
– log
– sin
– cos
– tan
– sec
– csc
– cot
– sinh
– cosh
– tanh
– sech
– csch
– coth
– arcsin
– arccos
– arctan
– arccosh
– arccot
– arccoth
– arccsc
– arccsch
– arcsec
– arcsech
– arcsinh
– arctanh

• Statistics
– mean
– sdev
– variance
– median
– mode
– moment

• Linear Algebra
– vector
– matrix
– matrixrow
– determinant
– transpose
– selector
– vectorproduct (MathML 2.0)
– scalarproduct (MathML 2.0)
– outerproduct (MathML 2.0)

• Semantic Mapping Elements
– annotation

128

129

– semantics
– annotation-xml

4.4.1 Token Elements

4.4.1.1 <cn>

Discussion

The cn element is used to specify actual numerical constants. The content model must provide sufficient information that a number may be entered as
data into a computational system. By default, it represents a signed real number in base 10. Thus, the content normally consists of PCDATA restricted
to a sign, a string of decimal digits and possibly a decimal point, or alternatively one of the predefined symbolic constants such as π.

The cn element uses the attribute type to represent other types of numbers such as integer, rational, real, complex etc. and base to specify the
numerical base.

In addition to simple PCDATA, cn accepts as content PCDATA separated by the (empty) element sep. This determines the different parts needed to
construct a rational or complex-cartesian number.

Alternative input notations for numbers are possible, but must be explicitly defined by using the definitionURL and encoding attributes to refer to a
written specification of how a <sep/> separated sequence of real numbers is to be interpreted.

Attributes

All attributes are CDATA:

• type: real, integer, rational, complex-cartesian, complex-polar, constant
• base: number (CDATA for XML DTD) between 2 and 36.
• definitionURL: URI pointing to an alternative definition.
• encoding: syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>
<cn type="integer"> 12345 </cn>
<cn type="integer" base="16"> AB3 </cn>
<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

Default Rendering

By default, contiguous blocks of PCDATA contained in cn elements should render as if it were wrapped in an mn presentation element. Similarly,
presentation markup contained in a cn element should render as it normally would. A mixture of PCDATA and presentation markup should render as
if it were contained wrapped in an mrowelement, with contiguous blocks of PCDATA wrapped in mn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receiving applications are free to
make use of a number in the manner it normally handles numerical data. Some systems might simplify the rational number 12342/2342342 to
6171/1171171 while pure floating point based systems might approximate this as 0.5269085385e-2. All numbers might be re-expressed in base 10.
The role of MathML is simply to record enough information about the mathematical object and its structure so that it may be properly parsed.

129

The following renderings of the above MathML expressions are included both to help clarify the meaning of the corresponding MathML encoding and
as suggestions for authors of rendering applications. In each case, no mathematical evaluation is intended or implied.
• 12345.7
• 12345
• AB3 16

• 12342 / 2342342
• 12.3 + 5 i
• Polar(2 , 3.1415)
• π

4.4.1.2 <ci>

Discussion

The ci element is used to name an identifier in a MathML expression (for example a variable). Such names are used to identify mathematical objects.
By default they are assumed to represent complex scalars. The ci element may contain arbitrary presentation markup in its content (see chapter 3)
so that its presentation as a symbol can be very elaborate.

The ci element uses the type attribute to specify the type of object that it represents. Valid types include integer, rational, real, float, complex,
complex-polar, complex-cartesian, constant, and more generally, any of the names of the MathML container elements (e.g. vector) or their type
values. The definitionURL and encoding attributes can be used to extend the definition of ci to include other types. For example, a more advanced
use might require a complex-vector.

Examples

1. <ci> x </ci>
2. <ci type="vector"> V </ci>
3. <ci>

<msub>
<mi>x</mi>
<mi>a</mi>

</msub>
</ci>

Default Rendering

If the content of a ci element is tagged using presentation tags, that presentation is used. If no such tagging is supplied then the PCDATA content
would typically be rendered as if it were the content of an mi element. A renderer may wish to make use of the value of the type attribute to improve
on this. For example, a symbol of type vector might be rendered using a bold face. Typical renderings of the above symbols are:
1. x
2. V
3. xi

4.4.1.3 csymbol

Discussion

The csymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. not in the core MathML content).
The element can then be used in a MathML expression as for example an operator or constant. Attributes are used to give the syntax and location of
the external definition of the symbol semantics.

130

131

Attributes

All attributes are CDATA:

• definitionURL: pointer to external definition of the semantics of the symbol. MathML does not specify a particular syntax in which this
definition should be written.

• encoding: gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this attribute to determine
whether it is able to process the target of the definitionURL. This syntax might be text, or a formal syntax such as OpenMath.

Examples

<!-- reference to OpenMath formal syntax definition of Bessel function -->
<apply>
<csymbol encoding="OpenMath" definitionURL="www.openmath.org/cds/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>
<ci>y</ci>

</apply>

<!-- reference to human readable text description of Boltzmann’s constant -->
<csymbol encoding="text" definitionURL="www.uni.edu/universalconstants/Boltzmann.htm">
k

</csymbol>

Default Rendering

By default, a contiguous block of PCDATA contained in a csymbol element should render as if it were wrapped in an mo presentation element. Similarly,
presentation markup contained in a csymbol element should render as it normally would. A mixture of PCDATA and presentation markup should render
as if it were contained wrapped in an mrow element, with contiguous blocks of PCDATA wrapped in mo elements. The examples above would render by
default as

• J0(y)
• k

As csymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded content MathML elements within
the csymbol element.

4.4.2 Basic Content Elements

4.4.2.1 <apply>

Discussion

The apply element allows a function or operator to be applied to its arguments. Nearly all expression construction in MathML content markup is
carried out by applying operators or functions to arguments. The first child of apply is the operator, to be applied, with the other child elements as
arguments.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instance of its use. The expression
constructed by applying a function to 0 or more arguments is always an element from the range of the function.

Proper usage depends on the operator that is being applied. For example, the plus operator may have zero or more arguments. while the minus
operator requires one or two arguments to be properly formed.

131

If the object being applied as a function is not already one of the elements known to be a function (such as fn, sin or plus) then it is treated as if it
were the contents of an fn element.

Some operators such as diff and int make use of ‘named’ arguments. These special arguments are elements that appear as children of the
apply element and identify ‘parameters’ such as the variable of differentiation or the domain of integration. These elements are discussed further in
section 4.2.4.

Examples

1. <apply><factorial/>
<cn>3</cn>

</apply>
2. <apply><plus/>

<cn>3</cn>
<cn>4</cn>

</apply>
3. <apply><sin/>

<ci>x</ci>
</apply>

Default Rendering

A mathematical system which has been passed an apply element is free to do with it whatever it normally does with such mathematical data. It
may be that no rendering is involved (e.g. a syntax validator), or that the ‘function application’ is evaluated and that only the result is rendered (e.g.
sin(0)→ 0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choice often depends on the function
or operator being applied. Applications of basic operations such as plus are generally presented using an infix notation while applications of sin
would use a more traditional functional notation such as sin (x). Consult the ‘default rendering’ for the operator being applied.

Applications of user-defined functions (see csymbol, fn) which are not evaluated by the receiving or rendering application would typically render
using a traditional functional notation unless an alternative presentation is specified using the semantics tag.

4.4.2.2 <reln>

Discussion

The reln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manner exactly analogous to the
use of apply. This usage is deprecated in MathML 2.0 in favour of the more generally usable apply.

The first child of reln is the relational operator, to be applied, with the other child elements as arguments.

See section 4.2.5 for further details.

Examples and Usage

132

133

<apply><eq/>
<ci> a </ci>
<ci> b </ci>

</apply>
<apply><lt/>

<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

1. a = b
2. a < b

4.4.2.3 <fn>

Discussion

The fn element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the same manner as if it were a
pre-defined function such as sin or plus.

In MathML1.0, fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions. This usage is now deprecated
in favour of the more generally applicable csymbol element. (New functions may also be introduced by using declare in conjunction with a lambda
expression.)

Examples

1. <fn><ci> L </ci> </fn>
2. <apply>

<fn>
<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>

</apply>
</fn>
<ci>z</ci>

</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments such as +parentheses to clarify the
meaning.

1. L
2. (f + g)z

133

4.4.2.4 <interval>

Discussion

The interval element is used to represent simple mathematical intervals of the real number line. It takes an attribute closure which can take on
any of the values open, closed, open-closed, or closed-open, with a default value of closed.

More general domains are constructed by using the condition and bvar elements to bind free variables to constraints.

The interval element expects either two child elements which evaluate to real numbers or one child element which is a condition defining the
interval. interval accepts a closure attribute which specifies if the interval is open, closed, or half open.

Examples

1. <interval>
<ci> a </ci>
<ci> b </ci>

</interval>
2. <interval closure="open-closed">

<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

a, b
1. (a, b]

4.4.2.5 <inverse>

Discussion

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of that function. (See also the
discussion of inverse in section 4.4.2.5). As with other MathML functions, inverse may either be applied to arguments, or it may appear alone, in
which case it represents an abstract inversion operator acting on other functions.

A typical use of the inverse element is in an HTML document discussing a number of alternative definitions for a particular function so that there is
a need to write and define f (−1)(x).

To associate a particular definition with f (−1), use the definitionURL and encoding attributes.

Examples

134

135

1. <apply><inverse/>
<ci> f </ci>

</apply>
2. <apply><inverse definitionURL="../MyDefinition.htm" encoding = "text"/>

<ci> f </ci>
</apply>

3. <apply>
<apply><inverse/>

<ci type="matrix"> a </ci>
</apply>
<ci> A </ci>

</apply>

Default Rendering

The default rendering for a functional inverse makes use of a parenthesized exponent as in f (−1)(x).

4.4.2.6 <sep/>

Discussion

The sep element is to separate PCDATA into separate tokens for parsing the contents of the various specialized forms of the cn elements. For example
sep is used when specifying the real and imaginary parts of a complex number (see section 4.4.1). If it occurs between MathML elements, it is a
MathML error.

Examples

<cn type="complex"> 3 <sep/> 4 </cn>

Default Rendering

The sep element is not directly rendered. (see section 4.4.1)

4.4.2.7 <condition>

Discussion

The condition element is used to place a condition on one or more free variables or identifiers. The conditions may be specified in terms of relations
that are to be satisfied by the variables, including general relationships such as set membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Condition contains either a single reln or
apply element; the apply element is used to construct compound conditions. For example, it is used below to describe the set of all x such that x <
5. See the discussion on sets in section 4.4.6.

See section 4.2.6 for further details.

135

Examples

1. <condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>

</condition>
2. <condition>

<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>

3. <apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>

</apply>
</apply>

</apply>

Default Rendering

1. x ∈ R

2. x > 0 ∧ x < 1

3. maxx{x− sinx | 0 < x < 1 }

4.4.2.8 <declare>

Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific mathematical object. The second
is to establish an association between a ‘name’ and an object. Once a declaration is in effect, the ‘name’ object acquires the new attribute settings,
and (if the second object is present) all the properties of the associated object.

The various attributes of the declare element assign properties to the object being declared or determine where the declaration is in effect.

136

137

By default, the scope of a declaration is ‘local’ to the surrounding container element. Setting the value of the scope attribute to global extends the
scope of the declaration to the enclosing math element. As discussed in section 4.3.2.8, MathML contains no provision for making document-wide
declarations at present, though it is anticipated that this capability will be added in future revisions of MathML, when supporting technologies become
available. declare takes one or two children. The first, mandatory, child is a ci containing the identifier being declared.

<declare type="vector"> <ci> V </ci> </declare>

The second, optional, child is a constructor initialising the variable

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>

</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declaration is fn, the second child
(constructor) must be an element equivalent to an fn element (This would include actual fn elements, lambdaelements and any of the defined
function in the basic set of content tags.) If no type is specified in the declaration then the type attribute of the declared name is set to the type of the
constructor (second child) of the declaration. The type attribute of the declaration can be especially useful in the special case of the second element
being a semantic tag.

Attributes

All attributes are CDATA:

type defines the MathML element type of the identifier declared.
scope defines the scope of application of the declaration.
nargs number of arguments for function declarations.
occurrence describes operator usage as prefix, infix or function-model indications.
definitionURL URI pointing to detailed semantics of the function.
encoding syntax of the detailed semantics of the function.

Examples

The declaration

<declare type="fn" nargs="2" scope="local">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>

</apply>
</declare>

declares f to be a two-variable function with the property that f (x,y) = (F + G)(x,y).

The declaration

137

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><ln/>
<ci> x </ci>

</apply>
</lambda>

</declare>

associates the name J with a one-variable function defined so that J(x) = ln y. (Note that because of the type attribute of the declare element, the
second argument must be something of type fn, namely a known function like sin, an fn construct, or a lambda construct.)

The type attribute on the declaration is only necessary if if the type cannot be inferred from the type of the second argument.

Even when a declaration is in effect it is still possible to override attributes values selectively as in <ci type="integer"> V </ci>. This capability
is needed in order to write statements of the form ‘Let S be a member of S’.

Default Rendering

Since the declare construct is not directly rendered, most declarations are likely to be invisible to a reader. However, declarations can produce quite
different effects in an application which evaluates or manipulates MathML content. While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>

</vector>
</declare>

is active the symbol v acquires all the properties of the vector, and even its dimension and components have meaningful values. This may affect how
v is rendered by some applications, as well as how it is treated mathematically.

4.4.2.9 <lambda>

Discussion

The lambda element is used to construct a user-defined function from an expression and one or more free variables. The lambda construct with n
internal variables takes n+1 children. The first n children identify the variables which are used as placeholders in the last child for actual parameter
values.

See section 4.2.2 for further details.

Examples

The following markup represents λ(x, sin x+1).

138

139

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

The following examples constructs a one argument function in which the argument b specifies the upper bound of a specific definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>
</lambda>

Such constructs are often used conjunction with declare to construct new functions.

Default Rendering

λ(x, f(x))

4.4.2.10 <compose/>

Discussion

The <compose/> element represents the function composition operator. Note that MathML makes no assumption about the domain and range of the
constituent functions in a composition; the domain of the resulting composition may be empty.

To override the default semantics for the <compose/>element, or to associate a more specific definition for function composition, use the defini-
tionURL and encoding attributes.

See section 4.2.2 for further details.

139

Examples

The following markup represents f ◦ g.

<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

The following markup represents f ◦ g ◦ h.

<apply><compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>

</apply>

The following examples both represent (f ◦ g)(x).

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>
<ci> x </ci>

</apply>

<apply><fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

f ◦ g

4.4.2.11 <ident/>

Discussion

The ident element represents the identity function. MathML makes no assumption about the function space in which the identity function resides.
That is, proper interpretation of the domain (and hence range) of the identity function depends on the context in which it is used.

To override the default semantics for the <ident/> element, or to associate a more specific definition, use the definitionURL and encoding attributes.

See section 4.2.2 for further details.

140

141

Examples

The following markup encoded the expression f ◦ f−1 = id.

<apply><eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>

</apply>
</apply>
<ident/>

</apply>

Default Rendering

id

4.4.3 Arithmetic, Algebra and Logic

4.4.3.1 <quotient/>

Discussion

The quotient element is the operator used for division modulo a particular base. When the quotient operator is applied to integer arguments a and
b, the result is the ‘quotient of a divided by b’. That is, quotient returns the unique integer, q such that a = q b + r. (In common usage, q is called the
quotient and r is the remainder.)

The quotient element takes the attribute definitionURL and encoding attributes if it is desired to override the default semantics.

The quotient element is a binary arithmetic operator.

See section 4.2.3 for further details.

Example

<apply><quotient/>
<ci> a </ci>
<ci> b </ci>

</apply>

Various mathematical applications will use this data in different ways. Editing applications might choose an image such as shown below, while a
computationally based application would evaluate it to 2 when a=13 and b=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

1. quotient of a divided by b
2. integer part of a/b
3. ba/bc

141

4.4.3.2 <factorial/>

Discussion

The factorial element is used to construct factorials.

The factorial element takes the e definitionURL and encoding attributes which may be used to override the default semantics.

The factorial element is a unary arithmetic operator.

See section 4.2.3 for further details.

Example

<apply><factorial/>
<ci> n </ci>

</apply>

If this were evaluated at n = 5 it would evaluate to 120.

Default Rendering

n!

4.4.3.3 <divide/>

Discussion

The divide element is the division operator.

The divide element takes the definitionURL and encoding attributes which may be used to override the default semantics.

The divide element is a binary arithmetic operator. See section 4.2.3 for further details.

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications may attempt to evaluate and simplify
the value. For example, when a=5 and b=2 some mathematical applications may evaluate this to 2.5 while others will treat is as a rational number.

Default Rendering

a/b

4.4.3.4 <max/> and <min/>

Discussion

The elements max and min are used to compare the values of their arguments. They return the maximum and minimum of these values respectively.

The max and min elements take the definitionURL and encoding attributes which can be used to override the default semantics.

The max and min elements are n-ary arithmetic operators. See section 4.2.3 for further details.

142

143

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply><max/>
<ci> a </ci>
<ci> b </ci>

</apply>

The elements to be compared may also be described using bound variables with a condition element and an expression to be maximised, as in:

<apply><min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>

</condition>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

Note that the bound variable may be implicit:

<apply><max/>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>

</apply>
</condition>

</apply>

Default Rendering

1. max{a, b}
2. minx{x2 | x /∈ B }
3. max{x ∈ B ∧ x /∈ C }

4.4.3.5 <minus/>

Discussion

The minus element is the subtraction operator.

The minus element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The minus element can be used as a unary arithmetic operator (e.g. to represent -x) or as a binary arithmetic operator (e.g. to represent x-y). See
section 4.2.3 for further details.

143

Example

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated at x=5 and y=2 it would yield 3.

Default Rendering

x - y

4.4.3.6 <plus/>

Discussion

The plus element is the addition operator.

The plus element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The plus element is an n-ary arithemtic operator. See section 4.2.3 for further details.

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>

</apply>

If this were evaluated at x = 5, y = 2 and z = 1 it would yield 8.

Default Rendering

x + y + z

4.4.3.7 <power/>

Discussion

The power element is generic exponentiation operator. That is, when applied to arguments a and b, it returns the value the ‘a to the power of b’.

The power element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The power element is an binary arithmetic operator. See section 4.2.3 for further details.

144

145

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated at x= 5 it would yield 125.

Default Rendering

x3

4.4.3.8 <rem/>

Discussion

The rem element is the operator which returns the ‘remainder’ of a division modulo a particular base. When the rem operator is applied to integer
arguments a and b, the result is the ‘remainder of a divided by b’. That is, rem returns the unique integer, r such that a = q b + r, where r < q. (In
common usage, q is called the quotient and r is the remainder.)

The rem element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The rem element is a binary arithmetic operator. See section 4.2.3 for further details.

Example

<apply><rem/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated at a = 15 and b = 8 it would yield 7.

Default Rendering

a mod b

4.4.3.9 <times/>

Discussion

The times element is the multiplication operator.

times takes the definitionURL and encoding attributes which can be used to override the default semantics.

Example

<apply> <times/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated at a = 5.5 and b = 3 it would yield 16.5.

145

Default Rendering

a b

4.4.3.10 <root/>

Discussion

The root element is used to construct roots. The kind of root to be taken is specified by a degree element, which should be given as the first child of
the apply element enclosing the root element. Thus, square roots correspond to the case where degree contains the value 2, cube roots correspond
to 3, and so on. If no degree is present, a default value of 2 is used.

The root element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The root element is an operator taking qualifiers. See section 4.2.4 for further details.

Example

The nth root of a is is given by

<apply> <root/>
<degree><ci> n </ci></degree>
<ci> a </ci>

</apply>

Default Rendering
√
na

4.4.3.11 <gcd/>

Discussion

The gcd element is used to denote the greatest common divisor of its arguments.

The gcd takes the definitionURL and encoding attributes which can be used to override the default semantics.

The gcd element is an n-ary operator. See section 4.2.3 for further details.

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated at a = 15, b = 21, c = 48 it would yield 3.

Default Rendering

gcd(a, b, c)

146

147

4.4.3.12 <and/>

Discussion

The and element is the boolean ‘and’ operator.

The and element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The and element is an n-ary logical operator. See section 4.2.3 for further details.

Example

<apply><and/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated and both a and b had truth values of true, then the value would be true.

Default Rendering

a ∧ b

4.4.3.13 <or/>

Discussion

The or element is the boolean ‘or’ operator.

The or element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The or element is an n-ary logical operator. See section 4.2.3 for further details.

Example

<apply><or/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a ∨ b

4.4.3.14 <xor/>

Discussion

The xor element is the boolean ‘exclusive or’ operator.

xor takes the definitionURL and encoding attributes which can be used to override the default semantics.

The xor element is an n-ary logical operator. See section 4.2.3 for further details.

147

Example

<apply><xor/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a xor b

4.4.3.15 <not/>

The not operator is the boolean ‘not’ operator.

The not element takes the attribute definitionURL and encoding attributes which can be used to override the default semantics.

The not element is an unary logical operator. See section 4.2.3 for further details.

Example

<apply><not/>
<ci> a </ci>

</apply>

Default Rendering

a¬b

4.4.3.16 <implies/>

Discussion

The implies element is the boolean ‘implies’ relational operator.

The implies element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The implies element is a binary logical operator. See section 4.2.5 for further details.

Example

<apply><implies/>
<ci> A </ci>
<ci> B </ci>

</apply>

Mathematical applications designed for the evaluation of such expressions would evaluate this to true when a = false and b = true.

Default Rendering

A⇒ B

148

149

4.4.3.17 <forall/>

The forall element represents the universal quantifier of logic. It must used in conjunction with one or more bound variables, an optional condition
element, and an assertion, which may either take the form of an apply or reln element.

The forall element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The forall element is an quantifier. See section 4.2.3 for further details.

Examples

The first example encodes the sense of the expression ‘for all x, x - x = 0’.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

A more involved example, making use of an optional condition element encodes the sense of the expression: for all p, q in Q such that p < q, p < q2.

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><ci type="set"> Q </ci></apply>
<apply><in/><ci> q </ci><ci type="set"> Q </ci></apply>
<apply><lt/><ci> p </ci><ci> q </ci></apply>

</apply>
</condition>
<apply><lt/>

<ci> p </ci>
<apply>

<power/>
<ci> q </ci>
<cn> 2 </cn>

</apply>
</apply>

</apply>

A final example, utilizing both the forall and exists quantifiers, encodes the sense of the expression: for all n > 0, n in Z, there exist x, y, z in Z
such that xn + yn = zn.

149

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> y </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> z </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>

</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>

</apply>
</apply>

</apply>

Default Rendering

1. for all
2. ∀

4.4.3.18 <exists/>

The exists element represents the existential quantifier of logic. It must used in conjuction with one or more bound variables, an optional condition
element, and an assertion, which may either take the form of an apply or reln element.

The exists element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The exists element is an quantifier. See section 4.2.3 for further details.

150

151

Example

The following example encodes the sense of the expression ‘there exists an x such that f (x) = 0’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

Default Rendering

1. there exists
2. ∃

4.4.3.19 <abs/>

The abs element represents the absolute value of a real quantity or the modulus of a complex quantity.

The abs element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The abs element is a unary arithmetic operator. See section 4.2.3 for further details.

Example

The following example encodes the absolute value of x.

<apply>
<abs/>
<ci> x </ci>

</apply>

Default Rendering

|x|

4.4.3.20 <conjugate/>

The conjugate element represents the complex conjugate of a complex quantity.

The conjugate element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The conjugate element is a unary arithmetic operator. See section 4.2.3 for further details.

151

Example

The following example encodes the conjugate of x + iy.

<apply><conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

x+ iy

Default Rendering

¯x+ iy

4.4.3.21 arg

The argoperator

Note: (introduced in MathML 2.0)

gives the "argument" of a complex number, that is the angle (in radians) it makes with the positive real axis. Real negative numbers have arg (+ pi).

The arg element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The arg element is a unary arithmetic operator. See the section 4.2.3 for further details.

Example

The following example encodes the argument operation on x + i y.

<apply><arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

arg(x+ iy)

152

153

4.4.3.22 real

The realoperator
Note: (introduced in MathML 2.0)
gives the real part of a complex number, that is the x component in x + i y

The real element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The real element is a unary arithmetic operator. See the section 4.2.3 for further details.

Example

The following example encodes the real operation on x + i y.
<apply><real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML -aware evaluation system, would return the x component, suitably encoded.

Default Rendering

Real(x+ iy)

4.4.3.23 imaginary

The imaginaryoperator
Note: (introduced in MathML 2.0)
gives the imaginary part of a complex number, that is the y component in x + i y

The imaginary element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The imaginary element is a unary arithmetic operator. See the section 4.2.3 for further details.

Example

The following example encodes the imaginary operation on x + i y.
<apply><imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

153

A MathML-aware evaluation system would return the y component, suitably encoded.

Default Rendering

Imaginary(x+ iy)

4.4.4 Relations

4.4.4.1 <eq/>

Discussion

The eq element is the ‘equals’ relational operator.

The eq element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The equals element is an n-ary relation. See the section 4.2.4 for further details.

Example

<apply><eq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value ‘false’.

Default Rendering

a = b

4.4.4.2 <neq/>

Discussion

The neq element is the ‘not equal to’ relational operator.

neq takes the definitionURL and encoding attributes which can be used to override the default semantics.

The neq element is an binary relation. See section 4.2.5 for further details.

Example

<apply><neq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value ‘true’.

Default Rendering

A 6= B

154

155

4.4.4.3 <gt/>

Discussion

The gt element is the ‘greater than’ relational operator.

The gt element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The gt element is an n-ary relation. See section 4.2.5 for further details.

Example

<apply><gt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value ‘false’.

Default Rendering

a > b

4.4.4.4 <lt/>

Discussion

The lt element is the ‘less than’ relational operator.

The lt element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The lt element is an n-ary relation. See section 4.2.5 for further details.

Example

<apply><lt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value ‘true’.

Default Rendering

a < b

4.4.4.5 <geq/>

Discussion

The geq element is the ‘greater than or equal’ relational operator.

The geq element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The geq element is an n-ary relation. See section 4.2.5 for further details.

155

Example

<apply><geq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested for a = 5.5 and b = 5.5 it would yield the truth value ‘true’.

Default Rendering

A ≥ B

4.4.4.6 <leq/>

Discussion

The leq element is the ‘less than or equal’ relational operator.

The leq element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The leq element is an n-ary relation. See section 4.2.5 for further details.

Example

<apply><leq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If a = 5.4 and b = 5.5 this will yield the truth value ‘true’.

Default Rendering

A ≤ B

4.4.4.7 <equivalent/>

Discussion

The equivalent element is the ‘less than or equal’relational operator.

The equivalent element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The equivalent element is an n-ary relation. See the section 4.2.4 for further details.

Example

<apply><equivalent/>
<ci> a </ci>
<apply> <not/>

<apply> <not/> <ci> a </ci> </apply>
</apply>

</apply>

This yields the truth value ‘true’ for all values of a.

156

157

Default Rendering

A ≡ B

4.4.4.8 <approx/>

Discussion

The approx element is the ‘approximately equal’relational operator.

The approx element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The approx element is a binary relation. See the section 4.2.4 for further details.

Example

<apply><approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>

</apply>

Default Rendering

A ≈ B

4.4.5 Calculus and Vector Calculus

4.4.5.1 <int/>

Discussion

The int element is the operator element for an integral. The lower limit, upper limit and bound variable are given by (optional) child elements,
lowlimit, uplimit and bvar in the enclosing apply element. The integrand is also specified as a child element of the enclosing applyelement.

The domain of integration may alternatively be specified by using an interval element, or by a condition element. In such cases, if a bound variable
of integration is intended, it must be specified explicitly. (The condition may involve more than one symbol.)

The int element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The int element an operator taking qualifiers. See section 4.2.4 for further details.

Examples

This example specifies a lowlimit, uplimit, and bvar.

157

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<cn> 0 </cn>

</lowlimit>
<uplimit>
<ci> a </ci>

</uplimit>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

This example specifies the domain of integration with an interval element.

<apply><int/>
<bvar>
<ci> x </ci>

</bvar>
<interval>

<ci> a </ci>
<ci> b </ci>

</interval>
<apply><cos/>
<ci> x </ci>

</apply>
</apply>

The final example specifies the domain of integration with an condition element.

<apply><int/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

158

159

Default Rendering

a∫
0

f(x) dx

b∫
a

cosxdx

∫
x∈D

f(x) dx

4.4.5.2 <diff/>

Discussion

The diff element is the differentiation operator element for functions of a single real variable. The bound variable is given by a bvar element which
is a child of the containing apply element. The bvar elements may also contain a degree element, which specifies the order of the derivative to be
taken.

The diff element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The diff element is an operator taking qualifiers. See section 4.2.4 for further details.

Example

<apply><diff/>
<bvar>
<ci> x </ci>

</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

df
dx

(x)

4.4.5.3 <partialdiff/>

Discussion

The partialdiff element is the partial differentiation operator element for functions of several real variables. The bound variables are given by bvar
elements, which are children of the containing apply element. The bvar elements may also contain a degree element, which specifies the order of
the partial derivative to be taken in that variable.

The partialdiff element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The partialdiff element is an operator taking qualifiers. See section 4.2.4 for further details.

159

Example

<apply>
<partialdiff/>
<bvar>

<ci> x </ci>
<degree>

<cn> 2 </cn>
</degree>

</bvar>
<bvar>

<ci> y </ci>
</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

Default Rendering

∂2

∂x2

∂

∂y
f(x, y)

4.4.5.4 <lowlimit>

Discussion

The lowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For example, in an integral, it can be
used to specify the lower limit of integration. Similarly, it is also used to specify the lower limit of an index for sums and products.

The meaning of the lowlimit element depends on the context it is being used in. For further details about how qualifiers are used in conjunction
with operators taking qualifiers, consult section 4.2.4.

Example

160

161

<apply><int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of the lowlimit element and its contents depends on the context. In the preceding example, it should be rendered as a
subscript to the integral sign:

b∫
a

f(x) dx

Consult the descriptions of individual operators which make use of the lowlimit construct for default renderings.

4.4.5.5 <uplimit>

Discussion

The uplimit element is the container element used to indicate the ‘upper limit’ of an operator using qualifiers. For example, in an integral, it can be
used to specify the upper limit of integration. Similarly, it is also used to specify the upper limit of an index for sums and products.

The meaning of the uplimit element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with
operators taking qualifiers, consult section 4.2.4.

Example

161

<apply><int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of the uplimit element and its contents depends on the context. In the preceding example, it should be rendered as a
superscript to the integral sign:

b∫
a

f(x) dx

Consult the descriptions of individual operators which make use of the uplimit construct for default renderings.

4.4.5.6 <bvar>

Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it specifies the variable of integration.
In a derivative, it indicates which variable with respect to which a function is being differentiated. When the bvar element is used to quantifiy a
derivative, the bvar element may contain a child degree element which specifies the order of the derivative with respect to that variable. The bvar
element is also used for the internal variable in sums and products and for the bound variable used with the universal and existential quantifiers
forall and exists.

The meaning of the bvar element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with
operators taking qualifiers, consult section 4.2.4.

Examples

162

163

<apply><diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

<apply><int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>

</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

The default rendering of the bvar element and its contents depends on the context. In the preceding examples, it should be rendered as the x in the
dx of the integral, and as the x in the denominator of the derivative symbol:

d
dx2

x2∫
x∈D

f(x) dx

Note that in the case of the derivative, the default rendering of the degree child of the bvar element is as an exponent.

Consult the descriptions of individual operators which make use of the uplimit construct for default renderings.

4.4.5.7 <degree>

Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number basic mathematical constructs which
come in families, such as derivatives and moments. Rather than introduce special elements for each of these families, MathML uses a single general
construct, the degree element for this concept of ‘order’.

The meaning of the degree element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with
operators taking qualifiers, consult section 4.2.4.

163

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<ci> n </ci>

</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>

</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

The default rendering of the degree element and its contents depends on the context. In the preceding example, the degree elements would be
rendered as the exponents in the differentiation symbols:

∂

∂xn
∂

∂ym
sin(xy)

Consult the descriptions of individual operators which make use of the uplimit construct for default renderings.

4.4.5.8 <divergence/>

Discussion

The divergence element is the vector calculus divergence operator, often called div.

The divergence element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The divergence element is an unary calculus operator. See the section 4.2.3 for further details.

Example

<apply><divergence/>
<ci> a </ci>

</apply>

If a is a vector field defined inside a closed surface S enclosing a volume V , then the divergence of a is given by

164

165

<apply><limit/>
<bvar>
<ci> V </ci>

</bvar>
<condition>
<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>

</apply>
</condition>
<apply><divide/>
<apply><int encoding="text" definitionURL="SurfaceIntegrals.htm"/>
<bvar>
<ci> S</ci>

</bvar>
<ci> a </ci>
</apply>
<ci> V </ci>

</apply>
</apply>

Default Rendering

diva

4.4.5.9 grad

Discussion

The grad element is the vector calculus gradient operator, often called grad.

The grad element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The grad element is an unary calculus operator. See the section 4.2.3 for further details.

Example

<apply><grad/>
<ci> f</ci>

</apply>

Where for example f is a scalar function and f(x,y,z) = k defines a surface S

Default Rendering

gradf

165

4.4.5.10 curl

Discussion

The curl element is the vector calculus curl operator..

The curl element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The curl element is an unary calculus operator. See the section 4.2.3 for further details.

Example

<apply><curl/>
<ci> a </ci>

</apply>

Where for example a is a vector

Default Rendering

curl a

curla

4.4.5.11 laplacian

Discussion

The laplacian element is the vector calculus laplacian operator..

The laplacian element takes the attributes encoding, definitionURL which can be used to override the default semantics.

The laplacian element is an unary calculus operator. See the section 4.2.3 for further details.

Example

<apply><eq/>
<apply><laplacian/>
<ci> f </ci>

</apply>
<apply><divergence/>
<apply><grad/>
<ci> f </ci>

</apply>
</apply>
</apply>

Where for example f is a vector

Default Rendering

Del-squared f

Del − squaredf

166

167

4.4.6 Theory of Sets

4.4.6.1 <set>

Discussion

The set element is the container element which constructs a set of elements. The elements of a set can be defined either by explicitly listing the
elements, or by using the bvar and condition elements.

The set element is a constructor container. See section 4.2.2.2 for further details.

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> c </ci>

</set>

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</set>

Default Rendering

1. a, b, c

2. x | x < 5

4.4.6.2 <list>

Discussion

The list element is the container element which constructs a list of elements. Elements can be defined either by explicitly listing the elements, or
by using the bvar and condition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic and numeric. The kind of ordering
which should be used is specified by the order attribute.

The list element is a constructor container. See section 4.2.2.2 for further details.

Examples

<list>
<ci> b </ci>
<ci> a </ci>
<ci> c </ci>

</list>

167

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</list>

Default Rendering

1. [a, b, c]

2. [x | x < 5]

4.4.6.3 <union/>

Discussion

The union element is the operator for a set-theoretic union or join of two (or more) sets.

The union attribute takes the definitionURL and encoding attributes which can be used to override the default semantics.

The union element is an n-ary set operator. See section 4.2.3 for further details.

Example

<apply><union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A ∪B

4.4.6.4 <intersect/>

Discussion

The intersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

The intersect element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The intersect element is an n-ary set operator. See section 4.2.3 for further details.

Example

<apply><intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

168

169

Default Rendering

A ∩B

4.4.6.5 <in/>

Discussion

The in element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

The in element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The in element is a binary set relation. See section 4.2.5 for further details.

Example

<apply>
<in/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

Default Rendering

a ∈ A

4.4.6.6 <notin/>

Discussion

The notin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member of’).

The notin element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The notin element is a binary set relation. See section 4.2.5 for further details.

Example

<apply><notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

Default Rendering

a /∈ A

4.4.6.7 <subset/>

Discussion

The subset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The subset element is an n-ary set relation. See section 4.2.5 for further details.

169

Example

<apply><subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A ⊆ B

4.4.6.8 <prsubset/>

Discussion

The prsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

The prsubset element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The subset element is an n-ary set relation. See section 4.2.5 for further details.

Example

<apply> <prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A ⊂ B

4.4.6.9 <notsubset/>

Discussion

The notsubset is the relational operator element for the set-theoretic relation ‘is not a subset of’.

The notsubset element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The notsubset element is a binary set relation. See section 4.2.5 for further details.

Example

<apply><notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A 6⊂ B

170

171

4.4.6.10 <notprsubset/>

Discussion

The notprsubset is the operator element for the set-theoretic relation ‘is not a proper subset of’.

The notprsubset takes the definitionURL and encoding attributes which can be used to override the default semantics.

The notprsubset element is a binary set relation. See section 4.2.5 for further details.

Example

<apply><notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A * B

4.4.6.11 <setdiff/>

Discussion

The setdiff is the operator element for a set-theoretic difference of two sets.

The setdiff element takes the definitionURL and encoding attributes which can be used to override the default semantics. setdiff is a binary
operator.

The setdiff element is a binary set operator. See section 4.2.3 for further details.

Example

<apply><setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A \B

4.4.6.12 <card/>

Discussion

The card is the operator element for deriving the size or cardinality of a set

The card element takes the attributes definitionURL, encoding which can be used to override the default semantics.

The card element is a unary set operator. See the section 4.2.3 for further details.

171

Example

<apply><eq/>
<apply><card/>
<ci> A </ci>

</apply>
<ci> 5 </ci>
</apply>

where A is a set with 5 elements.

Default Rendering

| A |

|A|

4.4.7 Sequences and Series

4.4.7.1 <sum/>

Discussion

The sum element denotes the summation operator. Upper and lower limits for the sum, and more generally a domains for the bound variables are
specified using uplimit, lowlimit or a condition on the bound variables. The index for the summation is specified by a bvar element.

The sum element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The sum element is an operator taking qualifiers. See section 4.2.4 for further details.

Examples

<apply><sum/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

172

173

<apply><sum/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

b∑
x=a

f(x)∑
x∈B

f(x)

4.4.7.2 <product/>

Discussion

The product element denotes the product operator. Upper and lower limits for the product, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound variables. The index for the product is specified by a bvar element.

The product element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The product element is an operator taking qualifiers. See section 4.2.4 for further details.

Examples

173

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

See section 4.2 for further details.

Default Rendering

b∏
x=a

f(x)∏
x∈B

f(x)

4.4.7.3 <limit/>

Discussion

The limit element is operation of taking a limit of a sequence. The limit point is expressed by specifying a lowlimit and a bvar or by specifying a
condition on one or more bound variables.

174

175

The limit element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The limit element is an operator taking qualifiers. See section 4.2.4 for further details.

Examples

<apply><limit/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<cn> 0 </cn>

</lowlimit>
<apply><sin/>
<ci> x </ci>

</apply>
</apply>

<apply><limit/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>

</apply>
</condition>
<apply><sin/>

<ci> x </ci>
</apply>

</apply>

Default Rendering

lim
x→0

sinx

lim
x→a+

sinx

4.4.7.4 <tendsto/>

Discussion

The tendsto element is used to express the relation that a quantity is tending to a specified value.

The tendsto element takes the attributes type to set the direction from which the the limiting value is approached and the definitionURL and
encoding attributes which can be used to override the default semantics.

The tendsto element is a binary relational operator. See section 4.2.5 for further details.

175

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>

</apply>
</apply>

To express (x, y)→ (f(x, y), g(x, y)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>

<ci> x </ci>
<ci> y </ci>

</vector>
<vector>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
<apply><fn><ci> g </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
</vector>

</apply>

Default Rendering

x2 → a2

(x, y)→ (f(x, y), g(x, y))

4.4.8 Elementary classical functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard interpretations are widely known,
they are discussed as a group.

4.4.8.1 Discussion

These operator elements denote the standard trigonometrical functions.

176

177

sin cos tan
sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

These elements all take the definitionURL and encoding attributes, which can be used to override the default semantics.

They are all unary trigonometric operators. See section 4.2.3 for further details.

4.4.8.2 Examples

<apply><sin/>
<ci> x </ci>

</apply>

<apply><sin/>
<apply>
<plus/>
<apply><cos/>
<ci> x </ci>

</apply>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</apply>

</apply>

4.4.8.3 Default Rendering

sin x

sin(cos x + x3)

4.4.8.4 <exp/>

Discussion

The exp element represents the exponential function associated with the inverse of the ln function. In particular, exp(1) is approximately 2.718281828.

exp takes the definitionURL and encoding attributes which may be used to override the default semantics.

The exp element is a unary arithmetic operator. See section 4.2.3 for further details.

177

Example

<apply><exp/>
<ci> x </ci>

</apply>

Default Rendering

ex

4.4.8.5 <ln/>

Discussion

The ln element is the natural logarithm operator.

The ln element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The ln element is an unary calculus operator. See section 4.2.3 for further details.

Example

<apply><ln/>
<ci> a </ci>

</apply>

If a = e this will yield the value 1.

Default Rendering

ln a

4.4.8.6 <log/>

Discussion

The log element is the operator which returns a logarithm to a given base. The base may be specified using a logbase element, which should be
the first child of the containing apply element. If the logbase element is not present, a default base of 10 is assumed.

The log element takes the definitionURL and encoding attributes which can be used to override the default semantics.

The log element can be used as either an operator taking qualifiers or a unary calculus operator. See section 4.2.3 for further details.

Example

<apply> <log/>
<logbase>
<cn> 3 </cn>

</logbase>
<ci> x </ci>

</apply>

This markup represents ‘the base 3 log of x’. For natural logarithms base e, the ln element should be used instead.

178

179

Default Rendering

log3 x

4.4.9 Statistics

4.4.9.1 <mean/>

Discussion

mean is the operator element for a mean or average.

mean takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

mean is an n-ary operator.

<apply><mean/>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

X̄ or 〈X〉

4.4.9.2 <sdev/>

Discussion

sdev is the operator element for the standard deviation.

sdev takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

sdev is an n-ary operator.

<apply><sdev/>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

σ(X)

179

4.4.9.3 <variance/>

Discussion

variance is the operator element for the statistical variance.

variance takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

variance is an n-ary operator.

<apply><variance/>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

σ(X)2

4.4.9.4 <median/>

Discussion

median is the operator element for the median .

median takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

median is an n-ary operator.

<apply><median/>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

median(X)

4.4.9.5 <mode/>

Discussion

mode is the operator for the statistical mode.

mode takes the definitionURL and encoding attributes, which can be used to override the default semantics.

180

181

Example

mode is an n-ary operator.

<apply>
<mode/>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

mode(X)

4.4.9.6 <moment/>

Discussion

The moment element represents statistical moments. Use degree for the n in ‘n-th moment’.

moment takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

moment is an operator taking qualifiers.

<apply><moment/>
<degree>
<cn> 3 </cn>

</degree>
<ci> X </ci>

</apply>

See section 4.2 for further details.

Default Rendering

〈X3〉

4.4.10 Linear Algebra

4.4.10.1 <vector>

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication vectors are regarded as equivalent to a matrix consisting of a single column and
the transpose of a vector behaves the same as a matrix consisting of a single row.

181

Example

vector is a constructor element.

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>

</vector>

See section 4.2 for further details.

Default Rendering

(1, 2, 3, x)

4.4.10.2 <matrix>

Discussion

The matrix is the container element for matrixrow’s. matrixrow’s contain the elements of a matrix.

Example

matrix is a constructor element.

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>

</matrixrow>
<matrixrow>
<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>

</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>

</matrixrow>
</matrix>

See section 4.2 for further details.

Default Rendering

A =

 0 1 0
0 0 1
1 0 0

4.4.10.3 <matrixrow>

Discussion

The matrixrow element is the container element for the rows of a matrix.

182

183

Example

matrixrow is a constructor element.

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>

</matrixrow>
<matrixrow>
<cn> 3 </cn>
<ci> x </ci>

</matrixrow>

See section 4.2 for further details.

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 <determinant/>

Discussion

The determinant element is the operator for constructing the determinant of a matrix.

determinant takes the definitionURL and encoding attributes, which can be used to override the default semantics.

Example

determinant is a unary operator.

<apply><determinant/>
<ci type="matrix"> A </ci>

</apply>

See section 4.2 for further details.

Default Rendering

det A

4.4.10.5 <transpose/>

Discussion

The transpose element is the operator for constructing the transpose of a matrix.

transpose takes the definitionURL and encoding attributes, which can be used to override the default semantics.

183

Example

transpose is a unary operator.

<apply><transpose/>
<ci type="matrix"> A </ci>

</apply>

See section 4.2 for further details.

Default Rendering

At

4.4.10.6 <selector/>

Discussion

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments. The first argument identifies the
vector, matrix or list from which the selection is taking place, and the second and subsequent arguments, if any, indicate the kind of selection taking
place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all elements in the list, vector or matrix given.
The ordering of elements in the sequence for a matrix is understood to be first by column, then by row. That is, for a matrix (ai,j), where the indices
denote row and column, the ordering would be a1,1, a1,2, ... a2,1, a2,2 ... etcetera.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second and third arguments specify the
row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list or vector. When a matrix and
only one index i is specified as in

<apply><selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>

</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>

</matrixrow>
</matrix>
<cn> 1 </cn>

</apply>

it refers to i-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes the definitionURL and encoding attributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

184

185

Example

<apply><selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>

</apply>

Default Rendering

The selector construct renders the same as the expression which it selects.

4.4.10.7 vectorproduct

Discussion

The vectorproduct is the operator element for deriving the vector product of two vectors

The vectorproduct element takes the attributes definitionURL, encoding which can be used to override the default semantics.

The vectorproduct element is a binary vector operator. See the section 4.2.3 for further details.

Example

<apply><eq/>
<apply><vectorproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><sin/>
<ci> θ </ci>
</apply>
</apply>
</apply>

where A and B are vectors, a,b are the magnitudes of A,B and ? is the angle between A and B.

Default Rendering

A x B

AxB

185

4.4.10.8 scalarproduct

Discussion

The scalarproduct is the operator element for deriving the scalar product of two vectors

The scalarproduct element takes the attributes definitionURL, encoding which can be used to override the default semantics.

The scalarproduct element is a binary vector operator. See the section 4.2.3 for further details.

Example

<apply><eq/>
<apply><scalarproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>
</apply>
</apply>
</apply>

where A and B are vectors, a,b are the magnitudes of A,B and ? is the angle between A and B.

Default Rendering

A.B

A.B

4.4.10.9 outerproduct

Discussion

The outerproduct is the operator element for deriving the outer product of two vectors

The outerproduct element takes the attributes definitionURL, encoding which can be used to override the default semantics.

The outerproduct element is a binary vector operator. See the section 4.2.3 for further details.

Example

<apply><outerproduct/>
<ci type = "vector"> A </ci>
<ci type = "vector">B </ci>
</apply>

where A and B are vectors.

186

187

Default Rendering

A.B

AB

4.4.11 Semantic Mapping Elements

The use of the semantic mapping elements is explained in section 4.2.64.4.11.1 <annotation>.

4.4.11.1 Discussion

The annotation element is the container element for a semantic annotation in a non-XML format.

annotation takes the attribute encodingto define the encoding being used.

4.4.11.2 Example

annotation is a semantic mapping element. It is always used with semantics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="TeX">
\sin x + 5

</annotation>
</semantics>

4.4.11.3 Default Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind of annotation given.

4.4.11.4 <semantics>

Discussion

The semantics element is the container element which associates additional representations with a given MathML construct. The semantics element
has as its first child the expression being annotated, and the subsequent children are the annotations. There is no restriction on the kind of annotation
that can be attached using the semantics element. For example, one might give a TEX encoding, or computer algebra input in an annotation.

The representations which are XML based are enclosed in an annotation-xml element while those representations which are to be parsed as
PCDATA are enclosed in an annotation element.

semantics takes the definitionURL and encoding attributes which can be used to reference an external source for some or all of the semantic
information.

187

An important purpose of the semantics construct is to associate specific semantics with a particular presentation, or additional presentation infor-
mation with a content construct. The default rendering of a semantics element is the default rendering of its first child. When a MathML-presentation
annotation is provided, a MathML renderer may optionally use this information to render the MathML construct. This would typically be the case when
the first child is a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for the content
elements.

Examples and Usage

semantics is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="Maple">
sin(x) + 5

</annotation>
<annotation-xml encoding="MathML-Presentation">
...
...

</annotation-xml>
<annotation encoding="Mathematica">
Sin[x] + 5

</annotation>
<annotation encoding="TeX">
\sin x + 5

</annotation>
<annotation-xml encoding="OpenMath">
<OMA>...</OMA>

</annotation-xml>
</semantics>

Default Rendering

The default rendering of a semantics element is the default rendering of its first child.

4.4.11.5 <annotation-xml>

Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used together with the semantics
element, and takes the attribute encoding to define the encoding being used.

annotation-xml is a semantic mapping element.

188

189

Example

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation-xml encoding="OpenMath">
<OMA><OMS name="plus" cd="arith1"/>
<OMA><OMS name="sin" cd="transc1"/>
<OMV name="x"/>

</OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

See also semantics in the Usage Guide.

Default Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

189

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in one of two ways: The first manner is to intersperse content and presentation elements
in what is essentially a single tree. This is called mixed markup. The second manner is to provide both an explicit presentation and an explicit content
in a pair of trees. This is called parallel markup. This chapter describes both mixed and parallel markup, and how they may used in conjunction with
style sheets and other tools.

5.1 Why Two Different Kinds of Markup?

Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup captures notational structure. It encodes the notational structure of an expression in a sufficiently abstract way to facilitate
rendering to various media. Thus, the same presentation markup can be rendered with relative ease on screen in either wide and narrow windows, in
ASCII or graphics, in print, or it can be enunciated in a sensible way when spoken. It does this by providing information such as structured grouping
of expression parts, classification of symbols, etc.

Presentation markup does not directly concern itself with the mathematical structure or meaning of an expression. In many situations, notational
structure and mathematical structure are closely related, so a sophisticated processing application may be able to heuristically infer mathematical
meaning from notational structure, provided sufficient context is known. However, in practice, the inference of mathematical meaning from mathe-
matical notation must often be left to the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially evaluation by external applications.

Content markup captures mathematical structure. It encodes mathematical structure in a sufficiently regular way in order to facilitate the assignment
of mathematical meaning to an expression by application programs. Though the details of mapping from mathematical expression structure to
mathematical meaning can be extremely complex, in practice, there is wide agreement about the conventional meaning of many basic mathematical
constructions. Consequently, much of the meaning of a content expression is easily accessible to a processing application, independently of where
or how it is displayed to the reader. In many cases, content markup could be cut from a Web browser and pasted into a mathematical software tool
(such as future versions of Axiom, Maple or Mathematica) with confidence that sensible values will be computed.

Since content markup is not directly concerned with how an expression is displayed, a renderer must infer how an expression should be presented
to a reader. While a sufficiently sophisticated renderer and style-sheet mechanism could in principle allow a user to read mathematical documents
using personalized notational preferences, in practice, rendering content expressions with notational nuances may still require human intervention of
some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

190

191

It is important to emphasize that both content and presentation tags are necessary in order to provide the full expressive capability one would expect
in a mathematical markup language. Often the same mathematical notation is used to represent several completely different concepts. For example,
the notation xi may be intended (in polynomial algebra) as the i-th power of the variable x, or (in vector analysis) as the i-th component of a vector
x. In other cases, the same mathematical concept may be displayed in one of various notations. For instance, the factorial of a number might be
expressed with an exclamation mark, a Gamma function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea often has several notations. In
order to provide authors with the ability to precisely control notational nuances while at the same time encoding meanings in a machine readable
way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be more satisfactory. If it is important
that the meaning of an expression can be dependably and automatically interpreted, then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or a combination of both, depends on
what aspects of rendering and interpretation an author wishes to control, and what kinds of re-use he or she wishes to facilitate.

5.2.1 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content markup exclusively. For example, a
program for translating legacy documents would most likely generate pure presentation markup. Similarly, an educational software package might
very well generate only content markup for evaluation in a computer algebra system. However, in many other situations, there are advantages to
mixing both presentation and content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessible, more re-usable results. For
example, an author writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci><cn>2</cn>

</apply>
<mo>+</mo>
<msup>
<mi>v</mi><mn>2</mn>

</msup>
</mrow>

where v is a vector and the superscript denotes a vector component, and x is a real variable. On account of the linear algebra context, a visually
impaired reader may have directed his or her voice synthesis software to render superscripts as vector components. By explicitly encoding the power,
the content markup yields a much better voice rendering than would likely happen by default.

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using presentation markup provides a way
of modifying or refining how a content expression is rendered. For example, one might write:

191

<apply>
<in/>
<ci><mi fontweight="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to specify that v should be rendered in boldface.

A second reason to intersperse presentation in content markup is that there is a continually growing list of areas of discourse which do not have
pre-defined content elements for encoding their objects and operators. As a consequence, any system of content markup inevitably requires an
extension mechanism which combines notation with semantics in some way. MathML content markup specifies several ways of attaching an external
semantic definitions to content objects. However, it is necessary to use MathML presentation markup to specify how such user-defined semantic
extensions should be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus, to express the statement
rank(uT v)=1 we use the mo presentation element inside a ci element to achieve the proper presentation, along with a semantics element which
binds a semantic definition to the symbol. The mo element indicates to a renderer that it should use standard operator spacing around the content
identifier ‘rank’, just as it would for ‘sin’ or ‘log’:

<apply>
<eq/>
<apply>
<fn>
<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">
<OMS cd="linalg1" name="rank"/>

</annotation-xml>
</semantics>

</fn>
<apply>
<times/>
<apply>
<transpose/>
<ci>u</ci>

</apply>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>

Here, the semantics of the presentation subexpressions have been given using symbols from OpenMath content dictionaries (CD).

192

193

5.2.2 How to Mix Markup

The main consideration when presentation markup and content markup are mixed together in a single expression is that the result should still
make sense. When both kinds of markup are contained in a presentation expression, this means it should be possible to render the resulting mixed
expressions simply and sensibly. Conversely, when mixed markup appears in a content expression, it should be possible to simply and sensibly
assign a semantic interpretation to the expression as whole. These requirements place a few natural constraints on how presentation and content
markup can be mixed in a single expression, in order to avoid ambiguous or otherwise problematic expressions.

Two motivating examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow> <plus/> <mi> x </mi> <mi> y </mi> </mrow>

In this example, the content element plus has been indiscriminately embedded in a presentation expression. Should the plus sign appear in its usual
infix position, as it would in content markup, or should it render as the first thing in the row? Neither choice is very satisfactory, and consequently, this
kind of mixing is not allowed. Similarly, consider:

<apply> <ci> x </ci> <mo> + </mo> <ci> y </ci> </apply>

As before, the mo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as if the prefix content element
plus had been used? Again, there is no compelling answer, and thus this kind of mixing of content and presentation markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations which do not effect the ability of content markup to unambiguously
encode mathematical meaning. More specifically, presentation markup may only appear in content markup in three ways:

1. within ci and cn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these three cases follows:

Presentation markup within token elements. The token elements ci and cn are permitted to contain any sequence of PCDATA, presentation ele-
ments, and sep empty elements. Contiguous blocks of PCDATA in ci and fn elements are rendered as if they were wrapped in mi elements.
A contiguous block of PCDATA within cn should be rendered as if wrapped in mn. If a token element contains both PCDATA and presentation
elements, contiguous blocks of PCDATA (if any) are treated as if wrapped in mi or mn elements as appropriate, and the resulting collection
of presentation elements are rendered as if wrapped in an mrow element. The sep element is only meaningful in identifiers and numbers
defined to be of complex type, where it separates PCDATA into real and imaginary parts. When a token elements contains both sep elements
and presentation elements, the sep elements are ignored.

Presentation markup within the csymbol element. The csymbol element may contain either PCDATA interspersed with presentation markup, or
content container elements. It is a MathML error for a csymbol element to contain both presentation and content elements. When the
csymbol element contains both raw data and presentation markup, the same rendering rules that apply to content token elements should
be used.

Presentation markup within the semantics element. One of the main purposes of the semantics element is to provide a mechanism for incorpo-
rating arbitrary MathML expressions into content markup in a semantically meaningful way. In particular, any valid presentation expression
can be embedded in a content expression by placing it as the first child of a semantics element. The meaning of this wrapped expression
should be indicated by one or more annotation elements also contained in the semantics element. Suggested rendering for a semantics
element is discussed in 4.2.6.

193

5.2.4 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expression should still have an unambiguous
rendering. In general, this means that embedded content expressions must be semantically meaningful, since rendering of content markup depends
on its meaning. This translates into the condition that content container, operator and relation elements are permitted, while qualifier and condition
elements are not.

As a rule, content elements other than containers derive part of their semantic meaning from the surrounding context, such as whether a bvar
element is qualifying an integral, logical quantifier or lambda expression. Another example would be whether a degree element occurs in a root or
partialdiff element. Thus, in a presentation context, elements such as these do not have a clearly defined meaning, and hence there is no obvious
choice for a rendering. Consequently, they are not allowed.

The complete list of content elements which may appear as a child in a presentation element is: ci, cn, csymbol, apply, lambda, reln, interval,
list, matrix, matrixrow, set, vector, declare (containers), factorial, abs, conjugate, not, inverse, ident, exp, ln, log, sin, cos, tan, sec,
csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, determinant, transpose, quotient, divide, minus, power, rem, implies,
setdiff, plus, times, max, min, gcd, mean, sdev, variance, median, mode, and, or, xor, selector, union, intersect, fn, compose, int, sum, product,
diff, partialdiff, forall, exists (operators), neq, implies, in, notin, notsubset, notprsubset, tendsto, eq, leq, lt, geq, gt, subset, prsubset
(relations).

Note that within presentation markup, content expressions may only appear in locations where it is valid for any MathML expression to appear. In
particular, content expressions may not appear within presentation token elements. In this regard mixing presentation and content are asymmetrical.

For rendering purposes, when a permitted content element appears within a presentation context, a processing application should treat it as if it
were replaced with an mrow containing a presentation encoding of the rendering the application would ordinarily generate for that content markup.
For example, consider:

<mfrac>
<mi>x</mi>
<interval closure="open-closed">
<cn>1</cn>
<cn>3</cn>

</interval>
</mfrac>

In this case, a visual renderer would typically render the interval construct as (1,3]. Using presentation markup, this might be encoded as:

<mfenced close="]">
<mn>1</mn>
<mn>3</mn>

</mfenced>

Consequently, the original mixed markup should be visually rendered as

<mfrac>
<mi>x</mi>
<mfenced close="]">
<mn>1</mn>
<mn>3</mn>

</mfenced>
</mfrac>

194

195

5.3 Parallel Markup

Some applications are able to make use of both presentation and content information. For these applications it is desirable to provide both forms of
markup for the same mathematical expression. This is called parallel markup.

Parallel markup is achieved with the semantics element. Parallel markup for an expression can be used on its own, or can be incorporated as part
of a larger content or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression as a whole. To achieve this,
a single semantics element is used pairing two markup trees, with the first branch being the MathML presentation markup, and the second branch
being the MathML content markup.

The following example encodes the boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

This example is non-trivial in the sense that the content markup not could be easily derived from the presentation markup alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Applications which allow treatment
of subexpressions of mathematical objects require the ability to associate presentation, content or information with the parts of an object with
mathematical markup. Top-level pairing with a semantics element is insufficient in this type of situation; identification of a subexpression in one
branch of semantics element gives no indication of the corresponding parts in other branches.

The ability to identify corresponding subexpressions is required in applications such as mathematical expression editors. In this situation, selecting
a subexpression on a visual display can identify a particular portion of a presentation markup tree. The application then needs to determine the
corresponding annotations of the subexpressions; in particular, it the application requires the subexpressions of the annotation-xml tree in MathML
content notation.

It is, in principle, possible to provide annotations for each presentation node by incorporating semantics elements recursively.

195

<semantics>
<mrow>
<semantics>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>a</ci> <ci>b</ci></apply>

</annotation-xml>
</semantics>
<mo>⁢</mo>
<semantics>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</annotation-xml>
</semantics>

</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

To be complete this example would be much more verbose, wrapping each of the individual leaves mi, mo and mn in a further seven semantics
elements.

This approach is very general and works for all kinds of annotations (including non-MathML annotations and multiple annotations). It leads, however,
to O(n2) increase in size of the document. This is therefore not a suitable approach for fine-grained parallel markup of large objects.

5.3.3 Parallel Markup via Cross-References: id and xref

To better accomodate applications which must deal with sub-expressions of large objects, MathML uses cross-references between the branches of
a semanticselement to identify corresponding substructures.

Cross-referencing is achieved using id and xref attributes within the branches of a containing semantics element. These attributes may optionally
be placed on MathML elements of any type.

The following example shows this cross-referencing for the boolean arithmetic expression (a+b)(c+d).

196

197

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>

<annotation-xml encoding="OpenMath">
<OMA xref="E">
<OMS cd="logic" name="and" xref="E"/>
<OMA xref="E.1">
<OMS cd="logic" name="xor" xref="E.1.3"/>
<OMV name="a" xref="E.1.2"/>
<OMV name="b" xref="E.1.4"/>

</OMA>
<OMA xref="E.3">
<OMS cd="logic" name="xor" xref="E.3.3"/>
<OMV name="c" xref="E.3.2"/>
<OMV name="d" xref="E.3.4"/>

</OMA>
</OMA>

</annotation-xml>

197

</semantics>

An id attribute and a corresponding xref appearing within the same semantics element create a correspondence between subexpressions.

In creating these correspondences by cross-reference, all of the the id attributes referenced by any xref must be in the same branch of an enclosing
semantics element. This constraint guarantees that these correspondences do not create unintentional cycles. (Note that this restriction does not
exclude the use of id attributes within the other branches of the enclosing semantics element. It does, however, exclude references to these other
id attributes from originating in the same semantics element.)

There is no restriction on which branch of the semantics element may contain the destination id attributes. It is up to the application to determine
which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a presentation tree may contain
elements, such as parentheses, which have no correspondents in the content tree. It is therefore often useful to put the id attributes on the branch
with the finest-grained node structre. Then all of the other branches will have xref attributes to some subset of the id attributes.

In absence of other criteria, the first branch of the semantics element is a sensible a choice to contain the id attributes. Applications which add or
remove annotations will then not have to re-attribute the semantics trees.

In general, the use of id and xref attributes allows a full correspondence between subexpressions to be given in text which is at most a constant
factor larger than the original. The direction of the references should not be taken to imply that sub-expression selection is intended to be permitted
only on one child of the semantics element. It is equally feasible to select a subtree in any branch and to recover the corresponding subtrees of the
other branches.

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use of various tools. While the set of tools and standards
for working with XML applications is rapidly evolving at the present, we can already outline some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules on MathML trees. These transformation rules are sometimes
called ‘macros’. In principle, these rules can be expressed using any one of a number of mechanisms, including DSSSL, Java programs operating
on a DOM, etc. We anticipate, however, that the principal mechanism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational style sheets, and to simplify parallel markup.

5.4.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in locales with notational conventions different than the
default content rendering. It is therefore expected that transformation tools will be used to determine notations for content elements in different
settings. Certain elements, e.g. lambda, mean and transpose, have widely varying common notations and will often require notational selection.
Some examples of notational variations are given below.

• V versus ~V
• tan x versus tg x
•

(
n
m

)
versus nC

m versus Cnm versus Cmn
• a0 + 1 |

| a1
+ . . .+ 1 |

| ak versus [a0, a1, . . . , ak]

Other elements, for example plus and sin, are less likely to require these features.

We observe that notational style selection is sometimes necessary for correct understanding of documents by locale. For instance, the binomial
coefficient Cnm in French notation is equivalent to Cmn in Russian notation.

198

199

A natural way for a MathML application to bind a particular notation to the set of content tags is with an XSLT style sheet. The examples of this
section shall assume this is the mechanism to express style choices. (Other choices are equally possible, for example an application program may
provide menus offering a number of rendering choices for all content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can be purely local, while others will require multi-node context
to determine the correct output notation. The following example gives an local transformation rule which could be included in a notational style sheet
displaying open intervals as]a,b[, rather than as (a,b).

<xsl:template match="interval">
<mrow>
<xsl:choose>
<xsl:when test="@closure=’closed’">
<mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’open’">
<mfenced open="]" close="[" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’open-closed’">
<mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:when test="@closure=’closed-open’">
<mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:when>
<xsl:otherwise>
<mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</mfenced>
</xsl:otherwise>

</xsl:choose>
</mrow>

</xsl:template>

An example of a rule requiring context information would be:

199

<xsl:template match="apply[factorial]">
<mrow>
<xsl:choose>
<xsl:when test="not(*[2]=ci) and not(*[2]=cn)">
<mrow>
<mo>(</mo>
<xsl:apply-templates select="*[2]" />
<mo>)</mo>

</mrow>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="*[2]" />

</xsl:otherwise>
</xsl:choose>
<mo>!</mo>

</mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. for the apply of a plus to render a-b+c, rather than a+ -b+c, or for the apply of
a power to render sin2x, rather than sin x2.

Notational variation will occur both for built-in content elements as well as extensions. Notational style for extensions can be handled as described
above, with rules matching the names of any extension tags, and with the content handling (in a content-faithful style sheet) proceeding as described
in section 5.4.3.

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content markup to equivalent presentation markup. This viewpoint
is explicitly discouraged, since information will be lost and content-oriented applications will not function properly.

We define a ‘content-faithful’ transformation to be a transformation which retains the original content in parallel markup (section 5.3).

Tools which support MathML should be ‘content-faithful’, and not gratuitously convert content elements to presentation elements in their processing.
Notational style sheets should be content-faithful whenever they may be used in interactive applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel markup can be achieved by incorporating the following rules
in an XSLT style sheet:

<xsl:template match="/">
<semantics>

<xsl:apply-templates/>

<annotation-xml encoding="MathML-Content">
<xsl:copy-of select="."/>

</annotation-xml>
</semantics>

</xsl:template>

200

201

<xsl:template match="*">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

The notation would be generated by additional rules for producing presentation from content, such as those in section 5.4.1.

5.4.3 Style Sheets for Extensions

The presentation tags of MathML are quite rich and can be used to express a rendering of most mathematical notations. The basic layout schema
are rich enough that they may be composed to layout notations which are quite complex, or which might not have yet been considered. In this sense,
the presentation ability of MathML is open-ended. It is often useful, however, to give a name to a new notational schema if it is going to be used
ofthen.

The content tags, on the other hand, express a fixed vocabulary of concepts covering the types of mathematics seen in most common applications.
It is not reasonable to expect users to compose existing MathML content tags to construct new content concepts. (This approach is frought with
technical difficulties even for professional mathematicians.) Instead, it is anticipated that applications whose mathematical content concepts extend
beyond what is offered by MathML, will use annotations within semantics elements, and that these annotations will use content description languages
outside of MathML.

Often the naming of a notation and the identification of a new semantic concept are related. This allows a single transformation rule to capture both a
presentation and a content markup for an expression. This is one of the areas of MathML which benefits most strongly the use of macro processing.
With any of the current document transformation standards, for instance XSLT or DSSSL, it is trivial to define rules which take, for example

<rank/>

and

<tr>X</tr>

and respectively transform them to

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS cd="linalg1" name="rank"/>
</annotation-xml>

</semantics>

and

<apply>
<transpose/>
<ci>X</ci>
</apply>

The lengthy sample encoding of rank(uT v)=1, from section 5.2.1 could then be condensed to

201

<apply>
<eq/>
<apply>
<rank/>
<apply>
<times/>
<tr>u</tr>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>

From this example we see how the combination of presentation and content markup could become much simpler and effective to generate as
standard style-sheet libraries become available.

202

Chapter 6

Entities, Characters and Fonts

6.1 Introduction

6.1.1 The Intent of Entity Names

Notation has proved very important for mathematics. Mathematics has grown in part because of the succinctness and suggestiveness of its evolving
notation. There have been many new signs evolved for use in mathematical notation, and mathematicians have not held back from making use of
many symbols originally developed elsewhere. The result is that mathematics makes use of a very large collection of symbols. It is difficult to write
mathematics fluently if these characters are not available for use in coding. It is difficult to read mathematics if glyphs are not available for presentation
on specific display devices.

This situation poses a problem for the W3C Math Working Group. It does not fall naturally within the purview of a mathematics for HTML specification
and DTD production to worry about more than the entities allowed in the DTD. Moreover, as experience has shown, a long list of entities with no
means to display them is of little use, and a cause of frequent frustrations in trying use a standard. On the other hand, a large collection of glyphs or
characters without a standard way to refer to them is not of much use either.

The W3C Math Working Group has therefore taken on directly specification of part of the full mechanism of proceeding from notation to final
presentation, and is collaborating with organizations undertaking specification of the rest.

For instance, we try to use entity names that are contained in ISO TR 9573, which supersedes the ISO TR 8879 annex as far as mathematics is
concerned. There are considerations of mathematical usage that do on occasion militate against this, and the TR 9573 lists need supplementing.
We hope to be able to agree with the TR 9573 WG on suitable extensions, in the course of the revision of their document that they are presently
undertaking.

The STIX project of the STIPUB group of scientific and technical publishers has also been working toward a common collection of mathematical
symbols and names. The W3C Math Working Group expects to issue further updates on the matter of character entities as a consequence of this
project’s useful work. For the latest character tables and fonts information, see the W3C Math Working Group home page.

6.1.2 The STIX Project

The STIX project team leader, Nico Poppelier, is a member of the W3C Math Working Group. The STIX project, set up by the STIPUB group of
publishers, aims to formulate a collection of characters needed in the course of scientific and technical publishing. A database of characters in
common use is being produced by collaborating publishing organizations. The team will propose to the Unicode consortium the additions to the next
revision of the Unicode character set that this process shows are needed, together with the appropriate character codes. Finally the STIX project will
commission the production of a complete set of fonts covering those Unicode characters for science and technology, to be made available to the public
under license, but free of charge. The STIPUB group recognizes that easy availability of the characters and fonts greatly facilitates communication
and publication.

203

6.1.3 Entity Listings

This chapter of the MathML Specification contains a listing of entities for use in MathML.

To provide more background on the characters used by mathematics we have used a larger comparative database showing codes and meanings
in other common math environments. The W3C Math Working Group is very grateful to Elsevier Science and to Wolfram Research (makers of
Mathematica R©) for making available to us so much useful data.

6.1.4 Non-Marking Entities

Some character entities, although important for the quality of print rendering do not directly have glyph marks that correspond. They are called here
non-marking entities. Below we have a table of those adopted for the purposes of MathML. Their roles are discussed in chapter 3 and chapter 4,
respectively. The values of the spaces given are recommendations. Some of these characters do not already have Unicode values. Arbitrary values
up in the Private Zone E8 range have been assigned. The correspondence between the spacing values mentioned below and those in the Unicode
descriptions are not exact, but are good matches.

Entity name Unicode Description
	 0009 tabulator stop; horizontal tabulation

 000A force a line break; line feed
&IndentingNewLine; E891 force a line break and indent appropriately on next line
⁠ E892 never break line here
&GoodBreak; E893 if a linebreak is needed, here is a good spot
&BadBreak; E894 if a linebreak is needed, try to avoid breaking here
&Space; 0020 one em of space in the current font
 00A0 space that is not a legal breakpoint
​ 200B space of no width at all
  200A space of width 1/18 em
  2009 space of width 3/18 em
  2005 space of width 4/18 em
   E897 space of width 5/18 em
​ E898 space of width -1/18 em
​ E899 space of width -3/18 em
​ E89A space of width -4/18 em
​ E89B space of width -5/18 em
⁣ E89C used as a separator, e.g. in indices (section 3.2.4
⁣ E89C short form of ⁣
⁢ E89E marks multiplication when it is understood without a mark (section 3.2.4
⁢ E89E short form of ⁢
⁡ E8A0 character showing function application in presentation tagging (section 3.2.4
⁡ E8A0 short form of ⁡

6.1.5 Printing Entity Listings

Since the situation concerning availability of character codes from Unicode and under ISO 9573-13 is not yet fully clear at the time of writing, we
have decided to proceed conservatively.

We have taken the ISO 9573-13 proposal, as conveyed to us from Anders Berglund, and have added a number of additional aliases based in the
practice of the mathematical typesetting community. Thus the main influence outside ISO has been the names to be found in the TEX community.

204

205

To facilitate comprehension of a fairly large list of names, which totals over 2000 in this case, we offer the same information in more than one form.

We have entities listed by name and sample glyphs for all of them. Each entity name is accompanied by a code for a character grouping chosen
from a list given below, a short verbal description, and a Unicode hex code if there is a corresponding sample glyph to be found in ISO 10646. Those
codes beginning with the hex digit E, e.g. E321, indicate assignments to the private zone of Unicode. This indicates that the character in question is
not at present an official Unicode character. It is highly recommended that authors use entity names instead of Unicode values, especially for those
characters in the Unicode private zone, as those values may change. It is hoped that most of these characters will become officially endorsed by
Unicode and ISO under its 10646 standard in due course. In any case we expect fonts for these characters to become publicly available as the use
of MathML develops. If the entity name is an alias then a reference back to the ISO form is given if there is one, and to a preferred form if not. The
ISO or preferred forms have references to their alternates where they exist.

Newly Revised. The entity listings by alphabetical and Unicode order in section 6.1.7 have now been brought more into line with the corresponding
ISO character sets, in that if some part of a set is included then the entire set is included. Also, ISOCHEM has been dropped. These changes have
also been reflected in the entity declarations in the DTD in appendix A.

The tables of character sets with glyphs given in section 6.1.8 have not been revised from the original tables. In cases where information from
section 6.1.7 and section 6.1.8 conflict, the tables in section 6.1.6 and the DTD should be considered normative.

6.1.6 Special Constants

To commence we list separately a few of the special characters which MathML has seen fit to be a little radical in introducing. There are two for
special constants and one for calculus. They too must have private Unicode values.

Entity name Unicode Description
ⅅ F74B D for use in differentials, e.g. within integrals
ⅅ F74B short form of ⅅ
ⅆ F74C d for use in differentials, e.g. within integrals
ⅆ F74C short form of ⅆ
ⅇ F74D e for use for the exponential base of the natural logarithms
ⅇ F74D short form of ⅇ
&false; E8A7 logical constant false
ⅈ F74E i for use as a square root of -1
ⅈ F74E short form of ⅈ
&NotANumber; E8AA used in 4.3.2.9
&true; E8AB logical constant true

6.1.7 Alphabetical Lists

The first table offered is a very large ASCII listing of printing entity names, ordered alphabetically, with upper-case preceding lower-case as in
ASCII order. The Unicode numbers beginning with E are arbitrary assignments in the Private Area where there is presently no Unicode character
available. When there is no Unicode offered at all it is because the characters listed can be thought of as font variations of common Roman alphabetic
characters.

There is also an ASCII listing of printing entities ordered by Unicode number. Next we have collections of the entities in entity sets which are similar
to the groupings in the corresponding ISO documents.

205

6.1.8 ISO Entity Set Groupings

In addition, we list the above material in the groupings used by ISO 9573-13 with an additional grouping of aliases introduced. This table makes
explicit the entity groupings and provides links to ASCII listings of the groups and HTML tabular listings which display the glyphs, insofar as they are
to be had, as well.

6.1.8.1 ISO Symbol Entity Sets

The symbols for mathematics that ISO have considered are organized, for both historical and mnemonic reasons into groupings with somewhat
descriptive names. In the tables below we reproduce the newly proposed versions of these groups and give the corresponding Unicode sample
glyphs. For each ISO 9573-13 group we give first an Extended version in ASCII listing which includes aliases, then a similar listing with sample
glyphs, then the Basic ISO 9573-13 entity set and its version with included glyphs. The entries are organized alphabetically by entity name.

It should be noted that the sample glyphs given here are in GIF files intended for viewing on a monitor’s screen at 72dpi. They are not suitable for
printing, and in particular do not constitute a set of fonts covering the symbols of mathematics. In addition, it is important to note that the Unicode
numbers assigned in the private zone, beginning with hex digits E2 and above, are arbitrary and only used here to ensure that sample glyphs are
available for display. They do not constitute suggested assignments of codes. Such a set of fonts is under development in more than one context.
The MathML Working Group is engaged in ensuring that fonts will be readily publicly available.

This first block of entity sets includes mostly non-letter symbols, along with a few letters loaded with mathematical semantics. At the end of the block
we have included the table MMALIAS of the aliases introduced by MathML, which mostly come from the TEX community, and MMEXTRA with the
additional character entities added by MathML. Note that some of the blocks are place-holders for a possible future expansion of the tables.

Group Descriptive Name
ISOAMSA Added Math Symbols: Arrows Extended Glyphs Basic Glyphs
ISOAMSB Added Math Symbols: Binary Operators Extended Glyphs Basic Glyphs
ISOAMSC Added Math Symbols: Delimiters Extended Glyphs Basic Glyphs
ISOAMSN Added Math Symbols: Negated Relations Extended Glyphs Basic Glyphs
ISOAMSO Added Math Symbols: Ordinary Extended Glyphs Basic Glyphs
ISOAMSR Added Math Symbols: Relations Extended Glyphs Basic Glyphs
ISOTECH General Technical Extended Glyphs Basic Glyphs
ISOPUB Publishing Extended Glyphs Basic Glyphs
ISODIA Diacritical Marks Extended Glyphs Basic Glyphs
ISONUM Numeric and Special Graphic Extended Glyphs Basic Glyphs
ISOBOX Box and Line Drawing Basic Glyphs
MMALIAS MathML Aliases Basic Glyphs
MMEXTRA MathML Additions Basic Glyphs

6.1.8.2 ISO Entity Sets for Mathematics Alphabets

Mathematical literature displays the common use of particular font styles. Characters representing given letters which differ only in the glyph presen-
tation are in principle not different for the purposes of a character registry such as Unicode, which is not supposed to take into account mere font
differences. However usage has meant that both ISO and Unicode, like mathematics, recognize them as different entities. Therefore we include lists
for Greek, script, open face (also known as double struck or blackboard bold), and fraktur (also known as gothic or German) fonts.

6.1.8.3 Other ISO Font Entity Sets

For reference we provide a list of the names of several other ISO font entity sets which are really normally used for text. ISOGRK4 is actually a
collection of emboldened forms of the Greek letters.

206

207

Group Descriptive Name
ISOGRK3 Greek Symbols ASCII Glyphs
ISOMSCR Math Alphabet Script ASCII Glyphs
ISOMOPF Math Alphabet Open Face ASCII Glyphs
ISOMFRK Math Alphabet Fraktur ASCII Glyphs

Group Descriptive Name
ISOGRK1 Greek Letters
ISOGRK2 Monotoniko Greek
ISOGRK4 Alternative Greek Symbols
ISOCYR1 Russian Cyrillic
ISOCYR2 Non-Russian Cyrillic

6.1.9 Additional Entity Set Grouping

In addition to the above listed, for the sake of completeness, we provide a table of other entities not within the ISO lists which are referred to
somewhere in this specification. It is not certain that all these characters, though of mathematical significance, will reach incorporation within Unicode.
The W3C Math WG continues to wrestle with the problems of the characters of mathematics.

207

&LeftSkeleton; E850 start of missing information
&RightSkeleton; E851 end of missing information
&LeftBracketingBar; F603 left vertical delimiter
&RightBracketingBar; E604 right vertical delimiter
&LeftDoubleBracketingBar; F605 left double vertical delimiter
&RightDoubleBracketingBar; F606 right double vertical delimiter
─ E859 short horizontal line
| E85A short vertical line
≔ E85B assignment operator
❘ E85C vertical separating operator
⫤ E30F alias for ⫤
⥰ F524 right double arrow with rounded head (looks like thin superset)
⊏̸ E604 negated set-like partial order operator
⊐̸ E615 negated set-like partial order operator
⊈ 2288 alias of ⊈
⊉ 2289 alias of ⊉
⥐ F50B left-down-right-down harpoon
⥞ F50E left-down harpoon from bar
⥖ F50C left-down harpoon to bar
⥟ F50F right-down harpoon from bar
⥗ F50D right-down harpoon to bar
⇤ 21E4 alias for ⇤
⥎ F505 left-up-right-up harpoon
↤ 21A4 alias for ↤
⥚ F509 left-up harpoon from bar
⥒ F507 left-up harpoon to bar
⇥ 21E5 alias for ⇥
⥛ F50A right-up harpoon from bar
⥓ F508 up-right harpoon to bar
⩵ F431 two consecutive equal signs
⪢ E2F7 alias for ≫
⧏ F410 not left triangle, vertical bar
⪡ E2FB alias for ≪
≭ 226D alias for &nasymp;
≂̸ E84E alias for ≂̸
≎̸ E616 alias for ≎̸
≏̸ E84D alias for ≏̸
⧏̸ F412 not left triangle, vertical bar
⪢̸ F428 not double greater-than sign
⪡̸ F423 not double less-than sign
&NotPrecedesTilde; E5DC alias for ⪯̸
⧐̸ E870 not vertical bar, right triangle
≿̸ E837 not succeeds or similar
⧐ F411 vertical bar, right triangle
∏ 220F alias for ∏
⋄ 22C4 alias for ⋄
⨯ E619 cross or vector product
□ 25A1 alias for □
⤓ F504 down arrow to bar
↧ 21A7 alias for ↧
⥡ F519 down-left harpoon from bar
⥙ F517 down-left harpoon to bar
⥑ F515 up-left-down-left harpoon
⥠ F518 up-left harpoon from bar
⥘ F516 up-left harpoon to bar
⥝ F514 down-right harpoon from bar
⥕ F512 down-right harpoon to bar
⥏ F510 up-right-down-right harpoon
⥜ F513 up-right harpoon from bar
⥔ F511 up-right harpoon to bar
↓ E87F short down arrow
↑ E880 sort up arrow
⤒ F503 up arrow to bar
↥ 21A5 ↥
̑ 0311 breve, inverted (non-spacing)
‾ 00AF over bar
⏞ F612 over brace
⎴ F614 over bracket
⏜ F610 over parenthesis
_ 0332 combining low line
⏟ F613 under brace
⎵ F615 under bracket
⏝ F611 under parenthesis
▫ F530 empty very small square
▪ F529 filled very small square
◻ F527 empty small square
◼ F528 filled small square
⧴ F51F rule-delayed (colon right arrow)

208

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This chapter addresses some of the
interface issues involved in generating and rendering MathML. Since MathML exists primarily to encode mathematics in Web documents, perhaps
the most important interface issues are related to embedding MathML in HTML.

There are three kinds of interface issues that arise in embedding MathML in HTML. First, MathML must be semantically integrated into HTML.
Browsers must recognize MathML markup as embedded XML content, and not as an HTML syntax error. This is primarily a question of managing
namespaces in XML.

Second, MathML rendering must be integrated into browser software. Some browsers already implement MathML rendering natively, and one can
expect more browsers will do so in the future. At the same time, other browsers have developed infrastructure to facilitate the rendering of MathML
and other embedded XML content by embedded elements. While substantial progress has been made, further improvement in coordination between
browsers and embedded elements will be necessary. For example, better support for coordinating initialization and size negotiation is needed, as is
better support for high-resolution printing.

Third, other tools for generating and processing MathML must be able to intercommunicate. A number of MathML tools have been or are being
developed, include editors, translators, computer algebra systems, and other scientific software. However, since MathML expressions tend to be
lengthy, and prone to error when entered by hand, special emphasis must be given to insuring that MathML can be easily generated by user-friendly
conversion and authoring tools, and that these tools work together in a dependable, platform and vendor independent way.

The W3C Math working group is committed to providing support software vendors developing all kinds of MathML tools. the working group monitors
the public www-math@w3.org mailing list, and will attempt answer questions about the MathML specification. The working group also intends to try to
stimulate the formation of MathML developer and user groups. For current information about MathML tools, applications and user support activities,
consult the W3C Math home page.

7.1 Embedding MathML in HTML

MathML specifies a single top-level math element, which encapsulates each instance of MathML markup within an HTML page. As such, the math
element provides an attachment point for information which affects a MathML expression as a whole.

In practice, the math element also serves as the interface for embedding MathML in HTML. In this capacity, the math element simultaneously signals
the semantic inclusion of MathML (XML) content in HTML, and provides the necessary machinery for rendering its content in a browser either by
invoking an embedded element, or by specifying parameters for a native renderer in the browser. Both semantic inclusion and rendering present a
number of issues that extend beyond the scope of this specification.

209

http://www.w3.org/TR/REC-xml-names/

In order to produce a complete and self-contained description of MathML, this document only specifies the attributes and usage of the math element
as a top-level element for MathML, and not as an interface element. The W3C Math working group will continue working closely with other World
Wide Web Consortium activities to insure that emerging standards for embedding XML in HTML accommodate seamless integration of MathML in
HTML. section 7.1.2 lists requirements which an interface element for MathML would have to meet in order to fully integrate MathML into HTML.
However, it is important to note that the MathML specification is independent of embedding mechanisms.

7.1.1 The Top-Level math Element

As stated above, MathML specifies a single top-level math element. All other MathML content must be contained in a math element; equivalently,
every valid, complete MathML expression must be contained in <math> tags. The math element must always be the outermost element in a MathML
expression; it is an error for one math element to contain another.

Applications which return subexpressions of other MathML expressions, for example as the result of a cut-and-paste operation, should always wrap
them in <math> tags. The presence of enclosing <math> tags should be a reasonable heuristic test for MathML content. Similarly, applications which
insert MathML expressions in other MathML expressions must take care to remove the <math> tags from the inner expressions.

The math element can contain an arbitrary number of children schemata. The children schemata render by default as if they were contained in a mrow
element.

The attributes of the math element are:

class="value", id="value", style="value" Provided for style sheet compatibility.
macros="URL URL ..." This attribute provides a way of pointing to external macro definition files. Macros are not part of the MathML specification,

and it is anticipated that in the future, many uses of macros in MathML can be accommodated by XSL transformations (http://www.w3.org/TR/xslt).
However, the macros is provided to make possible future development of more streamlined, MathML-specific macro mechanisms.

mode="display|inline" (deprecated) The mode attribute specifies whether the enclosed MathML expression should be rendered in a display style or
an in-line style. The default is mode="inline". This attribute is deprecated in favor of the standard CSS2 ‘display’ property with the analogous
block and inline values.

7.1.2 Requirements for a MathML Browser Interface

The top-level math element described in the preceding section is concerned with encapsulating MathML content and defining attributes which affect
the entire enclosed expression. It is, in a sense, ‘inward looking’. However, to render MathML properly in a browser, and to integrate it properly into
an HTML document, an ‘outward looking’ interface element is also required. This interface element must be aware of its surrounding environment,
and provide a mechanism for passing information between the browser, and the MathML renderer.

As noted above, the MathML interface element and the MathML top-level element are in practice one and the same. The math element must serve
both to encapsulate MathML content, and admit additional attributes for controlling how a MathML renderer should interact with the surrounding
context, typically a browser.

While general mechanisms for embedding XML in HTML are beginning to be deployed, wide variations in strategy and level of implementation
remain between vendors. Consequently, the remainder of this section describes attributes and functionality that would be highly desirable in a
MathML interface element. In the near term, implementors attempting to provide interim solutions for rendering MathML in browsers should try to
give authors some way of passing the following interface attributes to the renderer:

type="mime type" The type attribute assigns a MIME type to the tag content. This attribute should ideally be used to select an embedded element
to invoke, such as a Java applet, plug-in or ActiveX control, to render the tag content as described in the next section.

name="value" Provided for scripting.
height=nn, width=nn, baseline=nn Ideally, embedded elements should be able to dynamically negotiate height, width and baseline alignment with

browsers. However, these optional attributes are suggested as an interim solution for software vendors that want to support MathML, but
are unable to provide dynamic resizing and alignment.

210

http://www.w3.org/TR/xslt
http://www.w3.org/TR/CSS2/visuren.html#propdef-display

211

overflow="scroll|elide|truncate|scale" In cases where size negotiation is not possible or fails (for example in the case of an extremely long
equation), this attribute is provided to suggest an alternative processing method to the renderer.
scroll The window provides a viewport into the larger complete display of the mathematical expression. Horizontal or vertical scrollbars are

added to the window as necessary to allow the viewport to be moved to a different position.
elide The display is abbreviated by removing enough of it so that the remainder fits into the window. For example, a large polynomial might

have the first and last terms displayed with ‘+ ... +’ between them. Advanced renderers may provide a facility to zoom in on elided
areas.

truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recommended that some indication of
truncation is made to the viewer.

scale The fonts used to display the mathematical expression are chosen so that the full expression fits in the window. Note that this only
happens if the expression is too large. In the case of a window larger than necessary, the expression is shown at its normal size within
the larger window.

altimg=URL, alttext="value" These attributes provide graceful fall-backs for browsers that do not support embedded elements, or images respec-
tively.

Attributes which apply to the MathML interface element necessarily take effect when the document is first loaded, and therefore suffer the limitation
that they cannot change in response to reader interaction unless they are exposed in the Document Object Model (http://www.w3.org/TR/WD-DOM-
Level-2) and subject to programmatic control. The height and width attributes are good examples; if the reader changes the current font size, the
height and width of the embedded mathematical fragments also need to change.

At present, browser support for the DOM, and embedded element access to the DOM, is too limited to provide acceptable rendering for MathML. The
W3C Math working group is working closely with the Document Object Model working group in an effort to provide better communication between
embedded MathML renderers and browsers (see appendix E).

The basic requirements for communication between an embedded MathML and a browser include:

• Embedded elements must be able to determine the ambient style parameters, including font characteristics, foreground and background
colors, and link color schemes. Embedded elements must also be able to align themselves to an arbitrary baseline.

• Embedded elements must be able to detect and react to reader input. In particular, embedded elements must be able to dynamically resize
themselves when the ambient font size changes.

• Embedded elements must be able to print in context, and at high resolution.

7.1.3 Invoking Embedded Objects as Renderers

In browsers where MathML is not natively supported, we anticipate that MathML rendering will be carried out via embedded objects such as plug-ins,
applets, or helper applications. In the near term, the W3C Math working group advocates the use of MIME types to bind embedded MathML to
renderers. Mechanisms for assigning MIME types already exist in HTML, and mechanisms for registering and automatically invoking embedded
elements such as plug-ins based on MIME type already exist in Web browsers.

The type attribute, described in the previous section as a requirement for the MathML interface element, is intended to associate a MIME type with
its content. The HTML element META is proposed as a means of specifying document-wide default MIME types for an element.

We propose a simple MIME type naming convention which is flexible enough to accommodate several common situations:

• An author wishing to reach an as wide an audience as possible might like MathML to be rendered by any available renderer.
• An author targeting a specific audience might like indicate that a particular MathML be used.
• A reader might wish to specify which of several available renderers should be used.

We propose that generic MathML be assigned the MIME type text/mathml, and for browser registry, we suggest the standard file extension .mml be
used. To invoke specific renderers, we suggest assigning a MIME type of the following format:

text/mathml-renderer

211

http://www.w3.org/TR/WD-DOM-Level-2
http://www.w3.org/TR/WD-DOM-Level-2

7.1.3.1 Example

A user downloads and installs renderer A, and registers it with the browser for the text/mathml MIME type to process generic MathML. However
renderer A also accepts TEX as an input syntax, and therefore during the installation process, it requests to be registered for application/x-tex as
well. Later, the user discovers renderer B provides additional features, such as cut and paste capability. Therefore, the user downloads, installs and
registers renderer B for the text/mathml-rendererB MIME type.

An author then creates a document that contains the the following line in the document header:

<META Content-math-Type="text/mathml">

Later, the document contains the following expressions:

<math>
<msup><mi>x</mi><mn>2</mn></msup>

</math>
<math type="text/mathml-rendererB">
<mi>α</mi><mo>=</mo><mn>0.4</mn>

</math>

When our hypothetical reader views this document, renderer A is invoked to process the first expression, while renderer B is invoked for the second.
Later, when our hypothetical reader later views a document with MIME type application/x-tex, renderer A is again invoke, this time in TEX
processing mode.

7.1.4 Invoking Other Applications

Although rendering MathML expressions typically occurs in place in a Web browser, other MathML processing functions take place more naturally in
other applications. Particularly common tasks include opening a MathML expression in an equation editor or computer algebra system.

At present, there is no standard way of specifying that embedded content should be rendered with one application, edited in another, and evaluated
by a third. As work progresses on coordination between browsers and embedded elements and the Document Object Model (DOM), providing this
kind of functionality should be a priority. Both authors and readers should be able to indicate a preference about what MathML application to use in
a given context. For example, one might imagine that some mouse gesture over a MathML expression would cause a browser to present the reader
with a pop-up menu, showing the various kinds of MathML processing available on the system, and the MathML processors recommended by the
author.

Since MathML will probably be widely generated by authoring tools, it is particularly important that opening a MathML expression in an editor should
be easy to do and to implement. In many cases, it will be desirable for an authoring tool to record some information about its internal state along
with a MathML expression, so that an author can pick up editing where he or she left off. The MathML specification does not explicitly contain
provisions for recording authoring tool information. In some circumstances, it may be possible to include authoring tool information which applies to
an entire document as meta data; interested readers are encouraged to consult the W3C Metadata Activity for current information about metadata
and resource definition. For encoding authoring tool state information that applies to a particular MathML instance, readers are referred to the possible
use of the semantics element for this purpose.

7.1.5 Mixing and Linking MathML and HTML

In order to be fully integrated into HTML, it should be possible not only to embed MathML in HTML, but also to embed HTML in MathML. However, the
problem of supporting HTML in MathML presents many difficulties. Moreover, the problems are not specific to MathML; they are problems for XML
applications in HTML generally. Therefore, at present, the MathML specification does not permit any HTML elements within a MathML expression,
although this may be subject to change in a future revision of MathML, when mechanisms for embedding XML in HTML have been further developed.

212

213

In most cases, HTML elements either do not apply in mathematical contexts (headings, paragraphs, lists, etcetera), or MathML already provides
equivalent or better functionality specifically tailored to mathematical content (tables, style changes, etcetera). However, there are two notable
exceptions.

7.1.5.1 Linking

MathML has no element which corresponds to the HTML anchor element a. In HTML, anchors are used both to make links, and to provide locations
to link to. MathML, as an XML application, defines links by the use of the XLink mechanism. However, MathML at present does not provide a way for
other documents to make links into a MathML expression. One reason for this omission is that linking into embedded XML content is better addressed
as part of a general mechanism for embedding XML in HTML. Moreover, until browsers either natively implement MathML rendering, or substantially
better coordination between embedded elements and browsers becomes possible, there is no reasonable way of implementing links into MathML
expressions.

MathML linking elements are generic XML linking elements as described in the XML Linking Language (XLink) working draft. The reader is cautioned
that this is as present still a working draft, and is therefore subject to future revision. Since the MathML linking mechanism is defined in terms of the
XML linking specification, the same proviso holds for it as well.

A MathML element is designated as a link by the presence of the xlink:href attribute. To use the xlink:href attribute, it is also necessary to
declare the xlink namespace. Thus, a typical MathML link might look like:

<mrow xmlns:xlink="http://www.w3.org/XML/XLink/0.9" xlink:href="sample.xml"> ... </mrow>

Issue (add-xlink-to-DTD): If we say this, we ought to add these attributes to all linkable elements in the DTD. See section 5.1 of the XLink working
draft.
MathML designates that almost all elements can be used as an XML linking element. The only elements which cannot serve as linking elements are
those such as the <sep/> element which exist primarily to disambiguate other MathML constructs and in general do not correspond to any part of a
typical visual rendering. The full list of exceptional elements which cannot be used as linking elements is given below in table 7.1.5.1.

Table 7.1: MathML elements which cannot be linking elements.
<mprescripts/> <none/> <sep/>
<malignmark/> <maligngroup/>

7.1.5.2 Images

The IMG element has no MathML equivalent. The decision to omit a general image inclusion mechanism in MathML was based on several factors.
First, a simple mechanism for including images in MathML along the lines of the IMG element would not be more closely tied to mathematical content
or notation than the HTML IMG element itself. Therefore, such an element would likely be superseded by the IMG element if it becomes possible to
mix XML and HTML generally.

Another reason for not providing an image facility is that MathML takes great pains to make the notational structure and mathematical content it
encodes easily available to processors while information contained in images is only available to a human reader looking at a visual representation.
Thus, for example, in the MathML paradigm, it would be preferable to introduce new glyphs by the creation of special symbol fonts, rather than simply
including them as images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image amount to some sort of
labeled diagram. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman diagrams and complicated commutative diagrams all fall
into this category. As such, their content would be better encoded via some combination of structured graphics and MathML markup. Because of the
generality of the ‘labeled diagram’ construction, the definition of a markup language to encode such constructions extends beyond the scope of the
W3C Math activity. (See http://www.w3.org/Graphics for further W3C activity in this area.)

213

http://www.w3.org/TR/xlink
http://www.w3.org/Graphics

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The exponential growth of the Web is fueling the development of
advanced systems for automatically searching, categorizing, and interconnecting information. Thus, although MathML can be written by hand and
read by humans, the future of MathML is also tied to the ability to process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers. What it means to support MathML varies widely between
applications. For example, the issues that arise with a MathML-compliant validating parser are very different from those for a MathML-compliant
equation editor.

In this section, guidelines are given for describing different types of MathML support, and for quantifying the extent of MathML support in a given ap-
plication. Developers, users and reviewers are encouraged to use these guidelines in characterizing products. The intention behind these guidelines
is to facilitate reuse and interoperability between MathML applications by accurately characterizing their capabilities in quantifiable terms.

7.2.1 MathML Compliance

A well-formed MathML expression is a XML construct determined by the MathML DTD together with the additional requirements given in the
specifications of the MathML document.

We define a ‘MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’ a well-formed MathML expression. An example of
an application that might round-trip a MathML expression might be an editor that writes a new file even though no modifications are made.

We specify three forms of MathML compliance:
1. A MathML-input-compliant processor must accept all well-formed MathML expressions, and faithfully translate all MathML expressions into

application-specific form allowing native application operations to be performed.
2. A MathML-output-compliant processor must generate well-formed MathML, faithfully representing all application-specific data.
3. A MathML-roundtrip-compliant processor must preserve MathML equivalence. Two MathML expressions are ‘equivalent’ if and only if both

expressions have the same interpretation (as stated by the MathML DTD and specification) under any circumstances, by any MathML
processor. Equivalence on an element-by-element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guide developers, the MathML
specification includes advisory material; for example, there are suggested rendering rules included in chapter 3. However, in general, developers are
given wide latitude in interpreting what kind of MathML implementation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful, consider some examples:
1. In order to be MathML-input-compliant, a validating parser needs to only to accept expressions, and return ‘true’ for expressions which are

valid MathML. In particular, it need not render or interpret the MathML expressions at all.
2. A MathML computer algebra interface based on content markup might choose to ignore all presentation markup. Provided the interface

accepts all well-formed MathML expressions included those containing presentation markup, it would be technically correct to characterize
the application as MathML-input-compliant.

3. A equation editor might have an internal data representation which makes it easy to export some equations as MathML but not others. If
the editor exports the simple equations, and merely displays an error message to the effect that conversion failed for the others, it is still
technically MathML-output-compliant.

As the previous examples show, to be useful, the concept of MathML compliance frequently involves a judgment about what parts of the language are
meaningfully implemented, as opposed to parts that are merely processed in a technically correct way with respect to the definitions of compliance.
This requires some mechanism for giving a quantitative statement about which parts of MathML are meaningfully implemented by a given application.
To this end, the W3C Math Working Group has provided a test suite of MathML expressions at http://www.w3.org/Math/testsuite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant MathML element being tested. The
existence of this test suite makes is possible, for example, to characterize quantitatively the hypothetical computer algebra interface mentioned above
by saying that it is a MathML-input compliant processor which meaningfully implements MathML content markup, including all of the expressions
given under http://www.w3.org/testsuite/tests/4.

214

http://www.w3.org/Math/testsuite

215

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged to itemize the parts they leave out
by referring to specific categories in the test suite.

For MathML-output-compliant processors, there is also a MathML validator online at http://www.w3.org/Math/validator. Developers of MathML-output-
compliant processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are implemented by an application are
encouraged to use the test suites as a part of their decision processes.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with an illegal number or type of attributes or children
schemata, it should nonetheless attempt to render all the input in an intelligible way, i.e. to render normally those parts of the input which were
well-formed, and to render error messages (rendered as if enclosed in an <merror> element) in place of ill-formed expressions.

MathML-output-compliant applications such as editors and translators may choose to generate <merror> expressions to signal errors in their input.
This is usually preferable to generating well-formed, but possibly erroneous, MathML.

7.2.3 An Attribute for Unspecified Data

The MathML attributes described in the MathML specification are necessary for display and content markup. Ideally, the MathML attributes should be
an open-ended list so that users could add specific attributes for specific renderers. However, this can’t be done within the confines of a single XML
DTD. Although it can be done using extensions of the standard DTD, some authors will wish to use nonstandard attributes while remaining strictly in
compliance with the standard DTD.

To allow this, this specification also allows the attribute other="..." for all elements, for use as a hook to pass on renderer-specific information. In
particular, it can be used as a hook for passing information to audio renderers, computer algebra systems, and for pattern matching in any future
macro/extension mechanism. This idea is used in other languages. For example, PostScript comments are widely used to pass information that is
not part of PostScript.

At the same time, the intent of the other attribute is not to encourage software developers to use this as a loophole for circumventing the MathML
core markup conventions. We trust both authors and applications will use the other attribute judiciously.

The value of the other attribute should be a string containing an attribute list in valid XML format (i.e. attr1="val1" attr2="val2"; ..., with appropriate
escaping of the double quotes). Renderers which accept nonstandard attributes directly should also accept them when they occur within the string
value of the other attribute. This is not required for attributes specifically documented by the MathML standard.

7.3 Future Extensions

MathML is in its infancy; it is to be expected that MathML will need to be extended and revised in various ways. Some of these extensions can
be easily foreseen; as noted repeatedly in this chapter, the mechanisms for fully integrating MathML into HTML are not yet developed, and these
mechanisms may have a significant impact on some aspects of MathML.

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions. These include macros, style sheets,
and perhaps a general ‘labeled diagram’ facility. However, there will also no doubt be other desirable extensions to MathML which will only emerge
as MathML is widely used. For these extensions, the W3C Math working group relies on the extensible architecture of XML, and the common sense
of the larger Web community.

215

http://www.w3.org/Math/validator

7.3.1 Macros and Style Sheets

The development of style sheet mechanisms for XML is part of the ongoing XML activity at the World Wide Web Consortium. Both XSL and CSS are
working to incorporate greater support for mathematics. Further, XSL can be used to provide basic macro capability as well.

Macros, however, play a very important and useful role in encoding mathematical content and meaning. Moreover, it is difficult to devise a coherent,
general macro system for MathML, because there are so many distinct applications for MathML macros. Therefore, a good direction for further work
is the definition of a macro mechanism specifically tailored to MathML, in addition to participating in general ongoing XML style sheet and macro
facility activities.

Some of the possible uses of MathML macros include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat some complicated but constant notation can define a
macro. This greatly facilitates hand authoring. Macros that allow for substitution of parameters facilitate such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a binomial coefficient, or a Bessel function, one can in effect
extend the content markup for MathML. Such a macro could include an explicit semantic binding, or such a binding could be easily added
by an external applications. Narrowly defined disciplines should be able to easily introduce standardize content markup by using standard
macro packages. For example, the OpenMath project could release macro packages for attaching OpenMath content markup up.

Rendering and Style Control Another basic way in which macros are often used is to provide a way of controlling style and rendering behavior by
replacing high level macro definitions. This is especially important for controlling the rendering behavior of MathML content tags in a context
sensitive way. Such a macro capability is also necessary to provide a way of attaching renderings to user defined XML extensions to the
MathML core.

Accessibility Reader controlled style sheets are important in providing accessibility to MathML. For example, a reader listening to a voice renderer
might by default hear a bit of MathML presentation markup read as ‘D sub x sup 2 of f’. Knowing the context to be multi-variable calculus, the
reader may wish to use a style sheet or macro package which instructs the renderer to render this <msubsup> element as ‘second derivative
with respect to x of f’.

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for rendering common mathematical expressions. It is
recognized that not all mathematical notation is covered by this set of elements, that new notations are continually invented, and that sub-communities
within mathematics often have specialized notations; and furthermore that the explicit extension of a standard is a necessarily slow and conservative
process; this implies that the MathML standard could never explicitly cover all the presentational forms used by every sub-community of authors and
readers of mathematics, much less encode all mathematical content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to encompass more notational forms and
more mathematical content (perhaps eventually covered by explicit extensions to the standard), the set of tags and attributes is open-ended, in the
sense described in this section.

MathML is described by an XML-compliant DTD, which necessarily limits the elements and attributes to those which occur in the DTD. Renderers
desiring to accept nonstandard elements or attributes, and authors desiring to include these in documents, should accept or produce documents
which conform to an appropriately extended XML-compliant DTD which has the standard MathML DTD as a subset.

MathML compliant renderers are allowed, but not required, to accept nonstandard elements and attributes, and to render them in any way. If a
renderer does not accept some or all nonstandard tags, it is encouraged to either handle them as errors as described above for elements with the
wrong number of arguments, or to render their arguments as if they were arguments to an mrow, in either case rendering all standard parts of the
input normally.

216

Chapter 8

Document Object Model for MathML

Issue (questions): The following is provided as a first draft approximation. There are a number of issues on which we would solicit input. Some of
these are:

1. Is a MathMLRowElement desirable? This would (presumably) provide no additional interface beyond MathMLElement, but could be useful as
a return value for various methods on other objects. Methods which are defined below to return NodeLists could return
MathMLRowElements instead. The advantage would be in retrieval of the children for further processing, as they could be retrieved directly
as MathMLElements. In other words, the object would give us a generic container object to be used wherever appropriate/convenient.

2. Contrariwise (to quote TweedleDum), is the MathMLElement::getMathElement() method sufficiently useful to justify its existence?
3. Some potential layers of object hierarchy have not been stipulated here, in view of the limited scope of the Level 1 DOM. Particularly

glaring is the absence of a MathMLPresentationElement / MathMLContentElement dichotomy. In fact, there seem to be no interface
considerations (in Level 1, at any rate) which are appropriate to these hypothetical elements. (The nature of potential applications might
suggest that we separate content elements from presentation elements in an optional module (would vice-versa really be workable?); this
would follow the lead of the W3 DOM WG’s structuring of Level 2. But it doesn’t seem an undue burden to place on a DOM-compliant
application to support both sets of elements.)

4. The MathMLMultiScriptsElement interface will probably elicit some comment. There may easily be methods deemed unnecessary here,
or methods missing but deemed necessary. Please take a look.

8.1 Introduction

This document extends the Level 1 Core API to describe objects and methods specific to MathML elements in documents. The functionality needed
to manipulate hierarchical document structures, elements, and attributes will be found in the core document; functionality that depends on the specific
elements defined in MathML will be found in this document.

The goals of the MathML-specific DOM API are:

• To specialize and add functionality that relates specifically to MathML elements.
• To provide convenience mechanisms, where appropriate, for common and frequent operations on MathML elements.

This document includes the following specializations for MathML:

• A MathMLElement interface derived from the core Element interface. MathMLElement specifies the operations and queries that can be
made on any MathML element. Methods on MathMLElement include those for the retrieval and modification of attributes that apply to all
MathML elements.

• Specializations for all MathML elements that have attributes that extend beyond those specified in the MathMLElement interface. For all
such attributes, the derived interface for the element contains explicit methods for setting and getting the values.

217

MathML specifies rules that are invisible to generic XML processors and validators. The fact that MathML DOM objects are required to respect these
rules, and to throw exceptions when those rules are violated, is an important reason for providing a MathML specific DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional criteria on attribute values. For
example, it is not possible in pure XML to require that an attribute value be a positive integer. The second kind of rule specifies more detailed
restrictions on the child elements (for example on ordering) than are given in the DTD. For example, it is not possible in XML to specify that the first
child be interpreted one way, and the second in another. The MathML DOM objects are required to provide this interpretation.

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whitespace occurring within the
content of token elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning and end of the content is removed), and ‘collapsed’ internally
(i.e. each sequence of 1 or more whitespace characters is replaced with one blank character). The MathML DOM elements perform this whitespace
trimming as necessary. In MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecimal
Unicode codes U+0020, U+0009, U+000a, or U+000d, respectively.

8.1.1 Scope of Level 1 and Level 2

Issue (level-scopes): Two levels of the MathML DOM have been specified. Unadorned interface names are part of level 1, while those whose
names end in the digit 2 are part of level 2. The two levels have been specified to aid impementors. The interfaces described to represent MathML
elements include access to a number of attributes (in the sense of XML) belonging to those elements. The intent of these methods in the core (level
1) interfaces (the ‘get’/‘set’ pairs) is only to access explicitly specified attributes of the elements, and specifically not to access implicit values which
may be application-specific. Calls to the level 1 interfaces to get attributes that have not been explicitly specified should return nothing (an empty
DOMString). It seems important to belabor this distinction in light of the nature of the MathML elements and their attributes; all of the attributes
defined for MathML presentation elements are declared in the DTD with a default value of #IMPLIED, for instance. This is particularly relevant for the
<mo> element’s interface, where the form attribute may be inferred from context if not given explicitly, but other attributes are normally collected from
an operator dictionary available to a renderer. The variety of applications which may need to implement the MathML DOM may sometimes be
concerned with validation, computation or other aspects of the document to the exclusion of rendering or editing; such applications do not need to
resolve #IMPLIED attributes, and thus there is no access to such resolution implied in the level 1 MathML DOM. The level 2 interfaces provide
methods that supply values for all attributes that have defaults or have values obtained from an operator dictionary.

218

Appendix A

Parsing MathML

MathML documents should be validated using the XML DTD below. Note in particular that the xml attribute xml:space is not used, so whitespace
characters in element content (that is, outside the presentation token elements mi, mo, mn, mtext, mspace, mtext, ms, the content token elements ci,
cn and annotation) are not significant.

If the MathML is parsed without a DTD, in other words as a well-formed XML fragment, it is the responsibility of the processing application to treat
these whitespace characters as not significant.

An SGML parser (such as nsgmls) can be used to validate MathML. In this case an SGML declaration defining the constraints of XML applicable to
an SGML parser must be used. See the note on SGML and XML.

A.1 The MathML DTD

A zip file of the full DTD including entity declarations is provided for reference. Here we give the main body of the DTD, without including the entity
declarations. See chapter 6 for a list of entity names ordered by name or by Unicode value.

219

http://www.w3.org/TR/NOTE-sgml-xml
file:mmlents.zip
file:chap6/byalpha.html
file:chap6/bycodes.html

<!-- ** -->
<!-- Content model definition for content, presentation -->
<!-- and browser interface elements of MathML -->
<!-- -->
<!-- $Id: mathml2.dtd,v 1.2 1999/12/17 18:35:08 davidc Exp $ -->
<!-- -->
<!-- Initial draft (syntax = XML) 1997-05-09 -->
<!-- Stephen Buswell -->
<!-- Revised 1997-05-14 by Robert Miner -->
<!-- Robert Miner -->
<!-- Revised 1997-06-29 and 1997-07-02 -->
<!-- Stephen Buswell -->
<!-- Revised 1997-12-15d -->
<!-- Stephen Buswell -->
<!-- Revised 1998-02-08 -->
<!-- Stephen Buswell -->
<!-- Revised 1998-04-04 -->
<!-- Stephen Buswell -->
<!-- Entities and small revisions 1999-02-21 -->
<!-- David Carlisle -->
<!-- Added attribute definitionURL to ci and cn 1999-10-11 -->
<!-- Nico Poppelier -->
<!-- Additions for MathML 2 1999-12-16 -->
<!-- David Carlisle -->
<!-- -->
<!-- Became W3C Recommendation 7 April 1998 -->
<!-- ** -->

<!-- ** -->
<!-- Attributes shared by all elements -->
<!-- ** -->

<!ENTITY % att-global ’xmlns CDATA #IMPLIED
xmlns:xlink CDATA #IMPLIED
xlink:href CDATA #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
id ID #IMPLIED
xref IDREF #IMPLIED
other CDATA #IMPLIED’ >

<!-- ** -->
<!-- Presentation element set -->
<!-- ** -->

<!-- Attribute definitions -->

220

221

<!ENTITY % att-fontsize ’fontsize CDATA #IMPLIED’ >
<!ENTITY % att-fontweight ’fontweight (normal | bold) #IMPLIED’ >
<!ENTITY % att-fontstyle ’fontstyle (normal | italic) #IMPLIED’ >
<!ENTITY % att-fontfamily ’fontfamily CDATA #IMPLIED ’ >
<!ENTITY % att-color ’color CDATA #IMPLIED’ >

<!ENTITY % att-fontinfo ’%att-fontsize;
%att-fontweight;
%att-fontstyle;
%att-fontfamily;
%att-color;’ >

<!ENTITY % att-form ’form (prefix | infix | postfix) #IMPLIED’ >
<!ENTITY % att-fence ’fence (true | false) #IMPLIED’ >
<!ENTITY % att-separator ’separator (true | false) #IMPLIED’ >
<!ENTITY % att-lspace ’lspace CDATA #IMPLIED’ >
<!ENTITY % att-rspace ’rspace CDATA #IMPLIED’ >
<!ENTITY % att-stretchy ’stretchy (true | false) #IMPLIED’ >
<!ENTITY % att-symmetric ’symmetric (true | false) #IMPLIED’ >
<!ENTITY % att-maxsize ’maxsize CDATA #IMPLIED’ >
<!ENTITY % att-minsize ’minsize CDATA #IMPLIED’ >
<!ENTITY % att-largeop ’largeop (true | false) #IMPLIED’ >
<!ENTITY % att-movablelimits ’movablelimits (true | false) #IMPLIED’ >
<!ENTITY % att-accent ’accent (true | false) #IMPLIED’ >

<!ENTITY % att-opinfo ’%att-form;
%att-fence;
%att-separator;
%att-lspace;
%att-rspace;
%att-stretchy;
%att-symmetric;
%att-maxsize;
%att-minsize;
%att-largeop;
%att-movablelimits;
%att-accent;’ >

<!ENTITY % att-width ’width CDATA #IMPLIED’ >
<!ENTITY % att-height ’height CDATA #IMPLIED’ >
<!ENTITY % att-depth ’depth CDATA #IMPLIED’ >

<!ENTITY % att-sizeinfo ’%att-width;
%att-height;
%att-depth;’ >

<!ENTITY % att-lquote ’lquote CDATA #IMPLIED’ >

221

<!ENTITY % att-rquote ’rquote CDATA #IMPLIED’ >

<!ENTITY % att-linethickness ’linethickness CDATA #IMPLIED’ >

<!ENTITY % att-scriptlevel ’scriptlevel CDATA #IMPLIED’ >
<!ENTITY % att-displaystyle ’displaystyle (true | false) #IMPLIED’ >
<!ENTITY % att-scriptsizemultiplier ’scriptsizemultiplier CDATA #IMPLIED’ >
<!ENTITY % att-scriptminsize ’scriptminsize CDATA #IMPLIED’ >
<!ENTITY % att-background ’background CDATA #IMPLIED’ >

<!ENTITY % att-open ’open CDATA #IMPLIED’ >
<!ENTITY % att-close ’close CDATA #IMPLIED’ >
<!ENTITY % att-separators ’separators CDATA #IMPLIED’ >

<!ENTITY % att-subscriptshift ’subscriptshift CDATA #IMPLIED’ >
<!ENTITY % att-superscriptshift ’superscriptshift CDATA #IMPLIED’ >

<!ENTITY % att-accentunder ’accentunder (true | false) #IMPLIED’ >

<!ENTITY % att-align ’align CDATA #IMPLIED’ >
<!ENTITY % att-rowalign ’rowalign CDATA #IMPLIED’ >
<!ENTITY % att-columnalign ’columnalign CDATA #IMPLIED’ >
<!ENTITY % att-columnwidth ’columnwidth CDATA #IMPLIED’ >
<!ENTITY % att-groupalign ’groupalign CDATA #IMPLIED’ >
<!ENTITY % att-alignmentscope ’alignmentscope CDATA #IMPLIED’ >

<!ENTITY % att-rowspacing ’rowspacing CDATA #IMPLIED’ >
<!ENTITY % att-columnspacing ’columnspacing CDATA #IMPLIED’ >
<!ENTITY % att-rowlines ’rowlines CDATA #IMPLIED’ >
<!ENTITY % att-columnlines ’columnlines CDATA #IMPLIED’ >
<!ENTITY % att-frame ’frame (none | solid | dashed) #IMPLIED’ >
<!ENTITY % att-framespacing ’framespacing CDATA #IMPLIED’ >
<!ENTITY % att-equalrows ’equalrows CDATA #IMPLIED’ >
<!ENTITY % att-equalcolumns ’equalcolumns CDATA #IMPLIED’ >

<!ENTITY % att-tableinfo ’%att-align;
%att-rowalign;
%att-columnalign;
%att-columnwidth;
%att-groupalign;
%att-alignmentscope;
%att-rowspacing;
%att-columnspacing;
%att-rowlines;
%att-columnlines;
%att-frame;
%att-framespacing;

222

223

%att-equalrows;
%att-equalcolumns;
%att-displaystyle;’ >

<!ENTITY % att-rowspan ’rowspan CDATA #IMPLIED’ >
<!ENTITY % att-columnspan ’columnspan CDATA #IMPLIED’ >

<!ENTITY % att-edge ’edge (left | right) #IMPLIED’ >

<!ENTITY % att-actiontype ’actiontype CDATA #IMPLIED’ >
<!ENTITY % att-selection ’selection CDATA #IMPLIED’ >

<!-- Presentation schemata with content -->

<!ENTITY % ptoken ’mi | mn | mo | mtext | ms’ >

<!ATTLIST mi %att-fontinfo;
%att-global; >

<!ATTLIST mn %att-fontinfo;
%att-global; >

<!ATTLIST mo %att-fontinfo;
%att-opinfo;
%att-global; >

<!ATTLIST mtext %att-fontinfo;
%att-global; >

<!ATTLIST ms %att-fontinfo;
%att-lquote;
%att-rquote;
%att-global; >

<!-- Empty presentation schemata -->

<!ENTITY % petoken ’mspace’ >
<!ELEMENT mspace EMPTY >

<!ATTLIST mspace %att-sizeinfo;
%att-global; >

<!-- Presentation: general layout schemata -->

<!ENTITY % pgenschema ’mrow|mfrac|msqrt|mroot|menclose|
mstyle|merror|mpadded| mphantom|mfenced’ >

223

<!ATTLIST mrow %att-global; >

<!ATTLIST mfrac %att-linethickness;
%att-global; >

<!ATTLIST msqrt %att-global; >
<!ATTLIST menclose %att-global; notation CDATA "longdiv" >

<!ATTLIST mroot %att-global; >

<!ATTLIST mstyle %att-fontinfo;
%att-opinfo;
%att-lquote;
%att-rquote;
%att-linethickness;
%att-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
%att-background;
%att-open;
%att-close;
%att-separators;
%att-subscriptshift;
%att-superscriptshift;
%att-accentunder;
%att-tableinfo;
%att-rowspan;
%att-columnspan;
%att-edge;
%att-actiontype;
%att-selection;
%att-global; >

<!ATTLIST merror %att-global; >

<!ATTLIST mpadded %att-sizeinfo;
%att-lspace;
%att-global; >

<!ATTLIST mphantom %att-global; >

<!ATTLIST mfenced %att-open;
%att-close;
%att-separators;
%att-global; >

<!-- Presentation layout schemata: scripts and limits -->

224

225

<!ENTITY % pscrschema ’msub|msup|msubsup|
munder|mover|munderover|mmultiscripts’ >

<!ATTLIST msub %att-subscriptshift;
%att-global; >

<!ATTLIST msup %att-superscriptshift;
%att-global; >

<!ATTLIST msubsup %att-subscriptshift;
%att-superscriptshift;
%att-global; >

<!ATTLIST munder %att-accentunder;
%att-global; >

<!ATTLIST mover %att-accent;
%att-global; >

<!ATTLIST munderover %att-accent;
%att-accentunder;
%att-global; >

<!ATTLIST mmultiscripts %att-subscriptshift;
%att-superscriptshift;
%att-global; >

<!-- Presentation layout schemata: empty elements for scripts -->

<!ENTITY % pscreschema ’mprescripts|none’ >

<!ELEMENT mprescripts EMPTY >

<!ELEMENT none EMPTY >

<!-- Presentation layout schemata: tables -->

<!ENTITY % ptabschema ’mtable|mtr|mlabeledtr|mtd’ >

<!ATTLIST mtable %att-tableinfo;
%att-global; >

<!ATTLIST mtr %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-global; >

225

<!ATTLIST mlabeledtr %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-global; >

<!ATTLIST mtd %att-rowalign;
%att-columnalign;
%att-groupalign;
%att-rowspan;
%att-columnspan;
%att-global; >

<!ENTITY % plschema ’%pgenschema;|%pscrschema;|%ptabschema;’ >

<!-- Empty presentation layout schemata -->

<!ENTITY % peschema ’maligngroup | malignmark’ >

<!ELEMENT malignmark EMPTY >

<!ATTLIST malignmark %att-edge; >

<!ELEMENT maligngroup EMPTY >
<!ATTLIST maligngroup %att-groupalign;

%att-global; >

<!-- Presentation action schemata -->

<!ENTITY % pactions ’maction’ >
<!ATTLIST maction %att-actiontype;

%att-selection;
%att-global; >

<!-- The following entity for substitution into content constructs -->
<!-- excludes elements that are not valid as expressions. -->

<!ENTITY % PresInCont ’%ptoken; | %petoken; |
%plschema; | %peschema; | %pactions;’ >

<!-- Presentation entity: all presentation constructs -->

<!ENTITY % Presentation ’%ptoken; | %petoken; | %pscreschema; |
%plschema; | %peschema; | %pactions;’>

<!-- ** -->
<!-- Content element set -->

226

227

<!-- ** -->

<!-- Attribute definitions -->

<!ENTITY % att-base ’base CDATA "10"’ >
<!ENTITY % att-closure ’closure CDATA "closed"’ >
<!ENTITY % att-definition ’definitionURL CDATA ""’ >
<!ENTITY % att-encoding ’encoding CDATA ""’ >
<!ENTITY % att-nargs ’nargs CDATA "1"’ >
<!ENTITY % att-occurrence ’occurrence CDATA "function-model"’ >
<!ENTITY % att-order ’order CDATA "numeric"’ >
<!ENTITY % att-scope ’scope CDATA "local"’ >
<!ENTITY % att-type ’type CDATA #IMPLIED’ >

<!-- Content elements: leaf nodes -->

<!ENTITY % ctoken ’csymbol|ci | cn’ >

<!ATTLIST ci %att-type;
%att-definition;
%att-global; >

<!ATTLIST csymbol %att-encoding;
%att-type;
%att-definition;
%att-global; >

<!ATTLIST cn %att-type;
%att-base;
%att-definition;
%att-global; >

<!-- Content elements: specials -->

<!ENTITY % cspecial ’apply | reln | lambda’ >

<!ATTLIST apply %att-global; >

<!ATTLIST reln %att-global; >

<!ATTLIST lambda %att-global; >

<!-- Content elements: others -->

<!ENTITY % cother ’condition | declare | sep’ >

<!ATTLIST condition %att-global; >

227

<!ATTLIST declare %att-type;
%att-scope;
%att-nargs;
%att-occurrence;
%att-definition;
%att-encoding;
%att-global; >

<!ELEMENT sep EMPTY >

<!-- Content elements: semantic mapping -->

<!ENTITY % csemantics ’semantics | annotation | annotation-xml’ >

<!ATTLIST semantics %att-definition;
%att-encoding;
%att-global; >

<!ATTLIST annotation %att-encoding;
%att-global; >

<!ATTLIST annotation-xml %att-encoding;
%att-global; >

<!-- Content elements: constructors -->

<!ENTITY % cconstructor ’interval | list | matrix | matrixrow |
set | vector’ >

<!ATTLIST interval %att-closure;
%att-global; >

<!ATTLIST set %att-global; >

<!ATTLIST list %att-order;
%att-global; >

<!ATTLIST vector %att-global; >

<!ATTLIST matrix %att-global; >

<!ATTLIST matrixrow %att-global; >

<!-- Content elements: operators -->

<!ENTITY % cfuncop1ary ’inverse | ident’ >

228

229

<!ELEMENT inverse EMPTY >
<!ATTLIST inverse %att-definition;

%att-global; >

<!ENTITY % cfuncopnary ’fn | compose’ >

<!ATTLIST fn %att-definition;
%att-global; >

<!ELEMENT ident EMPTY >
<!ATTLIST ident %att-definition;

%att-global; >

<!ELEMENT compose EMPTY >
<!ATTLIST compose %att-definition;

%att-global; >

<!ENTITY % carithop1ary ’abs | conjugate | exp | factorial | arg |
real | imaginary’ >

<!ELEMENT exp EMPTY >
<!ATTLIST exp %att-definition;

%att-global; >

<!ELEMENT abs EMPTY >
<!ATTLIST abs %att-definition;

%att-global; >

<!ELEMENT arg EMPTY >
<!ATTLIST arg %att-definition;

%att-global; >

<!ELEMENT real EMPTY >
<!ATTLIST real %att-definition;

%att-global; >

<!ELEMENT imaginary EMPTY >
<!ATTLIST imaginary %att-definition;

%att-global; >

<!ELEMENT conjugate EMPTY >
<!ATTLIST conjugate %att-definition;

%att-global; >

<!ELEMENT factorial EMPTY >
<!ATTLIST factorial %att-definition;

229

%att-global; >

<!ENTITY % carithop1or2ary ’minus’ >

<!ELEMENT minus EMPTY >
<!ATTLIST minus %att-definition;

%att-global; >

<!ENTITY % carithop2ary ’quotient | divide | power | rem’ >

<!ELEMENT quotient EMPTY >
<!ATTLIST quotient %att-definition;

%att-global; >

<!ELEMENT divide EMPTY >
<!ATTLIST divide %att-definition;

%att-global; >

<!ELEMENT power EMPTY >
<!ATTLIST power %att-definition;

%att-global; >

<!ELEMENT rem EMPTY >
<!ATTLIST rem %att-definition;

%att-global; >

<!ENTITY % carithopnary ’plus | times | max | min | gcd’ >

<!ELEMENT plus EMPTY >
<!ATTLIST plus %att-definition;

%att-global; >

<!ELEMENT max EMPTY >
<!ATTLIST max %att-definition;

%att-global; >

<!ELEMENT min EMPTY >
<!ATTLIST min %att-definition;

%att-global; >

<!ELEMENT times EMPTY >
<!ATTLIST times %att-definition;

%att-global; >

<!ELEMENT gcd EMPTY >
<!ATTLIST gcd %att-definition;

%att-global; >

230

231

<!ENTITY % carithoproot ’root’ >

<!ELEMENT root EMPTY >
<!ATTLIST root %att-definition;

%att-global; >

<!ENTITY % clogicopquant ’exists | forall’ >

<!ELEMENT exists EMPTY >
<!ATTLIST exists %att-definition;

%att-global; >

<!ELEMENT forall EMPTY >
<!ATTLIST forall %att-definition;

%att-global; >

<!ENTITY % clogicopnary ’and | or | xor’ >

<!ELEMENT and EMPTY >
<!ATTLIST and %att-definition;

%att-global; >

<!ELEMENT or EMPTY >
<!ATTLIST or %att-definition;

%att-global; >

<!ELEMENT xor EMPTY >
<!ATTLIST xor %att-definition;

%att-global; >

<!ENTITY % clogicop1ary ’not’ >

<!ELEMENT not EMPTY >
<!ATTLIST not %att-definition;

%att-global; >

<!ENTITY % clogicop2ary ’implies’ >

<!ELEMENT implies EMPTY >
<!ATTLIST implies %att-definition;

%att-global; >

<!ENTITY % ccalcop ’log | int | diff | partialdiff | divergence |
grad | curl | laplacian’ >

231

<!ELEMENT divergence EMPTY >
<!ATTLIST divergence %att-definition;

%att-global; >

<!ELEMENT grad EMPTY >
<!ATTLIST grad %att-definition;

%att-global; >

<!ELEMENT curl EMPTY >
<!ATTLIST curl %att-definition;

%att-global; >

<!ELEMENT laplacian EMPTY >
<!ATTLIST laplacian %att-definition;

%att-global; >

<!ELEMENT log EMPTY >
<!ATTLIST log %att-definition;

%att-global; >

<!ELEMENT int EMPTY >
<!ATTLIST int %att-definition;

%att-global; >

<!ELEMENT diff EMPTY >
<!ATTLIST diff %att-definition;

%att-global; >

<!ELEMENT partialdiff EMPTY >
<!ATTLIST partialdiff %att-definition;

%att-global; >

<!ENTITY % ccalcop1ary ’ln’ >

<!ELEMENT ln EMPTY >
<!ATTLIST ln %att-definition;

%att-global; >

<!ENTITY % csetop1ary ’card’ >

<!ELEMENT card EMPTY >
<!ATTLIST card %att-definition;

%att-global; >

<!ENTITY % csetop2ary ’setdiff’ >

232

233

<!ELEMENT setdiff EMPTY >
<!ATTLIST setdiff %att-definition;

%att-global; >

<!ENTITY % csetopnary ’union | intersect’ >

<!ELEMENT union EMPTY >
<!ATTLIST union %att-definition;

%att-global; >

<!ELEMENT intersect EMPTY >
<!ATTLIST intersect %att-definition;

%att-global; >

<!ENTITY % cseqop ’sum | product | limit’ >

<!ELEMENT sum EMPTY >
<!ATTLIST sum %att-definition;

%att-global; >

<!ELEMENT product EMPTY >
<!ATTLIST product %att-definition;

%att-global; >

<!ELEMENT limit EMPTY >
<!ATTLIST limit %att-definition;

%att-global; >

<!ENTITY % ctrigop ’sin | cos | tan | sec | csc | cot | sinh |
cosh | tanh | sech | csch | coth |
arcsin | arccos | arctan’ >

<!ELEMENT sin EMPTY >
<!ATTLIST sin %att-definition;

%att-global; >

<!ELEMENT cos EMPTY >
<!ATTLIST cos %att-definition;

%att-global; >

<!ELEMENT tan EMPTY >
<!ATTLIST tan %att-definition;

%att-global; >

<!ELEMENT sec EMPTY >
<!ATTLIST sec %att-definition;

%att-global; >

233

<!ELEMENT csc EMPTY >
<!ATTLIST csc %att-definition;

%att-global; >

<!ELEMENT cot EMPTY >
<!ATTLIST cot %att-definition;

%att-global; >

<!ELEMENT sinh EMPTY >
<!ATTLIST sinh %att-definition;

%att-global; >

<!ELEMENT cosh EMPTY >
<!ATTLIST cosh %att-definition;

%att-global; >

<!ELEMENT tanh EMPTY >
<!ATTLIST tanh %att-definition;

%att-global; >

<!ELEMENT sech EMPTY >
<!ATTLIST sech %att-definition;

%att-global; >

<!ELEMENT csch EMPTY >
<!ATTLIST csch %att-definition;

%att-global; >

<!ELEMENT coth EMPTY >
<!ATTLIST coth %att-definition;

%att-global; >

<!ELEMENT arcsin EMPTY >
<!ATTLIST arcsin %att-definition;

%att-global; >

<!ELEMENT arccos EMPTY >
<!ATTLIST arccos %att-definition;

%att-global; >

<!ELEMENT arctan EMPTY >
<!ATTLIST arctan %att-definition;

%att-global; >

<!ENTITY % cstatopnary ’mean | sdev | variance | median | mode’ >

234

235

<!ELEMENT mean EMPTY >
<!ATTLIST mean %att-definition;

%att-global; >

<!ELEMENT sdev EMPTY >
<!ATTLIST sdev %att-definition;

%att-global; >

<!ELEMENT variance EMPTY >
<!ATTLIST variance %att-definition;

%att-global; >

<!ELEMENT median EMPTY >
<!ATTLIST median %att-definition;

%att-global; >

<!ELEMENT mode EMPTY >
<!ATTLIST mode %att-definition;

%att-global; >

<!ENTITY % cstatopmoment ’moment’ >

<!ELEMENT moment EMPTY >
<!ATTLIST moment %att-definition;

%att-global; >

<!ENTITY % clalgop1ary ’determinant | transpose’ >

<!ELEMENT determinant EMPTY >
<!ATTLIST determinant %att-definition;

%att-global; >

<!ELEMENT transpose EMPTY >
<!ATTLIST transpose %att-definition;

%att-global; >

<!ENTITY % clalgop2ary ’vectorproduct | scalarproduct | outerproduct’ >

<!ELEMENT vectorproduct EMPTY >
<!ATTLIST vectorproduct %att-definition;

%att-global; >

<!ELEMENT scalarproduct EMPTY >
<!ATTLIST scalarproduct %att-definition;

%att-global; >

<!ELEMENT outerproduct EMPTY >

235

<!ATTLIST outerproduct %att-definition;
%att-global; >

<!ENTITY % clalgopnary ’selector’ >

<!ELEMENT selector EMPTY >
<!ATTLIST selector %att-definition;

%att-global; >

<!-- Content elements: relations -->

<!ENTITY % cgenrel2ary ’neq’ >

<!ELEMENT neq EMPTY >
<!ATTLIST neq %att-definition;

%att-global; >

<!ENTITY % cgenrelnary ’eq | leq | lt | geq | gt| equivalent | approx’ >

<!ELEMENT eq EMPTY >
<!ATTLIST eq %att-definition;

%att-global; >

<!ELEMENT equivalent EMPTY >
<!ATTLIST equivalent %att-definition;

%att-global; >

<!ELEMENT approx EMPTY >
<!ATTLIST approx %att-definition;

%att-global; >

<!ELEMENT gt EMPTY >
<!ATTLIST gt %att-definition;

%att-global; >

<!ELEMENT lt EMPTY >
<!ATTLIST lt %att-definition;

%att-global; >

<!ELEMENT geq EMPTY >
<!ATTLIST geq %att-definition;

%att-global; >

<!ELEMENT leq EMPTY >
<!ATTLIST leq %att-definition;

%att-global; >

236

237

<!ENTITY % csetrel2ary ’in | notin | notsubset | notprsubset’ >

<!ELEMENT in EMPTY >
<!ATTLIST in %att-definition;

%att-global; >

<!ELEMENT notin EMPTY >
<!ATTLIST notin %att-definition;

%att-global; >

<!ELEMENT notsubset EMPTY >
<!ATTLIST notsubset %att-definition;

%att-global; >

<!ELEMENT notprsubset EMPTY >
<!ATTLIST notprsubset %att-definition;

%att-global; >

<!ENTITY % csetrelnary ’subset | prsubset’ >

<!ELEMENT subset EMPTY >
<!ATTLIST subset %att-definition;

%att-global; >

<!ELEMENT prsubset EMPTY >
<!ATTLIST prsubset %att-definition;

%att-global; >

<!ENTITY % cseqrel2ary ’tendsto’ >

<!ELEMENT tendsto EMPTY >
<!ATTLIST tendsto %att-definition;

%att-type;
%att-global; >

<!-- Content elements: quantifiers -->

<!ENTITY % cquantifier ’lowlimit | uplimit | bvar | degree | logbase’ >

<!ATTLIST lowlimit %att-global; >

<!ATTLIST uplimit %att-global; >

<!ATTLIST bvar %att-global; >

<!ATTLIST degree %att-global; >

237

<!ATTLIST logbase %att-global; >

<!-- Operator groups -->

<!ENTITY % cop1ary ’%cfuncop1ary; | %carithop1ary; | %clogicop1ary; |
%ccalcop1ary; | %ctrigop; | %clalgop1ary; | %csetop1ary;’ >

<!ENTITY % cop2ary ’%carithop2ary; | %clogicop2ary;|
%clalgop2ary; | %csetop2ary;’ >

<!ENTITY % copnary ’%cfuncopnary; | %carithopnary; | %clogicopnary; |
%csetopnary; | %cstatopnary; | %clalgopnary;’ >

<!ENTITY % copmisc ’%carithoproot; | %carithop1or2ary; | %ccalcop; |
%cseqop; | %cstatopmoment; | %clogicopquant;’ >

<!-- Relation groups -->

<!ENTITY % crel2ary ’%cgenrel2ary; | %csetrel2ary; | %cseqrel2ary;’ >

<!ENTITY % crelnary ’%cgenrelnary; | %csetrelnary;’ >

<!-- Content constructs: all -->

<!ENTITY % Content ’%ctoken; | %cspecial; | %cother; | %csemantics; |
%cconstructor; | %cquantifier; |
%cop1ary; |%cop2ary; |%copnary; |%copmisc; |
%crel2ary; |%crelnary;’ >

<!-- Content constructs for substitution in presentation structures -->

<!ENTITY % ContInPres ’ci |csymbol| cn | apply | fn | lambda | reln |
interval | list | matrix | matrixrow |
set | vector | semantics |declare’ >

<!-- ** -->
<!-- Recursive definition for content of expressions. -->
<!-- Include presentation constructs at lowest level -->
<!-- so presentation layout schemata hold presentation -->
<!-- or content elements. -->
<!-- Include content constructs at lowest level so -->
<!-- content elements hold PCDATA or presentation elements -->
<!-- at leaf level (for permitted substitutable elements in context) -->
<!-- ** -->

<!ENTITY % ContentExpression ’(%Content; | %PresInCont;)*’ >
<!ENTITY % PresExpression ’(%Presentation; | %ContInPres;)*’ >

238

239

<!ENTITY % MathExpression ’(%PresInCont; | %ContInPres;)*’ >

<!-- Content elements: tokens -->
<!-- (may contain embedded presentation constructs) -->

<!ELEMENT ci (#PCDATA | %PresInCont;)* >
<!ELEMENT csymbol (#PCDATA | %PresInCont;|ci)* > <!-- ci ? -->
<!ELEMENT cn (#PCDATA | sep | %PresInCont;)* >

<!-- Content elements: special -->

<!ELEMENT apply (%ContentExpression;) >
<!ELEMENT reln (%ContentExpression;) >
<!ELEMENT lambda (%ContentExpression;) >

<!-- Content elements: other -->

<!ELEMENT condition (%ContentExpression;) >
<!ELEMENT declare (%ContentExpression;) >

<!-- Content elements: semantics -->

<!ELEMENT semantics (%ContentExpression;) >
<!ELEMENT annotation (#PCDATA) >
<!ELEMENT annotation-xml ANY >

<!-- Content elements: constructors -->

<!ELEMENT interval (%ContentExpression;) >
<!ELEMENT set (%ContentExpression;) >
<!ELEMENT list (%ContentExpression;) >
<!ELEMENT vector (%ContentExpression;) >
<!ELEMENT matrix (%ContentExpression;) >
<!ELEMENT matrixrow (%ContentExpression;) >

<!-- Content elements: operator (user-defined) -->

<!ELEMENT fn (%ContentExpression;) >

<!-- Content elements: quantifiers -->

<!ELEMENT lowlimit (%ContentExpression;) >
<!ELEMENT uplimit (%ContentExpression;) >
<!ELEMENT bvar (%ContentExpression;) >
<!ELEMENT degree (%ContentExpression;) >
<!ELEMENT logbase (%ContentExpression;) >

239

<!-- ** -->
<!-- Presentation layout schemata contain tokens, -->
<!-- layout and content schemata. -->
<!-- ** -->

<!ELEMENT mstyle (%PresExpression;) >
<!ELEMENT merror (%PresExpression;) >
<!ELEMENT mphantom (%PresExpression;) >
<!ELEMENT mrow (%PresExpression;) >
<!ELEMENT mfrac (%PresExpression;) >
<!ELEMENT msqrt (%PresExpression;) >
<!ELEMENT menclose (%PresExpression;) >
<!ELEMENT mroot (%PresExpression;) >
<!ELEMENT msub (%PresExpression;) >
<!ELEMENT msup (%PresExpression;) >
<!ELEMENT msubsup (%PresExpression;) >
<!ELEMENT mmultiscripts (%PresExpression;) >
<!ELEMENT munder (%PresExpression;) >
<!ELEMENT mover (%PresExpression;) >
<!ELEMENT munderover (%PresExpression;) >
<!ELEMENT mtable (%PresExpression;) >
<!ELEMENT mtr (%PresExpression;) >
<!ELEMENT mlabeledtr (%PresExpression;) >
<!ELEMENT mtd (%PresExpression;) >
<!ELEMENT maction (%PresExpression;) >
<!ELEMENT mfenced (%PresExpression;) >
<!ELEMENT mpadded (%PresExpression;) >

<!-- Presentation elements contain PCDATA or malignmark constructs. -->

<!ELEMENT mi (#PCDATA | malignmark)* >
<!ELEMENT mn (#PCDATA | malignmark)* >
<!ELEMENT mo (#PCDATA | malignmark)* >
<!ELEMENT mtext (#PCDATA | malignmark)* >
<!ELEMENT ms (#PCDATA | malignmark)* >

<!-- ** -->
<!-- Browser interface definition -->
<!-- ** -->

<!-- Attributes for top-level element ’math’ -->

<!ENTITY % att-macros ’macros CDATA #IMPLIED’ >
<!ENTITY % att-mode ’mode CDATA #IMPLIED’ >

<!ENTITY % att-topinfo ’%att-global;
%att-macros;

240

241

%att-mode;’ >

<!-- Attributes for browser interface element -->

<!ENTITY % att-name ’name CDATA #IMPLIED’ >
<!ENTITY % att-baseline ’baseline CDATA #IMPLIED’ >
<!ENTITY % att-overflow ’overflow (scroll|elide|truncate|scale) "scroll"’ >
<!ENTITY % att-altimg ’altimg CDATA #IMPLIED’ >
<!ENTITY % att-alttext ’alttext CDATA #IMPLIED’ >

<!ENTITY % att-browif ’%att-type;
%att-name;
%att-height;
%att-width;
%att-baseline;
%att-overflow;
%att-altimg;
%att-alttext;’ >

<!-- ** -->
<!-- The top-level element ’math’ contains MathML encoded mathematics. -->
<!-- The ’math’ element has the browser info attributes iff it is -->
<!-- also the browser interface element. -->
<!-- ** -->

<!ELEMENT math (%MathExpression;) >

<!ATTLIST math %att-topinfo;
%att-browif; >

<!-- ** -->
<!-- Entity sets from ISO Technical Report 9573-13 -->
<!-- ** -->

<!ENTITY % ent-isoamsa PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Arrow Relations for MathML 2.0//EN"
"isoamsa.ent" >

%ent-isoamsa;

<!ENTITY % ent-isoamsb PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Binary Operators for MathML 2.0//EN"
"isoamsb.ent" >

%ent-isoamsb;

<!ENTITY % ent-isoamsc PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Delimiters for MathML 2.0//EN"
"isoamsc.ent" >

241

%ent-isoamsc;

<!ENTITY % ent-isoamsn PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Negated Relations for MathML 2.0//EN"
"isoamsn.ent" >

%ent-isoamsn;

<!ENTITY % ent-isoamso PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Ordinary for MathML 2.0//EN"
"isoamso.ent" >

%ent-isoamso;

<!ENTITY % ent-isoamsr PUBLIC
"-//W3C//ENTITIES Added Math Symbols: Relations for MathML 2.0//EN"
"isoamsr.ent" >

%ent-isoamsr;

<!ENTITY % ent-isogrk3 PUBLIC
"-//W3C//ENTITIES Greek Symbols for MathML 2.0//EN"
"isogrk3.ent" >

%ent-isogrk3;

<!ENTITY % ent-isomfrk PUBLIC
"-//W3C//ENTITIES Math Alphabets: Fraktur for MathML 2.0//EN"
"isomfrk.ent" >

%ent-isomfrk;

<!ENTITY % ent-isomopf PUBLIC
"-//W3C//ENTITIES Math Alphabets: Open Face for MathML 2.0//EN"
"isomopf.ent" >

%ent-isomopf;

<!ENTITY % ent-isomscr PUBLIC
"-//W3C//ENTITIES Math Alphabets: Script for MathML 2.0//EN"
"isomscr.ent" >

%ent-isomscr;

<!ENTITY % ent-isotech PUBLIC
"-//W3C//ENTITIES General Technical for MathML 2.0//EN"
"isotech.ent" >

%ent-isotech;

<!-- ** -->
<!-- Entity sets from informative annex to -->
<!-- ISO Standard 8879:1986 (the SGML standard) -->
<!-- ** -->

242

243

<!ENTITY % ent-isobox PUBLIC
"-//W3C//ENTITIES Box and Line Drawing for MathML 2.0//EN"
"isobox.ent" >

%ent-isobox;

<!ENTITY % ent-isocyr1 PUBLIC
"-//W3C//ENTITIES Russian Cyrillic for MathML 2.0//EN"
"isocyr1.ent" >

%ent-isocyr1;

<!ENTITY % ent-isocyr2 PUBLIC
"-//W3C//ENTITIES Non-Russian Cyrillic for MathML 2.0//EN"
"isocyr2.ent" >

%ent-isocyr2;

<!ENTITY % ent-isodia PUBLIC
"-//W3C//ENTITIES Diacritical Marks for MathML 2.0//EN"
"isodia.ent" >

%ent-isodia;

<!ENTITY % ent-isolat1 PUBLIC
"-//W3C//ENTITIES Added Latin 1 for MathML 2.0//EN"
"isolat1.ent" >

%ent-isolat1;

<!ENTITY % ent-isolat2 PUBLIC
"-//W3C//ENTITIES Added Latin 2 for MathML 2.0//EN"
"isolat2.ent" >

%ent-isolat2;

<!ENTITY % ent-isonum PUBLIC
"-//W3C//ENTITIES Numeric and Special Graphic for MathML 2.0//EN"
"isonum.ent" >

%ent-isonum;

<!ENTITY % ent-isopub PUBLIC
"-//W3C//ENTITIES Publishing for MathML 2.0//EN"
"isopub.ent" >

%ent-isopub;

<!-- ** -->
<!-- MathML aliases for characters defined above -->
<!-- ** -->

<!ENTITY % ent-mmlalias PUBLIC
"-//W3C//ENTITIES Aiases for MathML 2.0//EN"

243

"mmlalias.ent" >
%ent-mmlalias;

<!-- ** -->
<!-- New characters defined by MathML -->
<!-- ** -->

<!ENTITY % ent-mmlextra PUBLIC
"-//W3C//ENTITIES Extra for MathML 2.0//EN"
"mmlextra.ent" >

%ent-mmlextra;

<!-- end of DTD fragment -->

244

Appendix B

Operator Dictionary

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and accents in MathML, all of which are
represented by mo elements. For brevity, all such elements will be called simply ‘operators’ in this Appendix.

B.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and the order of the groups, is significant
for the proper grouping of subexpressions using <mrow> (section 3.3.1); the rule described there is especially relevant to the automatic generation of
MathML by conversion from other formats for displayed mathematics, such as TEX, which do not always specify how subexpressions nest.

The format of the table entries is: the <mo> element content between double quotes (start and end tags not shown), followed by the attribute list in
XML format, starting with the form attribute, followed by the default rendering attributes which should be used for mo elements with the given content
and form attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes in section 3.2.4.

Note that the characters & and < are represented in the following table entries by the entity references & and < respectively, as would be
necessary if they appeared in the content of an actual mo element (or any other MathML or XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as an mo element by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability, which is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element <mo form="prefix"> (</mo> alone,
or simply <mo> (</mo> in a position for which form="prefix" would be inferred (see below), is equivalent to giving the element with all attributes as
shown above.

245

B.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content and form attribute value, together. Operators with more
than one possible form have more than one entry. The MathML specification describes how the renderer chooses (‘infers’) which form to use when
no form attribute is given; see section 3.2.4.7.

Having made that choice, or with the form attribute explicitly specified in the <mo> element’s start tag, the MathML renderer uses the remaining
attributes from the dictionary entry for the appropriate single form of that operator, ignoring the entries for the other possible forms.

B.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity references using the syntax &character-
name; the complete list of characters and character names is given in chapter 6. Many characters can be referred to by more than one name; often,
memorable names composed of full words have been provided in MathML, as well as one or more names used in other standards, such as Unicode.
The characters in the operators in this dictionary are generally listed under their full-word names when these exist. For example, the integral operator
is named below by the one-character sequence ∫, but could equally well be named ∫. The choice of name for a given character in
MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in chapter 6. If this is not true, it is an error in this specification. If such an error
exists, the abovementioned chapter should be taken as definitive, rather than this appendix.

B.4 Notes on lspace and rspace attributes

The values for lspace and rspace given here range from 0 to (verythickmathspace which has a default value of 6/18em. For the invisible operators
whose content is ⁢ or ⁡, it is suggested that MathML renderers choose spacing in a context-sensitive way (which
is an exception to the static values given in the following table). For <mo>⁡</mo>, the total spacing (lspace+rspace) in expressions
such as ‘sin x’ (where the right operand doesn’t start with a fence) should be greater than zero; for <mo>⁢</mo>, the total spacing
should be greater than zero when both operands (or the nearest tokens on either side, if on the baseline) are identifiers displayed in a non-slanted
font (i.e. under the suggested rules, when both operands are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is greater than 0; see section 3.3.4), as
is the case in TEX.

B.5 Operator dictionary entries

246

247

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
")" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"[" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"]" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"{" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"}" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"”" form="postfix" fence="true" lspace="0em" rspace="0em"
"’" form="postfix" fence="true" lspace="0em" rspace="0em"
"⟨" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌈" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⟦" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftDoubleBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌊" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"“" form="prefix" fence="true" lspace="0em" rspace="0em"
"‘" form="prefix" fence="true" lspace="0em" rspace="0em"
"⟩" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&RightBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌉" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⟧" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&RightDoubleBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"⌋" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"
"&LeftSkeleton;" form="prefix" fence="true" lspace="0em" rspace="0em"
"&RightSkeleton;" form="postfix" fence="true" lspace="0em" rspace="0em"
"⁣" form="infix" separator="true" lspace="0em" rspace="0em"
"," form="infix" separator="true" lspace="0em" rspace="verythickmathspace"
"─" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"
"|" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"
";" form="infix" separator="true" lspace="0em" rspace="thickmathspace"
";" form="postfix" separator="true" lspace="0em" rspace="0em"
":=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≔" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"❘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"//" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&" form="prefix" lspace="0em" rspace="thickmathspace"
"&" form="postfix" lspace="thickmathspace" rspace="0em"
"*=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"-=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"+=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"/=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"->" form="infix" lspace="thickmathspace" rspace="thickmathspace"
":" form="infix" lspace="thickmathspace" rspace="thickmathspace"
".." form="postfix" lspace="mediummathspace" rspace="0em"

247

"..." form="postfix" lspace="mediummathspace" rspace="0em"
"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⫤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊨" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"|" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"||" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⩔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"&&" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"&" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"!" form="prefix" lspace="0em" rspace="thickmathspace"
"⫬" form="prefix" lspace="0em" rspace="thickmathspace"
"∃" form="prefix" lspace="0em" rspace="thickmathspace"
"∀" form="prefix" lspace="0em" rspace="thickmathspace"
"∄" form="prefix" lspace="0em" rspace="thickmathspace"
"∈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∌" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊂⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊃⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊑" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊒" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊆" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊃" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊇" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥞" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↽" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

248

249

"⥟" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇁" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"←" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇆" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥎" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥚" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↼" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↙" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"→" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇥" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇄" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↦" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥛" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⇀" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⥓" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"←" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"→" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"↖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"↗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"<" form="infix" lspace="thickmathspace" rspace="thickmathspace"
">" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"!=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"==" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"<=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
">=" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≍" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≂" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇌" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"≥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋛" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≧" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩾" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≳" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≎" form="infix" lspace="thickmathspace" rspace="thickmathspace"

249

"≏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊲" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧏" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋚" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≦" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≶" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩽" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≲" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≫" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≪" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≢" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≭" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∦" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≠" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≂̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≯" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≱" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≧̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≫̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≹" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩾̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≎̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋪" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋬" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≮" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&NotLessFullEqual;" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≪̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⩽̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≴" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪢̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪡̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊀" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪯̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋠" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"&NotPrecedesTilde;" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋫" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋭" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊁" form="infix" lspace="thickmathspace" rspace="thickmathspace"

250

251

"⪰̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⋡" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≿̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≁" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≄" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≇" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≉" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∤" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≺" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪯" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≼" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≾" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∝" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⇋" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"
"⊳" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⧐" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊵" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≻" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⪰" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≽" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≿" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∼" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≃" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≅" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"≈" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊥" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"∣" form="infix" lspace="thickmathspace" rspace="thickmathspace"
"⊔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⋃" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⊎" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"-" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"+" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⋂" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"∓" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"±" form="infix" lspace="mediummathspace" rspace="mediummathspace"
"⊓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"
"⋁" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊖" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"⊕" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"∑" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⋃" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊎" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"lim" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"max" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"min" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"
"⊖" form="infix" lspace="thinmathspace" rspace="thinmathspace"

251

"⊕" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"∲" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∮" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∳" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∯" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"∫" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"
"⋓" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋒" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"≀" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋀" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⊗" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"∐" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"∏" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"⋂" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"
"∐" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋆" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⊙" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"
"*" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⁢" form="infix" lspace="0em" rspace="0em"
"·" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⊗" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋁" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋀" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"⋄" form="infix" lspace="thinmathspace" rspace="thinmathspace"
"∖" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"
"/" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"
"-" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"+" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"∓" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"±" form="prefix" lspace="0em" rspace="veryverythinmathspace"
"." form="infix" lspace="0em" rspace="0em"
"⨯" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"**" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"⊙" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"∘" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"□" form="prefix" lspace="0em" rspace="verythinmathspace"
"∇" form="prefix" lspace="0em" rspace="verythinmathspace"
"∂" form="prefix" lspace="0em" rspace="verythinmathspace"
"ⅅ" form="prefix" lspace="0em" rspace="verythinmathspace"
"ⅆ" form="prefix" lspace="0em" rspace="verythinmathspace"
"√" form="prefix" stretchy="true" lspace="0em" rspace="verythinmathspace"
"⇓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟸" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟺" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟹" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

252

253

"↓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⤓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↧" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥡" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇃" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥙" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥠" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↿" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥘" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟷" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⟶" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥯" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥝" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇂" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥏" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥜" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↾" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥔" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↓" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"↑" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"↑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⤒" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⇅" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"⥮" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"↥" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"
"^" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"<>" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"’" form="postfix" lspace="verythinmathspace" rspace="0em"
"!" form="postfix" lspace="verythinmathspace" rspace="0em"
"!!" form="postfix" lspace="verythinmathspace" rspace="0em"
"~" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"@" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"--" form="postfix" lspace="verythinmathspace" rspace="0em"
"--" form="prefix" lspace="0em" rspace="verythinmathspace"
"++" form="postfix" lspace="verythinmathspace" rspace="0em"
"++" form="prefix" lspace="0em" rspace="verythinmathspace"
"⁡" form="infix" lspace="0em" rspace="0em"
"?" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"_" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"
"˘" form="postfix" accent="true" lspace="0em" rspace="0em"
"¸" form="postfix" accent="true" lspace="0em" rspace="0em"
"`" form="postfix" accent="true" lspace="0em" rspace="0em"

253

"˙" form="postfix" accent="true" lspace="0em" rspace="0em"
"˝" form="postfix" accent="true" lspace="0em" rspace="0em"
"&DiacriticalLeftArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalLeftVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"´" form="postfix" accent="true" lspace="0em" rspace="0em"
"&DiacriticalRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"&DiacriticalRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"˜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"¨" form="postfix" accent="true" lspace="0em" rspace="0em"
"̑" form="postfix" accent="true" lspace="0em" rspace="0em"
"ˇ" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"^" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"‾" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏞" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⎴" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⃛" form="postfix" accent="true" lspace="0em" rspace="0em"
"_" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏟" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⎵" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"
"⏝" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

254

Appendix C

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation
===
// Notes
//
// This defines the valid expression trees in content markup
//
// ** it does not define attribute validation -
// ** this has to be done on top
//
// Presentation_tags is a placeholder for a valid
// presentation element start tag or end tag
//
// #PCDATA is the XML parsed character data
//
// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)
//
// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements
//
// symbols beginning with Uppercase are terminals
// representating other tokens
//
// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997
// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998
// whitespace definitions including presentation_tags
Presentation_tags ::= "presentation" //placeholder
Space ::= #x09 | #xoA | #xoD | #x20 //tab, lf, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space
// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]

255

| [#x00010000 - #x7FFFFFFFF] //valid XML chars
// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x
// end(\%x) returns a valid end tag for the element \%x
// empty(\%x) returns a valid empty tag for the element \%x
//
// start(ci) ::= "<ci>"
// end(cn) ::= "</cn>"
// empty(plus) ::= "<plus/>"
//
// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.
_start(\%x) ::= "<\%x" (Char - ’>’)* ">"
// returns a valid start tag for the element \%x
_end(\%x) ::= "<\%x" Space* ">"
// returns a valid end tag for the element \%x
_empty(\%x) ::= "<\%x" (Char - ’>’)* "/>"
// returns a valid empty tag for the element \%x
_sg(\%x) ::= S _start(\%x)
// start tag preceded by optional whitespace
_eg(\%x) ::= _end(\%x) S
// end tag followed by optional whitespace
_ey(\%x) ::= S _empty(\%x) S
// empty tag preceded and followed by optional whitespace
// mathml content constructs
// allow declare within generic argument type so we can insert it anywhere
_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare* _container declare*
_container ::= _token | _special | _constructor
_token ::= ci | cn
_special ::= apply | lambda | reln
_constructor ::= interval | list | matrix | matrixrow | set | vector
_other ::= condition | declare | sep
_qualifier ::= lowlimit | uplimit | bvar | degree | logbase
// relations
_relation ::= _genrel | _setrel | _seqrel2ary
_genrel ::= _genrel2ary | _genrelnary
_genrel2ary ::= ne
_genrelnary ::= eq | leq | lt | geq | gt
_setrel ::= _seqrel2ary | _setrelnary
_setrel2ary ::= in | notin | notsubset | notprsubset
_setrelnary ::= subset | prsubset
_seqrel2ary ::= tendsto
//operators
_operator ::= _funcop | _sepop | _arithop | _calcop

| _seqop | _trigop | _statop | _lalgop

256

257

| _logicop | _setop
_funcop ::= _funcop1ary | _funcopnary
_funcop1ary ::= inverse | ident
_funcopnary ::= fn| compose // general user-defined function is n-ary
// arithmetic operators
// (note minus is both 1ary and 2ary)
_arithop ::= _arithop1ary | _arithop2ary | _arithopnary | root
_arithop1ary ::= abs | conjugate | exp | factorial | minus
_arithop2ary ::= quotient | divide | minus | power | rem
_arithopnary ::= plus | times | max | min | gcd
// calculus
_calcop ::= _calcop1ary | log | int | diff | partialdiff
_calcop1ary ::= ln
// sequences and series
_seqop ::= sum | product | limit
// trigonometry
_trigop ::= sin | cos | tan | sec | csc | cot | sinh

| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan

// statistics operators
_statop ::= _statopnary | moment
_statopnary ::= mean | sdev | variance | median | mode
// linear algebra operators
_lalgop ::= _lalgop1ary | _lalgopnary
_lalgop1ary ::= determinant | transpose
_lalgopnary ::= selector
// logical operators
_logicop ::= _logicop1ary | _logicopnary | _logicop2ary | _logicopquant
_logicop1ary ::= not
_logicop2ary ::= implies
_logicopnary ::= and | or | xor
_logicopquant ::= forall | exists
// set theoretic operators
_setop ::= _setop2ary | _setopnary
_setop2ary ::= setdiff
_setopnary ::= union | intersect
// operator groups
_unaryop ::= _func1ary | _arithop1ary | _trigop | _lalgop1ary

| _calcop1ary | _logicop1ary
_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary
_naryop ::= _arithopnary | _statopnary | _logicopnary

| _lalgopnary | _setopnary | _funcopnary
_ispop ::= int | sum | product
_diffop ::= diff | partialdiff
_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary
_naryrel ::= _genrelnary | _setrelnary
//separator

257

sep ::= _ey(sep)
// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)*
_mdatan ::= (#PCDATA | sep | Presentation_tags)*
ci ::= _sg(ci) _mdatai _eg(ci)
cn ::= _sg(cn) _mdatan _eg(cn)
// condition - constraints constraints. contains either
// a single reln (relation), or
// an apply holding a logical combination of relations, or
// a set (over which the operator should be applied)
condition ::= _sg(condition) reln | apply | set _eg(condition)
// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit
| interval
| condition

// apply construct
apply ::= _sg(apply) _applybody _eg(apply)
_applybody ::= (_unaryop _mmlarg)
//1-ary ops

| (_binaryop _mmlarg _mmlarg)
//2-ary ops

| (_naryop _mmlarg*)
//n-ary ops, enumerated arguments

| (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list

| (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product

| (_diffop bvar* _mmlarg)
//differential ops

| (log logbase? _mmlarg)
//logs

| (moment degree? _mmlarg*)
//statistical moment

| (root degree? _mmlarg)
//radicals - default is square-root

| (limit bvar* lowlimit? condition? _mmlarg)
//limits

| (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables
// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody ::= (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)

258

259

// fn construct
fn ::= _sg(fn) _fnbody _eg(fn)
_fnbody ::= Presentation_tags | container
// lambda construct - note at least 1 bvar must be present
lambda ::= _sg(lambda) _lambdabody _eg(lambda)
_lambdabody ::= bvar+ _container //multivariate lambda calculus
//declare construct
declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody ::= ci (fn | constructor)?
// constructors
interval ::= _sg(interval) _mmlarg _mmlarg _eg(interval)
//start, end define interval
set ::= _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody ::= _mmlarg* //enumerated arguments

| (bvar* condition _mmlarg) //condition constructs arguments
matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators
vector ::= _sg(vector) _mmlarg* _eg(vector)
//qualifiers - note the contained _mmlarg could be a reln
lowlimit ::= _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit ::= _sg(uplimit) _mmlarg _eg(uplimit)
bvar ::= _sg(bvar) ci degree? _eg(bvar)
degree ::= _sg(degree) _mmlarg _eg(degree)
logbase ::= _sg(logbase) _mmlarg _eg(logbase)
//relations and operators
// (one declaration for each operator and relation element)
_relation ::= _ey(\%relation) //for example <eq/> <lt/>
_operator ::= _ey(\%operator) //for example <exp/> <times/>
//the top level math element
math ::= _sg(math) mmlall* _eg(math)

259

Appendix D

Content Element Definitions

D.1 About Content Markup Elements

Every content element must have a mathematical definition associated with it in some form. The purpose of this appendix is to provide de-
faultdefinitions. (An index to the definitions is provided later in this document.) For this release of MathML definitions have not been restricted to
any one format. There are several reasons for allowing flexibility at this time.

1. Many mathematical constructs are not yet implemented in any computation based system. However, MathML must still allow authors to
associate mathematical constructs with definitions for archival purposes and so that work on such implementations can begin.

2. The task of defining a mathematical object, and establishing an association with a particular definition does not logically depend on the
existence of an implementation in a computational system. It is a perfectly legitimate mathematical activity independent of whether it is ever
implemented. Providing a record of those author specified associations is integral part of the role of MathML.

3. The task of designing a machine readable language suitable for recording semantic descriptions is an onerous one that goes substantially
beyond the scope of this particular recommendation. It also overlaps substantially with efforts groups such as the OpenMath Consortium.
(See also: North American OpenMath Initiative, and The European OpenMath Consortium)

The feasibilty of implementing a particular object in a particular computational system and the details of particular implementations have very little
to do with the requirement that there actually be a mathematical definition. An author’s decision to use content elements is a decision to work with
defined objects. The definitions may be as vague as claiming that, say F , is an unknown, but differentiable function from the real numbers to the real
numbers, or as complicated as requiring that F to be an elaborate new function or operation as defined in some recent research paper. The primary
role of MathML content elements is to provide a mechanism for recording the fact that a particular structure has a particular mathematical meaning.
If a definition is implemented in a computational system, this is a bonus.

Of course, default definitions and semantics should be chosen to be as useful as possible. Where possible they should be already implemented or
easy to implement and all other things being equal, an author would be well advised to use a definition that is in common use. This is no different from
noting that most well written mathematical communications (in any format) benefit substantially from the author’s use of widely used and understood
terms.

A requirement that there be a definition is also very different from a requirement that a definition be provided in some specific manner. Before
requiring a particular approach to definitions one needs to consider such issues as:

1. providing a language for defining semantics.
2. deciding if it is reasonable to require the use of such a syntax. (Authors may not have the time or expertise to provide a formal description

in a new and unfamiliar language.)
3. not being constrained by the limitations of existing computational systems.

260

261

In order to leave open the discussion of such fundamental issues we have deliberately limited the support for new or author defined definitions to
support for specifying an appropriate definitionURL. The format of the content of that URL is unspecified. It might be the URL of a mathematical
paper whose whole purpose is to define a new operator, or even a simple reference to a traditional text. If the author’s mathematical operator
matches exactly with an operator in a particular computational system, an appropriate definition might be a MathML semantics element establishing
a correspondence between two encodings. Whatever is chosen, the only essential feature is that the definition be provided.

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathML content elements. Since
this is exactly the role intended for the encodings under development by the OpenMath Consortium and one of our goals is to foster international
cooperation in such standardization efforts we have presented the default definitions in a format modeled on OpenMath’s content dictionaries. While
the actual details differ somewhat from the OpenMath specification, the underlying principles are the same and this is being used as input to ongoing
discussions underway with the OpenMath Consortium aimed at ensuring that the OpenMath encodings will be capable of conveying the necessary
information.

D.1.1 The Structure of an MMLdefinition.

Each MathML element is described using an XML format. The top element is MMLdefinition. The sub-elements identify the various parts of the
description and include:

name PCDATA providing the name of the MathML element.
description A text based description of the object that an element represents. Thiscross will often include cross references to more traditional texts

or papers or existing papers on the Web.
functorclass Each MathML element must be classified according to its mathematical role.

punctuation Some elements exist simply as an aid to parsing. For example the sep element is used to separate the CDATA defining a
rational number into two parts in a manner that is easily parsed by an XML application. These objects are refered to as punctuation.

modifier Some elements exist simply to modify the properties of an existing element or mathematical object. For example the declare
construct is used to reset the default attribute values, or to associate a name with a specific instance of an object. These kinds of
elements are referred to as modifiers and the result is of the same type, but with different attributes.

constructor The remaining objects which ‘contain’ sub-elements are all object constructors of some sort or another. They combine the sub-
elements into a compound mathematical object such as a constant, set, list, or an expression representing a function application. For
example, the lambda element is actually a constructor which constructs a function definition from a list of variables and an expression,
while the fn element is a constructor that, in effect, sets the type of an object to function and if necessary, provides an external
definition. Any use of apply produces an object of type apply whose sub-type is determined by the first operand and its properties.
The signature of a constructor indicates the type of its sub-elements and the type (and sometimes subtype) of the resulting object.

function (operator) The MathML objects represented by empty XML elements are functions or operators. These function definitions are
parameterized by their XML attribute values and are used as the first argument to an apply or reln. Functions are classified according
to how they are used. For example the empty <sin/> element represents the unary mathematical function sine. In every case, element
attributes may be used to further qualify the object. The <plus/> element is an nary operator. The result of using a function or operator
is an expression which represents an object in a certain algebraic domain.

parameter Another class of objects are the named parameters. For example, these named objects are used to identify bounds of integra-
tion, or differentiation variables.

MMLattribute Some of the XML attributes of a MathML content element have a direct impact on the mathematical semantics of the object. For
example the type attribute of the cn element is used to determine what type of constant (integer, real, etc.) is being constructed. Only those
attributes that affect the mathematical properties of an object are listed here and typically they also appear explicitly in the signature.

261

signature The signature is systematic representation which associates the different possible combinations of attributes and function arguments to
the different kinds of mathematical objects that are constructed. The possible combinations of parameter and argument types (the left-hand
side) each result in an object of some type (the right-hand side). It in effect describes how to resolve operator overloading. For constructors
(including parameters), the left-hand side of the signature describes the types of the child elements and the right-hand side describes the
type of object that is constructed. For functions, the left-hand side of the signature indicates the types of the parameters and arguments
that would be expected when it is applied, or used to construct a relation, and the right-hand side represents the mathematical type of the
object constructed by the <apply>. Modifiers modify the the attributes of an existing object. For example a symbol might become a symbol
of type vector. The signature must be able to record specific attribute values and argument types on the left, and and parameterized types
on the right.. The syntax used for signatures is of the general form:
[<attribute name>=<attributevalue>](<list of argument types>)
--> <mathematical result type>(<mathematical subtype>)
The MMLattributes, if any, appear in the form <attribute name> = <attribute value>. They are separated notationally from the rest of
the arguments by square braces. The possible values are usually taken from an enumerated list, and the signature is usually affected by
selection of a specific value. For the actual function arguments and named parameters on the left, the focus is on the mathematical types
involved. The function argument types are presented in a syntax similar to that used for a DTD, with the one main exception. The types
of the named parameters appear in the signature as <elementname>=<type> in a manner analogous for that used for attribute values. For
example, if the argument is named (e.g. bvar) then it is represented in the signature by an equation as in:

[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) -->
<mathematical result type>(<mathematical subtype>)
No mathematical evaluation ever takes place in MathML. Every MathML content element either refers to a defined object such as a math-
ematical function or it combines such objects in some way to build a new object. For purposes of the signature, the constructed object
represents an object of a certain type parameterized type. For example the result of applying <plus/> to arguments is an expression which
respresents a sum. The type of the resulting expression depends on the types of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML and possibly other syntax are included in these elements.
property This element describes the mathematical properties of such objects. For simple associations of values with specific instances of an object,

the first child is an instance of the object being defined. The second is a value or approx (approximation) element which contains a MathML
description of this particular value. More elaborate conditions on the object are expressed using the MathML syntax.

D.2 Definitions of MathML Content Elements

D.2.1 Leaf Elements

D.2.1.1 <cn>

262

263

<MMLdefinition>
<name> cn </name>
<description>

A numerical constant. The mathematical type of number
is given as an attribute. The default type is "real".
Numbers such as rational, complex or real, require two
parts for a complete specification. The parts of such
a number are separated by an empty "sep" element.
There are a number of pre-defined constants including:
π &Exponential; &ComplexI &true; &false; &NaN;

the properties of some of which are outlined below.
The &NaN; is IEEE’s "Not a Number", as defined in
IEEE 854 standard for Floating point arithmetic.

</description>
<functorclass> constant </functorclass>
<MMLattribute>

<name> type </name>
<value> integer | rational | complex-cartesian

| complex-polar | real
</value>
<default> real </default>

</MMLattribute>
<MMLattribute>

<name> base </name>
<value> positive_integer </value>
<default> 10 </default>

</MMLattribute>
<signature> [type=integer](numstring) -> constant(integer) </signature>
<signature> [base=basevalue](numstring) -> constant(integer) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=complex-cartesian](numstring,numstring) -> constant(complex) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=real](π) -> constant(real) </signature>
<signature> [definition](numstring,numstring) -> constant(userdefined) </signature>
<signature> (γ) -> constant</signature>
<example> <cn> 245 </cn> </example>
<example> <cn type="integer"> 245 </cn> </example>
<example> <cn type="integer" base="16"> A </cn></example>
<example> <cn type="rational"> 245 <sep> 351 </cn> </example>
<example> <cn type="complex-cartesian"> 1 <sep/> 2 </cn> </example>
<example> <cn> 245 </cn> </example>
<property> <approx>
<cn> π </cn>
<cn> 3.141592654 </cn>

</approx></property>
<property> <approx>
<cn> γ </cn>

263

<cn> .5772156649 </cn>
</approx> </property>
<property> <reln><identity/>
<cn>ⅈ </cn>
<apply><root><cn>-1</cn><cn>2</cn></apply>

</reln>
</property>
<property> <reln><approx>
<cn> ⅇ </cn><cn>2.718281828 </cn>
</reln> </property>
<property> <apply><forall/>
<bvar><ci type=boolean>p</ci></bvar>
apply><and/>

<ci>p</ci><cn>&true;</cn></apply>
<ci>p</ci>

</apply>
</property>
<property> <apply><forall/>
<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>
<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

</apply>
</property>
<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>
<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

</apply>
</property>
<property>

<identity>
<apply><not/><cn> &true; </apply>
<cn> &false; </cn>

</identity>
</property>
<property> <reln><identity/>
<cn base="16"> A </cn> <cn> 10 </cn> </reln> </property>

<property> <reln><identity/>
<cn base="16"> B </cn> <cn> 11 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> C </cn> <cn> 12 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> D </cn> <cn> 13 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> E </cn> <cn> 14 </cn> </reln></property>

<property> <reln><identity/>

264

265

<cn base="16"> F </cn> <cn> 15 </cn> </reln></property>
</MMLdefinition>

D.2.1.2 <ci>

<MMLdefinition>
<name> ci </name>
<description>
A symbolic name constructor. The type attribute can
be set to any valid MathML type.

</description>
<functorclass> constructor , unary </functorclass>
<MMLattribute>
<name> type </name>
<value> constant | matrix | set | vector | list | MathMLtype </value>
<default> real </default>

</MMLattribute>
<signature> ({string|mmlpresentation}) -> symbol(constant) </signature>
<signature> [type=MathMLType]({string|mmlpresentation}) -> symbol(MathMLType) </signature>
<example><ci> xyz </ci> </example>
<example><ci> type="vector"> V </ci> </example>
</MMLdefinition>

D.2.2 Basic Content Element

D.2.2.1 <apply>

<MMLdefinition>
<name> apply </name>
<description>
This is the MathML constructor for function application.
The first argument is applied to the remaining arguments.
It may be the case that some of the child elements are
named elements. (See the signature.)

</description>
<functorclass> constructor , nary </functorclass>
<signature> (function,anything*) -> application </signature>
<example><apply><plus/><ci>x</ci><cn>1</cn></apply></example>
<example><apply><sin/><ci>x</ci></apply></example>
</MMLdefinition>

D.2.2.2 <reln>

265

<MMLdefinition>
<name> reln </name>
<description>
This is the MathML constructor for expressing a relation between
two or more mathematical objects. The first argument indicates
the type of "relation" between the remaining arguments. (See the signature.)
No assumptions are made about the truth value of such a relation.
Typically, the relation is used as a component in the construction
of some logical assertion. Relations may be combined into
sets, etc. just like any other mathematical object.

</description>
<functorclass> constructor </functorclass>
<signature> (function,anything*) -> reln </signature>
<example><reln><and/><ci>P</ci><ci>Q</ci></reln></example>
<example><reln><lt/><ci>x</ci><ci>y</ci></reln></example>
</MMLdefinition>

D.2.2.3 <fn>

<MMLdefinition>
<name> fn </name>
<description>
This is the MathML constructor for building new function
names. The "name" can be a general MathML content element.
It identifies that object as "usable" in a function
context.
By setting its definitionURL value, you can
associate it with a particular function definition.
Use the MathML Declare to associate a name with a lambda
construct.

</description>
<MMLattribute>
<name>definitionURL</name>
<value> URL </value>
<default> none </default>

</MMLattribute>
<functorclass> constructor </functorclass>
<signature> (anything) -> function </signature>
<signature> [definitionURL=functiondef](anything) ->
function(definitionURL=functiondef)

</signature>
<example><fn><ci>F</ci></fn></example>
<example><fn definitionURL="http://www.w3c/...">
<lt/><ci>G</ci></fn>

</example>
<!--Declaring Id to be the identity function.-->
<example>

266

267

<declare><fn><ci>Id</ci></fn><lambda><ci>x</ci><ci>x</ci></declare>
</example>
</MMLdefinition>

D.2.2.4 <interval>

<MMLdefinition>
<name> interval </name>
<description>
This is the MathML constructor element for building an interval
on the real line. While an interval could be expressed by
combining relations appropriately, they occur explicitly because
of their frequence of occurrence in common use.

</description>
<MMLattribute>
<name>type</name>
<value> closed | open | open-closed | closed-open </value>
<default> closed </default>

</MMLattribute>
<functorclass> constructor , binary </functorclass>
<signature> [type=intervaltype](expression,expression) -> interval </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

D.2.2.5 <inverse>

267

<MMLdefinition>
<name> inverse </name>
<description>
This MathML element is applied to a function in order to
construct a new function that is to be interpreted as the
inverse function of the original function. For a particular
function F, inverse(F) composed with F behaves like the
identity map on the domain of F and F composed with inverse(F)
should be an identity function on a suitably restricted
subset of the Range of F.
The MathML definitionURL attribute should be used to resolve
notational ambiguities, or to restrict the inverse to a
particular domain or make it one-sided.

</description>
<MMLattribute>
<name>definitionURL</name>
<value> CDATA </value>
<default> none </default>

<!--none corresponds to using the default MathML definition ...-->
</MMLattribute>
<functorclass> operator, unary </functorclass>
<signature> (function) -> function </signature>
<signature> [definitionURL=URL](function) ->

function(definition) </signature>
<example><apply><inverse/><sin/></apply></example>
<example>
<apply>
<inverse definitionURL="www.w3c.org/MathML/Content/arcsin"/>
<sin/>
</apply>

</example>
<property><apply><forall/>
<bvar><ci>y</ci></bvar>
<apply><sin/>
<apply>
<apply><inverse/><sin/></apply>
<ci>y</ci>

</apply>
</apply>
<value><ci>y</ci></value>

</apply>
</property>
<property>
<apply>
<apply><inverse/><sin/></apply>
<apply>
<sin/>

268

269

<ci>x</ci>
</apply>

</apply>
<value><ci>x</ci></value>
</property>
<property>F(inverse(F)(y))<value>y</value></property>
</MMLdefinition>

D.2.2.6 <sep>

<MMLdefinition>
<name> sep </name>
<description>
This is the MathML infix constructor used to sub-divide PCDATA into
separate components. for example, this is used in the description of
a multipart number such as a rational or a complex number.

</description>
<functorclass> punctuation </functorclass>
<example><cn type="complex-polar">123<sep/>456</cn></example>
<example><cn>123</cn></example>
</MMLdefinition>

D.2.2.7 <condition>

<MMLdefinition>
<name> condition </name>
<description>
This is the MathML constructor for building conditions.
A condition differs from a relation in how it is used.
A relation is simply an expression, while a condition
is used as a predicate to place a conditions on a bound
variables.
For a compound condition use relations or apply
operators such as "and" or "or" or a set of
relations).

</description>
<functorclass> constructor, unary </functorclass>
<signature> ({reln|apply|set}) -> predicate </signature>
<example>
<condition>
<reln><lt/>
<apply><power/>
<ci>x</ci><cn>5</cn>

</apply>
<cn>3</cn>

</reln>
</condition>
</example>

269

</MMLdefinition>

D.2.2.8 <declare>

<MMLdefinition>
<name> declare </name>
<description>
This is the MathML constructor for redefining the properties and
values with mathematical objects. For example V may be a name
delcared to be a vector, or V may be a name which stands for a
particular vector.
The attribute values of the declare statement are assigned as the
corresponding default attribute values of the first object.

</description>
<functorclass> modifier , (unary | binary) </functorclass>
<MMLattribute>
<name>definitionURL</definition>
<value> Any valid URL </value>
</MMLattribute>
<MMLattribute>
<name>type</name><value> MathMLType </value>
</MMLattribute>
<MMLattribute>
<name>nargs</name><value> number of arguments for an object of type fn </value>
</MMLattribute>
<signature> [attributename=attributevalue](anything) -> anything(attributevalue) </signature>
<!-- The two argument form updates the properties of the first
object to be those of the second. The attribute values override the
properties of the "value".
-->
<signature> [attributename=attributevalue](anything,anything) -> anything(attributevalue) </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

D.2.2.9 <lambda>

270

271

<MMLdefinition>
<name> lambda </name>
<description> The operation of lambda calculus that makes a
function from an expression and a variable. The definition
at this level uses only one variable. Lambda is a binary
function, where the first argument is the variable and
the second argument is a the expression.
Lambda(x, F) is written as \lambda x [F] in the lambda
calculus literature.
The lambda function can be viewed as the inverse of function
application.
Although the expression F may contain x, the lambda expression
is interpreted to be free of x. That is, the x variable is
a variable local to the environment of the definition of
the function or operator. Formally, lambda(x,F) is free of
x, and any substitutions, evaluations or tests for x in
lambda(x,F) should not happen.
A lambda expression on an arbitrary function applied to a
simple argument is equivalent to the arbitrary function.
E.g. lambda(x, f(x)) == f. This is a common shortcut.

</description>
<functorclass> Nary , Constructor </functorclass>
<property>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

</lambda>
<value> <fn><ci>F</ci></fn> </value>

</property>
<!-- Constructing a variant of the sine function -->

<example>
<lambda>
<ci> x </ci>
<apply><sin/>
<apply><plus/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</example>
<!-- the identity operator -->
<example>
<lambda><ci> x </ci> <ci> x </ci> </lambda>

</example>
<property>
<reln><identity/>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

271

</lambda>
<fn><ci>F</ci></fn>

</reln>
</property>

<MMLdefinition>

D.2.2.10 <compose/>

<MMLdefinition>
<name> compose </name>
<description>
This is the MathML constructor for composing functions.
In order for a composition to be meaningful, the range of
the first function must be the domain of the second function,
etc. .
The result is a new function whose domain is the domain of
the first function and whose range is the range of the last
function and whose definition is equivalent to applying
each function to the previous outcome in turn as in:
(f @ g)(x) == f(g(x)).
This function is often denoted by a small circle infix
operator.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (fn*) -> fn </signature>
<example>
<apply><compose/>

<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply></example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply>
<apply><compose/>
<ci>f</ci>
<ci>g</ci>

</apply>
<ci>x</ci>

</apply>
<apply><ci>f</ci>
<apply><ci>g</ci>
<ci>x</ci>

</apply>
</apply>

</reln>

272

273

</apply>
</property>
</MMLdefinition>

D.2.2.11 <ident/>

<MMLdefinition>
<name> ident </name>
<description>
This is the MathML constructor for the identity function.
This function has the property that

f(x) = x, for all x in its domain.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (symbol) -> symbol </signature>
<example>
<apply><ident/>

<ci> f </ci>
<ci> x </ci>

</apply>
</example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply><ident/>

<ci>f</ci>
<ci>x</ci>

</apply>
<ci>x</ci>
</reln>

</apply>
</property>
</MMLdefinition>

D.2.3 Arithmetic, Algebra and Logic

D.2.3.1 <quotient/>

273

<MMLdefinition>
<name> quotient </name>

<description> Integer quotient, the result of integer
division. For arguments a and b, it returns q,
where a = b*q+r, |r| < |b| and a*r ≥ 0 (or
the sign of r is the same as the sign of a).
</description>
<functorclass> Binary, Function </functorclass>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>

<!--
ForAll(bvar(a,b),identity(a ,b*Quotient(a,b) + Remainder(a,b))
-->

<property>
<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<reln/><eq/>

<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>

</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>

</apply>
<reln>

</apply>
</property>

<!-- 1 = quotient(5,4) -->
<property>
<apply><identity/>
<apply><quotient/>
<ci>5</ci>
<ci>4</ci>

</apply>
<ci>1</ci>

<apply>
</property>

</MMLdefinition>

D.2.3.2 <exp/>

274

275

<MMLdefinition>
<name> exp </name>
<description> The exponential function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.2]

</Reference>
</description>

<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property><reln><eq/>
<apply><exp/><cn>0</cn></apply>
<cn>1</cn></reln>

</property>
<property><apply><identity/>
<apply><exp/><ci>x</ci></apply>
<apply><power/>
<cn>ExponentialE;</cn><ci>x</ci>

</apply>
</apply>
</property>
<property> exp(x) = limit((1+x/n)^n, n, infinity) </property>

</MMLdefinition>

D.2.3.3 <factorial/>

275

<MMLdefinition>
<name>
factorial

</name>
<description>
This element is used to construct factorials
as in n! = n * (n-1) * (n-2) ... 1 .

</description>
<functorclass> Unary , function </functorclass>
<signature> (algebraic) -> algebraic </signature>
<example> <apply><factorial/><ci>n</ci></apply> </example>
<!-- for all n > 0, n! = n*(n-1)! -->
<property><apply><forall/>
<bvar><ci>n<ci></bvar>
<condition>
<reln><gt/><ci>n</ci><cn>0</cn></reln>

</condition>
<reln><eq/>
<apply><factorial/><ci>n</ci></apply>
<apply><times/>
<ci>n</ci>
<apply><factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>

</apply>
</apply>

</reln>
</property>
</MMLdefinition>

D.2.3.4 <divide/>

276

277

<MMLdefinition>
<name> divide </name>
<description>
The MathML operator that is used to construct
a "divided by" b. If a and b are from an algebraic
domain with a non-commutative times then this is defined
as a * (b)^(-1). The result is from the same algebraic
domain as the operands.

</description>
<MMLattribute>
<name> type </name>
<value> non-commutative </name>
<default> none </default>

</MMLattribute>
<functorclass> binary , function </functorclass>
<signature> (complex, complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> rational </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<example>
<apply> <divide/>
<ci> a </ci>
<ci> b </ci>
</apply>

</example>
<property>
<apply><forall/>
<bvar>a</bvar>
<reln><eq/>
<apply> <divide/>
<ci> a </ci>
<ci> 0 </ci>

<ci>Error, Division by 0</ci>
</apply>

</property>
</MMLdefinition>

D.2.3.5 <max/>

277

<MMLdefinition>
<name> max </name>
<description>
Represent the maximum of a set of elements. The elements
may be given explicitly or described by membership in
some set. To be well defined, the elements must all be
comparable. </description>

<functorclass> function </functorclass>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (condition) -> ordered_set_element </signature>
<example>
<apply><max/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>

</example>
<example>
<apply><max/>

<condition>
<bvar><ci>x</ci></bvar>
<reln> <notin/>
<ci> x </ci>
<ci type="set"> B </ci>

</reln>
</condition>

</apply>
</example>
</MMLdefinition>

D.2.3.6 <min/>

278

279

<MMLdefinition>
<name> min </name>
<description>
Represent the minimum of a set of elements. The elements
may be given explicitly or described by membership in
some set. To be well defined, the elements must all be
comparable. </description>

<functorclass> function </functorclass>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (condition) -> ordered_set_element </signature>
<example>
<apply><min/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>

</example>
<example>
<apply><min/>

<condition>
<bvar><ci>x</ci></bvar>
<reln> <notin/>
<ci> x </ci>
<ci type="set"> B </ci>

</reln>
</condition>

</apply>
</example>
</MMLdefinition>

D.2.3.7 <minus/>

279

<MMLdefinition>
<name> minus </name>
<description>
The subtraction operator of a group. </description>

<MMLattribute>
<name> definitionURL </name>
<value> URL </name>
<default> none </default>

</MMLattribute>
<functorclass>
Operator , (Unary | Binary)

</functorclass>
<signature>(real,real) -> real</signature>
<signature>(integer,integer) -> integer</signature>
<signature>(rational,rational) -> rational</signature>
<signature>(complex,complex) -> complex</signature>

<!--
Note that complex-cartesian is a data input format,
but the resulting data type is complex. !

-->
<signature> (vector,vector) -> vector</signature>
<signature>(matrix,matrix) -> matrix</signature>
<signature>(real) -> real </signature>
<signature>(integer) -> integer </signature>
<signature>(complex) -> complex </signature>
<signature>(rational) -> rational </signature>
<signature>(vector) -> vector </signature>
<signature>(matrix) -> matrix </signature>
<example>

<apply><minus/><cn>3</cn><cn>5</cn></apply>
</example>
<example>

<apply><minus/><cn>3</cn></apply>
</example>
<!-- Definition of the unary operator (-1) = -(1) -->
<property>

<reln><eq/>
<bvar><ci>n</ci>
<apply><minus/><cn>1</cn></apply>
<cn>-1</cn>

</reln>
</property>
</MMLdefinition>

D.2.3.8 <plus/>

280

281

<MMLdefinition>
<name> plus </name>
<description> The N-ary addition operator of an
algebraic structure.
If no operands are provided, the expression represents
the additive identity.
If one operand a is provided, the expression represents
a.
If two or more operands are provided, the expression
represents the group element corresponding to a left
associative binary pairing of the operands.
Issues with regard to the "value" of mixed operands
are left up to the target system. If the author wishes
to refer to specific type coercion rules, then
the definitionURL attribute should be used to refer
to a suitable specification.
</description>
<functorclass> Operator , Nary </functorclass>
<signature>(real,real) -> real</signature>
<signature>(integer,integer) -> integer</signature>
<signature>(rational,rational) -> rational</signature>
<signature> (vector,vector) -> vector</signature>
<signature>(matrix,matrix) -> matrix</signature>
<signature>(complex,complex) -> complex</signature>
<signature>(symbolic,symbolic) -> symbolic </signature>
<signature> real -> real </signature>
<signature> rational -> rational </signature>
<signature> integer -> integer </signature>
<signature> symbolic -> symbolic </signature>
<signature>(real) -> real </signature>
<signature>(integer) -> integer </signature>
<signature>(complex) -> complex </signature>
<signature>(rational) -> rational </signature>
<signature>(vector) -> vector </signature>
<signature>(matrix) -> matrix </signature>
<example><apply><plus/><cn>3</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn><cn>7</cn></apply></example>
<!-- The properties for more restricted algebraic structures should
be defined using a definitionURL
-->
<property> +() = 0 </property>
<property> +(a) = a </property>
<property> ForAll(a,Commutative, a + b = b + a)</property>
</MMLdefinition>

281

D.2.3.9 <power/>

<MMLdefinition>
<name> power </name>
<description> The powering operator </description>
<functorclass> binary, operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real real) -> complex </signature>
<signature> (rational rational) -> complex </signature>
<signature> (rational integer) -> rational </signature>
<signature> (integer integer) -> rational </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> ForAll(a,Condition(a<>0),a^0=1) </property>
<property> ForAll(a,a^1=a) </property>
<property> ForAll(a,1^a=1) </property>
<property>ForAll(a,0^0=Undefined)</property>

</MMLdefinition>

D.2.3.10 <rem/>

<MMLdefinition>
<name> rem </name>
<description> Integer remainder, the result of integer
division. For arguments a and b, it returns r,
where a = b*q+r, |r| < |b| and a*r ≥ 0 (the
sign of r is the same as the sign of a when both are
non-zero).
</description>
<functorclass> binary, function </functorclass>
<signature> (integer integer) -> integer </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> a = b*rem(a,b) + rem(a,b) </property>
<property>rem(a,0) = Division_by_Zero</property>
</MMLdefinition>

D.2.3.11 <times/>

282

283

<MMLdefinition>
<name> times </name>
<description> The multiplication operator of any
ring.
</description>
<functorclass> N-ary, Operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<property>ForAll(bvars(a,b),condition(in({a,b},Commutative)),a*b=b*a)</property>
<property>ForAll(bvars(a,b,c),Associative,a*(b*c)=(a*b)*c), associativity </property>
<property> a*1=a </property>
<property> 1*a=a </property>
<property> a*0=0 </property>
<property> 0*a=0 </property>
</MMLdefinition>

D.2.3.12 <root/>

<MMLdefinition>
<name> root </name>
<description>
Construct the nth root of an object.
The first argument "a" is the object and the
second object "n" denotes the root, as in

(a) ^ (1/n)
</description>
<MMLattribute>
<name> type </name>
<value> real | complex | principle_branch </name>
<default> real </default>

</MMLattribute>
<functorclass> binary , function </functorclass>
<signature> (anything , symbol) -> root </signature>
<example>
<apply> <root/>

<ci> a </ci>
<ci> n </ci>

</apply>
</example>
<property> Forall(bvars(a,n),root(a,n) = a^(1/n)) </property>
</MMLdefinition>

D.2.3.13 <gcd/>

283

<MMLdefinition>
<name> gcd </name>
<description>
This represents the greatest common divisor
of its arguments.

</description>
<MMLattribute>
<name> type </name>
<value> anything </name>
<default> integer </default>

</MMLattribute>
<functorclass> Function , Nary </functorclass>
<signature> [type=typevalue](typevalue*) -> typevalue </signature>
<example>
<apply><gcd/><cn>12</cn> <cn>17</cn></apply>

</example>
<property>Forall(p,q,(is(p,prime) and is(q,prime)) , gcd(p,q)=1 </property>
</MMLdefinition>

D.2.3.14 <and/>

<MMLdefinition>
<name> and </name>
<description>
This is the logical "and" operator.

</description>
<functorclass> function, Nary </functorclass>
<signature> (boolean*) -> boolean </signature>
<example> <apply><and/><ci>p</ci><ci>q</ci></apply> </example>
<property> identity(true and p , p) </property>
<property> identity(p and q , q and p) </property>
</MMLdefinition>

D.2.3.15 <or/>

<MMLdefinition>
<name> or </name>
<description> The logical "or" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic) -> symbolic </signature>
<property> identity(true or p , true) </property>

...
</MMLdefinition>

D.2.3.16 <xor/>

284

285

<MMLdefinition>
<name> or </name>
<description> The logical "xor" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic) -> symbolic </signature>
<property> ...</property>
</MMLdefinition>

D.2.3.17 <not/>

<MMLdefinition>
<name> not </name>
<description> The logical "not" operator.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (boolean) -> boolean </signature>
<signature> [type=boolean](symbolic) -> symbolic </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.18 <implies/>

<MMLdefinition>
<Name> implies </Name>
<description> The implies operator. This represents
the construction "A implies B".
</description>
<functorclass> Binary, relation </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<property> <apply></forall>

<bvar><ci>A</ci></bvar>
<bvar><ci>B</ci></bvar>
<reln><eq/>

<apply><implies/>
<ci>A</ci>
<ci>B</ci>

</apply>
<apply><or/>
<ci>B</ci>
<apply><not/>
<ci> A </ci>

</apply>
</apply>

</reln>
</property>
</MMLdefinition>

285

D.2.3.19 <forall/>

<MMLdefinition>
<name> forall </name>
<description> The logical "For all" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.20 <exists/>

<MMLdefinition>
<name> exists </name>
<description> The logical "There exists" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.21 <abs/>

<MMLdefinition>
<name> exists </name>
<description> The absolute value of a number.
</description>
<functorclass> Unary, Operator </functorclass>
<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

D.2.3.22 <conjugate/>

<MMLdefinition>
<name> conjugate </name>
<description> The "conjugate" arithmetic operator
used to represent the conjugate of a complex number.
</description>
<functorclass> Unary, Operator </functorclass>
<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

D.2.4 Relations

D.2.4.1 <eq/>

286

287

<MMLdefinition>
<Name> eq </Name>
<description> The equality operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.4.2 2<neq/”/>

<MMLdefinition>
<Name> neq </Name>
<description> The notequals operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.4.3 <gt/>

<MMLdefinition>
<Name> gt </Name>
<description> The equality operator. </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.4.4 <lt/>

<MMLdefinition>
<Name> lt </Name>
<description> The inequality equality operator "<" </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic, symbolic*) -> boolean </signature>
</MMLdefinition>

D.2.4.5 <geq/>

<MMLdefinition>
<Name> geq </Name>
<description> The inequality operator. >= </description>
<functorclass> Nary, relation </functorclass>
<signature> (symbolic, symbolic*) -> boolean </signature>
<property> ... Commutative ? ... </property>
</MMLdefinition>

287

D.2.4.6 <leq/>

<MMLdefinition>
<Name> leq </Name>
<description> The inequality operator </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

D.2.5 Calculus

D.2.5.1 <ln/>

<MMLdefinition>
<Name> ln </Name>
<description> The logarithmic function. Also called

the natural logarithm.
The inverse of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions, [4.1]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<property>

Error("logarithm has a singularity at 0")
</property>
<signature> Intersect(real,positive) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> ln(1) = 0 </property>
<property> ln(exp(x)) = x, "for real x" </property>
<property> exp(ln(x)) = x, always </property>

</MMLdefinition>

D.2.5.2 <log/>

288

289

<MMLdefinition>
<Name> log </Name>
<description> The logarithmic function (base 10), or any
any other user specified base. Also called

the natural logarithm.
The inverse of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of

Mathematical Functions, [4.1]
</Reference>

</description>
<functorclass> Unary, Function </functorclass>
<signature> (real,logbase) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>

Error("logarithm has a singularity at 0")
</property>

</MMLdefinition>

D.2.5.3 <int/>

<MMLdefinition>
<Name> int </Name>
<description>

The definite or indefinite integral of a function or algebraic
expression.
There are several forms of calling sequences depending on
the nature of the areguments, and whether or not it is a
definite integral.

</description>
<functorclass> Binary , Function </functorclass>
<signature> (function) -> function </signature>
<signature> (algebraic,bvar) -> algebraic </signature>
<signature> (algebraic,bvar,interval) -> algebraic </signature>
<signature> (algebraic,bvar,condition) -> algebraic </signature>

</MMLdefinition>

D.2.5.4 <diff/>

289

<MMLdefinition>
<Name> diff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

</description>
<functorclass> (Unary | Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x) , x) = cos(x)) </property>
<property>Forall(x,diff(x , x) = 1) </property>
<property>Forall(x,diff(x^2 , x) = 2x) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

D.2.5.5 <partialdiff/>

<MMLdefinition>
<Name> partialdiff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

</description>
<functorclass> (Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x*y) , x) = cos(x)) </property>
<property>Forall(x,y,diff(x*y , x) = diff(x,x)*y + diff(y,x)*x) </property>
<property>Forall(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x)) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

D.2.5.6 <lowlimit/>

<MMLdefinition>
<Name> lowlimit </Name>
<description> Construct a lower limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

290

291

D.2.5.7 <uplimit/>

<MMLdefinition>
<Name> uplimit </Name>
<description> Construct a an upper limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

D.2.5.8 <bvar/>

<MMLdefinition>
<Name> bvar </Name>
<description>

The bvar element is the container element
for the "bound variable" of an operation.
For example, in an integral it specifies the
variable of integration. In a derivative, it
indicates which variable with respect to
which a function is being differentiated.
When the bvar element is used to quantifiy a derivative,
the bvar element may contain a child degree element which
specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal
variable in sums and products.

</description>
<functorclass> Constructor </functorclass>
<signature> (symbol) -> symbol </signature>
<example> <bvar><ci>x</ci></bvar></example>

</MMLdefinition>

D.2.5.9 <degree/>

291

<MMLdefinition>
<Name> degree </Name>
<description> A parameter used by some
MathML data-types to specify that, for example,
a bound variable is repeated several times.
</description>
<functorclass> Constructor </functorclass>
<signature> (algebraic) -> algebraic </signature>
<example> <degree><ci>x</ci></degree></example>
<property> ... </property>

</MMLdefinition>

D.2.6 Theory of Sets

D.2.6.1 <set>

<MMLdefinition>
<Name> set </Name>
<description> Construct a set. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> set </signature>

</MMLdefinition>

D.2.6.2 <list>

<MMLdefinition>
<Name> list </Name>
<description> Construct a list. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

D.2.6.3 <union/>

<MMLdefinition>
<Name> union </Name>
<description> The union of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> set </signature>

</MMLdefinition>

D.2.6.4 <intersect/>

<MMLdefinition>
<Name> intersection </Name>
<description> The intersection of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set set) -> set </signature>

</MMLdefinition>

292

293

D.2.6.5 <in/>

<MMLdefinition>
<Name> in </Name>
<description>

The membership testing operation (also commonly
called "in" or "including"). Returns true if the first
argument is part of the second argument. The second
argument must be a set.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (anything, set) -> boolean </signature>

</MMLdefinition>

D.2.6.6 <notin/>

<MMLdefinition>
<Name> notin </Name>
<description>

The membership exclusion operation (also commonly
called "notin" or "including").
It is defined as "not in".

</description>
<functorclass> Binary, Function </functorclass>
<signature> (anything set) -> boolean </signature>

</MMLdefinition>

D.2.6.7 <subset/>

<MMLdefinition>
<Name> subset </Name>
<description>
Boolean function whose value is determined by
whether or not one set is a subset of another.
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set*) -> boolean </signature>

</MMLdefinition>

D.2.6.8 <prsubset/>

293

<MMLdefinition>
<Name> prsubset </Name>
<description>
Boolean function whose value is determined by
whether or not one set is a proper subset of another.
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.9 <notsubset/>

<MMLdefinition>
<Name> notsubset </Name>
<description>
Boolean function whose value is the complement
of "subset".
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.10 <notprsubset/>

<MMLdefinition>
<Name> notprsubset </Name>
<description>
Boolean function whose value is the complement
of "proper subset".
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

D.2.6.11 <setdiff/>

<MMLdefinition>
<Name> setdiff </Name>
<description>
Function indicating the difference of two sets.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> set </signature>
<property>...</property>
</MMLdefinition>

294

295

D.2.7 Sequences and Series

D.2.7.1 <sum/>

<MMLdefinition>
<Name> sum </Name>
<description>
The sum element denotes the summation operator. Upper and lower
limits for the sum, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the summation is specified by a bvar element.
The sum element takes the attribute definition which can be used to
override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> sum </signature>
<signature> ... </signature>
</MMLdefinition>

D.2.7.2 <product/>

<MMLdefinition>
<Name> product </Name>
<description>
The product element denotes the product operator. Upper and lower
limits for the product, and more generally a domains for the bound
variables are specified using uplimit, lowlimit or a condition on the
bound variables. The index for the product is specified by a bvar
element.
The product element takes the attribute definition which can be used
to override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> product </signature>
<signature> ... </signature>
<signature> ... </signature>
</MMLdefinition>

D.2.7.3 <limit/>

295

<MMLdefinition>
<Name> limit </Name>
<description>
The sum element denotes the summation operator.
Upper and lower limits for the sum, and more
generally a domains for the bound variables are
specified using uplimit, lowlimit or a condition
on the bound variables. The index for the summation is
specified by a bvar element.
</description>
<functorclass> Nary, Function </functorclass>
<signature> (bvar*,(lowlimit | condition*),algebraic) -> limit </signature>
</MMLdefinition>

D.2.7.4 <tendsto/>

<MMLdefinition>
<Name> tendsto </Name>
<description> tendsto is used to specify how a limit is
computed. It accepts a type attribute that determines the
manner in which it tends to a value.
</description>
<functorclass> binary, Function </functorclass>
<signature> (symbol,anything) -> condition(limit) </signature>
<signature> [type=direction](symbol,anything) -> condition(limit) </signature>
</MMLdefinition>

D.2.8 Trigonometry

D.2.8.1 <sin/>

296

297

<MMLdefinition>
<Name> sin </Name>
<description> The circular trigonometric function sine

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(0) = 0 </property>
<property> sin(integer*Pi) = 0 </property>
<property> sin((Z+1/2)*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= sin(real) </property>
<property> sin(real) <= 1 </property>
<property> sin(3*x)=-4*sin(x)^3+3*sin(x), "triple angle formula"

<Reference> ditto, [4.3.27] </Reference>
</property>

</MMLdefinition>

D.2.8.2 <cos/>

<MMLdefinition>
<Name> cos </Name>
<description> The cosine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(0) = 1 </property>
<property> cos(integer*Pi+Pi/2) = 0 </property>
<property> cos(Z*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= cos(real) </property>
<property> cos(real) <= 1 </property>

</MMLdefinition>

D.2.8.3 <tan/>

297

<MMLdefinition>
<Name> tan </Name>
<description> The tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(integer*Pi) = 0 </property>
<property> tan(x) = sin(x)/cos(x) </property>

</MMLdefinition>

D.2.8.4 <sec/>

<MMLdefinition>
<Name> sec </Name>
<description> The secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sec(x) = 1/cos(x) </property>

</MMLdefinition>

D.2.8.5 <csc/>

<MMLdefinition>
<Name> csc </Name>
<description> The cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> csc(x) = 1/sin(x) </property>

</MMLdefinition>

D.2.8.6 <cot/>

298

299

<MMLdefinition>
<Name> cot </Name>
<description> The cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cot(integer*Pi+Pi/2) = 0 </property>
<property> cot(x) = cos(x)/sin(x) </property>

</MMLdefinition>

D.2.8.7 <sinh/>

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.8 <cosh/>

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.9 <tanh/>

299

<MMLdefinition>
<Name> tanh </Name>
<description> The hyperbolic tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.10 <sech/>

<MMLdefinition>
<Name> sech </Name>
<description> The hyperbolic secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.11 <csch/>

<MMLdefinition>
<Name> csch </Name>
<description> The hyperbolic cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.12 <coth/>

300

301

<MMLdefinition>
<Name> coth </Name>
<description> The hyperbolic cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

D.2.8.13 <arcsin/>

<MMLdefinition>
<Name> arcsin </Name>
<description> The inverse of the sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(arcsin(x)) = x </property>
<property> arcsin(sin(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

D.2.8.14 <arccos/>

<MMLdefinition>
<Name> arccos </Name>
<description> The inverse of the cosine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(arccos(x)) = x </property>
<property> arccos(cos(x)) = x, "for x between 0 and Pi" </property>

</MMLdefinition>

D.2.8.15 <arctan/>

301

<MMLdefinition>
<Name> arctan </Name>
<description> The inverse of the tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(arctan(x)) = x </property>
<property> arctan(tan(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

D.2.9 Statistics

D.2.9.1 <mean/>

<MMLdefinition>
<Name> mean </Name>
<description>
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the mean is computed as:
mean(a1, a2, ... an) Sum(ai, i=1... n)/ n.

(see section 7.7 in CRC’s Standard Mathematical tables and Formulae).
More generally, if the first argument is a symbol X of type
"discrete_random_variable", this is the 1st moment of the
random variable X and is defined as
E[X] = Sum(x*f(x), x in S)
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and
k dimenions following the definitions provided in the reference:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

302

303

<property> </property>
</MMLdefinition>

D.2.9.2 <sdev/>

<MMLdefinition>
<Name> sdev </Name>
<description>
This represents the standard deviation.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "standard deviation" is
computed as the square root of the second moment about the mean U.
sdev(a1, a2, ... an)^2 = E((X - U)^2).

If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as
Sum((x_i - U)^2 * f(x_i) , x_i in S)

as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
<property> </property>

</MMLdefinition>

D.2.9.3 <variance/>

303

<MMLdefinition>
<Name> variance </Name>
<description>
This computes the second centered moment, also known as the variance.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "variance" is
computed as the second moment about the mean U.
variance(a1, a2, ... an) = E((X - U)^2).

If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as in section [7.7] (see reference below.)
Sum((x_i - U)^2 * f(x_i) , x_i in S)

as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

D.2.9.4 <median/>

304

305

<MMLdefinition>
<Name> median </Name>
<description>
This represents the median of n data values.
If n =2k + 1 then the mode is x_k.
If n = 2k then the median is (x_k + x_(k+1)/2).
(Note this discription assumes that the data has been
sorted into ascending order.)
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]

</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

D.2.9.5 <mode/>

<MMLdefinition>
<Name> mode </Name>
<description>
This represents the mode of n data values.
The mode is the data value that occurs with the
greatest frequency.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]

</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

D.2.9.6 <moment/>

305

<MMLdefinition>
<Name> moment </Name>
<description>
This computes the ith moment of a set of data, or a random variable..
Given k scalar arguments of unspecified type, they are treated
as equiprobable values of a random variable. and the "moments" are
computed as the second moment about the mean U.
moment(degree=i, scalar*)= E(X^i).

If the first data argument x1 is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the ith moment
about the mean is computed as
Sum((x)^i * f(x) , x in S)

where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(degree,scalar*) -> scalar</signature>
<signature>(degree,scalar(type=data)*) -> scalar</signature>
<signature>(degree,symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(degree, symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

D.2.10 Lineary Algebra

D.2.10.1 <vector>

306

307

<MMLdefinition>
<Name> vector </Name>
<description>
A vector is an ordered n-tuple of values
representing an element of an n-dimensional
vector space. The "values" are all from the
same ring, typically real or complex. They may
be numbers, symbols, or general algebraic expressions.
The type attribute can be used to specify the type of
vector that is represented.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]

</Reference>
</description>
<MMLattribute>
<name> type </name>
<value> real | complex | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<MMLattribute>
<name> other </name>
<value> row | column </value>
<default> row </default>

</MMLattribute>
<functorclass> constructor , N-ary </functorclass>
<signature>
((cn|ci|apply)*) -> vector(type=real)

</signature>
<signature>
[type=vectortype]((cn|ci|apply)*) -> vector(type=vectortype)

</signature>
<!-- Note that there is a notational need for expressing a sequence

v1, v2, ... vn with an in-explicit value of n . Also, in the
following property, it should be clarified that b,v1, and v2 are all
elements of the same ring. -->

<property> <!-- scalar multiplication-->
<apply><forall/>
<bvar><ci>b</ci></bvar>
<bvar><ci>v1</ci></bvar>
<bvar><ci>v2</ci></bvar>
<reln>
<apply><times/>
<ci>ci>b</ci>
<vector><ci>ci>v1</ci><ci>ci>v2</ci></vector>
</apply>
<vector>
<apply><ci>b</ci><ci>v1</ci></apply>

307

<apply><ci>b</ci><ci>v2</ci></apply>
</vector>

</reln>
</apply>

</property>
<property> vector addition </property>
<property> distributive over scalars</property>
<property> associativity.</property>
<property> Matrix * column vector </property>
<property> row vector * Matrix </property>
</property>

</MMLdefinition>

D.2.10.2 <matrix>

<MMLdefinition>
<Name> matrix </Name>
<description>
This is the constructor for a matrix. The matrix is
constructed from matrix rows. The type and properties
spell out the normal interaction with vectors and
scalars.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<value>real | complex | integer | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<functorclass>constructor , N-ary </functorclass>
<signature>(matrixrow*) -> matrix</signature>
<signature>
[type=matrixtype](matrixrow*) ->

matrix(type=matrixtype)</signature>
<property>scalar multiplication </property>
<property>Matrix*column vector</property>
<property>Addition</property>
<property>Matrix*Matrix</property>

</MMLdefinition>

D.2.10.3 <matrixrow>

308

309

<MMLdefinition>
<Name> matrixrow </Name>
<description>
This is a constructor for describing the rows of a matrix.
This only occurs inside a matrix. Its "type" is determined
from the containing matrix element.

</description>
<functorclass>constructor , N-ary</functorclass>
<signature>(cn|ci|apply)->matrixrow </signature>

</MMLdefinition>

D.2.10.4 <determinant/>

<MMLdefinition>
<Name>determinant</Name>
<description>The "determinant" of a matrix.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4]

</Reference>
</description>
<functorclass>Unary, operator</functorclass>
<signature>(matrix)-> scalar </signature>
</MMLdefinition>

D.2.10.5 <transpose/>

<MMLdefinition>
<Name> transpose </Name>
<description>The transpose of a matrix or vector.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1]

</Reference>
</description>
<functorclass>Unary, Operator</functorclass>
<signature>(vector)->vector(other=row)</signature>
<signature>[other=column](vector)->vector(other=row)</signature>
<signature>[other=row](vector)->vector(other=column)</signature>
<signature>(matrix)->matrix</signature>
<property>transpose(transpose(A))= A</property>
<property>transpose(transpose(V))= V</property>

</MMLdefinition>

D.2.10.6 <selector/>

309

<MMLdefinition>
<Name> selector </Name>
<description>
The operator used to extract sub-objects from vectors, matrices
matrix rows and lists.
Elements are accessed by providing one index element for each
dimension. For Matrices, sub-matrices are selected by providing
one fewer index items. For a matrix A and a column vector V :
select(i,j , A) is the i,j th element of A.
select(i , A) is the matrixrow formed from the ith row of A.
select(i , V) is the ith element of V.
select(V) is the sequence of all elements of V.
select(A) is the sequence of all elements of A, extracted row
by row.
select(i,L) is the ith element of a list.
select(L) is the sequence of elements of a list.

</description>
<functorclass>N-ary, operator)</functorclass>
<signature>(scalar,scalar,matrix)->scalar</signature>
<signature>(scalar,matrix)->matrixrow</signature>
<signature>(matrix)->scalar* </property>
<signature>(scalar,(vector|list|matrixrow))->scalar</signature>
<signature>(vector|list|matrixrow)->scalar*</signature>
<property>
Forall(

bvar(A(type=matrix)),bvar(V(type=vector)),
select(A) = select(V)

)
</property>
<property>For all vectors V, V = vector(select(V))</property>

</MMLdefinition>

310

Appendix E

Document Object Model for MathML (Non-Normative)

The following sections describe the interfaces that have been defined in the Document Object Model for MathML. Please refer to chapter 8 for more
information.

E.1 IDL Interfaces

E.1.1 Miscellaneous Object Definitions

Interface MathMLCollection

This interface is included by analogy with the interface HTMLCollection, and for the same reasons. (Specifically, it allows access to a list of nodes
either by index or by name or id attributes. The rationale making this desirable for the HTML DOM applies also to the MathML DOM; particularly the
presence of named hyperlink targets.) The documentation below is essentially copied from the definition of HTMLCollection.

IDL Definition

interface MathMLCollection {
readonly attribute unsigned long length;
Node item(in unsigned long index);
Node namedItem(in DOMString name);

};

Attributes

length This attribute specifies the length or size of the list.

Methods

item This method retrieves a node specified by ordinal index. Nodes are numbered in tree order (depth-first traversal order).Parameters
indexThe index of the node to be fetched. The index origin is 0.Return value
The Node at the corresponding position upon success. A value of null is returned if the index is out of range. This method raises no
exceptions.

311

namedItem This method retrieves a Node using a name. It first searches for a Node with a matching id attribute. If it doesn’t find one, it then searches
for a Node with a matching name attribute, but only on those elements that are allowed a name attribute.Parameters
nameThe name of the Node to be fetched.Return value
The Node with a name or id attribute whose value corresponds to the specified string. Upon failure (e.g., no node with this name exists),
returns null. This method raises no exceptions.

E.1.2 Generic MathML Elements

Interface MathMLElement

All MathML element interfaces derive from this object, which derives from the basic DOM interface Element.

IDL Definition

interface MathMLElement: Element {
attribute DOMString className;
attribute DOMString style;
attribute DOMString id;
attribute DOMString other;
attribute NamedNodeMap otherAttributes;
MathMLElement getMathElement(in unsigned long index);

};

Attributes

className The class attribute of the element. See the MathML discussion and the HTML definition of the class attribute.
style A string identifying the element’s style attribute.(?)
id The element’s identifier. See the MathML discussion and the HTML definition of the id attribute.
other Direct access to the element’s other attribute, as a string.
otherAttributes This attribute retrieves or sets a NamedNodeList representing the contents of the element’s other attribute. This will allow more

convenient access to the name-key pairs which this attribute is defined to contain.

Methods

getMathElement A convenience method to retrieve child elements.Parameters
indexReturn value
The same value as a call to Node::childNodes().item(index),but returned as a MathMLElement instead of a Node. This method raises no
exceptions.

312

313

E.1.3 Specific Style Methods (currfontsize, etc.)

Issue (style-methods): At the August 1999/ F2F meeting, the group agreed that the following level 2 interface for obtaining the current values of
certain style attributes should be included. However, after careful study of the XML DOM levels 1 and 2, we (Roger and Ron) now believe that they
are not appropriate. These methods are considered desirable because we see the need to make frequent calls to discover style information and the
current script level and display style. As anyone who’s implemented math rendering knows, there’s a constant need for this information, and it must
be obtained very quickly. The July 1999 DOM Level 2 draft states that mechanisms for obtaining the cascaded, computed and actual style for a
specific element are being considered. This would obviate the need for the font and color methods. Why do we believe now that these interfaces
should not be specified here? The primary reason is that the XML DOM, at both levels, does not include methods for obtaining these values. If they
are introduced in some later iteration of the XML DOM, the font methods would not be necessary here. It would then be appropriate to include the
currscriptlevel and currdisplaystyle methods in the MathML DOM. If we include the style related methods because they are necessary for a renderer
implementation, it seems equally appropriate to include methods for returning the actual size of elements as rendered (these are the currheight,
currdepth, and currwidth methods below). This information is also essential for rendering, and it is necessary for hit detection. We’ve concluded that
the XML DOM assumes a model where the renderer itself implements methods to obtain the cascaded, computed style values, and the size and
placement of objects. The inclusion of mouse events in the level 2 DOM without including these style, size, and placement methods emphasizes this
implied model. The parallel for MathML would be to assume that a renderer that includes a MathML component would implement its own methods
for obtaining the current script level, display style, and other inherited computed values that are essential for MathML rendering, and so these
methods would not be specified here.

Interface MathMLElement2

This interface is required for implementations that perform rendering.

IDL Definition

interface MathMLElement2: MathMLElement {
readonly attribute DOMString currscriptlevel;
readonly attribute DOMString currdisplaystyle;
readonly attribute DOMString currfontsize;
readonly attribute DOMString currfontweight;
readonly attribute DOMString currfontstyle;
readonly attribute DOMString currfontfamily;
readonly attribute DOMString currcolor;
readonly attribute DOMString currheight;
readonly attribute DOMString currdepth;
readonly attribute DOMString currwidth;
DOMString getCurrScriptLevel();
DOMString getCurrDisplayStyle();
DOMString getCurrFontSize();
DOMString getCurrFontWeight();
DOMString getCurrFontStyle();
DOMString getCurrFontFamily();
DOMString getCurrColor();

};

Note that these methods are specified for MathMLElement. This means that they return results for all MathML elements, including content elements.
This is to facilitate rendering of mixed markup. DOM implementations that do not render should not have to implement the MathMLElement2
interface. In fact, they may not have the information necessary to implement them. If IDL attributes are to be used only for explicit XML attributes, the
above interface should use methods for getting current (cascaded, computed, and actual) values. They would take the following form.

313

DOMString getCurrScriptLevel();
DOMString getCurrDisplayStyle();
DOMString getCurrFontSize();
DOMString getCurrFontWeight();
DOMString getCurrFontStyle();
DOMString getCurrFontFamily();
DOMString getCurrColor();

Question: How does a DOM handle multiple clients? These style methods could return different values for different clients.

Attributes

currscriptlevel Computes and returns the current script level. This is the cascaded, computed value for the element.
currdisplaystyle Computes and returns the current display style. This is the cascaded, computed value for the element.
currfontsize Computes and returns the current font size. This is the cascaded, computed value for the element.
currfontweight Computes and returns the current font weight. This is the cascaded, computed value for the element.
currfontstyle Computes and returns the current font style. This is the cascaded, computed value for the element.
currfontfamily Computes and returns the current font family. This is the cascaded, computed value for the element.
currcolor Computes and returns the current text color. This is the cascaded, computed value for the element.
currheight Computes and returns the current element height, relative to its baseline origin, as rendered.
currdepth Computes and returns the current element depth, relative to its baseline origin, as rendered.
currwidth Computes and returns the current element width as rendered.

Methods

getCurrScriptLevel Return value
This method raises no exceptions.

getCurrDisplayStyle Return value
This method raises no exceptions.

getCurrFontSize Return value
This method raises no exceptions.

getCurrFontWeight Return value
This method raises no exceptions.

getCurrFontStyle Return value
This method raises no exceptions.

getCurrFontFamily Return value
This method raises no exceptions.

getCurrColor Return value
This method raises no exceptions.

E.1.4 Presentation Elements

Interface MathMLTokenElement

This interface extends the MathMLElement interface to include access for attributes specific to text presentation. It serves as the base class for all
MathML presentation token elements. Access to the body of the element is via the nodeValue attribute inherited from Node. Elements which expose
only the core presentation token attributes are directly supported by this object. These elements are:

314

315

mi MathML identifier element
mn MathML number element
mtext MathML text element

Issue (methodless-interfaces): Interfaces with no Methods? Should we provide interfaces with no methods for <mi>, <mn>, and <mtext>? This
would provide separate objects for these elements. Since the element name provides complete information, there is no pressing need for such
‘interfaces’. Of course, extending this argument could lead to no MathML DOM specification at all.

IDL Definition

interface MathMLTokenElement: MathMLElement {
attribute DOMString fontsize;
attribute DOMString fontweight;
attribute DOMString fontstyle;
attribute DOMString fontfamily;
attribute DOMString color;

};

Attributes

fontsize The font size attribute for the element, if specified.
fontweight The font weight attribute for the element, if specified.
fontstyle The font style attribute for the element, if specified.
fontfamily The font family attribute for the element, if specified.
color The color attribute for the element, if specified.

Interface MathMLOperatorElement

This interface extends the MathMLTokenElement interface for the MathML operator element <mo>.

IDL Definition

interface MathMLOperatorElement: MathMLTokenElement {
attribute DOMString form;
attribute DOMString fence;
attribute DOMString separator;
attribute DOMString lspace;
attribute DOMString rspace;
attribute DOMString stretchy;
attribute DOMString symmetric;
attribute DOMString maxsize;
attribute DOMString minsize;
attribute DOMString largeop;
attribute DOMString moveablelimits;
attribute DOMString accent;

};

315

Attributes

form The form attribute (prefix, infix or postfix) for the <mo> element, if specified.
fence The fence attribute (true or false) for the <mo> element, if specified.
separator The separator attribute (true or false) for the <mo> element, if specified.
lspace The lspace attribute (spacing to left) of the <mo> element, if specified.
rspace The rspace attribute (spacing to right) of the <mo> element, if specified.
stretchy The stretchy attribute (true or false) for the <mo> element, if specified.
symmetric The symmetric attribute (true or false) for the <mo> element, if specified.
maxsize The maxsize attribute for the <mo> element, if specified.
minsize The minsize attribute for the <mo> element, if specified.
largeop The largeop attribute for the <mo> element, if specified.
moveablelimits The moveablelimits (true or false) attribute for the <mo> element, if specified.
accent The accent attribute (true or false) for the <mo> element, if specified.

Issue (default-values): Level 2, Default Values, and the Operator Dictionary In Scientific WorkPlace and Scientific Notebook, we use knowledge of
fence delimiters at certain times to aid in conversion from presentation to content form. Knowledge of form attribute values could be used for
conversions of this type. It’s conceivable that other <mo> attributes might also give valuable clues. Some elements have default attribute values - for
example, <mfence> has default delimiters. Do we expect renderers and content manipulators to manage their own operator dictionaries and to know
the default values, or is it reasonable to ask the DOM to supply the affected attribute values? It seems unreasonable to expect all DOM
implementations to use an operator dictionary - those dealing exclusively with content form won’t want to be burdened this way. With these
considerations in mind, we propose the following optional interface that supplies all operator attribute values, whether or not they have appear
explicitly in the markup. Note that the interface uses IDL attributes (instead of Get methods) because the values can be supplied explicitly. We have
specified this interface for the operator dictionary only. That is, we expect all clients of the DOM to know the default values of attributes for all
elements. We’ve used the prefix ‘resolved’ here. Any better suggestions?

Interface MathMLOperatorElement2

This interface extends the MathMLOperator interface to provide values for all attributes. Values that are not explicit would normally be obtained from
an operator dictionary.

IDL Definition

interface MathMLOperatorElement2: MathMLOperatorElement {
readonly attribute DOMString resolvedform;
readonly attribute DOMString resolvedfence;
readonly attribute DOMString resolvedseparator;
readonly attribute DOMString resolvedlspace;
readonly attribute DOMString resolvedrspace;
readonly attribute DOMString resolvedstretchy;
readonly attribute DOMString resolvedsymmetric;
readonly attribute DOMString resolvedmaxsize;
readonly attribute DOMString resolvedminsize;
readonly attribute DOMString resolvedlargeop;
readonly attribute DOMString resolvedmoveablelimits;
readonly attribute DOMString resolvedaccent;

};

316

317

Attributes

resolvedform The form attribute (prefix, infix or postfix) for the <mo> element, from the operator dictionary if not explicit.
resolvedfence The fence attribute (true or false) for the <mo> element, from the operator dictionary if not explicit.
resolvedseparator The separator attribute (true or false) for the <mo> element, from the operator dictionary if not explicit.
resolvedlspace The lspace attribute (spacing to left) of the <mo> element, from the operator dictionary if not explicit.
resolvedrspace The rspace attribute (spacing to right) of the <mo> element, from the operator dictionary if not explicit.
resolvedstretchy The stretchy attribute (true or false) for the <mo> element, from the operator dictionary if not explicit.
resolvedsymmetric The symmetric attribute (true or false) for the <mo> element, from the operator dictionary if not explicit.
resolvedmaxsize The maxsize attribute for the <mo> element, from the operator dictionary if not explicit.
resolvedminsize The minsize attribute for the <mo> element, from the operator dictionary if not explicit.
resolvedlargeop The largeop attribute for the <mo> element, from the operator dictionary if not explicit.
resolvedmoveablelimits The moveablelimits (true or false) attribute for the <mo> element, from the operator dictionary if not explicit.
resolvedaccent The accent attribute (true or false) for the <mo> element, from the operator dictionary if not explicit.

Interface MathMLSpaceElement

This interface extends the MathMLElement interface for the MathML space element <mspace>. Note that this is not derived from MathMLTokenElement,
despite the fact that <mspace> is classified as a token element, it doesn’t carry the attributes declared for MathMLTokenElement.

IDL Definition

interface MathMLSpaceElement: MathMLElement {
attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width A string of the form ‘number h-unit ’; represents the width attribute for the <mspace> element, if specified.
height A string of the form ‘number v-unit ’; represents the height attribute for the <mspace> element, if specified.
depth A string of the form ‘number v-unit ’; represents the depth attribute for the <mspace> element, if specified.

Interface MathMLStringLitElement

This interface extends the MathMLTokenElement interface for the MathML string literal element <ms>.

IDL Definition

interface MathMLStringLitElement: MathMLTokenElement {
attribute DOMString lquote;
attribute DOMString rquote;

};

Attributes

lquote A string giving the opening delimiter for the string literal; represents the lquote attribute for the <ms> element, if specified.
rquote A string giving the closing delimiter for the string literal; represents the rquote attribute for the <ms> element, if specified.

317

Interface MathMLFractionElement

This interface extends the MathMLElement interface for the MathML fraction element <mfrac>.

IDL Definition

interface MathMLFractionElement: MathMLElement {
attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

Attributes

linethickness A string representing the linethickness attribute of the <mfrac>, if specified.
numerator The first child MathMLElement of the MathMLFractionElement; represents the numerator of the represented fraction.
denominator The second child MathMLElement of the MathMLFractionElement; represents the denominator of the represented fraction.

Interface MathMLRadicalElement

This interface extends the MathMLElement interface for the MathML radical and square root elements <mroot> and <msqrt>.

IDL Definition

interface MathMLRadicalElement: MathMLElement {
attribute MathMLElement radicand;
attribute MathMLElement index;

};

Attributes

radicand The first child MathMLElement of the MathMLRadicalElement; represents the base of the represented radical.
index The second child MathMLElement of the MathMLRadicalElement; represents the index of the represented radical. This must be null for

<msqrt> elements.

Interface MathMLStyleElement

This interface extends the MathMLElement interface for the MathML style element <mstyle>. While the <mstyle> element may contain any attributes
allowable on any MathML presentation element, only attributes specific to the <mstyle> element are included in the interface below. Other attributes
should be accessed using the methods on the base Element class, particularly the Element::getAttribute and Element::setAttribute methods,
or even the Node::attributes attribute to access all of them at once. Not only does this obviate a lengthy list below, but it seems likely that most
implementations will find this a considerably more useful interface to a MathMLStyleElement.

318

319

IDL Definition

interface MathMLStyleElement: MathMLElement {
attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;

};

Attributes

scriptlevel A string of the form "+/- unsigned integer "; represents the scriptlevel attribute for the <mstyle> element, if specified. See also the
discussion of this attribute.

displaystyle Either true or false; a string representing the displaystyle attribute for the <mstyle> element, if specified. See also the discussion
of this attribute.

scriptsizemultiplier A string of the form ‘number ’; represents the scriptsizemultiplier attribute for the <mstyle> element, if specified. See
also the discussion of this attribute.

scriptminsize A string of the form ‘number v-unit ’; represents the scriptminsize attribute for the <mstyle> element, if specified. See also the
discussion of this attribute.

color A string representation of a color; represents the color attribute for the <mstyle> element, if specified. See also the discussion of this attribute.
background A string representation of a color or the string transparent; represents the background attribute for the <mstyle> element, if specified.

See also the discussion of this attribute.

Interface MathMLPaddedElement

This interface extends the MathMLElement interface for the MathML spacing adjustment element <mpadded>.

IDL Definition

interface MathMLPaddedElement: MathMLElement {
attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width A string representing the total width of the <mpadded> element, if specified. See also the discussion of this attribute.
lspace A string representing the lspace attribute - the additional space to the left - of the <mpadded> element, if specified. See also the discussion

of this attribute.
height A string representing the height above the baseline of the <mpadded> element, if specified. See also the discussion of this attribute.
depth A string representing the depth beneath the baseline of the <mpadded> element, if specified. See also the discussion of this attribute.

Interface MathMLFencedElement

This interface extends the MathMLElement interface for the MathML fenced content element <mfenced>.

319

IDL Definition

interface MathMLFencedElement: MathMLElement {
attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

Attributes

open A string representing the opening-fence for the <mfenced> element, if specified; this is the element’s open attribute.
close A string representing the opening-fence for the <mfenced> element, if specified; this is the element’s close attribute.
separators A string representing any separating characters inside the <mfenced> element, if specified; this is the element’s separators attribute.

Editor’s note: Nico Poppelier (16 October 1999)
The definition of the next interface could not be converted completely, because attribute definitions do not have a child ’raises’, which method
definitions do have. I left the exception descriptions inside the attribute descriptions.

Interface MathMLScriptElement

This interface extends the MathMLElement interface for the MathML subscript, superscript and subscript-superscript pair elements <msub>, <msup>,
and <msubsup>.

IDL Definition

interface MathMLScriptElement: MathMLElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;
attribute MathMLElement superscript;

};

Attributes

subscriptshift A string representing the minimum amount to shift the baseline of the subscript down, if specified; this is the element’s subscript-
shift attribute. This must return null for a <msup>.

superscriptshift A string representing the minimum amount to shift the baseline of the superscript up, if specified; this is the element’s super-
scriptshift attribute. This must return null for a <msub>.

base A MathMLElement representing the base of the script. This is the first child of the element.
subscript A MathMLElement representing the subscript of the script. This is the second child of a <msub> or <msubsup>; retrieval must return null

for a <msup>. Exceptions on setting: the DOMException NOT_FOUND_ERR is raised when the element is a <msup>.
superscript A MathMLElement representing the superscript of the script. This is the second child of a <msup> or the third child of a <msubsup>;

retrieval must return null for a <msub>. Exceptions on setting: the DOMException NOT_FOUND_ERR is raised when the element is a <msub>.

Interface MathMLUnderOverElement

This interface extends the MathMLElement interface for the MathML underscript, overscript and overscript-underscript pair elements munder, mover
and munderover.

320

321

IDL Definition

interface MathMLUnderOverElement: MathMLElement {
attribute DOMString accentunder;
attribute DOMString accent;
attribute MathMLElement base;
attribute MathMLElement underscript;
attribute MathMLElement overscript;

};

Attributes

accentunder Either true or false if present; a string controlling whether underscript is drawn as an ‘accent’ or as a ‘limit’, if specified; this is the
element’s accentunder attribute. This must return null for a <mover>.

accent Either true or false if present; a string controlling whether overscript is drawn as an ‘accent’ or as a ‘limit’, if specified; this is the element’s
accent attribute. This must return null for a <munder>.

base A MathMLElement representing the base of the script. This is the first child of the element.
underscript A MathMLElement representing the underscript of the script. This is the second child of a <munder> or <munderover>; retrieval must

return null for a <mover>. Exceptions on setting: the DOMException NOT_FOUND_ERR is raised when the element is a <mover>.
overscript A MathMLElement representing the overscript of the script. This is the second child of a <mover> or the third child of a <munderover>;

retrieval must return null for a <munder>. Exceptions on setting: the DOMException NOT_FOUND_ERR is raised when the element is a <munder>.

Editor’s note: Nico Poppelier (16 October 1999)
The definition of the next interface did not convert due to a mismatch between the IDL definition and the informal descriptions. I edited the HTML
source by hand in order to run the conversion.

Interface MathMLMultiScriptsElement

This interface extends the MathMLElement interface for the MathML multiscripts (including prescripts or tensors) element <mmultiscripts>.

IDL Definition

interface MathMLMultiScriptsElement: MathMLElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute NodeList prescripts;
attribute NodeList scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long colIndex);
MathMLElement getSubScript(in unsigned long colIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long colIndex);
MathMLElement insertPreSubScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertSubScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertPreSuperScriptAt(in unsigned long colIndex, in MathMLElement newElement);
MathMLElement insertSuperScriptAt(in unsigned long colIndex, inout MathMLElement newElement);

};

321

Attributes

subscriptshift A string representing the minimum amount to shift the baseline of the subscripts down, if specified; this is the element’s subscript-
shift attribute.

superscriptshift A string representing the minimum amount to shift the baseline of the superscripts up, if specified; this is the element’s super-
scriptshift attribute.

base A MathMLElement representing the base of the script. This is the first child of the element.
prescripts A NodeList representing the prescripts of the script, which appear in the order described by the expression (prescript presuperscript)*.

This is the same as traversing the contents of the NodeList returned by Node::childNodes() from the Node following the <mprescripts/>
(if present) to the end of the list.

scripts A NodeList representing the scripts of the script, which appear in the order described by the expression (script superscript)*. This is the
same as traversing the contents of the NodeList returned by Node::childNodes() from the first Node up to and including the Node preceding
the <mprescripts/> (if present).

numprescriptcolumns The number of script/subscript columns preceding (to the left of) the base. Should always be half of getprescripts().length()
numscriptcolumns The number of script/subscript columns following (to the right of) the base. Should always be half of getcripts().length()

Methods

getPreSubScript A convenience method to retrieve pre-subscript children of the element, referenced by column index .Parameters
colIndexColumn index of prescript (where 0 represents the leftmost prescript column).Return value
Returns the MathMLElement representing the colIndex-th presubscript (to the left of the base, counting from 0 at the far left). Note that this
may be the MathMLElement corresponding to the special element <none/> in the case of a ‘missing’ presubscript (see the discussion of
<mmultiscripts>), or it may be null if colIndex is out of range for the element. This method raises no exceptions.

getSubScript A convenience method to retrieve subscript children of the element, referenced by column index.Parameters
colIndexColumn index of script (where 0 represents the leftmost script column, the first to the right of the base).Return value
Returns the MathMLElement representing the colIndex-th subscript to the right of the base. Note that this may be the MathMLElement
corresponding to the special element <none/> in the case of a ‘missing’ subscript (see the discussion of <mmultiscripts>), or it may be
null if colIndex is out of range for the element. This method raises no exceptions.

getPreSuperScript A convenience method to retrieve pre-superscript children of the element, referenced by column index .Parameters
colIndexColumn index of pre-superscript (where 0 represents the leftmost prescript column).Return value
Returns the MathMLElement representing the colIndex-th presuperscript (to the left of the base, counting from 0 at the far left). Note that
this may be the MathMLElement corresponding to the special element <none/> in the case of a ‘missing’ presuperscript (see the discussion
of <mmultiscripts>), or it may be null if colIndex is out of range for the element. This method raises no exceptions.

getSuperScript A convenience method to retrieve superscript children of the element, referenced by column index .Parameters
colIndexColumn index of script (where 0 represents the leftmost script column, the first to the right of the base)Return value
Returns the MathMLElement representing the colIndex-th superscript to the right of the base. Note that this may be the MathMLElement
corresponding to the special element <none/> in the case of a ‘missing’ superscript (see the discussion of <mmultiscripts>), or it may be
null if colIndex is out of range for the element. This method raises no exceptions.

insertPreSubScriptAt A convenience method to insert a pre-subscript child at the position referenced by column index. If there is currently a
pre-subscript at this position, it is replaced by newElement.Parameters
colIndexColumn index of pre-subscript (where 0 represents the leftmost prescript column).newElementMathMLElement to be inserted.Return
value
The MathMLElement being inserted. This method raises no exceptions.

insertSubScriptAt A convenience method to insert a subscript child at the position referenced by column index. If there is currently a subscript at
this position, it is replaced by newElement.Parameters
colIndexColumn index of subscript (where 0 represents the leftmost script column, the first to the right of the base).newElementMathMLElement
to be inserted.Return value
The MathMLElement being inserted. This method raises no exceptions.

322

323

insertPreSuperScriptAt A convenience method to insert a pre-superscript child at the position referenced by column index. If there is currently a
pre-superscript at this position, it is replaced by newElement.Parameters
colIndexColumn index of pre-superscript (where 0 represents the leftmost prescript column).newElementMathMLElement to be inserted.Return
value
The MathMLElement being inserted. This method raises no exceptions.

insertSuperScriptAt A convenience method to insert a superscript child at the position referenced by column index. If there is currently a super-
script at this position, it is replaced by newElement.Parameters
colIndexColumn index of superscript (where 0 represents the leftmost script column, the first to the right of the base).newElementMathMLElement
to be inserted.Return value
The MathMLElement being inserted. This method raises no exceptions.

Interface MathMLTableElement

This interface extends the MathMLElement interface for the MathML table or matrix element <mtable>.

IDL Definition

interface MathMLTableElement: MathMLElement {
attribute DOMString align;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute DOMString alignmentscope;
attribute DOMString rowspacing;
attribute DOMString columnspacing;
attribute DOMString rowlines;
attribute DOMString columnlines;
attribute DOMString frame;
attribute DOMString framespacing;
attribute DOMString equalrows;
attribute DOMString equalcolumns;
attribute DOMString displaystyle;
readonly attribute MathMLCollection rows;
MathMLTableRowElement insertRow(in unsigned long index);
void deleteRow(in unsigned long index);

};

Attributes

align A string representing the vertical alignment of the table with the adjacent text. Allowed values are (top | bottom | center | baseline |
axis)[rownumber], where rownumber is between 1 and n (for a table with n rows) or -1 and -n.

rowalign A string representing the alignment of entries in each row. Allowed values are (top | bottom | center | baseline | axis)+.
columnalign A string representing the alignment of entries in each column. Allowed values are (left | center | right)+.
groupalign A string specifying how the alignment groups within the cells of each row are to be aligned with the corresponding items above or below

them in the same column. The string consists of a sequence of braced group alignment lists. Each group alignment list has the form (left
| right | center | decimalpoint)+ .

alignmentscope A string consisting of the values true or false indicating, for each column, whether it can be used as an alignment scope.

323

rowspacing A string of the form (number v-unit)+ representing the space to be added between rows.
columnspacing A string of the form (number h-unit)+ representing the space to be added between columns.
rowlines A string specifying whether and what kind of lines should be added between each row. Allowed values are (none | solid | dashed)+.
columnlines A string specifying whether and what kind of lines should be added between each column. Allowed values are (none | solid |

dashed)+.
frame A string specifying a frame around the table. Allowed values are (none | solid | dashed).
framespacing A string of the form number h-unit number v-unit specifying the spacing between table and its frame.
equalrows A string with the values true or false.
equalcolumns A string with the values true or false.
displaystyle A string with the values true or false.
rows A MathMLCollection consisting of the rows of the table.

Methods

insertRow A convenience method to Insert a new (empty) row in the table at the specified index.Parameters
indexIndex at which to insert row.Return value
Returns the MathMLTableRowElement representing the <mtr> being inserted. This method raises no exceptions.

deleteRow A convenience method to delete the row of the table at the specified index.Parameters
indexIndex of row to be deleted..Return value
None. This method raises no exceptions.

Interface MathMLTableRowElement

This interface extends the MathMLElement interface for the MathML table or matrix row element <mtr>.

IDL Definition

interface MathMLTableRowElement: MathMLElement {
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute MathMLCollection cells;
MathMLTableCellElement insertCell(in unsigned long index);
void deleteCell(in unsigned long index);

};

Attributes

rowalign A string representing an override of the rowalign specified in the containing <mtable>. Allowed values are top | bottom | center |
baseline | axis.

columnalign A string representing an override of the columnalign specified in the containing <mtable>. Allowed values are (left | center |
right)+.

groupalign [To be changed?]
cells A MathMLCollection consisting of the cells of the row.

324

325

Methods

insertCell A convenience method to insert a new (empty) cell in the row.Parameters
indexIndex at which to insert cell.Return value
Returns the MathMLTableCellElement representing the <mtd> being inserted. This method raises no exceptions.

deleteCell A convenience method to delete a cell in the row.Parameters
indexIndex of cell to be deleted.Return value
None. This method raises no exceptions.

Interface MathMLTableCellElement

This interface extends the MathMLElement interface for the MathML table or matrix cell element <mtd>.

IDL Definition

interface MathMLTableCellElement: MathMLElement {
attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

};

Attributes

rowspan A string representing a positive integer that specifies the number of rows spanned by this cell. The default is 1.
columnspan A string representing a positive integer that specifies the number of columns spanned by this cell. The default is 1.
rowalign A string specifying an override of the inherited vertical alignment of this cell within the table row. Allowed values are top | bottom |

center | baselne | axis.
columnalign A string specifying an override of the inherited horizontal alignment of this cell within the table column. Allowed values are left |

center | right.
groupalign A string specifying how the alignment groups within the cell are to be aligned with those in cells above or below this cell. Allowed values

are (left | center | right | decimalpoint)+.
hasaligngroups A string with the values true or false indicating whether the cell contains align groups.
cellindex A string representing the integer index (1 based??) of the cell in its containing row. [What about spanning cells? How do these affect this

value?]

Interface MathMLAlignGroupElement

This interface extends the MathMLElement interface for the MathML group alignment element <maligngroup/>.

IDL Definition

interface MathMLAlignGroupElement: MathMLElement {
attribute DOMString groupalign;

};

325

Attributes

groupalign A string specifying how the alignment group is to be aligned with other alignment groups above or below it. Allowed values are left |
center | right | decimalpoint.

Interface MathMLAlignMarkElement

This interface extends the MathMLElement interface for the MathML alignment mark element <malignmark/>.

IDL Definition

interface MathMLAlignMarkElement: MathMLElement {
attribute DOMString edge;

};

Attributes

edge A string specifying alignment on the right edge of the preceding element or the left edge of the following element. Allowed values are left |
right.

Interface MathMLActionElement

This interface extends the MathMLElement interface for the MathML enlivening expression element <maction>.

IDL Definition

interface MathMLActionElement: MathMLElement {
attribute DOMString actiontype;
attribute DOMString selection;

};

Attributes

actiontype A string specifying the action. Possible values include toggle | statusline | tooltip | highlight | menu.
selection A string specifying an integer that selects the current subject of the action.

E.1.5 Content Elements

Issue (content-names): We have named all of the content element interfaces MathMLnameElement where <name> is the MathML element.

Issue (number-seps): We are assuming that there is no predetermined limit on the number of <sep> separated arguments to a <cn>. Is this true?

Interface MathMLcnElement

The <cn> element is used to specify actual numeric constants.

326

327

IDL Definition

interface MathMLcnElement: MathMLElement {
attribute DOMString type;
attribute DOMString base;
readonly attribute unsigned long nargs;
attribute DOMString definitionURL;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in unsigned long index, in MathMLelement arg);

};

Attributes

type Values include, but are not restricted to, real | integer | rational | complex-cartesian | complex-polar | constant.
base A string representing an integer between 2 and 36; the base of the numerical representation.
nargs The number of <sep> separated arguments.
definitionURL A URL pointing to an alternative definition

Methods

getArgument A convenience method to retrieve an argumentParameters
indexPosition of the argument in the list of (<sep>-separated arguments. The first argument is numbered 1.Return value
The MathMLElement argument in the index place. This method raises no exceptions.

insertArgument A convenience method to insert an argument child at the position referenced by index. If there is currently an argument at this
position, it is replaced by arg.Parameters
indexPosition of arg in the list of arguments. The first argument is numbered 1.argMathMLElement to be inserted as the argument.Return
value
The MathMLElement inserted. This is the element within the DOM. This method raises no exceptions.

Interface MathMLciElement

The <ci> element is used to specify a symbolic name.

IDL Definition

interface MathMLciElement: MathMLElement {
attribute DOMString type;
attribute MathMLElement body;
attribute DOMString definitionURL;

};

Attributes

type Values include integer, rational, real, float, complex, complex-polar, complex-cartesian, constant, any of the MathML content con-
tainer types (vector, matrix, set, list etc.) or their types.

body The content of the identifier.
definitionURL A URL pointing to an alternative definition.

327

Interface MathMLapplyElement

The <apply> element allows a function or operator to be applied to its arguments.

IDL Definition

interface MathMLapplyElement: MathMLElement {
attribute MathMLElement operator;
readonly attribute unsigned long nargs;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in unsigned long index, in MathMLelement arg);

};

Attributes

operator The MathML element representing the function or operator that is applied to the list of arguments.
nargs An integer representing the number of arguments. This does not include the function or operator itself; note that this causes the return value

to be less than the return from Node::childNodes().length().

Methods

getArgument A convenience method to retrieve an argumentParameters
indexPosition of the argument in the list of arguments. The first argument is numbered 1.Return value
The MathMLElement argument at position index. This method raises no exceptions.

insertArgument A convenience method to insert an argument child at the position referenced by index. If there is currently an argument at this
position, it is replaced by arg.Parameters
indexPosition of arg in the list of arguments. The first argument is numbered 1.argThe MathMLElement to be inserted as the argument.
Return value
The MathMLElement inserted. This is the new element within the DOM. This method raises no exceptions.

Issue (reln-deprecated): reln has been deprecated, so we do not include an interface(?).

Interface MathMLfnElement

The <fn> element makes explicit the fact that a more general MathML object is intended to be used in the same manner as if it were a pre-defined
function such as <sin> or <plus>.

IDL Definition

interface MathMLfnElement: MathMLElement {
attribute MathMLElement body;
attribute DOMString definitionURL;

};

Attributes

body The MathML object that is to be treated as if it were a pre-defined function.
definitionURL A URL pointing to a definition for this function-type element. Note that there is no stipulation about the form this definition may take!
Issue (interval-types): There are really two distinct objects here. Should we treat them as different with a common abstract parent class (interval)
and two derived classes (endpointsInterval and conditionInterval)? We’ve chosen to have a single element that can be transformed from one type to
the other.

328

329

Interface MathMLintervalElement

The <interval> element is used to represent simple mathematical intervals on the real number line. It contains either two child elements which
evaluate to real numbers or one child element which is a condition for defining membership in the interval.

IDL Definition

interface MathMLintervalElement: MathMLElement {
attribute DOMString closure;
readonly attribute boolean isCondition;
attribute MathMLconditionElement condition;
attribute MathMLcnElement start;
attribute MathMLcnElement end;

};

Attributes

closure A string with value open, closed, open-closed or closed-open. The default value is closed.
isCondition true if this interval is defined by a condition rather than by two real number endpoints.
condition A MathML <condition> element in the case that the interval is defined using a condition. Setting this attribute has the side effect of

setting isCondition to true. Getting this attribute raises an exception if isCondition is false.
start A MathMLcnElement representing the real number defining the start of the interval. Setting this attribute has the side effect of setting isCon-

dition to false. If end has not already been set, it becomes the same as start until set otherwise. Getting this attribute raises an exception
if isCondition is true.

end A MathMLcnElement representing the real number defining the end of the interval. Setting this attribute has the side effect of setting isCondition
to false. If start has not already been set, it becomes the same as end until set otherwise. Getting this attribute raises an exception if
isCondition is true.

Issue (sep-interface): There is no separate interface for sep. Each element that allows <sep> has interface methods to access the separated
components.

Issue (condition-reln): The 1.01 specification says that a condition contains a single <reln> element or a single <apply> element. Since <reln> is
being deprecated in 2.0, we have typed the body as MathMLapplyElement. Is this OK? It may be dangerous if there are documents that use <reln>
in this context.

Interface MathMLconditionElement

The <condition> element is used to place a condition on one or more free variables or identifiers.

IDL Definition

interface MathMLconditionElement: MathMLElement {
attribute MathMLapplyElement condition;

};

Attributes

condition A MathMLapplyElement that represents the condition.

Issue (declare-constructor): The identifier and the constructor are IDL attributes. However, the constructor is optional. Can we specify that
an attempt to get the constructor when it isn’t present returns null, or should it raise an exception? Should either of these be IDL attributes?

329

Interface MathMLdeclareElement

The <declare> construct has two primary roles. The first is to change or set the default attribute values for a specific mathematical object. The
second is to establish an association between a ‘name’ and an object.

IDL Definition

interface MathMLdeclareElement: MathMLElement {
attribute DOMString type;
attribute DOMString scope;
attribute unsigned long nargs;
attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute MathMLciElement identifier;
attribute MathMLElement constructor;

};

Attributes

type A string indicating the type of the identifier. It must be compatible with the type of the constructor, if a constructor is present. The type is
inferred from the constructor if present, otherwise it must be specified.

scope A string with values local or global.
nargs If the identifier is a function, this attribute specifies the number of arguments the function takes.
occurrence A string with the values prefix, infix or function-model. [What about postfix?]
definitionURL A URL specifying an alternative definition. [Is ‘alternative’ correct here?]
identifier A MathMLciElement representing the name being declared.
constructor An optional MathMLElement providing an initialial value for the object being declared.

Interface MathMLlambdaElement

The <lambda> element is used to construct a user-defined function from an expression and one or more free variables.

IDL Definition

interface MathMLlambdaElement: MathMLElement {
attribute MathMLElement expression;
readonly attribute unsigned long nvars;
MathMLElement getVariable(in unsigned long index);
MathMLElement insertVariable(in unsigned long index, in MathMLelement variable);

};

Attributes

expression The MathMLElement representing the expression.
nvars An integer representing the number of variables in the expression.

330

331

Methods

getVariable A convenience method to retrieve a variable by position.Parameters
indexPosition of the variable in the list of variables. The first variable is numbered 1.Return value
The MathMLElement representing the variable. This method raises no exceptions.

insertVariable A convenience method to insert an argument at the position referenced by index. If there is currently an argument at this position,
it is replaced by arg.Parameters
indexPosition of arg in the list of arguments. The first argument is numbered 1.variableThe MathMLElement to be inserted as the argument.
Return value
The MathMLElement being inserted. This is the new element within the DOM. This method raises no exceptions.

Issue (builtin-interface): I propose that all built in operator, relation, and function interfaces either derive from or be directly supported through the
MathMLbuiltIn interface. Note that the name does not end with ‘Element’ because this interface does not correspond to a MathML element. The
alternative is to provide an interface for every one of these elements individually. Again, this interface supports all empty elements that have only the
additional definitionURL attribute. This includes elements that take qualifiers. I don’t particularly like the name builtin. Any better suggestions?
QUESTION: Should we treat these as objects that own their arguments and provide methods for accessing those arguments? Similarly for operators
taking qualifiers - we could provide access to the qualifiers. No, I suppose not. It’s the <apply> that owns the arguments. Unless <apply> does the
work of validating the arguments (ensuring the correct number, type, and checking any other conditions), there’s no easy way to introduce this.

Interface MathMLbuiltIn

This interface supports all of the empty built-in operator, relation, and function elements that have the definitionURL attribute in addition to the
standard set of attributes. The elements supported in order of their appearance in 4.4 are:

• <inverse>
• <compose>
• <ident>
• <quotient>
• <exp>
• <factorial>
• <divide>
• <max>
• <min>
• <minus>
• <plus>
• <power>
• <rem>
• <times>
• <root>
• <gcd>
• <and>
• <or>
• <xor>
• <not>
• <implies>
• <forall>
• <exists>
• <abs>
• <conjugate>

331

• <eq>
• <neq>
• <gt>
• <lt>
• <geq>
• <leq>
• <ln>
• <log>
• <int>
• <diff>
• <partialdiff>
• <union>
• <intersect>
• <in>
• <notin>
• <subset>
• <prsubset>
• <notsubset>
• <notprsubset>
• <setdiff>
• <sum>
• <product>
• <limit>
• <tendsto>
• <sin>
• <cos>
• <tan>
• <sec>
• <csc>
• <cot>
• <sinh>
• <cosh>
• <tanh>
• <sech>
• <csch>
• <coth>
• <arcsin>
• <arccos>
• <arctan>
• <mean>
• <sdev>
• <variance>
• <median>
• <mode>
• <moment>
• <determinant>
• <transpose>

332

333

IDL Definition

interface MathMLbuiltIn: MathMLElement {
attribute DOMString definitionURL;
attribute DOMString arity;

};

Attributes

definitionURL A string that provides an override to the default semantics, or provides a more specific definition
arity A string representing the number of arguments. Values include 0, 1, ... and variable.

Issue (qualifiers): Qualifiers have the standard attributes, so there is no real need for a separate interface, or in fact to mention them at all in the
DOM specification. An interface that is undefined at present is included here just as a placeholder to remind us that it would be nice to provide
another form of access and control through the MathMLapplyElement interface.

Interface MathMLqualifierElement

Qualifier elements provide additional data for the operators <int>, <sum>, <product>, <diff>, <partialdiff>, <limit>, <log>, <moment>, <min>,
<max>, <forall>, <exists>. The qualifier elements are <lowlimit>, <uplimit>, <bvar>, <degree>, <logbase>, <interval>, and <condition>.

IDL Definition

interface MathMLqualifierElement: MathMLElement {
};

Issue (sets): The following interface seems unsatisfactory. The first problem is that <set> is really two things - a condition set or an explicit list set.
Another problem is that it’s not easy to express the union of two sets as a set (although it’s possible - the problem is that the union of a condition set
and a list set is only awkwardly expressed as a condition set). The dual nature of the object makes the interface awkward. Access to the elements of
an explicit list set seems problematic. What if another process deletes an element between the time you determine its position and when you delete
it? Perhaps the delete function should take only a MathMLElement argument as returned by getElement - this would be the element in the DOM, so
there would be no problem of a changing index. NOTE: I’ve forgotten to provide access to the bvar element(s). How many can we have?

Interface MathMLsetElement

The <set> element is the container element which represents a set of elements. The elements of a set can be defined either by explicitly listing the
elements, or by using the <bvar> and <condition> elements.

IDL Definition

interface MathMLsetElement: MathMLElement {
readonly attribute boolean isConditionSet;
attribute MathMLconditionElement condition;
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement addElement(in MathMLelement element);
deleteElement(in unsigned long index);

};

333

Attributes

isConditionSet This is true if the set is specified using a condition and false if the set is an explicit list.
condition A MathMLconditionElement that determines the set. Setting this makes the set causes isConditionSet to be set to true. Getting this if

the isConditionSet is false (so the set is an explicit list) should raise an exception?
nelements The number of elements if the set is an explicit list. Should this raise an exception if this is a condition set? Even if the conditions really

amount to an explicit list?

Methods

getElement A convenience method to retrieve an element. There is no default ordering of the elements. Inserting or deleting an element is not
guaranteed to leave the element in the i-th place unchanged even if the action takes place at a larger index.Parameters
indexPosition of the element in the list of elements. The first element is numbered 1.Return value
The MathMLElement element at position index. This method raises no exceptions.

addElement A convenience method to insert an element. The insertion may change the indices of any of the other elements. Since element equiva-
lence is not easy to determine, it seems hard to specify that inserting the same element twice is an error.Parameters
elementThe MathMLElement to be added to the set.Return value
The MathMLElement being added. This is the element within the DOM. This method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion may change the indices of any of the other elements.Parameters
indexPosition of the element in the setReturn value
None This method raises no exceptions.

Issue (lists): The following interface seems unsatisfactory. The first problem is that <list> is really two things - a condition list or an explicit list.
Another problem is that it’s not easy to express the union of two lists as a list (although it’s possible - the problem is that the union of a condition list
and an explicit list set is only awkwardly expressed as a condition list). The dual nature of the object makes the interface awkward. Should an
exception be raised if an attempt is made to insert an element into a specified position in a list which is given by a condition? A priori, probably not;
but allowing this would certainly seem to give rise to implementation problems! Access to the elements of an explicit list seems problematic. What if
another process deletes an element between the time you determine its position and when you delete it? Perhaps the delete function should take
only a MathMLElement argument as returned by getElement - this would be the element in the DOM, so there would be no problem of a changing
index.

Interface MathMLlistElement

The <list> element is the container element which represents a list of elements. Elements can be defined either by explicitly listing the elements, or
by using the <bvar> and <condition> elements.

IDL Definition

interface MathMLlistElement: MathMLElement {
readonly attribute boolean isConditionList;
attribute MathMLconditionElement condition;
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement addElement(in unsigned long index, in MathMLelement element);
deleteElement(in unsigned long index);

};

334

335

Attributes

isConditionList This is true if the <list> is specified using a condition and false if the <list> is an explicit list.
condition A MathMLconditionElement that determines the <list>. Setting this causes isConditionList to be true. Getting this if the list is an

explicit list (if isConditionList is false) should raise an exception?
nelements The number of elements if the <list> is an explicit list. Should this raise an exception if this is a condition list? Even if the conditions

really amount to an explicit list?

Methods

getElement A convenience method to retrieve an element.Parameters
indexPosition of the element in the list of elements. The first element is numbered 1.Return value
The MathMLElement element at position index in the list. This method raises no exceptions.

addElement A convenience method to insert an element.Parameters
indexThe position in the list at which element is to be added. elementThe MathMLElement to be added to the list.Return value
The MathMLElement being added. This is the new element within the DOM. This method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion may change the indices of elements occurring after index in the
list.Parameters
indexPosition of the element in the list.Return value
None This method raises no exceptions.

Interface MathMLvectorElement

<vector> is the container element for a vector.

IDL Definition

interface MathMLvectorElement: MathMLElement {
readonly attribute unsigned long ncomponents;
MathMLElement getComponent(in unsigned long index);
MathMLElement insertComponent(in MathMLelement component);
deleteComponent(in unsigned long index);

};

Attributes

ncomponents The number of components in the vector.

Methods

getComponent A convenience method to retrieve a component.Parameters
indexPosition of the component in the list of components. The first element is numbered 1.Return value
The MathMLElement component at the position specified by index. This method raises no exceptions.

insertComponent A convenience method to insert a component. If there is already a component at the position specified by index, it is replaced.
Parameters
componentThe MathMLElement which is to be the index-th component of the vector.Return value
The MathMLElement which is added. This is the new element within the DOM. This method raises no exceptions.

335

deleteComponent A convenience method to delete an element. The deletion changes the indexes of the following components.Parameters
indexPosition of the component in the vector. The position of the first component is 1Return value
None This method raises no exceptions.

Interface MathMLmatrixElement

The <matrix> element is the container element for <matrixrow>’s.

IDL Definition

interface MathMLmatrixElement: MathMLElement {
readonly attribute unsigned long nrows;
MathMLmatrixrowElement getRow(in unsigned long index);
MathMLmatrixrowElement insertRow(in MathMLrowElement row, in unsigned long index);
deleteRow(in unsigned long index);

};

Attributes

nrows The number of rows in the represented matrix.

Methods

getRow A convenience method to retrieve a specified row.Parameters
indexPosition of the row in the list of rows. The first row is numbered 1. Return value
The MathMLmatrixrowElement representing the index-th row. This method raises no exceptions.

insertRow A convenience method to insert a row. If there is already a row at the specified index, it is replaced.Parameters
rowMathMLmatrixrowElement to be inserted into the matrix.indexUnsigned integer giving the row position at which the row is to be in-
serted.Return value
The MathMLmatrixrowElement added. This is the new element within the DOM. This method raises no exceptions.

deleteRow A convenience method to delete a row. The deletion changes the indices of the following rows.Parameters
indexPosition of the row to be deleted in the list of rowsReturn value
None This method raises no exceptions.

Issue (matrix-vector): matrix, matrixrow, and vector How to we convert between these elements? The specification states that vectors are
equivalent to single column or single row matrices in appropriate contexts. What about matrixrow’s? It would help tremendously to have some form
of compatibility. Is there any requirement that the number of elements be the same for each matrixrow of a matrix? If so, do we need exceptions to
handle the cases where there is an attempt to add incompatible rows to a matrix?

Interface MathMLmatrixrowElement

The <matrixrow> element is the container element for the elements of a <matrix>.

336

337

IDL Definition

interface MathMLmatrixrowElement: MathMLElement {
readonly attribute unsigned long nelements;
MathMLElement getElement(in unsigned long index);
MathMLElement insertElement(in MathMLElement element, in unsigned long index);
deleteElement(in unsigned long index);

};

Attributes

nelements The number of elements in the row.

Methods

getElement A convenience method to retrieve an element by index.Parameters
indexPosition of the element in the row. The first element is numbered 1.Return value
The MathMLElement element at index index in the row. This method raises no exceptions.

insertElement A convenience method to insert an element. If there is already an element at the specified index, it is replaced by the new ele-
ment.Parameters
elementThe MathMLElement to be inserted in the row.indexThe index at which element is to be inserted in the row. Return value
The MathMLElement created by the insertion. This is the new element within the DOM. This method raises no exceptions.

deleteElement A convenience method to delete an element. The deletion changes the indices of the following elements.Parameters
indexPosition of the element to be deleted in the row.Return value
None This method raises no exceptions.

Issue (computed-values): Computed Values In general, mixing of presentation and content elements in a single expression is encouraged. Also, I
would encourage a bias toward using content markup as much as possible, even in presentation-only systems. This seems to mean that we would
want computed values for many common constructs. Or should this be handled in a completely different way?

337

Appendix F

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in documents originating from W3C or standards
organisations. See the individual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’ means ‘A is a child of B and B is a presentation layout schema’.
Thus, token elements have no arguments, even if they have children (which can only be </malignmark>).

Attribute A parameter used to specify some property of an SGML or XML element type. It is defined in terms of an attribute name, attribute type,
and a default value. A value may be specified for it on a start-tag for that element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often, characters that can stretch such as parentheses, brackets,
braces, summation signs and so forth„ and operators are centered on the axis and are symmetric with respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baseline is an intrinsic property of the
glyph (namely a horizontal line). Often baselines are aligned (joined) during typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.
Bounding box The rectangular box of smallest size, taking into account the constraints on boxes allowed in a particular context, which contains

some specific part of a rendered display.
Box A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of rendering for display. It is usually

considered to have a baseline, height, depth and width.
Cascading Style Sheets (CSS) A mechanism that allows authors and readers to attach style (e.g. fonts, colors and spacing) to HTML and XML

documents.
Character A member of a set of identifiers used for the organization, control or representation of text.
Character Data (CDATA) A SGML/XML data type for raw data which does not include markup or entity references. Attributes of type CDATA may

contain entity references. These are expanded by an XML processor before the attribute value is processed as CDATA.
Character or expression depth Distance between the baseline and bottom edge of the character glyph or expression. Also known as the descent.
Character or expression height Distance between the baseline and top edge of the character glyph or expression. Also know as the ascent.
Character or expression width Horizontal distance taken by the character glyph as indicated in the font metrics, or the total width of an expression.
Condition A MathML content element used to place a mathematical condition on one or more variables.
Contained (element A is contained in element B) A is part of B’s content.
Container (Constructor) A non-empty MathML Content element that is used to construct a mathematical object such as a number, set, or list.
Content elements MathML elements which explicitly specify the mathematical meaning of a portion of a MathML expression (defined in chapter 4).
Content token element Content element having only PCDATA, <sep/> and presentation expressions as content. Represents either an identifier

(<ci>) or a number (<cn>).
Context (of a given MathML expression) Information provided during the rendering of some MathML data to the rendering process for the given

MathML expression; especially information about the MathML which surrounds that expression.
Declaration An instance of the declare element.
Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.

338

339

Direct subexpression (of a MathML expression ‘E’) A subexpression which is directly contained in E.
Directly contained (element A in element B) A is a child of B (as defined in XML); i.e. A is contained in B, but not in any element which is itself

contained in B.
Document Object Model A model in which the document or Web page is treated as an object repository. This model is developed by the DOM

Working Group (DOM) of the W3C.
Document Style Semantics and Specification Language(DSSSL) A method of specify the formatting and transformation of SGML documents.

ISO International Standard 10179:1996.
Document Type Definition (DTD) In SGML or XML a formal definition of the elements and the relationship among the data elements (the structure)

for a particular type of document.
Em A font-relative measure encoded by the font. Before electronic typesetting, an em was the width of an ‘M’ in the font. In modern usage, an em

is either specified by the designer of the font or is taken to be the height (point size) of the font. Em’s are typically used for font-relative
horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the font. exs are typically used for font-relative vertical sizes.
Height (of a box) The distance from the baseline of the box to the top edge of the box.
Inferred mrow An <mrow> element which is ‘inferred’ around the contents of certain layout schemata when they have other than exactly one argu-

ment. Defined precisely in section 3.1.5
Embedded object Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects (e.g. ActiveX Controls and ActiveX

Document embeddings), and plug-ins which reside in an HTML document.
Embellished operator An operator, including any ‘embellishment’ it may have, such as superscripts or style information. The ‘embellishment’ is

represented by a layout schema which contains the operator itself. Defined precisely in section 3.2.4.
Entity reference A sequence of ASCII characters of the form &name; which represents some other data, typically a non-ASCII character, a sequence

of characters, or an external source of data, e.g. a file containing a set of standard entity definitions such as ISOLat1.
Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic SGML to be served, received, and processed on the

Web.
Fences In typesetting, bracketing tokens like parentheses, braces, and brackets which usually appear in matched pairs.
Font A particular collection of glyphs of a typeface of a given size, weight and style, eg ‘Times Roman Bold 12 point’.
Glyph The actual shape (bit pattern, outline) of a character image.
Input syntax layer A planned MathML extension mechanism designed to facilitate hand entry of MathML content.
Indirectly contained A is contained in B, but not directly contained in B.
Instance of MathML A single instance of the toplevel element of MathML, and/or a single instance of embedded MathML in some other data format.
Inverse function A mathematical function that, when composed with the original function acts like an identity function.
Lambda Expression A mathematical expression used to define a function in terms of variables and an expression in those variables.
Layout schema (plural: schemata) A presentation element defined in Sections 3.3-3.6, other than the empty elements defined there (i.e. not the

elements defined in section 3.5.5(about alignment) or the empty elements <none/> and <mprescripts/> defined in section 3.4.7 (about
<mmultiscripts>). The layout schemata are never empty elements (though their content may contain nothing in some cases), are always
expressions, and all allow any MathML expressions as arguments (except for argument count requirements and the requirement for a
certain empty element in <mmultiscripts>).

Mathematical Markup Language (MathML) The markup language (specified in this document) for describing mathematical expression structure,
together with a mathematical context.

MathML element An XML element which forms part of the logical structure of a MathML document.
MathML expression (within some well-formed MathML data) A single instance of a presentation element, except for the empty elements <none/>

or <mprescripts/> or an instance of <malignmark/> within a token element (defined below); or a single instance of certain of the content
elements (see chapter 4 for a precise definition of which ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a way to interchange text in languages with different character
sets, and multi-media content among many different computer systems that use Internet mail standards.

Operator, content element A mathematical object that is applied to arguments using the apply element.

339

Operator, an <mo> element Used to represent ordinary operators, fences, separators in MathML presentation. (<mo>, a token element, is defined in
section 3.2.4).

OpenMath A general representation language for communicating mathematical objects between application programs.
Parsed Character Data (PCDATA) An SGML/XML data type for raw data occurring in a context where text is parsed and markup (for instance entity

references and element start/end tags) is recognised.
Pt Point (pt), 1 pt = 1/72 inch. Points are typically used to specify absolute sizes for font-related objects.
Pre-defined function One of the empty elements defined in section 4.2.3 and used with the apply construct to build function applications.
Presentation elements MathML tags and entities intended to express the syntactic structure of mathematical notation (defined in chapter 3).
Presentation layout schema A presentation element that can have other MathML elements as content.
Presentation token element A presentation element that can contain only parsed character data or the <malignmark/> element.
Qualifier A MathML content element that is used to specify the value of a specific named parameter in the application of selected pre-defined

functions.
Relation A MathML content element used to construct expressions such as a < b.
Render Faithfully translate into application-specific form allowing native application operations to be performed.
Scope of a Declaration The portion of a MathML document to over which a particular definition is active.
Selected subexpression (of an <maction> element) The argument of an <maction> element (a layout schema defined in section 3.6) which is (at

any given time) ‘selected’ within the viewing state of a MathML renderer, or by the selection attribute when the element exists only in
MathML data. Defined precisely in the abovementioned section.

Spacelike (MathML expression) A MathML expression which is ignored by the suggested rendering rules for MathML presentation elements when
they determine operator forms and effective operator rendering attributes based on operator positions in <mrow> elements. Defined pre-
cisely in section 3.2.6.

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986) which provides a formal mechanism for the definition of
document structure via DTDs (Document Type Definitions), and a notation for the markup of document instances conforming to a DTD.

Subexpression (of a MathML expression ‘E’) A MathML expression contained (directly or indirectly) in E’s content.
Suggested rendering rules for MathML presentation elements Defined throughout chapter 3; the ones which use other terms defined here occur

mainly in section 3.2.4 and in section 3.6.
TEX A software system written by Donald Knuth for typesetting documents.
Token element Presentation token element or a Content token element. (See above.)
Top-level element (of MathML) math (defined in chapter 7).
Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as ‘Times Roman’ or ‘Chicago’.
Well-Formed MathML data MathML data which (1) conforms to the MathML DTD; (2) obeys the additional rules defined in the MathML standard

for the legal contents and attribute values of each MathML element; (3) Satisfies the EBNF grammar for content elements.
Width The distance from the left edge of the box to the right edge of the box.
Extensible Style Language (XSL) A style language for XML developed by W3C. See XSL FO and XSLT.
Extensible Style Language Formatting Objects (XSL FO) An XML vocabulary to express formatting, which is a part of XSL.
Extensible Style Language Transformation (XSLT) A language to express the transformation of XML documents into other XML documents.

340

Appendix G

Working Group Membership (Non-Normative)

The W3C Math Working Group is presently co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM. Contact the co-chairs if you are interested
in joining the group. For the present membership see its working group home page.

Members of the Working Group responsible for MathML 2.0 are:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technologies, Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Radical Flow Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorn Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Technologies Inc., Minneapolis MN, USA
• Ivor Philips, Boeing, Seattle WA, USA
• Nico Poppelier, Salience, Utrecht, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, IBM Almaden, Palo Alto CA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active members of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yortown Heights NY, USA
• Robert Sutor, IBM Research, Yortown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 the Math Working Group was co-chaired by Patrick Ion and Robert Miner, then of the Geometry Center. Since
that time several changes in membership have taken place. In the course of the update to MathML 1.01, in addition to people listed in the original
membership below, corrections were offered by David Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and
others.

341

http://www.w3.org/Math/

Members of the Math Working Group responsible for the finished MathML 1.0 were:

• Stephen Buswell, Stilo Technologies, Cardiff, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, Softquad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

342

Appendix H

Changes (Non-Normative)

This appendix summarises the changes with respect to the preceding version (1.01) of the MathML Specification.

• changes to chapter 1 (upto revision 1.10)
– none

• changes to chapter 2 (upto revision 1.13)
– added reference to XML recommendation
– removed error in description of allowed character in attribute values

• changes to chapter 3 (upto revision 1.15)
– the attribute definitionURL can have a URL or a URI as value
– added sections about menclose and meqno
– added attributes beveled, numalign and denomalign to mfrac, and updated text accordingly

• changes to chapter 4 (upto revision 1.14)
– discuss changed use of apply, and the deprecation of reln
– introduce csymbol and discuss the relation with fn
– introduce the new category of elementary classifical functions
– introduce new content elements arg, real, imaginary, equivalent, approx, divergence, grad, curl, laplacian, size, vectorprod-

uct, scalarproduct and outerproduct
• changes to chapter 5 (upto revision 1.10)

– added description of content-faithful transformation
– use csymbol and not fn in examples
– define list of content that can appear in presentation
– add attribute xref for cross-referencing purposes

• changes to chapter 6 (upto revision 1.6)
– none

• changes to chapter 7 (upto revision 1.11)
– rewrote introductory text in section 7.2 and all text of section 7.2.1
– rewrote many statements in future tense to present or past tense
– reworked the text in acknowledgement of the fact that the top-level and interface elements for MathML are now in practice the same
– rewrote the text about linking in accordance with the new XLink draft
– revisited the material about interactions with embedded renderers to reflect the current state of DOM implementation

• changes to chapter 8 (upto revision 1.1)
– this is a completely new chapter

• changes to appendix A (upto revision 1.8)
– renamed attribute occurence to occurrence

343

– added global attribute xref
• changes to appendix B (upto revision 1.7)

– none
• changes to appendix C (upto revision 1.5)

– none
• changes to appendix D (upto revision 1.8)

– none
• changes to appendix E (upto revision 1.9)

– this is a completely new appendix
• changes to appendix F (upto revision 1.8)

– added entries for XSL, XSLT and XSL FO
• changes to appendix G (upto revision 1.8)

– all members of first and second Math working group are listed
• changes to appendix H (upto revision 1.7)

– this appendix is completely new, and is based on the logs obtained from CVS
• changes to appendix I (upto revision 1.6)

– added entry for XML recommendation
• general changes

– text of specification now in XML form, with HTML rendering by means of XSLT, and PDF rendering by means of XSLT and TEX
– fixed errors in spelling and notation
– non-normative formula images replaced by HTML equivalents where possible
– improved cross-referencing

344

Appendix I

References (Non-Normative)

[Bray1998] Bray, Tim, Jean Paoli and C.M. Sperberg-Mcqueen; Extensible Markup Language 1.0, 10 February 1998,
http://www.w3.org/TR/1998/REC-xml-19980210.

[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pike; SGML and the Semantic Representation of Mathematics, UIUC Digital Library Initiative
SGML Mathematics Workshop, May 1996 and SGML Europe 96 Conference, Munich 1996.

[Cajori1928] Cajori, Florian; A History of Mathematical Notations, vol. I & II. Open Court Publishing Co., La Salle Illinois, 1928 & 1929 republished
Dover Publications Inc., New York, 1993, xxviii+820 pp. ISBN 0-486-67766-4 (paperback).

[Carroll1871] Carroll, Lewis [Rev. C. L. Dodgson]; Through the Looking Glass and What Alice Found There, Macmillian & Co., 1871.
[Chaudry1954] Chaudry, T.W., P.R.Barrett, and C.Batey; The Printing of Mathematics. Aids for authors and editors and rules for compositors and

readers at the University Press, Oxford, Oxford University Press, London, 1954, ix+105 pp.
[Drucker1997] Drucker,Peter; Forbes, 10 Mar 1997 [quoted by Gene Klotz].
[Higham1993] Higham, Nicholas J., Handbook of writing for the mathematical sciences. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1993. xii+241 pp. ISBN: 0-89871-314-5.
[Knuth1986] Knuth, Donald E., The TEXbook. American Mathematical Society, Providence, RI and Addison-Wesley Publ. Co., Reading, MA, 1986,

ix+483 pp. ISBN: 0-201-13448-9.
[LieBos1996] Lie, Håkon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Recommendation, 17 Dec 1996,

http://www.w3.org/pub/WWW/TR/REC-CSS1.
[OpenMath1996] OpenMath Release 1, December 1996; www.openmath.org.
[Pierce1961] Pierce, John R.; An Introduction to Information Theory. Symbols, Signals and Noise., Revised edition of Symbols, Signals and Noise:

the Nature and Process of Communication (1961). Dover Publications Inc., New York, 1980, xii+305 pp. ISBN 0-486-24061-4.
[Poppelier1992] Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley; Standard DTD’s and Scientific Publishing, EPSIG News 5 (1992) #3,

September 1992, 10-19.
[HTML40] Raggett, Dave, Arnaud Le Hors and Ian Jacobs; HTML 4.0 Specification, 18 Dec 1997, http://www.w3.org/TR/REC-html40/; section on

data types.
[Spivak1986] Spivak, M. D. The Joy of TEX A gourmet guide to typesetting with the AMS-TEX macro package. American Mathematical Society,

Providence, RI, MA 1986, xviii+290 pp. ISBN: 0-8218-2999-8.
[Swanson1979] Swanson, Ellen, Mathematics into type. Copy editing and proofreading of mathematics for editorial assistants and authors. Revised

edition. American Mathematical Society, Providence, R.I., 1979. x+90 pp. ISBN: 0-8218-0053-1.

345

	Mathematical Markup Language Specification
	 Introduction
	 Mathematics and its Notation
	 Origins and Goals
	 The History of MathML
	 Limitations of HTML
	 Requirements for Mathematics Markup
	 Design Goals of MathML

	 The Role of MathML on the Web
	 Layered Design of Mathematical Web Services
	 Relation to Other Web Technology

	 MathML Fundamentals
	 MathML Overview
	 Taxonomy of MathML Elements
	 Expression Trees and Token Elements
	 Presentation Markup
	 Content Markup
	 Mixing Presentation and Content

	 Some MathML Examples
	 Presentation Examples
	 Content Examples
	 Mixed Markup Examples

	 MathML Syntax and Grammar
	 An XML Syntax Primer
	 Children versus Arguments
	 MathML Attribute Values
	 Attributes Shared by all MathML Elements
	 Collapsing Whitespace in Input

	 Presentation Markup
	 Introduction
	 What Presentation Elements Represent
	 Terminology Used In This Chapter
	 Required Arguments
	 Elements with Special Behaviors
	 Summary of Presentation Elements

	 Token Elements
	 Attributes common to token elements
	 Identifiers
	 Numbers
	 Operator, Fence, Separator or Accent
	 Text
	 Space
	 String Literal
	 <mchar/> -- refering to non-ASCII characters
	 <mglyph/> -- adding new characters to MathML

	 General Layout Schemata
	 Horizontally Group Any Number of Subexpressions
	 Fractions
	 Radicals
	 Style Change
	 Error Message
	 Adjust Space Around Content
	 Making Content Invisible
	 Content Inside Pair of Fences
	 Enclose Content Inside Notation

	 Script and Limit Schemata
	 Subscript
	 Superscript
	 Subscript-superscript Pair
	 Underscript
	 Overscript
	 Underscript-overscript Pair
	 Prescripts and Tensor Indices

	 Tables and Matrices
	 Table or Matrix
	 Row in Table or Matrix
	 Labeled Row in Table or Matrix
	 Entry in Table or Matrix
	 Alignment Markers

	 Enlivening Expressions
	 Bind Action to Subexpression

	 Content Markup
	 Introduction
	 The Intent of Content Markup
	 The Scope of Content Markup
	 Basic Concepts of Content Markup

	 Content Element Usage Guide
	 Overview of Syntax and Usage
	 Containers
	 Functions, Operators and Qualifiers
	 Operators taking Qualifiers
	 Relations
	 Conditions
	 Syntax and Semantics
	 Semantic Mappings
	 MathML element types

	 Content Element Attributes
	 Content Element Attribute Values
	 Attributes Modifying Content Markup Semantics
	 Attributes Modifying Content Markup Rendering

	 The Content Markup Elements
	 Token Elements
	 Basic Content Elements
	 Arithmetic, Algebra and Logic
	 Relations
	 Calculus and Vector Calculus
	 Theory of Sets
	 Sequences and Series
	 Elementary classical functions
	 Statistics
	 Linear Algebra
	 Semantic Mapping Elements

	 Combining Presentation and Content Markup
	 Why Two Different Kinds of Markup?
	 Mixed Markup
	 Reasons to Mix Markup
	 How to Mix Markup
	 Presentation Markup Contained in Content Markup
	 Content Markup Contained in Presentation Markup

	 Parallel Markup
	 Top-level Parallel Markup
	 Fine-grained Parallel Markup
	 Parallel Markup via Cross-References: id and xref

	 Tools, Style Sheets and Macros for Combined Markup
	 Notational Style Sheets
	 Content-Faithful Transformations
	 Style Sheets for Extensions

	 Entities, Characters and Fonts
	 Introduction
	 The Intent of Entity Names
	 The STIX Project
	 Entity Listings
	 Non-Marking Entities
	 Printing Entity Listings
	 Special Constants
	 Alphabetical Lists
	 ISO Entity Set Groupings
	 Additional Entity Set Grouping

	 The MathML Interface
	 Embedding MathML in HTML
	 The Top-Level math Element
	 Requirements for a MathML Browser Interface
	 Invoking Embedded Objects as Renderers
	 Invoking Other Applications
	 Mixing and Linking MathML and HTML

	 Generating, Processing and Rendering MathML
	 MathML Compliance
	 Handling of Errors
	 An Attribute for Unspecified Data

	 Future Extensions
	 Macros and Style Sheets
	 XML Extensions to MathML

	 Document Object Model for MathML
	 Introduction
	 Scope of Level 1 and Level 2

	 Parsing MathML
	 The MathML DTD

	 Operator Dictionary
	 Format of operator dictionary entries
	 Indexing of operator dictionary
	 Choice of entity names
	 Notes on lspace and rspace attributes
	 Operator dictionary entries

	 Content Markup Validation Grammar
	 Content Element Definitions
	 About Content Markup Elements
	 The Structure of an MMLdefinition.

	 Definitions of MathML Content Elements
	 Leaf Elements
	 Basic Content Element
	 Arithmetic, Algebra and Logic
	 Relations
	 Calculus
	 Theory of Sets
	 Sequences and Series
	 Trigonometry
	 Statistics
	 Lineary Algebra

	 Document Object Model for MathML (Non-Normative)
	 IDL Interfaces
	 Miscellaneous Object Definitions
	 Generic MathML Elements
	 Specific Style Methods (currfontsize, etc.)
	 Presentation Elements
	 Content Elements

	 Glossary (Non-Normative)
	 Working Group Membership (Non-Normative)
	 Changes (Non-Normative)
	 References (Non-Normative)

