
 WD-DOM-Level-2-19990304

Document Object Model (DOM) Level 2 Specification

Version 1.0

W3C Working Draft 04 March, 1999

This version
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.ps
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.pdf
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.txt
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.zip

Latest version
http://www.w3.org/TR/WD-DOM-Level-2

Previous versions
http://www.w3.org/TR/1998/WD-DOM-Level-2-19981228

WG Chair
Lauren Wood, SoftQuad Software Inc.

Editors
Vidur Apparao, Netscape Communications Corporation
Mike Champion, Arbortext and Aliaron
Arnaud Le Hors, W3C
Tom Pixley, Netscape Communications Corporation
Jonathan Robie, Texcel Research
Peter Sharpe, SoftQuad Software Inc.
Chris Wilson, Microsoft
Lauren Wood, SoftQuad Software Inc.

Status of this document
This document is an early release of the Document Object Model Level 2. It is guaranteed to change;
anyone implementing it should realize that we will not allow ourselves to be restricted by experimental
implementations of Level 2 when deciding whether to change the specifications.

This is a W3C Working Draft for review by W3C members and other interested parties. It is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in progress". This is
work in progress and does not imply endorsement by, or the consensus of, either W3C or members of the
DOM working group.

1

Document Object Model (DOM) Level 2 Specification

http://www.w3.org/
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.ps
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.pdf
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.txt
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990304/DOM2.zip
http://www.w3.org/TR/WD-DOM-Level-2
http://www.w3.org/TR/1998/WD-DOM-Level-2-19981228

This document has been produced as part of the W3C DOM Activity. The authors of this document are
the DOM WG members. Different modules of the Document Object Model have different editors.

This document is for public review. . Comments on this document should be sent to the public mailing list
www-dom@w3.org.

Abstract
This specification defines the Document Object Model Level 2, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content, structure and style of
documents. The Document Object Model Level 2 builds on the Document Object Model Level 1. Level 2
is expected to add interfaces for a Cascading Style Sheets object model, an event model, and a query
interface, amongst others.

This release of the Document Object Model Level 2 does not have all of the interfaces that the final
version will have. It contains interfaces for associating stylesheets with a document, the Cascading Style
Sheets object model, the Range object model, filters and iterators, and the Events object model. The DOM
WG wants to get feedback on the interfaces that are in this version of the DOM Level 2 specification. The
other interfaces will be added in future versions of this specification.

Table of contents
Expanded Table of Contents [p.3]
Copyright Notice [p.7]

Chapter 1: Document Object Model (Core) Level 2 [p.9]
Chapter 2: Document Object Model Namespaces [p.11]
Chapter 3: Document Object Model StyleSheets [p.13]
Chapter 4: Document Object Model CSS [p.17]
Chapter 5: Document Object Model Events [p.37]
Chapter 6: Document Object Model Filters and Iterators [p.53]
Chapter 7: Document Object Model Range [p.61]

Appendix A: Contributors [p.83]
Appendix B: Glossary [p.85]
Appendix C: IDL Definitions [p.91]
Appendix D: Java Language Binding [p.99]
Appendix E: ECMA Script Language Binding [p.111]
References [p.123]
Index [p.125]

2

Abstract

http://www.w3.org/DOM/Activity.html

Expanded Table of Contents
Expanded Table of Contents [p.3]
Copyright Notice [p.7]

Chapter 1: Document Object Model (Core) Level 2 [p.9]
1.1. Overview of the DOM Level 2 Core Interfaces [p.10]

Chapter 2: Document Object Model Namespaces [p.11]
2.1. Introduction [p.12]

Chapter 3: Document Object Model StyleSheets [p.13]
3.1. Introduction [p.14]
3.2. Style Sheet Interfaces [p.14]

Chapter 4: Document Object Model CSS [p.17]
4.1. Overview of the DOM Level 2 CSS Interfaces [p.18]
4.2. CSS Fundamental Interfaces [p.18]
4.3. CSS Extended Interfaces [p.26]
4.4. Extensions to Level 1 Interfaces [p.35]

4.4.1. Document style sheets [p.35]
4.4.2. HTMLElement inline style [p.35]
4.4.3. HTMLStyleElement style sheet [p.35]
4.4.4. HTMLLinkElement style sheet [p.35]

4.5. Unresolved Issues [p.36]
Chapter 5: Document Object Model Events [p.37]

5.1. Overview of the DOM Level 2 Event Model [p.38]
5.1.1. Terminology [p.38]
5.1.2. Requirements [p.38]

5.2. Description of event flow [p.39]
5.2.1. Basic event flow [p.39]
5.2.2. Event Capture [p.40]
5.2.3. Event bubbling [p.40]
5.2.4. Event cancellation [p.40]

5.3. Event listener registration [p.41]
5.3.1. Event registration interfaces [p.41]
5.3.2. Interaction with HTML 4.0 event listeners [p.43]
5.3.3. Event listener registration issues [p.43]

5.4. Event interfaces [p.44]
5.4.1. Event object issues [p.47]

5.5. Event set definitions [p.47]
5.5.1. User Interface event types [p.47]
5.5.2. Mutation event types [p.49]
5.5.3. HTML event types [p.51]

Chapter 6: Document Object Model Filters and Iterators [p.53]
6.1. Overview of the DOM Level 2 Query, Iterator, and Filter Interfaces [p.54]

3

Expanded Table of Contents

6.1.1. Iterators [p.54]
6.1.2. Filters [p.56]

6.2. Formal Interface Definition [p.56]
Chapter 7: Document Object Model Range [p.61]

7.1. Introduction [p.62]
7.1.1. Motivation [p.62]
7.1.2. Basic Assumptions [p.62]
7.1.3. Notation [p.62]

7.2. Finding a Range’s Position [p.63]
7.3. Partial and Complete Containment [p.65]
7.4. Creating a Range [p.65]
7.5. Changing a Range’s Position [p.66]
7.6. Comparing Range End-Points [p.67]
7.7. Deleting Content with a Range [p.68]
7.8. Cloning Content [p.69]
7.9. Inserting Content [p.69]
7.10. Surrounding Content [p.70]
7.11. Miscellaneous Members [p.71]
7.12. Range behavior under document mutation [p.71]

7.12.1. Insertions [p.72]
7.12.2. Deletions [p.72]

7.13. Formal Description of the Range Interface [p.74]

Appendix A: Contributors [p.83]
Appendix B: Glossary [p.85]
Appendix C: IDL Definitions [p.91]

C.1. Document Object Model Level 2 Stylesheets [p.91]
C.2. Document Object Model Level 2 CSS [p.91]
C.3. Document Object Model Level 2 Events [p.95]
C.4. Document Object Model Level 2 Filters and Iterators [p.96]
C.5. Document Object Model Level 2 Range [p.97]

Appendix D: Java Language Binding [p.99]
D.1. Document Object Model Level 2 Stylesheets [p.99]
D.2. Document Object Model Level 2 CSS [p.99]
D.3. Document Object Model Level 2 Events [p.107]
D.4. Document Object Model Level 2 Filters and Iterators [p.108]
D.5. Document Object Model Level 2 Range [p.109]

Appendix E: ECMA Script Language Binding [p.111]
E.1. Document Object Model Level 2 Stylesheets [p.111]
E.2. Document Object Model Level 2 CSS [p.111]
E.3. Document Object Model Level 2 Events [p.119]
E.4. Document Object Model Level 2 Filters and Iterators [p.120]
E.5. Document Object Model Level 2 Range [p.121]

References [p.123]

4

Expanded Table of Contents

Index [p.125]

5

Expanded Table of Contents

6

Expanded Table of Contents

Copyright Notice
Copyright © 1998 World Wide Web Consortium , (Massachusetts Institute of Technology , Institut
National de Recherche en Informatique et en Automatique , Keio University). All Rights Reserved.

Documents on the W3C site are provided by the copyright holders under the following license. By
obtaining, using and/or copying this document, or the W3C document from which this statement is linked,
you agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URI to the original W3C document.
2. The pre-existing copyright notice of the original author, if it doesn’t exist, a notice of the form:

"Copyright © World Wide Web Consortium , (Massachusetts Institute of Technology , Institut
National de Recherche en Informatique et en Automatique , Keio University). All Rights Reserved."

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

7

Copyright Notice

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/

8

Copyright Notice

1. Document Object Model (Core) Level 2
Editors

Arnaud Le Hors, W3C

9

1. Document Object Model (Core) Level 2

1.1. Overview of the DOM Level 2 Core Interfaces
This section will define an additional set of interfaces that augment the interfaces defined in the Core
section of the DOM Level 1 Recommendation to provide functionalities which are found to be essential
but were not addressed in the Level 1.

These functionalitites could be:

Creating a Document [p.57] object
Moving a node from one document to another
Equality and hashcodes
A way to determine the document order of nodes
Creating EntityReference nodes
Conversion of a CDATASection node to a TEXT node
A way to decorate a node with client data
A way to get the element an attribute is attached to
A way to join two adjacent Text nodes

10

1.1. Overview of the DOM Level 2 Core Interfaces

2. Document Object Model Namespaces
Editors

Arnaud Le Hors, W3C

11

2. Document Object Model Namespaces

2.1. Introduction
This section will define a new set of interfaces that augment the interfaces defined in the Core section to
deal with XML namespaces .

12

2.1. Introduction

http://www.w3.org/TR/REC-xml-names

3. Document Object Model StyleSheets
Editors

Vidur Apparao, Netscape Communications Corp.
Chris Wilson, Microsoft

13

3. Document Object Model StyleSheets

3.1. Introduction
The DOM Level 2 Style Sheet interfaces are base interfaces used to represent any type of style sheet. The
expectation is that DOM modules that represent a specific style sheet language may contain interfaces that
derive from these interfaces.

3.2. Style Sheet Interfaces
This set of interfaces represents the generic notion of style sheets.

Interface StyleSheet

The StyleSheet interface is the abstract base interface for any type of style sheet. It represents a
single style sheet associated with a structured document. In HTML, the StyleSheet interface
represents either an external style sheet, included via the HTML LINK element, or an inline STYLE
element. In XML, this interface represents an external style sheet, included via a style sheet
processing instruction .
IDL Definition

interface StyleSheet {
 readonly attribute DOMString type;
 attribute boolean disabled;
 readonly attribute Node owningNode;
 readonly attribute StyleSheet parentStyleSheet;
 readonly attribute DOMString href;
 readonly attribute DOMString title;
 readonly attribute DOMString media;
};

Attributes
type

This specifies the style sheet language for this style sheet. The style sheet language is
specified as a content type (e.g. "text/css"). The content type is often specified in the
owningNode . A list of registered content types can be found at
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/ . Also see the type attribute
definition for the LINK element in HTML 4.0, and the type pseudo-attribute for the XML
style sheet processing instruction .

disabled
false if the style sheet is applied to the document. true if it is not.

owningNode
The node that associates this style sheet with the document. For HTML, this may be the
corresponding LINK or STYLE element. For XML, it may be the linking processing
instruction. For included style sheets, this attribute has a value of null.

parentStyleSheet
For style sheet languages that support the concept of style sheet inclusion, this attribute
represents the including style sheet, if one exists. If the style sheet is a top-level style sheet,
or the style sheet language does not support inclusion, the value of the attribute is null.

14

3.1. Introduction

http://www.w3.org/TR/REC-html40/struct/links.html#h-12.3
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.2.3
http://www.w3.org/TR/WD-xml-stylesheet
http://www.w3.org/TR/WD-xml-stylesheet
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
http://www.w3.org/TR/REC-html40/struct/links.html#adef-type-A
http://www.w3.org/TR/REC-html40/struct/links.html#adef-type-A
http://www.w3.org/TR/WD-xml-stylesheet

href
If the style sheet is a linked style sheet, the value of its attribute is its location. For inline
style sheets, the value of this attribute is null. See the href attribute definition for the LINK
element in HTML 4.0, and the href pseudo-attribute for the XML style sheet processing
instruction .

title
The advisory title. The title is often specified in the owningNode . See the title attribute
definition for the LINK element in HTML 4.0, and the title pseudo-attribute for the XML
style sheet processing instruction .

media
The intended destination medium for style information. It may be a single media descriptor
or a comma-separated list. The media is often specified in the owningNode . See the
media attribute definition for the LINK element in HTML 4.0, and the media
pseudo-attribute for the XML style sheet processing instruction .

Interface StyleSheetCollection

The StyleSheetCollection interface provides the abstraction of an ordered collection of style
sheets.
IDL Definition

interface StyleSheetCollection {
 readonly attribute unsigned long length;
 StyleSheet item(in unsigned long index);
};

Attributes
length

The length or the size of the list.
Methods

item
Used to retrieve a style sheet by ordinal index.
Parameters

index Index into the collection

Return Value
The style sheet at the index position in the StyleSheetCollection , or null
if that is not a valid index.

This method raises no exceptions.

15

3.2. Style Sheet Interfaces

http://www.w3.org/TR/REC-html40/struct/links.html#adef-href
http://www.w3.org/TR/WD-xml-stylesheet
http://www.w3.org/TR/WD-xml-stylesheet
http://www.w3.org/TR/REC-html40/struct/global.html#adef-title
http://www.w3.org/TR/REC-html40/struct/global.html#adef-title
http://www.w3.org/TR/WD-xml-stylesheet
http://www.w3.org/TR/REC-html40/present/styles.html#adef-media
http://www.w3.org/TR/WD-xml-stylesheet

16

3.2. Style Sheet Interfaces

4. Document Object Model CSS
Editors

Vidur Apparao, Netscape Communications Corp.
Chris Wilson, Microsoft

17

4. Document Object Model CSS

4.1. Overview of the DOM Level 2 CSS Interfaces
The DOM Level 2 Cascading Style Sheets (CSS) interfaces are designed with the goal of exposing CSS
constructs to object model consumers. Cascading Style Sheets is a declarative syntax for defining
presentation rules, properties and ancillary constructs used to format and render Web documents. This
document specifies a mechanism to programmatically access and modify the rich style and presentation
control provided by CSS (specifically CSS level two). This augments CSS by providing a mechanism to
dynamically control the inclusion and exclusion of individual style sheets, as well as manipulate CSS rules
and properties.

The CSS interfaces are organized in a logical, rather than physical structure. A collection of all style
sheets referenced by or embedded in the document is accessible on the document interface. Each item in
this collection exposes the properties common to all style sheets referenced or embedded in HTML and
XML documents; this interface is described in the Style Sheets chapter of the DOM Level 2. User style
sheets are not accessible through this collection, in part due to potential privacy concerns (and certainly
read-write issues).

For each CSS style sheet, an additional interface is exposed - the CSSStyleSheet interface. This interface
allows access to the collection of rules within a CSS style sheet and methods to modify that collection.
Interfaces are provided for each specific type of rule in CSS2 (e.g. style declarations, @import rules, or
@font-face rules), as well as a shared generic CSSRule interface.

The most common type of rule is a style declaration. The CSSStyleRule interface that represents this type
of rule provides string access to the CSS selector of the rule, and access to the property declarations
through the CSSStyleDeclaration interface.

Finally, an optional CSS2Properties interface is described; this interface (if implemented) provides
shortcuts to the string values of all the properties in CSS level 2.

4.2. CSS Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be implemented by all
conforming applications of this specifcation. These interfaces represent CSS style sheets specifically.

Interface CSSStyleSheet

The CSSStyleSheet interface is a concrete interface used to represent a CSS style sheet i.e. a
style sheet whose content type is "text/css".
IDL Definition

interface CSSStyleSheet : StyleSheet {
 readonly attribute CSSRuleCollection cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index)
 raises(DOMException);
};

18

4.1. Overview of the DOM Level 2 CSS Interfaces

http://www.w3.org/Style/CSS/
http://www.w3.org/TR/REC-CSS2/

Attributes
cssRules

The collection of all CSS rules contained within the style sheet. This includes both rule sets
and at-rules .

Methods
insertRule

Used to insert a new rule into the style sheet. The new rule now becomes part of the
cascade.
Parameters

rule The parsable text representing the rule. For rule sets this contains
both the selector and the style declaration. For at-rules, this
specifies both the at-identifier and the rule content.

index The index within the style sheet’s rule collection of the rule before
which to insert the specified rule. If the specified index is equal to
the length of the style sheet’s rule collection, the rule will be added
to the end of the style sheet.

Return Value
The index within the style sheet’s rule collection of the newly inserted rule.

Exceptions
DOMException

HIERARCHY_REQUEST_ERR: Raised if the rule cannot be inserted at the
specified index e.g. if an @import rule is inserted after a standard rule set or
other at-rule.

INDEX_SIZE_ERR: Raised if the specified index is not a valid insertion point.

SYNTAX_ERR: Raised if the specified rule has a syntax error and is unparsable.
deleteRule

Used to delete a rule from the style sheet.
Parameters

index The index within the style sheet’s rule collection of the rule to
remove.

Exceptions
DOMException

INDEX_SIZE_ERR: Raised if the specified index does not correspond to a rule
in the style sheet’s rule collection.

This method returns nothing.

19

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules

Interface CSSRuleCollection

The CSSRuleCollection interface provides the abstraction of an ordered collection of CSS
rules.
IDL Definition

interface CSSRuleCollection {
 readonly attribute unsigned long length;
 CSSRule item(in unsigned long index);
};

Attributes
length

The length or the size of the list.
Methods

item
Used to retrieve a CSS rule by ordinal index. The order in this collection represents the
order of the rules in the CSS style sheet.
Parameters

index Index into the collection

Return Value
The style rule at the index position in the CSSRuleCollection , or null if that
is not a valid index.

This method raises no exceptions.

Interface CSSRule

The CSSRule interface is the abstract base interface for any type of CSS statement . This includes
both rule sets and at-rules .
IDL Definition

interface CSSRule {
 // RuleType
 const unsigned short UNKNOWN_RULE = 0;
 const unsigned short STYLE_RULE = 1;
 const unsigned short IMPORT_RULE = 2;
 const unsigned short MEDIA_RULE = 3;
 const unsigned short FONT_FACE_RULE = 4;
 const unsigned short PAGE_RULE = 5;

 readonly attribute unsigned short type;
 attribute DOMString cssText;
 // raises(DOMException) on setting
 readonly attribute CSSStyleSheet parentStyleSheet;
 readonly attribute CSSRule parentRule;
};

20

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/syndata.html#q5
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules

Definition group RuleType

An integer indicating which type of rule this is.
Defined Constants

UNKNOWN_RULE The rule is a CSSUnknownRule [p.24] .

STYLE_RULE The rule is a CSSStyleRule [p.21] .

IMPORT_RULE The rule is a CSSImportRule [p.23] .

MEDIA_RULE The rule is a CSSMediaRule [p.22] .

FONT_FACE_RULE The rule is a CSSFontFaceRule [p.23] .

PAGE_RULE The rule is a CSSPageRule [p.23] .

Attributes
type

A code defining the type of the rule, as defined above.
cssText

The parsable textual representation of the rule.
Exceptions on setting

DOMException

SYNTAX_ERR: Raised if the specified CSS string value has a syntax error and
is unparsable.

parentStyleSheet
The style sheet that contains this rule.

parentRule
If this rule is contained inside another rule (e.g. a style rule inside an @media block), this is
the containing rule. If this rule is not nested inside any other rules, this returns null .

Interface CSSStyleRule

The CSSStyleRule interface represents a single rule set in a CSS style sheet.
IDL Definition

interface CSSStyleRule : CSSRule {
 attribute DOMString selectorText;
 readonly attribute CSSStyleDeclaration style;
};

Attributes
selectorText

The textual representation of the selector for the rule set. The implementation may have
stripped out insignificant whitespace while parsing the selector.

style
The declaration-block of this rule set.

21

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/syndata.html#q8

Interface CSSMediaRule

The CSSMediaRule interface represents a @media rule in a CSS style sheet. A @media rule can
be used to delimit style rules for specific media types.
IDL Definition

interface CSSMediaRule : CSSRule {
 attribute DOMString mediaTypes;
 readonly attribute CSSRuleCollection cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index);
};

Attributes
mediaTypes

A comma-separate list of media types for this rule. This attribute does not include the
"@media" specifier.

cssRules
A collection of all CSS rules contained within the media block.

Methods
insertRule

Used to insert a new rule into the media block.
Parameters

rule The parsable text representing the rule. For rule sets this contains
both the selector and the style declaration. For at-rules, this
specifies both the at-identifier and the rule content.

index The index within the media block’s rule collection of the rule
before which to insert the specified rule. If the specified index is
equal to the length of the media blocks’s rule collection, the rule
will be added to the end of the media block.

Return Value
The index within the media block’s rule collection of the newly inserted rule.

Exceptions
DOMException

HIERARCHY_REQUEST_ERR: Raised if the rule cannot be inserted at the
specified index. e.g. if an @import rule is inserted after a standard rule set or
other at-rule.

INDEX_SIZE_ERR: Raised if the specified index is not a valid insertion point.

SYNTAX_ERR: Raised if the specified rule has a syntax error and is unparsable.

22

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/media.html#media-types

deleteRule
Used to delete a rule from the media block.
Parameters

index The index within the media block’s rule collection of the rule to
remove.

This method returns nothing.
This method raises no exceptions.

Interface CSSFontFaceRule

The CSSFontFaceRule interface represents a @font-face rule in a CSS style sheet. The
@font-face rule is used to hold a set of font descriptions.
IDL Definition

interface CSSFontFaceRule : CSSRule {
 readonly attribute CSSStyleDeclaration style;
};

Attributes
style

The declaration-block of this rule.

Interface CSSPageRule

The CSSPageRule interface represents a @page rule within a CSS style sheet. The @page rule is
used to specify the dimensions, orientation, margins, etc. of a page box for paged media.
IDL Definition

interface CSSPageRule : CSSRule {
 attribute DOMString selectorText;
 readonly attribute CSSStyleDeclaration style;
};

Attributes
selectorText

The parsable textual representation of the page selector for the rule.
style

The declaration-block of this rule.

Interface CSSImportRule

The CSSImportRule interface represents a @import rule within a CSS style sheet. The @import
rule is used to import style rules from other style sheets.
IDL Definition

23

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/page.html#page-box
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import

interface CSSImportRule : CSSRule {
 attribute DOMString href;
 attribute DOMString media;
 readonly attribute CSSStyleSheet styleSheet;
};

Attributes
href

The location of the style sheet to be imported. The attribute will not contain the
"url(...)" specifier around the URI.

media
A comma-separated list of media types for which this style sheet may be used.

styleSheet
The style sheet referred to by this rule, if it has been loaded. The value of this attribute is
null if the style sheet has not yet been loaded or if it will not be loaded (e.g. if the style
sheet is for a media type not supported by the user agent).

Interface CSSUnknownRule

The CSSUnkownRule interface represents an at-rule not supported by this user agent.
IDL Definition

interface CSSUnknownRule : CSSRule {
};

Interface CSSStyleDeclaration

The CSSStyleDeclaration interface represents a single CSS declaration block . This interface
may be used to determine the style properties currently set in a block or to set style properties
explicitly within the block.
IDL Definition

interface CSSStyleDeclaration {
 attribute DOMString cssText;
 // raises(DOMException) on setting
 DOMString getPropertyValue(in DOMString propertyName);
 DOMString removeProperty(in DOMString propertyName);
 DOMString getPropertyPriority(in DOMString propertyName);
 void setProperty(in DOMString propertyName,
 in DOMString value,
 in DOMString priority)
 raises(DOMException);
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 readonly attribute CSSRule parentRule;
};

Attributes
cssText

The parsable textual representation of the declaration block (including the surrounding
curly braces). Setting this attribute will result in the parsing of the new value and resetting
of the properties in the declaration block.

24

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/syndata.html#block

Exceptions on setting
DOMException

SYNTAX_ERR: Raised if the specified CSS string value has a syntax error and
is unparsable.

Methods
getPropertyValue

Used the retrieve the value of a CSS property if it has been explicitly set within this
declaration block.
Parameters

propertyName The name of the CSS property. See the CSS property
index .

Return Value
Returns the value of the property if it has been explicitly set for this declaration block.
Returns the empty string if the property has not been set.

This method raises no exceptions.
removeProperty

Used to remove a CSS property if it has been explicitly set within this declaration block.
Parameters

propertyName The name of the CSS property. See the CSS property
index .

Return Value
Returns the value of the property if it has been explicitly set for this declaration block.
Returns the empty string if the property has not been set or the property name does not
correspond to a valid CSS2 property.

This method raises no exceptions.
getPropertyPriority

Used to retrieve the priority of a CSS property (e.g. the "important" qualifier) if the
property has been explicitly set in this declaration block.
Parameters

propertyName The name of the CSS property. See the CSS property
index .

Return Value
A string representing the priority (e.g. "important") if one exists. The empty
string if none exists.

This method raises no exceptions.
setProperty

Used the set a property value and priority within this declaration block.

25

4.2. CSS Fundamental Interfaces

http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html

Parameters

propertyName The name of the CSS property. See the CSS property
index .

value The new value of the property.

priority The new priority of the property (e.g. "important").

Exceptions
DOMException

SYNTAX_ERR: Raised if the specified value has a syntax error and is
unparsable.

This method returns nothing.
Attributes

length
The number of properties that have been explicitly set in this declaration block.

Methods
item

Used to retrieve the properties that have been explicitly set in this declaration block. The
order of the properties retrieved using this method does not have to be the order in which
they were set. This method can be used to iterate over all properties in this declaration
block.
Parameters

index Index of the property name to retrieve.

Return Value
The name of the property at this ordinal position. The empty string if no property
exists at this position.

This method raises no exceptions.
Attributes

parentRule
The CSS rule that contains this declaration block.

4.3. CSS Extended Interfaces
The interfaces found within this section are not mandatory. They may be implemented by a DOM
implementation as a convenience to the DOM script user.

Interface CSS2Properties

The CSS2Properties interface represents a convenience mechanism for retrieving and setting
properties within a CSSStyleDeclaration [p.24] . The attributes of this interface correspond to
all the properties specified in CSS2 . Getting an attribute of this interface is equivalent to calling the

26

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html
http://www.w3.org/TR/REC-CSS2/propidx.html

getPropertyValue method of the CSSStyleDeclaration [p.24] interface. Setting an
attribute of this interface is equivalent to calling the setProperty method of the
CSSStyleDeclaration [p.24] interface.

A compliant implementation is not required to implement the CSS2Properties interface. If an
implementation does implement this interface, it is expected to understand the specific syntax of the
shorthand properties, and apply their semantics; when the margin property is set, for example, the
marginTop , marginRight , marginBottom and marginLeft properties are actually being
set by the underlying implementation.

When dealing with CSS "shorthand" properties, the shorthand properties should be decomposed into
their component longhand properties as appropriate, and when querying for their value, the form
returned should be the shortest form exactly equivalent to the declarations made in the ruleset.
However, if there is no shorthand declaration that could be added to the ruleset without changing in
any way the rules already declared in the ruleset (i.e., by adding longhand rules that were previously
not declared in the ruleset), then the empty string should be returned for the shorthand property.

For example, querying for the font property should not return "normal normal normal 14pt/normal
Arial, sans-serif", when "14pt Arial, sans-serif" suffices (the normals are initial values, and are
implied by use of the longhand property).

If the values for all the longhand properties that compose a particular string are the initial values, then
a string consisting of all the initial values should be returned (e.g. a ’border-width’ value of
"medium" should be returned as such, not as "").

For some shorthand properties that take missing values from other sides, such as the margin, padding,
and border-[width|style|color] properties, the minimum number of sides possible should be used, i.e.,
"0px 10px" will be returned instead of "0px 10px 0px 10px".
IDL Definition

interface CSS2Properties {
 attribute DOMString azimuth;
 attribute DOMString background;
 attribute DOMString backgroundAttachment;
 attribute DOMString backgroundColor;
 attribute DOMString backgroundImage;
 attribute DOMString backgroundPosition;
 attribute DOMString backgroundRepeat;
 attribute DOMString border;
 attribute DOMString borderCollapse;
 attribute DOMString borderColor;
 attribute DOMString borderSpacing;
 attribute DOMString borderStyle;
 attribute DOMString borderTop;
 attribute DOMString borderRight;
 attribute DOMString borderBottom;
 attribute DOMString borderLeft;
 attribute DOMString borderTopColor;
 attribute DOMString borderRightColor;
 attribute DOMString borderBottomColor;
 attribute DOMString borderLeftColor;

27

4.3. CSS Extended Interfaces

 attribute DOMString borderTopStyle;
 attribute DOMString borderRightStyle;
 attribute DOMString borderBottomStyle;
 attribute DOMString borderLeftStyle;
 attribute DOMString borderTopWidth;
 attribute DOMString borderRightWidth;
 attribute DOMString borderBottomWidth;
 attribute DOMString borderLeftWidth;
 attribute DOMString borderWidth;
 attribute DOMString bottom;
 attribute DOMString captionSide;
 attribute DOMString clear;
 attribute DOMString clip;
 attribute DOMString color;
 attribute DOMString content;
 attribute DOMString counterIncrement;
 attribute DOMString counterReset;
 attribute DOMString cue;
 attribute DOMString cueAfter;
 attribute DOMString cueBefore;
 attribute DOMString cursor;
 attribute DOMString direction;
 attribute DOMString display;
 attribute DOMString elevation;
 attribute DOMString emptyCells;
 attribute DOMString cssFloat;
 attribute DOMString font;
 attribute DOMString fontFamily;
 attribute DOMString fontSize;
 attribute DOMString fontSizeAdjust;
 attribute DOMString fontStretch;
 attribute DOMString fontStyle;
 attribute DOMString fontVariant;
 attribute DOMString fontWeight;
 attribute DOMString height;
 attribute DOMString left;
 attribute DOMString letterSpacing;
 attribute DOMString lineHeight;
 attribute DOMString listStyle;
 attribute DOMString listStyleImage;
 attribute DOMString listStylePosition;
 attribute DOMString listStyleType;
 attribute DOMString margin;
 attribute DOMString marginTop;
 attribute DOMString marginRight;
 attribute DOMString marginBottom;
 attribute DOMString marginLeft;
 attribute DOMString markerOffset;
 attribute DOMString marks;
 attribute DOMString maxHeight;
 attribute DOMString maxWidth;
 attribute DOMString minHeight;
 attribute DOMString minWidth;
 attribute DOMString orphans;
 attribute DOMString outline;
 attribute DOMString outlineColor;
 attribute DOMString outlineStyle;

28

4.3. CSS Extended Interfaces

 attribute DOMString outlineWidth;
 attribute DOMString overflow;
 attribute DOMString padding;
 attribute DOMString paddingTop;
 attribute DOMString paddingRight;
 attribute DOMString paddingBottom;
 attribute DOMString paddingLeft;
 attribute DOMString page;
 attribute DOMString pageBreakAfter;
 attribute DOMString pageBreakBefore;
 attribute DOMString pageBreakInside;
 attribute DOMString pause;
 attribute DOMString pauseAfter;
 attribute DOMString pauseBefore;
 attribute DOMString pitch;
 attribute DOMString pitchRange;
 attribute DOMString playDuring;
 attribute DOMString position;
 attribute DOMString quotes;
 attribute DOMString richness;
 attribute DOMString right;
 attribute DOMString size;
 attribute DOMString speak;
 attribute DOMString speakHeader;
 attribute DOMString speakNumeral;
 attribute DOMString speakPunctuation;
 attribute DOMString speechRate;
 attribute DOMString stress;
 attribute DOMString tableLayout;
 attribute DOMString textAlign;
 attribute DOMString textDecoration;
 attribute DOMString textIndent;
 attribute DOMString textShadow;
 attribute DOMString textTransform;
 attribute DOMString top;
 attribute DOMString unicodeBidi;
 attribute DOMString verticalAlign;
 attribute DOMString visibility;
 attribute DOMString voiceFamily;
 attribute DOMString volume;
 attribute DOMString whiteSpace;
 attribute DOMString widows;
 attribute DOMString width;
 attribute DOMString wordSpacing;
 attribute DOMString zIndex;
};

Attributes
azimuth

See the azimuth property definition in CSS2.
background

See the background property definition in CSS2.
backgroundAttachment

See the background-attachment property definition in CSS2.

29

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-attachment

backgroundColor
See the background-color property definition in CSS2.

backgroundImage
See the background-image property definition in CSS2.

backgroundPosition
See the background-position property definition in CSS2.

backgroundRepeat
See the background-repeat property definition in CSS2.

border
See the border property definition in CSS2.

borderCollapse
See the border-collapse property definition in CSS2.

borderColor
See the border-color property definition in CSS2.

borderSpacing
See the border-spacing property definition in CSS2.

borderStyle
See the border-style property definition in CSS2.

borderTop
See the border-top property definition in CSS2.

borderRight
See the border-right property definition in CSS2.

borderBottom
See the border-bottom property definition in CSS2.

borderLeft
See the border-left property definition in CSS2.

borderTopColor
See the border-top-color property definition in CSS2.

borderRightColor
See the border-right-color property definition in CSS2.

borderBottomColor
See the border-bottom-color property definition in CSS2.

borderLeftColor
See the border-left-color property definition in CSS2.

borderTopStyle
See the border-top-style property definition in CSS2.

borderRightStyle
See the border-right-style property definition in CSS2.

borderBottomStyle
See the border-bottom-style property definition in CSS2.

borderLeftStyle
See the border-left-style property definition in CSS2.

borderTopWidth
See the border-top-width property definition in CSS2.

borderRightWidth
See the border-right-width property definition in CSS2.

30

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-color
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-image
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-position
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-repeat
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-border-collapse
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-color
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-border-spacing
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-style
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-top
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-right
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-bottom
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-left
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-top-color
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-right-color
http://www.w3.org/TR/REC-CSS2/#propdef-border-bottom-color
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-left-color
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-top-style
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-right-style
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-bottom-style
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-left-style
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-top-width
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-right-width

borderBottomWidth
See the border-bottom-width property definition in CSS2.

borderLeftWidth
See the border-left-width property definition in CSS2.

borderWidth
See the border-width property definition in CSS2.

bottom
See the bottom property definition in CSS2.

captionSide
See the caption-side property definition in CSS2.

clear
See the clear property definition in CSS2.

clip
See the clip property definition in CSS2.

color
See the color property definition in CSS2.

content
See the content property definition in CSS2.

counterIncrement
See the counter-increment property definition in CSS2.

counterReset
See the counter-reset property definition in CSS2.

cue
See the cue property definition in CSS2.

cueAfter
See the cue-after property definition in CSS2.

cueBefore
See the cue-before property definition in CSS2.

cursor
See the cursor property definition in CSS2.

direction
See the direction property definition in CSS2.

display
See the display property definition in CSS2.

elevation
See the elevation property definition in CSS2.

emptyCells
See the empty-cells property definition in CSS2.

cssFloat
See the float property definition in CSS2.

font
See the font property definition in CSS2.

fontFamily
See the font-family property definition in CSS2.

fontSize
See the font-size property definition in CSS2.

31

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-bottom-width
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-left-width
http://www.w3.org/TR/REC-CSS2/box.html#propdef-border-width
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-bottom
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-caption-side
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-clear
http://www.w3.org/TR/REC-CSS2/visufx#propdef-clip
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-color
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-content
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-counter-increment
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-counter-reset
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-fter
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-cursor
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-direction
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-empty-cells
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-family
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-size

fontSizeAdjust
See the font-size-adjust property definition in CSS2.

fontStretch
See the font-stretch property definition in CSS2.

fontStyle
See the font-style property definition in CSS2.

fontVariant
See the font-variant property definition in CSS2.

fontWeight
See the font-weight property definition in CSS2.

height
See the height property definition in CSS2.

left
See the left property definition in CSS2.

letterSpacing
See the letter-spacing property definition in CSS2.

lineHeight
See the line-height property definition in CSS2.

listStyle
See the list-style property definition in CSS2.

listStyleImage
See the list-style-image property definition in CSS2.

listStylePosition
See the list-style-position property definition in CSS2.

listStyleType
See the list-style-type property definition in CSS2.

margin
See the margin property definition in CSS2.

marginTop
See the margin-top property definition in CSS2.

marginRight
See the margin-right property definition in CSS2.

marginBottom
See the margin-bottom property definition in CSS2.

marginLeft
See the margin-left property definition in CSS2.

markerOffset
See the marker-offset property definition in CSS2.

marks
See the marks property definition in CSS2.

maxHeight
See the max-height property definition in CSS2.

maxWidth
See the max-width property definition in CSS2.

minHeight
See the min-height property definition in CSS2.

32

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-size-adjust
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-stretch
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-style
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-variant
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-weight
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-height
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-left
http://www.w3.org/TR/REC-CSS2/text.html#propdef-letter-spacing
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-line-height
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-image
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-position
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-type
http://www.w3.org/TR/REC-CSS2/box.html#propdef-margin
http://www.w3.org/TR/REC-CSS2/box.html#propdef-margin-top
http://www.w3.org/TR/REC-CSS2/box.html#propdef-margin-right
http://www.w3.org/TR/REC-CSS2/box.html#propdef-margin-bottom
http://www.w3.org/TR/REC-CSS2/box.html#propdef-margin-left
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-marker-offset
http://www.w3.org/TR/REC-CSS2/page.html#propdef-marks
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-max-height
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-max-width
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-min-height

minWidth
See the min-width property definition in CSS2.

orphans
See the orphans property definition in CSS2.

outline
See the outline property definition in CSS2.

outlineColor
See the outline-color property definition in CSS2.

outlineStyle
See the outline-style property definition in CSS2.

outlineWidth
See the outline-width property definition in CSS2.

overflow
See the overflow property definition in CSS2.

padding
See the padding property definition in CSS2.

paddingTop
See the padding-top property definition in CSS2.

paddingRight
See the padding-right property definition in CSS2.

paddingBottom
See the padding-bottom property definition in CSS2.

paddingLeft
See the padding-left property definition in CSS2.

page
See the page property definition in CSS2.

pageBreakAfter
See the page-break-after property definition in CSS2.

pageBreakBefore
See the page-break-before property definition in CSS2.

pageBreakInside
See the page-break-inside property definition in CSS2.

pause
See the pause property definition in CSS2.

pauseAfter
See the pause-after property definition in CSS2.

pauseBefore
See the pause-before property definition in CSS2.

pitch
See the pitch property definition in CSS2.

pitchRange
See the pitch-range property definition in CSS2.

playDuring
See the play-during property definition in CSS2.

position
See the position property definition in CSS2.

33

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-min-width
http://www.w3.org/TR/REC-CSS2/page.html#propdef-orphans
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-color
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-style
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-width
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-overflow
http://www.w3.org/TR/REC-CSS2/box.html#propdef-padding
http://www.w3.org/TR/REC-CSS2/box.html#propdef-padding-top
http://www.w3.org/TR/REC-CSS2/box.html#propdef-padding-right
http://www.w3.org/TR/REC-CSS2/box.html#propdef-padding-bottom
http://www.w3.org/TR/REC-CSS2/box.html#propdef-padding-left
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-after
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-before
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-inside
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-position

quotes
See the quotes property definition in CSS2.

richness
See the richness property definition in CSS2.

right
See the right property definition in CSS2.

size
See the size property definition in CSS2.

speak
See the speak property definition in CSS2.

speakHeader
See the speak-header property definition in CSS2.

speakNumeral
See the speak-numeral property definition in CSS2.

speakPunctuation
See the speak-punctuation property definition in CSS2.

speechRate
See the speech-rate property definition in CSS2.

stress
See the stress property definition in CSS2.

tableLayout
See the table-layout property definition in CSS2.

textAlign
See the text-align property definition in CSS2.

textDecoration
See the text-decoration property definition in CSS2.

textIndent
See the text-indent property definition in CSS2.

textShadow
See the text-shadow property definition in CSS2.

textTransform
See the text-transform property definition in CSS2.

top
See the top property definition in CSS2.

unicodeBidi
See the unicode-bidi property definition in CSS2.

verticalAlign
See the vertical-align property definition in CSS2.

visibility
See the visibility property definition in CSS2.

voiceFamily
See the voice-family property definition in CSS2.

volume
See the volume property definition in CSS2.

whiteSpace
See the white-space property definition in CSS2.

34

4.3. CSS Extended Interfaces

http://www.w3.org/TR/REC-CSS2/generate.html#propdef-quotes
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-right
http://www.w3.org/TR/REC-CSS2/page.html#propdef-size
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-table-layout
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-align
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-decoration
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-indent
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-shadow
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-transform
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-top
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-unicode-bidi
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-vertical-align
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/REC-CSS2/text.html#propdef-white-space

widows
See the widows property definition in CSS2.

width
See the width property definition in CSS2.

wordSpacing
See the word-spacing property definition in CSS2.

zIndex
See the z-index property definition in CSS2.

4.4. Extensions to Level 1 Interfaces
(ED: This section will dissipate into other sections of the Level 2 DOM as they develop. These extensions
are placed here until those other sections are prepared.)

4.4.1. Document style sheets

A collection of all style sheets linked into or embedded in the document is exposed through the
styleSheets attribute. In HTML, this collection contains both external style sheets, included via the
LINK element, and inline style sheets, included via STYLE elements. In XML, this collection contains all
external style sheets included via a style sheet processing instruction .

 interface Document2 : Document {
 readonly attribute StyleSheetCollection styleSheets;
 };

4.4.2. HTMLElement inline style

Inline style information attached to HTML elements is exposed through the style attribute. This
represents the contents of the STYLE attribute for HTML elements.

 interface HTMLElement2 : HTMLElement {
 readonly attribute CSSStyleDeclaration style;
 };

4.4.3. HTMLStyleElement style sheet

The style sheet associated with an HTML STYLE element is accessible via the styleSheet attribute.

 interface HTMLStyleElement2 : HTMLStyleElement {
 readonly attribute StyleSheet styleSheet;
 };

35

4.4. Extensions to Level 1 Interfaces

http://www.w3.org/TR/REC-CSS2/page.html#propdef-widows
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-width
http://www.w3.org/TR/REC-CSS2/text.html#propdef-word-spacing
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-z-index
http://www.w3.org/TR/REC-html40/struct/links.html#h-12.3
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.2.3
http://www.w3.org/TR/REC-xml#sec-pi
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.2.2

4.4.4. HTMLLinkElement style sheet

The styleSheet associated with an HTML LINK element with a REL of "stylesheet" or "alternate
stylesheet" is not accessible directly. This is because LINK elements are not used purely as a stylesheet
linking mechanism. The styleSheet property on LINK elements with other relationships would be
incongruous.

4.5. Unresolved Issues
1. The CSS Editorial team is considering a way to represent comments that exist within a CSS style

sheet. Our expectation is that absolute position of comments may not be maintained, but relative
position (with respect to CSS rules and CSS properties) and the actual contents of the comment will
be.

2. The CSS Editorial team is considering a mechanism to allow users to retrieve the cascaded and
computed styles for a specific element.We do not intend to provide access to the actual style of
specific elements in this level of the CSS DOM. Implementation of the CSS DOM does not require
an actual rendering engine for any other reason, and we see that requirement as a limitation on the
potential implementations of the CSS DOM.

3. The CSS Editorial team is considering a mechanism to allow users to change the cascaded style for a
specific element, or to create rules in an "override" style sheet.

4. The Working Group is still considering whether it should be possible to create style sheets outside
the context of a document, abstract from any XML- or HTML-specific embedding or linking of a
style sheet.

5. The DOM Working Group is considering whether more structure is necessary in the representation of
CSS style rules; specifically, providing access to the selector other than as a string, and providing
more structured representation of the varied CSS2 properties.

6. The group is undecided whether to put a cssText attribute on the CSSStyleSheet, which would
provide a textual representation of the entire style sheet. Setting this attribute would result in the
resetting of all the rules in the style sheet.

7. We still need to create a CSSException inherited from DOMException, to allow easier catching of
CSS-specific exceptions.

36

4.5. Unresolved Issues

5. Document Object Model Events
Editors

Tom Pixley, Netscape Communications Corporation
Chris Wilson, Microsoft Corporation

37

5. Document Object Model Events

5.1. Overview of the DOM Level 2 Event Model
The DOM Level 2 Event Model is designed with two main goals. The first goal is the design of a generic
event system which allows registration of event handlers, describes event flow through a tree structure,
and provides basic contextual information for each event. Additionally, the specification will attempt to
provide standard sets of events for user interface control and document mutation notifications, including
defined contextual information for each of these event sets.

The second goal of the event model is to provide a common subset of the current event systems used
within Microsoft Internet Explorer 4.0 and Netscape Navigator 4.0. This is intended to foster
interoperability of existing scripts and content. It is not expected that this goal will be met with full
backwards compatibility. However, the specification attempts to achieve this when possible.

5.1.1. Terminology

UI events
User interface events. These events are generated by user interaction through an external device
(mouse, keyboard, etc.)

UI Logical events
Device independent user interface events such as focus change messages or element triggering
notifications.

Mutation events
Events caused by any action which modifies the structure of the document.

Capturing
The process by which an event can be handled by one of the event’s target’s ancestors before being
handled by the event’s target.

Bubbling
The process by which an event propagates upward through its ancestors after being handled by the
event’s target.

Cancellable
A designation for events which indicates that upon handling the event the client may choose to
prevent the DOM implementation from processing any default action associated with the event.

5.1.2. Requirements

The following constitutes the list of requirements for the DOM Level 2 Event Model.
(ED: Not all of the requirements below are addressed in the current version of the specification. However,
all of the requirements which derive from existing event systems should currently be met.)

Requirements of event flow:

The model must support multiple event listeners on a single Node.
The model must support the ability to receive events both before and after the DOM implementation
has processed the event allowing the action which triggered the event to take place.

38

5.1. Overview of the DOM Level 2 Event Model

Requirements of event listener registration:

The model must define a programmatic mechanism of specifying event listeners. This mechanism
must be rich enough to support custom events, chaining of multiple event listeners, and general event
listener registration
If additional methods of registering event listeners are defined they must be consistent with the
programmatic model for event listener registration. Consistent means it is possible to define a
sequence of DOM API calls which would have the same result.
The model must define the interaction between the programmatic event registration mechanism and
event listener registration within HTML tags defined in the HTML 4.0 Specification
The programmatic method of event listener registration should allow the client to specify whether to
receive the event before or after it has been processed by the DOM implementation.
Tag based registration, style based registration, and programmatic registration must all be able to
coexist together. The event model must define rules for interaction between them.

Requirements of contextual event information:

The model must specify a mechanism for providing basic contextual information for any event.
The model must specify a mechanism to provide UI events with additional UI specific information.

Requirements of event types:

The model must allow the creation of additional event sets beyond those specified within the DOM
Level 2 Event Model specification.
The model must support UI events.
The model must define a set of UI logical events to allow reaction to UI input in a device
independent way. One use of this is for accessibility.
The model must define a set of document mutation events which allow notification of any change to
the document’s structure.
The model should define a set of events to allow notification of changes to a document’s style.

5.2. Description of event flow
Event flow is the process through which the an event originates from the DOM implementation and is
passed into the Document Object Model. The methods of event capture and event bubbling, along with
various event listener registration techniques, allow the event to then be handled in a number of ways. It
can be handled locally at the target Node level or centrally from a Node higher in the document tree.

5.2.1. Basic event flow

Each event has a Node toward which the event is directed by the DOM implementation. This Node is the
event target. When the event reaches the target, any event listeners registered on the Node are triggered.
Although all EventListener [p.43] s on the Node are guaranteed to receive the event, no
specification is made as to the order in which they will receive the event with regards to the other
EventListener [p.43] s on the Node. If neither event capture or event bubbling are in use for that
particular event, the event flow process will complete after all listeners have been triggered. If event

39

5.2. Description of event flow

http://www.w3.org/TR/REC-html40/interact/scripts.html#events

capture or event bubbling is in use, the event flow will be modified as described in the sections below.

5.2.2. Event Capture

Event capture is the process by which an ancestor of the event’s target can register to intercept events of a
given type before they are received by the event’s target. Capture operates from the top of the tree
downward, making it the symmetrical opposite of bubbling which is described below.

An EventListener [p.43] being registered on an EventTarget [p.41] may choose to have that
EventListener [p.43] capture events by specifying the useCapture parameter of the
addEventListener method to be true. Thereafter, when an event of the given type is dispatched
toward a descendant of the capturing object, the event will trigger any capturing event listeners of the
appropriate type which exist in the direct line between the top of the document and the event’s target. This
downward propagation continues until either no additional capturing EventListener [p.43] s are
found or the event’s target is reached.

If the capturing EventListener [p.43] wishes to prevent further processing of the event it may set the
cancelCapture property of the Event [p.44] to true. This will prevent further dispatch of the event to
additional EventTarget s lower in the tree structure, although additional EventListener [p.43] s
registered at the same hierarchy level will still receive the event. However, if after dispatching the event to
the final EventListener [p.43] at a given level, the value of cancelCapture is false, the
implementation then propagates the event down to the next capturing EventListener [p.43] existing
between itself and the event’s target. If no additional capturers exist, the event triggers the appropriate
EventListener [p.43] s on the target itself.

Although event capture is similar to the delegation based event model, it is different in two important
respects. First, event capture only allows interception of events which are targeted at descendants of the
capturing Node. It does not allow interception of events targeted to the capturer’s ancestors, its siblings,
or its sibling’s descendants. Secondly, event capture is not specified for a single Node, it is specified for a
specific type of event. Once specified, event capture intercepts all events of the specified type targeted
toward any of the capturer’s descendants.

5.2.3. Event bubbling

Events which are designated as bubbling will initially proceed with the same event flow as non-bubbling
events. The event is dispatched to their target Node and any event listeners found there are triggered.
Bubbling events then perform a check of the event’s cancelBubble attribute. If the attribute is false,
the event will then look for additional event listeners by following the Node’s parent chain upward,
checking for any event listeners registered on each successive Node. This upward propagation will
continue all the way up to the Document [p.57] unless either the bubbling process is prevented through
use of the cancelBubble attribute.

An event handler may choose to prevent continuation of the bubbling process at any time through use of
the cancelBubble attribute on the event object. After dispatching the event to all EventListener
[p.43] s on a given EventTarget [p.41] the value of the cancelBubble property is checked. If the
value is true, bubbling will cease at that level. If the value is false, bubbling will continue upward to the
parent of the current EventTarget [p.41] .

40

5.2.2. Event Capture

5.2.4. Event cancellation

Some events are specified as cancellable. For these events, the DOM implementation generally has a
default action associated with the event. Before processing these events, the implementation must check
for event listeners registered to receive the event and dispatch the event to those listeners. These listeners
then have the option of cancelling the implementation’s default action or allowing the default action to
proceed. Cancellation is accomplished by setting the event’s returnValue attribute to false.

5.3. Event listener registration

5.3.1. Event registration interfaces

Interface EventTarget

The EventSource interface is implemented by Nodes which can be targetted by events. The
interface allows event listeners to be registered on the node.
IDL Definition

interface EventTarget {
 void addEventListener(in DOMString type,
 in boolean postProcess,
 in boolean useCapture,
 in EventListener listener);
 void removeEventListener(in DOMString type,
 in boolean postProcess,
 in boolean useCapture,
 in EventListener listener);
};

Methods
addEventListener

This method allows the registration of event listeners on the event target.
Parameters

41

5.3. Event listener registration

type The event type for which the user is registering

postProcess If true, postProcess indicates that the user wishes to
register to receive events after any action associated with
the event has occurred. If the value is false, it indicates the
user wishes to receive the event before any action has
occurred. Some events can only be handled using one or
the other of these techniques.
(ED: Should an invalid postProcess value raise an
exception?)

useCapture If true, useCapture indicates that the user wishes to
initiate capture. After initiating capture, all events of the
specified type will be dispatched to the registered
EventListener [p.43] before being dispatched to any
EventTarget s beneath them in the tree. Events which
are bubbling upward through the tree will not trigger an
EventListener [p.43] designated to use capture.

listener The listener parameter takes an interface implemented
by the user which contains the methods to be called when
the event occurs.

This method returns nothing.
This method raises no exceptions.

removeEventListener
This method allows the removal of event listeners from the event target. If an
EventListener [p.43] is removed from an EventTarget while it is processing an
event, it will complete its current actions but will not be triggered again during any later
stages of event flow.
Parameters

type Specifies the event type of the EventListener [p.43]
being removed.

postProcess Specifies whether the EventListener [p.43] being
removed is a preProcess or postProcess listener.

useCapture Specifies whether the EventListener [p.43] being
removed is a capturing listener or not.

listener The EventListener [p.43] parameter indicates the
EventListener to be removed.

This method returns nothing.
This method raises no exceptions.

42

5.3.1. Event registration interfaces

Interface EventListener

The EventListener interface is the primary method for handling events. Users implement the
EventListener interface and register their listener on a EventTarget using the
AddEventListener method.
IDL Definition

interface EventListener {
 void handleEvent(in Event event);
};

Methods
handleEvent

This method is called whenever an event occurs of the type for which the
EventListener interface was registered.
Parameters

event The Event [p.44] contains contextual information about the event.
It also contains the returnValue and cancelBubble
properties which are used in determining proper event flow.

This method returns nothing.
This method raises no exceptions.

5.3.2. Interaction with HTML 4.0 event listeners

In HTML 4.0, event listeners where specified as properties of an element. As such, registration of a
second event listeners of the same type would override the value of the first listener. The DOM Event
Model allows registration of multiple event listeners on a single Node. To achieve this, event listeners are
no longer stored as property values.

In order to achieve compatibility with HTML 4.0, implementors may view the setting of properties which
represent event handlers as the creation and registration of an EventListener on the Node. The value
for postProcess should be given a default value appropriate for the event. This EventListener
[p.43] behaves in the same manner as any other EventListeners s which may be registered on the
Node. If the property representing the event listener is changed, this may be viewed as the removal of the
previously registered EventListener [p.43] and the registration of a new one.

5.3.3. Event listener registration issues

The first issue is a question of whether listeners should exist as typed interfaces containing groups of
similar events or instead as a single generic listener. An example of the first case would be:

43

5.3.2. Interaction with HTML 4.0 event listeners

 interface MouseListener : EventListener{
 MouseDown();
 MouseUp();
 Click();
 }

whereas the second is:

 interface EventListener {
 HandleEvent();
 }

The specification currently defines listeners via the second solution. This solution avails itself more
readily to extending or creating new events. The first solution would require defintion of new event
interfaces in order to add events. However, remaining problems with the first solution include the fact that
registering the same object for multiple events requires the user to differentiate between the events inside
the event listener. The current string based event typing system could make this very inefficient. The
DOM Working Group is exploring alternatives to the string based event typing to resolve this issue.

The second issue concerns event ordering. If multiple event handlers are registered on the same node
ordering may need to be imposed on the event delivery. One solution to this includes adding an ordering
scheme into the listener registration mechanism. This would also necessitate adding a method for
introspection of registered listeners to EventTarget . A second solution imposes ordering through
registration order. However, this breaks down quickly if multithreading is allowed. A third solution is to
specify that event ordering is left to the application.

Lastly, a full solution has not yet been added to meet the suggestion that all listeners be notified of the
final resolution of an event. It is possible that use of both pre- and post-processing of events will achieve
this goal but it is not yet clear if this solution will be sufficient.

5.4. Event interfaces
Interface Event

The Event interface is used to provide contextual information about an event to the handler
processing the event. An object which implements the Event interface is generally passed as the
first parameter to an event handler. More specific context information is passed to event handlers by
deriving additional interfaces from Event which contain information directly relating to the type of
event they accompany. These derived interfaces are also implemented by the object passed to the
event listener.
IDL Definition

44

5.4. Event interfaces

interface Event {
 attribute DOMString type;
 attribute Node target;
 attribute Node currentNode;
 attribute boolean cancelBubble;
 attribute boolean cancelCapture;
 attribute boolean returnValue;
};

Attributes
type

The type property represents the event name as a string property.
target

The target property indicates the Node to which the event was originally dispatched.
currentNode

The currentNode property indicates to which Node the event is currently being
dispatched. This is particularly useful during capturing and bubbling.

cancelBubble
The cancelBubble property is used to control the bubbling phase of event flow. If the
property is set to true, the event will cease bubbling at the current level. If the property is
set to false, the event will bubble up to its parent. The default value of this property is
determined by the event type.

cancelCapture
The cancelCapture property is used to control propagation during the capturing phase
of event flow. If the property is set to true, the event will not propagate down any further in
the tree. If the property is set to false, the event will continue down to the next capturing
node, or if none exists, to the event target. The default value of this property is false.

returnValue
If an event is cancellable, the returnValue property is checked by the DOM
implementation after the event has been processed by its event handlers. If the
returnValue is false, the DOM implementation does not execute any default actions
associated with the event.

Interface UIEvent

The UIEvent interface provides specific contextual information associated with User Interface and
Logical events.
IDL Definition

interface UIEvent : Event {
 attribute long screenX;
 attribute long screenY;
 attribute long clientX;
 attribute long clientY;
 attribute boolean altKey;
 attribute boolean ctrlKey;
 attribute boolean shiftKey;
 attribute unsigned long keyCode;
 attribute unsigned long charCode;
 attribute unsigned short button;
};

45

5.4. Event interfaces

Attributes
screenX

screenX indicates the horizontal coordinate at which the event occurred in relative to the
origin of the screen coordinate system.

screenY
screenY indicates the vertical coordinate at which the event occurred relative to the
origin of the screen coordinate system.

clientX
clientX indicates the horizontal coordinate at which the event occurred relative to the
DOM implementation’s client area.

clientY
clientY indicates the vertical coordinate at which the event occurred relative to the
DOM implementation’s client area.

altKey
altKey indicates whether the ’alt’ key was depressed during the firing of the event.

ctrlKey
ctrlKey indicates whether the ’ctrl’ key was depressed during the firing of the event.

shiftKey
shiftKey indicates whether the ’shift’ key was depressed during the firing of the event.

keyCode
The value of keyCode holds the virtual key code value of the key which was depressed if
the event is a key event. Otherwise, the value is zero.

charCode
charCode holds the value of the Unicode character associated with the depressed key if
the event is a key event. Otherwise, the value is zero.

button
During mouse events caused by the depression or release of a mouse button, button is
used to indicate which mouse button changed state.

Interface MutationEvent

The MutationEvent interface provides specific contextual information associated with Mutation
events.
IDL Definition

interface MutationEvent : Event {
 attribute Node relatedNode;
 attribute DOMString prevValue;
 attribute DOMString newValue;
 attribute DOMString attrName;
};

Attributes
relatedNode

relatedNode is used to identify a secondary node related to a mutation event. For
example, if a mutation event is dispatched to a node indicating that its parent has changed,
the relatedNode is the changed parent. If an event is instead dispatch to a subtree
indicating a node was changed within it, the relatedNode is the changed node.

46

5.4. Event interfaces

prevValue
prevValue indicates the previous value of text nodes and attributes in attrModified and
charDataModified events.

newValue
newValue indicates the new value of text nodes and attributes in attrModified and
charDataModified events.

attrName
attrName indicates the changed attr in the attrModified event.

5.4.1. Event object issues

The main issue with respect to the Event [p.44] object regards how this object will be made accessible to
the EventListener . The specification current passes the Event [p.44] as the first parameter of the
handleEvent method. However, some compatibility concerns have been raised with this approach.
Alternatives to this method are being explored.

A secondary issue exists regarding the possible addition of a new property to the base Event [p.44]
interface to indicate to which Node the event is currently being dispatched. This would alleviate possible
confusion during the bubbling and capturing phases when the same EventListener [p.43] is
registered upon multiple nodes. The property has been added while its necessity is under discussion.

5.5. Event set definitions
The DOM Level 2 Event Model allows a DOM implementation to support multiple sets of events. The
model has been designed to allow addition of new event sets as is required. The DOM will not attempt to
define all possible events. For purposes of interoperability, the DOM will define a set of user interface
events, a set of UI logical events, and a set of document mutation events.

5.5.1. User Interface event types

The User Interface event set is composed of events listed in HTML 4.0 and additional events which are
supported in both Netscape Navigator 4.0 and Microsoft Internet Explorer 4.0.

User Inteface event issues: Different implementations receive user interface events in different orders or
don’t receive all events specified. For example, in some implemenations a dblclick event might occur as
the user presses the mouse button down, in others it may occur as the user releases the mouse button.
There are two possible solutions to this. The first is that the DOM Level 2 Events specification my define
the user interface events that will be delivered and the order in which they will be delivered.
Implementations would then deliver the events specified, making translations as necessary from the events
being delivered to the implementation. The other solution is to define User Interface events as varying
from implementation to implemenation, making no guarantee on the ordering of event delivery.

click
The click event occurs when the pointing device button is clicked over an element. This attribute may
be used with most elements.

Bubbles: Yes

47

5.5. Event set definitions

Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, button

dblclick
The dblclick event occurs when the pointing device button is double clicked over an element. This
attribute may be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, button

mousedown
The mousedown event occurs when the pointing device button is pressed over an element. This
attribute may be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, button

mouseup
The mouseup event occurs when the pointing device button is released over an element. This
attribute may be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, button

mouseover
The mouseover event occurs when the pointing device is moved onto an element. This attribute may
be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element. This
attribute may be used with most elements.

Bubbles: Yes
Cancellable: No
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey

mouseout
The mouseout event occurs when the pointing device is moved away from an element. This attribute
may be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey

keypress
The keypress event occurs when a key is pressed and released. This attribute may be used with most
elements.

Bubbles: Yes
Cancellable: Yes
Context Info: keyCode, charCode

48

5.5.1. User Interface event types

keydown
The keydown event occurs when a key is pressed down. This attribute may be used with most
elements.

Bubbles: Yes
Cancellable: Yes
Context Info: keyCode, charCode

keyup
The keyup event occurs when a key is released. This attribute may be used with most elements.

Bubbles: Yes
Cancellable: Yes
Context Info: keyCode, charCode

resize
The resize event occurs when a document is resized.

Bubbles: Yes
Cancellable: No
Context Info: None

scroll
The scroll event occurs when a document is scrolled.

Bubbles: Yes
Cancellable: No
Context Info: None

5.5.2. Mutation event types

The mutation event set is designed to allow notification of any changes to the structure of a document,
including attr and text modifications. It may be noted that none of the mutation events listed are
designated as cancellable. The reasoning for this stems from the fact that it would be very difficult to
make use of existing DOM interfaces which cause document modifications if any change to the document
might or might not take place due to cancellation of the related event. Although this is still a desired
capability, it was decided that it would be better left until the addition of transactions into the DOM.

It should also be noted that many of the mutation events have been designed in pairs, one which bubbles
and one which does not. An example of this is the pair of events childInsertedOntoParent and
nodeInsertedOntoParent. The first event, childInsertedOntoParent, is dispatched to the prospective parent
node and bubbled up through the document. The second event is dispatched to the child node and does not
bubble. The intention is that both the child and parent will be able to receive the desired notifications
whether registered as pre-processing or post-processing EventListener [p.43] s. For example, when
an EventListener [p.43] is registered for pre-processing of this event, the child Node is not yet
attached to its new parent and bubbling is insufficient to allow notification of the imminent structural
change to both the child and parent. Thus, pairs of events are necessary to describe all possible document
changes. One of each pair of these events is designated as non-bubbling to prevent overlapping
notifications when handling the post-processing listener case.

49

5.5.2. Mutation event types

subtreeModified
This is a general event for notification of all changes to the document. It can be used instead of the
more specific events listed below. Also, the requirement for some sort of batching of mutation events
may be accomplished through this event. The target of this event is the lowest common parent of the
changes which have taken place.

Bubbles: Yes
Cancellable: No
Context Info: None

nodeInsertedOntoParent
Fired when a node is added as a child of another node. The target of this event is the node being
inserted.

Bubbles: No
Cancellable: No
Context Info: relatedNode holds the parent node

nodeRemovedFromParent
Fired when a node is removed from another node. The target of this event is the node being removed.

Bubbles: No
Cancellable: No
Context Info: relatedNode holds the parent node

childInsertedOntoParent
Fired when a node is added as a child of another node. The target of this event is the parent onto
which the node was inserted.

Bubbles: Yes
Cancellable: No
Context Info: relatedNode holds the child node

childRemovedFromParent
Fired when a node is removed from another node. The target of this event is the parent from which
the child was removed.

Bubbles: Yes
Cancellable: No
Context Info: relatedNode holds the child node

nodeRemovedFromDocument
Fired when a node is removed from a document. The target of this event is the node being removed.

Bubbles: No
Cancellable: No
Context Info: None

nodeInsertedIntoDocument
Fired when a node is inserted into a document. The target of this event is the node being inserted.

Bubbles: No
Cancellable: No
Context Info: None

nodeRemovedFromSubtree
Fired when a node is removed from a subtree. The target of this event is the top of the subtree.

Bubbles: Yes
Cancellable: No

50

5.5.2. Mutation event types

Context Info: relatedNode holds the removed node
nodeInsertedIntoSubtree

Fired when a node is inserted into a subtree. The target of this event is the top of the subtree.
Bubbles: Yes
Cancellable: No
Context Info: relatedNode holds the inserted node

attrModified
Fired when an attr is modified on a node. The target of this event is the node whose attr
changed.

Bubbles: Yes
Cancellable: No
Context Info: attrName, prevValue, newValue

characterDataModified
Fired when CharacterData within a node is modified but the node itself has not been inserted or
deleted. The target of this event is the CharacterData node.

Bubbles: Yes
Cancellable: No
Context Info: prevValue, newValue

5.5.3. HTML event types

The HTML event set is composed of events listed in HTML 4.0 and additional events which are supported
in both Netscape Navigator 4.0 and Microsoft Internet Explorer 4.0.

load
The load event occurs when the DOM implementation finishes loading all content within a
document, all frames within a FRAMESET, or an image.

Bubbles: No
Cancellable: No
Context Info: None

unload
The unload event occurs when the DOM implementation removes a document from a window or
frame. This attribute may be used with BODY and FRAMESET elements.

Bubbles: No
Cancellable: No
Context Info: None

abort
The abort event occurs when page loading is stopped before an image has been allowed to
completely load. This attribute applies to the IMG element.

Bubbles: Yes
Cancellable: No
Context Info: None

error
The error event occurs when an image does not load properly or when an error occurs during script
execution. This attribute applies to the IMG element and to the BODY and FRAMESET element.

51

5.5.3. HTML event types

Bubbles: Yes
Cancellable: No
Context Info: None

select
The select event occurs when a user selects some text in a text field. This attribute may be used with
the INPUT and TEXTAREA elements.

Bubbles: Yes
Cancellable: No
Context Info: None

change
The change event occurs when a control loses the input focus and its value has been modified since
gaining focus. This attribute applies to the following elements: INPUT, SELECT, and TEXTAREA.

Bubbles: Yes
Cancellable: No
Context Info: None

submit
The submit event occurs when a form is submitted. It only applies to the FORM element.

Bubbles: Yes
Cancellable: Yes
Context Info: None

reset
The reset event occurs when a form is reset. It only applies to the FORM element.

Bubbles: Yes
Cancellable: No
Context Info: None

focus
The focus event occurs when an element receives focus either via a pointing device or by tabbing
navigation. This attribute may be used with the following elements: LABEL, INPUT, SELECT,
TEXTAREA, and BUTTON.

Bubbles: No
Cancellable: No
Context Info: None

blur
The blur event occurs when an element loses focus either by the pointing device or by tabbing
navigation. It may be used with the same elements as onfocus

Bubbles: No
Cancellable: No
Context Info: None

52

5.5.3. HTML event types

6. Document Object Model Filters and Iterators
Editors

Mike Champion, Aliaron
Jonathan Robie, Texcel

53

6. Document Object Model Filters and Iterators

6.1. Overview of the DOM Level 2 Query, Iterator, and Filter
Interfaces
The DOM Level 2 Query, Iterator, and Filter interfaces extend the functionality of the DOM to allow
simple and efficient traversal of document subtrees, node lists, or the results of queries.

This proposal contains Iterator and Filter interfaces, but no query interfaces. A separate specification will
be prepared for query interfaces, which will be query-language independent.

6.1.1. Iterators

In several popular approaches to software design, iterators are considered a basic building block for
building reusable software and software libraries. For instance, they are fundamental to the Design
Patterns approach, STL, and the Java libraries. The main advantages of node iterators in the DOM are:

1. Abstracting out the way that specific data structures are navigated. Functions that use iterators can
operate on any data structure without knowing the details of how that data structure is navigated; e.g.,
the same function could process the nodes in a document, a document subtree, or a nodelist. The
function can keep asking for the next node without worrying about how that node is found.

2. Allowing more efficient navigation. Because an iterator hides the manner in which a data structure is
navigated, it can use indexes or other supplementary data structures to allow more efficient
navigation than might be possible by naively navigating from one node to the next.

3. Providing views for the most common ways applications want to navigate document structures. Some
applications traverse only the element tree, others process additional nodes such as processing
instructions or comments, others prefer yet another view. There is no one right way to navigate a
document tree, but iterators provide a simple, efficient way to choose the most appropriate view of
the document tree for a given application.

An iterator allows the nodes of a data structure to be returned sequentially. When an iterator is first
created, calling nextNode() returns the first node. When no more nodes are present, nextNode() returns a
null. It is important to remember that DOM structures may change as a document is loaded - when
nextNode() finds no more nodes, it is still quite possible that further nodes may be added in the next
instant. Since iterators do not know how to predict the future, there is no way to check whether further
nodes may be added at any given time.

Since the DOM permits liveness and editing, and an iterator may be active while the data structure it
navigates is being edited, an iterator must behave gracefully in the face of change. Additions and deletions
in the underlying data structure do not invalidate an iterator.

Using ordered set semantics, the position of the iterator is determined by the relative position in the
ordered set. There is no current node. When an iterator is created for a list, the position is set before the
first element:

 A B C D E F G H I
^

54

6.1. Overview of the DOM Level 2 Query, Iterator, and Filter Interfaces

Each call to next() returns a node and advances the position. For instance, if we start with the above
position, the first call to next() returns "A" and advances the iterator:

 A B C D E F G H I
 ^

The relative position of the iterator remains valid when nodes are deleted. Suppose the nodes in our list do
not come from a tree, but are merely a set of nodes in which none of the nodes are children of other nodes.
If you delete "A", the position of the iterator is unchanged with respect to the remaining nodes:

 B C D E F G H I
^

Similarly, if "B" and "C" are deleted, the position remains unchanged with respect to the remaining nodes:

 D E F G H I
^

Moving the "D" node to the end of the set does not change the current position:

 E F G H I D
^

Note that the relative position of the iterator is not the same as the absolute position within the set. The
position of the iterator is relative to the node before it and the node after it, which is why the position
floats gracefully when nodes are deleted or inserted before or after the position of the iterator. If an
iterator were based on absolute position, then an iterator at position 5 would suddenly point to a different
item if node 3 were deleted. In many implementations, iterators may need to be adjusted when nodes are
inserted or deleted.
(ED: The fix-ups required by this model complicate implementation somewhat, but make life simpler for
the user of iterators. Much of the complexity of fix-ups is in notification - the fix-ups themselves are then
relatively straightforward. It might seem simpler to invalidate an iterator when changes are made, but
invalidation also requires notification. We currently feel that handling change gracefully is worth the
added implementation cost, but are interested in feedback on this issue.)

6.1.2. Filters

Filters allow the user to "filter out" nodes. Each filter contains a user-written function that looks at a node
and determines whether or not it should be filtered out. To use a filter, you create an iterator that uses the
filter. The iterator applies the filter to each node, and if the filter rejects the node, the iterator skips over
the node as though it were not present in the document. Filters are easy to write, since they need not know
how to navigate the structure on which they operate, and they can be reused for different kinds of iterators
that operate on different data structures.

Let’s use a filter to write code to find the named anchors in an HTML document. In HTML, an HREF can
refer to any <A> element that has a NAME attribute. The first step is to write a filter that looks at a node
and determines whether it is a named anchor:

55

6.1.2. Filters

 class NamedAnchorFilter implements NodeFilter
 {
 boolean acceptNode(Node n) {
 if (n instanceof Element) {
 Element e = n;
 if (n.getAttribute("NAME") != NULL) {
 return true;
 }
 }
 return false;
 }
 }

To use this filter, create an instance of the filter and create an iterator using it:

These flags can be combined using OR:

 Node iter=factory.create(root, TW_ELEMENT | TW_PI | TW_COMMENT | TW_EXPANDED);

The default view shows elements and text, but no other nodes (attributes are retrieved from the elements).
The constant TW_DEFAULT is a mask that defines this default view.

If TW_ENTITYREF is not set, entities are expanded. If TW_ENTITYREF is set, entity references will be
encountered by the iterator. There is no setting that shows both the entity reference and its expansion.
(ED: We need to specify the details of how this will work in ECMAScript, which does not have the
concept of abstract interfaces or data types, more formally)

 NamedAnchorFilter naf;
 NodeIterator nit = document.createFilteredTreeIterator(naf);

At this point, the iterator will show only the named anchors in the document. Writing equivalent code
without filters would be marginally simpler, and no less efficient. The advantage of using filters is that it
allows reuse. For instance, if you have another part of your program that needs to find the named anchors
in a NodeList, you can use the filter the same way you used it for the document:

 NamedAnchorFilter naf;
 NodeIterator nit = nodelist.createFilteredTreeIterator(naf);

6.2. Formal Interface Definition
Interface NodeIterator

NodeIterators are used to step through a set of nodes, e.g. the set of nodes in a NodeList, the
document subtree governed by a particular node, the results of a query, or any other set of nodes. The
set of nodes to be iterated is determined by the factory that creates the iterator.

56

6.2. Formal Interface Definition

Any iterator that returns nodes may implement the NodeIterator interface. Users and vendor libraries
may also choose to create iterators that implement the NodeIterator interface.
IDL Definition

interface NodeIterator {
 Node nextNode();
 Node prevNode();
};

Methods
nextNode

Returns the next node in the set and advances the position of the iterator in the set. After a
NodeIterator is created, the first call to nextNode() returns the first node in the set.
Return Value

The next Node in the set being iterated over, or NULL if there are no more members
in that set.

This method has no parameters.
This method raises no exceptions.

prevNode
Returns the previous node in the set and moves the position of the iterator backwards in the
set.
Return Value

The previous Node in the set being iterated over, or NULL if there are no more
members in that set.

This method has no parameters.
This method raises no exceptions.

(ED: Some felt that firstNode() and lastNode() would be useful to position to the beginning or end of
the iterated set. Others felt this requires the implementation to maintain too much state. For now, we
have chosen not to specify these methods, but we are open to feedback on this issue. One
implementor suggested that prevNode() was too complex when nodes are kept in a singly linked list.
We suspect that the ability to traverse in both directions is extremely useful, and a quick, informal
poll suggested that most DOM implementations probably need to do this already.)

Interface Document

Document contains methods that creates iterators to traverse a node and its children in document
order (depth first, pre-order traversal, which is equivalent to the order in which the start tags occur in
the text representation of the document).
IDL Definition

interface Document {
 boolean createTreeIterator(in Node root,
 in short whatToShow);
};

(ED: What about createListIterator?)
(ED: In a later version of Level 2, when queries are supported, we will also want factory methods
that can issue a query and provide an iterator for the result set. These methods may look something
like this:

57

6.2. Formal Interface Definition

 NodeIterator createTreeQueryIterator(DOMString query);
 NodeIterator createListQueryIterator(DOMString query);

)
Methods

createTreeIterator
Parameters

root The node which will be iterated together with its children.

whatToShow This flag determines whether entities are expanded, and whether comments, processing instructions, or
text are presented via the iterator.

 public static final int TW_DEFAULT = 0x0022;
 public static final int TW_ALL = 0xFFFF;
 public static final int TW_ELEMENT = 0x0002;
 public static final int TW_PI = 0x0008;
 public static final int TW_COMMENT = 0x0010;
 public static final int TW_TEXT = 0x0020;
 public static final int TW_ENTITYREF = 0x0040;

These flags can be combined using OR:

 Node iter=factory.create(root, TW_ELEMENT | TW_PI | TW_COMMENT | TW_EXPANDED);

The default view shows elements and text, but no other nodes (attributes are retrieved from the
elements). The constant TW_DEFAULT is a mask that defines this default view.

If TW_ENTITYREF is not set, entities are expanded. If TW_ENTITYREF is set, entity references will
be encountered by the iterator. There is no setting that shows both the entity reference and its
expansion.
(ED: Several people have suggested that the functionality of whatToShow be implemented using filters.
We feel that it is better to implement them using iterators, since it makes it possible to provide a more
efficient implementation. A filter must examine each node individually; an iterator can make use of
internal data structures to examine only those nodes that are desired.)

Return Value
TRUE if a this node is to be passed through the filter and returned by the
NodeIterator::nextNode() method, FALSE if this node is to be ignored.

This method raises no exceptions.

Interface NodeFilter

Filters are simply objects that know how to "filter out" nodes. If an iterator is given a filter, before it
returns the next node, it applies the filter. If the filter says to accept the node, the iterator returns it;
otherwise, the iterator looks for the next node and pretends that the node that was rejected was not
there.

The DOM does not provide any filters. Filter is just an interface that users can implement to provide
their own filters. The introduction to this chapter gives an example of how a user can implement a
filter to perform a specific function.

Filters do not need to know how to iterate, nor do they need to know anything about the data
structure that is being iterated. This makes it very easy to write filters, since the only thing they have
to know how to do is evaluate a single node. One filter may be used with a number of different kinds

58

6.2. Formal Interface Definition

of iterators, encouraging code reuse.
IDL Definition

interface NodeFilter {
 boolean acceptNode(in Node n);
};

Methods
acceptNode

Parameters

n The node to check to see if it passes the filter or not.

Return Value
TRUE if a this node is to be passed through the filter and returned by the
NodeIterator::nextNode() method, FALSE if this node is to be ignored.

This method raises no exceptions.

59

6.2. Formal Interface Definition

60

6.2. Formal Interface Definition

7. Document Object Model Range
Editors

Vidur Apparao, Netscape Communications
Peter Sharpe, SoftQuad Software Inc.

61

7. Document Object Model Range

7.1. Introduction
The Range object identifies a single contiguous sequence of content in a document (or document
fragment). It can be thought of as a pair of end points which define the boundary of the content ’selected’
by the range. The term ’selected’ does not mean that every range appears to a user as a GUI selection,
however such a GUI selection can be returned to a DOM user via a Range.

The Range object provides methods for accessing and manipulating the document tree at a higher level
than the related Node object methods. This proposal defines the basic functionality, that is, how to create
and move a Range object and how to use Ranges to insert, delete and copy content. It is anticipated that a
future version of the Range object will include further convenience functions which would be of use to
authors using the DOM.

7.1.1. Motivation

The Range object is useful for several reasons:

First, it will be useful to be able to retrieve the user’s selection -- for example in response to events -- and
perform actions on that selection.

Second, the Range object provides editing and querying functionality on a range in the document, rather
than on a node basis as is possible with Node objects . For example, the ubiquitous cut, copy and paste
editing operations are expected to work on a contiguous group of nodes. It is possible to implement these
operations using the primitive Node editing operations, but it requires looping and testing whereas the
same functionality can be accomplished by a single Range method call.

And third, it will be extremely common to apply editing operations to a range of the document, and a
Range can be useful for locking that range when we come to supporting concurrent update.

In summary, the Range object conveniently packages up editing and querying operations on ranges in a
document whereas the Node and NodeList objects are restricted to single nodes.

7.1.2. Basic Assumptions

The Range object approximately corresponds to a range in the raw document with the end-points of the
range on token boundaries. This means that an end-point of the Range cannot be in the middle of a start-
or end-tag, or within an entity reference (in the raw structure model) or the replacement entity itself in the
cooked structure model. The Range object locates a contiguous portion of the content of the structure
model.

It must be possible for a Range to select across element boundaries. Results of this must be defined
carefully for each operation on the Range.

In terms of the DOM object hierarchy, the Range object has no base object. In particular, it is not derived
from Node. Unless otherwise stated, all methods in this section are methods of the Range object.

62

7.1. Introduction

7.1.3. Notation

Most of the examples in the proposal will be illustrated using the text representation of a document. The
portion of the document selected by a range will be shown in bold text as in

 <FOO>A BC<BAR>DEF</BAR></FOO>

When the selected portion contains no content (both endpoints are at the same position) it will be shown
as a bold caret (’^ ’) as in

 <FOO>A ^BC<BAR>DEF</BAR></FOO>

And when referring to a single end-point, it will be show as a bold asterisk (’* ’) as in

 <FOO>A * BC<BAR>DEF</BAR></FOO>

7.2. Finding a Range’s Position
A Range has two end-points (the start and the end). Each end-point’s position in a document (or document
fragment) can be characterized by two quantities: a parent node and an offset relative to that parent node.
The Range is considered to select the contiguous content of the document or document fragment
contained between the two end-points.

Note that a Range only selects within the document tree. In particular, the parent node of a Range’s
end-point must be an Element, Comment, ProcessingInstruction, EntityReference, CDATASection,
Document, DocumentFragment or Text node and it must have a Document or DocumentFragment node as
an ancestor. This requirement specifically excludes Attr, DocumentType, Entity and Notation nodes as
ancestors of end-point parents.
(ED: The Working Group is considering allowing Attr nodes as ancestors of end-point parents with the
restriction that both end-points have the same Attr node as an ancestor. This would allow range operations
on an attribute tree in the same manner as on a document tree.)

The relationship between locations in the raw source document and in the Node tree interface of the DOM
is illustrated in the following diagram:

63

7.2. Finding a Range’s Position

Range Example

In this diagram, four different Ranges are illustrated. Consider the red Range with end-points labelled s
and e. This Range selects the entire P node.

In the raw source, it is possible and convenient to specify the location of the end-points by using absolute
offsets from the beginning of the document. In this case, the red Range could be said to select the content
of the raw source document from after the 20th character to after the 36th character.

There are several reasons why absolute offsets are not a useful way to specify end-points in the DOM tree.
First of all, such absolute offsets are potentially very inefficient to calculate and maintain. Second, two
different end-points in the tree can have the same absolute offset in the raw document as will be discussed
below. And, finally, since they refer to the persisted state of the document, calculating the offsets would
require the DOM to precisely specify how the document is persisted.

For these reasons, the end-points are specified using a node and an offset within the children of that node.
In the example above, the position represented by the end-point labelled s is within the BODY element. It
is after the H1 element and before the P element so it corresponds to a position between the H1 and P
children of BODY. The offset of an end-point within its containing node is 0 if it is before the first child, 1
if between the first and second child, and so on. So, for end-point s, the container node is BODY and the
offset is 1. For end-points within text nodes, the offset is specified similarly but using character positions
instead. For example, the end-point labelled s has a Text node as its container and an offset of 2 since it is
between the second and third characters.

64

7.2. Finding a Range’s Position

The diagram and table illustrates the container nodes and offsets for the end-points of four Ranges. Notice
that the corresponding end-points of purple and blue ranges appear to be identical in the raw document but
that each is, in fact, represented distinctly in the DOM. This is an important feature of the Range since it
means that an end-point of a Range can unambiguously represent every position within the document tree.

When the parent node of an end-point is not a text node, the offset specifies a position between the child
nodes. For example, an offset of 0 means that the end-point is before the first child, an offset of 1 means it
is after the first child and before the second child, and so on.

However, it is also often convenient to think of a Range as selecting a portion of the raw source document
and many of the examples in this specification will be illustrated that way.

The parents and offsets of the end-points can be accessed using the following read-only Range attributes:

 startParent;
 startOffset;
 endParent;
 endOffset;

If both end-points of a Range have the same parent nodes and offsets then the Range is a degenerate
selection, or collapsed Range. (This is often referred to as an insertion point in a user agent.)

7.3. Partial and Complete Containment
A node is said to be partially contained by a Range if it is an ancestor of or equal to the containing node of
one or both end-points of the Range. That is, if the node contains at least one end of the Range, then it is
partially contained. For example, consider the green Range in Diagram 1, above. H1 is partially contained
by that Range since the start end-point is within one of its children. And BODY is partially contained by
the same Range since both end-points are contained within children of its children.

A node is said to be completely contained by a Range if it is located between the the two end-points of the
Range. In terms of the raw source document, a node would only be completely contained by a Range if its
corresponding start-tag was located after the starting end-point of the Range and its end-tag was located
before the end of the Range. In the examples in Diagram 1, above, the red Range completely contains the
P node and the purple Range completely contains the text node containing the text "Blah xyz."

7.4. Creating a Range
(ED: The factory method for creating a Range should be implemented by the document object. Since this
involves a new method, it may either be added to the existing Document interface or a secondary interface
implemented by the same object. The determination of where this method goes and how to deal with new
methods on existing interfaces in backwardly compatible manner needs to be addressed by the Working
Group as a whole.)

A range is created by calling a method on the Document object:

65

7.3. Partial and Complete Containment

 interface Document {
 interface Document {

 Range createRange();
 }

The initial state of the range returned from this method is such that its two end-points are equal and both
are positioned at the beginning of the Document before any content. In other words, the parent node of
each end-point is the Document node and the offset within that node is 0.

Like some other objects created from the Document (like Nodes and DocumentFragments), Ranges
created via a particular document instance are only compatible with content associated with that
document, and cannot be used with other document instances.

7.5. Changing a Range’s Position
A Range’s position can be specified by setting the parent and offset of each end-point with the
setStart and setEnd methods.

If one end-point of a Range is set to be positioned in content associated with a document fragment other
than that in which the range is currently positioned, the range will be collapsed to the new location. This
enforces the restriction that both end-points of a Range must be in the same document or fragment.

Also, the start position is guaranteed to never be to the right of the end position. As a consequence of this,
attempting to set the start to be to the right of the end will cause the end to be moved to the same position,
resulting in a collapsed range at that location. The case for the end being before the start is similarly
handled.

It is also possible to set a Range’s position relative to other nodes in the tree:

 void setStartBefore(in Node sibling);
 void setStartAfter(in Node sibling);
 void setEndBefore(in Node sibling);
 void setEndAfter(in Node sibling);

The parent of the sibling node will become the parent of the end-point and the Range will be subject to the
same restrictions as outlined above for setStart() and setEnd().

A Range can be collapsed to either end-point:

 void collapse (in boolean toStart);

Passing TRUE to the parameter toStart will collapse the range to the range’s start position, FALSE to the
end.

Testing if a Range is collapsed can be done by examining the isCollapsed attribute:

 readonly attribute boolean isCollapsed;

66

7.5. Changing a Range’s Position

Quite often one will want to cause a range to select everything under a node, possibly including the node
itself:

 void selectNode (in Node n);
 void selectNodeContents (in Node n);

For example:

 Before:
 ^<BAR><FOO>A<MOO>B</MOO>C</FOO></BAR>
 After range.selectNodeContents(FOO):
 <BAR><FOO> A<MOO>B</MOO>C</FOO></BAR>
 After range.selectNode(FOO):
 <BAR> <FOO>A<MOO>B</MOO>C</FOO></BAR>

7.6. Comparing Range End-Points
It is possible to compare two Ranges by comparing their end-points:

 int compareEndPoints(CompareHow how, Range sourceRange)

where CompareHow is one of 4 values: StartToStart, StartToEnd, EndToEnd and EndToStart. The return
value is -1, 0 or 1 depending on whether the corresponding end-point of the Range is less than, equal or
greater than the corresponding end-point of sourceRange.

Determining if one end-point is less than another requires examing a number of cases but, informally, one
end-point is less than another if it corresponds to a location in the source document before the second
end-point. This can be stated more precisely in terms of the DOM tree, as follows:

If both end-points have the same parent node, then one end-point is less than the other if its offset is less
the offset of the other end-point.

If the end-points have different parent nodes, then there are three cases to consider.

Let A and B be the two end-points. The first case to consider is when a child of the parent of A is the
parent or an ancestor of the parent of B. In this case, A is less than B if the offset of A is less than or equal
to the index of the child containing B.

The second case is when a child of the parent of B is the parent or an ancestor of the parent of A. In this
case, A is less than B if the index of the child containing A is less than the offset of B.

The third case is when neither parent is an ancestor of the other end-point’s parent. In this case, let N be
the common ancestor of both A and B which has the greatest depth in the DOM tree. Then A is less than
B if the index of the child of N which is an ancestor of the parent of A is less than the index of the child of
N which is an ancestor of the parent of B.

Comparing two end-points for equality is much more straightforward: Two end-points are equal to one
another if and only if they have the same parents and both offsets are equal.

67

7.6. Comparing Range End-Points

And finally, determining if one end-point is greater than another can be stated in terms of the other two
comparisons: A is greater than B if A is not equal to B and A is not less than B.

Note that because the same location in the source document can correspond to two different locations in
the DOM tree, it is possible for two end-points to not compare equal even though they would be equal in
the source. For this reason, the informal definition above can sometimes be misleading.

7.7. Deleting Content with a Range
One can delete the contents selected by a range with:

 void deleteContents ();

The deletion of the contents selected by a range is pretty straight forward if the parent nodes for each
endpoint is the same. For example:

 <FOO> <MOO>CD</MOO></FOO> --> <FOO> ^</FOO>

Here, the range has endpoints (each endpoint expressed as a pair Node, Offset) of (FOO, 0) and (FOO, 1).
Notice in this example that the MOO node was removed in its entirety. This is so because the MOO began
and ended within the scope of the range’s selection. Thus, any node which starts and ends within a range’s
selection is removed in its entirety. Also notice that the FOO tag was left untouched (other than its
immediate content being modified). Thus, any node which starts and ends outside a range’s selection is
not affected.

There are two other cases left to completely describe the effect on a document of the deleteContents
operation:

 1) <FOO>A<MOO>B C</MOO>DE</FOO> --> <FOO>A<MOO>B</MOO> ^E</FOO>

 2) <FOO>X Y<BAR>ZW</BAR>Q</FOO> --> <FOO>X ^<BAR>W</BAR>Q</FOO>

In case 1, the MOO node begins before the range’s selection, while the MOO’s end is contained within the
ranges selection. Here, it is important to know that the deleteContents operation is structural, not textual.
Stated differently, the deleteContents operation on a range does not remove the textual representation of
its content, as though one were editing the document contents (including tags) in a text editor. While, as in
this example, the textual representation of the range selection may include only one of the start- or end-tag
representing an element, a deleteContents operation on that range will not result in a non-well formed
document.

A node is considered to be "partially" contained within a range if, in the textual representation of the
range, only one of either its start- or end-tag is included in the range contents. In this case, a
deleteContents operation will not remove the partially contained element. However, after the operation is
completed, the (now collapsed) range will move outside the element. Specifically, if the range’s original
start point were before the node (in depth-first post-order) the range would collapse to a position before
the node. If the range’s original end point were after the node, the range would collapse to a position after
the node.

68

7.7. Deleting Content with a Range

 <FOO>A<MOO>B ^E</FOO>

Now, notice that in this, false, example there is a begin tag for the MOO node, but no end tag. This is not
representable by the DOM. All nodes in the DOM must have a definite begin and end. Thus, notice how
the end tag of the MOO node effectively scooted to the left, outside the influence of the range’s selection.
This is so because only a part of the MOO node was deleted. If the begin of the MOO node was inside the
selection of the range at the time of the deletion, then the MOO node would have been removed in it
entirety. For case 2, instead of the later half of a node falling within the range, the first half is contained
within the range. This is very similar to case 1, with the exception that the begin tag for BAR scoots to the
right.

To summarize these two cases where only a part of a node is selected, if the node begins in the selection,
the begin tag, effectively, scoots to the right, if the node ends in the selection, the end tag, effectively,
scoots left.

In cases where the contents of a range should be extracted rather than deleted, the following method may
be used:

 DocumentFragment extractContents ();

The extractContents method does exactly what the deleteContents methods does, but it additionally places
the deleted contents in a new DocumentFragment. Using the three examples above, the following illustrate
the contents of the returned document fragment:

 <FOO> <MOO>CD</MOO></FOO> --> <MOO>CD</MOO>

 <FOO>A<MOO>B C</MOO>DE</FOO> --> <MOO’>C</MOO’>D (MOO’ is a clone of MOO)

 <FOO>X Y<BAR>ZW</BAR>Q</FOO> --> Y<BAR’>Z</BAR’> (BAR’ is a clone of BAR)

It is important to note that nodes which are only partially contained by the range are cloned. Since part of
such a node’s contents must remain in the original document (or document fragment) and part of the
contents must be moved to the new fragment, a clone of the partially contained node is brought along to
the new fragment. Note that cloning does not take place for "completely" contained elements - these
elements are directly moved to the new fragment.

7.8. Cloning Content
The contents of a range may be duplicated using the following method:

 DocumentFragment cloneContents ();

This method returns a document fragment that is similar to the one returned by the method
extractContents. However, in this case, the original nodes and text content in the range are not deleted
from the original document. Instead, all of the nodes and text content within the returned document
fragment are cloned.

69

7.8. Cloning Content

7.9. Inserting Content
A node may be inserted into a range using the following method:

 void insertNode (in Node n);

The insertNode method inserts the specified node into the document or document fragment in which the
range resides. For this method, the end position of the range is ignored and the node is inserted at the start
position of the range.

The Node passed into this method can be a DocumentFragment. In that case, the contents of the fragment
are inserted at the start position of the range, but the fragment itself is not. Note that if the Node represents
the root of a sub-tree, the entire sub-tree is inserted.

Note that the same rules that apply to the insertBefore method on the Node interface apply here.
Specifically, the Node passed in will be removed from its existing position in the same document or
another fragment.

7.10. Surrounding Content
The insertion of a single element to subsume the content selected by range can be performed with:

 void surroundContents (in Node n);

The surroundContents member differs from insertNode in that surroundContents causes all of the content
selected by the range to become children of the node argument, while insertNode splices in existing
content at the given point in the document.

For example,calling surround contents with the node FOO yields:

 Before:
 <BAR>A B<MOO>C</MOO>DE</BAR>
 After surroundContents (FOO):
 <BAR>A <FOO>B<MOO>C</MOO>D</FOO>E</BAR>

Effectively, the surroundContents member modifies the document such that the begin tag of the node
argument to be placed at the beginning of the range, and the end tag of the node argument to be placed at
the end of the range. Of course, tags are not really being manipulated, however the effect is the same thus
giving meaning to this member’s name: surroundContents.

Another way of of describing the effect of this member is to decompose it in terms of other operations:

1. Remove the contents selected by the range with a call to extractContents, saving away the selected
contents into a new document fragment.

2. Insert the node argument where the range is now collapsed (after the extraction) with insertNode
3. Insert the entire contents of the extracted contents under the node argument.
4. Select the node argument and all of its contents with selectNode.

70

7.9. Inserting Content

Because inserting a node in such a manor will be a common operation, surroundContents is provided to
avoid the overhead of these four steps.

The surroundContents method may not be invoked in cases where the range only partially contains a
non-Text node. Specifically, if the first non-Text node ancestor of the two end-points of a range is
different, surroundContents will fail. An example of a range for which surroundContents may not be
invoked is:

 <FOO>A B<BAR>CD</BAR>E</FOO>

If the node argument has any children, those children are removed before its insertion. Also, if the node
argument is part of any existing content, it is also removed from that content before insertion.

7.11. Miscellaneous Members
One can clone a range:

 Range cloneRange ();

This creates a new range which selects exactly the same content of the range on which it was called. No
content is affected by this operation.

Because the end-points of a range do not have to necessarily share the same parent nodes, use:

 readonly attribute Node commonParent;

to get the first node which is common to both endpoints. This is accomplished by walking up the parent
chain of the two endpoints, locating the first node which is common.

One can get a copy of all the text nodes (or partial text nodes) selected by a range with:

 domstring toString ();

This does nothing more than simply concatenate all the textual content subsumed by the range.

7.12. Range behavior under document mutation
As the document is mutated, the Ranges within the document need to be updated. For example, if both
ends of a Range are within the same node and that node is removed from the document, then the Range
would be invalid unless it is fixed up in some way. This section describes how Ranges are modified under
document mutations so that they remain valid.

There are two general principles which apply to Ranges under document mutation: The first is that all
Ranges in a document will remain valid after any mutation operation and the second is that, loosely
speaking, all Ranges will select the same portion of the document after any mutation operation, where that
is possible.

71

7.11. Miscellaneous Members

Any mutation of the document tree which affect Ranges can be considered to be a combination of basic
delete and insertion operations. In fact, it can be convenient to think of those operations as being
accomplished using the deleteContents() and insertNode() Range methods.
(ED: I think we also have to think of merging of TextNodes as a separate operation. Although the merge
can be considered to be a deletion followed by an insertion, a Range which selected a portion of the text in
the nodes being deleted won’t select the same content after the merge. I think it should.)

7.12.1. Insertions

An insertion occurs at a single point in the document. Again, it is convenient to think of that point, called
the insertion point, as the end-point of a Range. For any other Range in the document tree, consider each
end-point. The only case in which the end-point will be changed after the insertion is when the end-point
and the insertion point have the same parent Node and the offset of the insertion point is strictly less than
the offset of the Range’s end-point. In that case the offset of the Range’s end-point will be increased so
that it is between the same nodes or characters as it was before the insertion.

Note that when content is inserted at an end point, it is ambiguous as to where the end point should
reposition itself if it wants to maintain its original relative position. It has two choices: either at the start or
end of the newly inserted content. We have chosen to neither change the parent nor offset of the end-point
in this case which means that it will be positioned at the start of the newly inserted content.

Examples:

In these examples, the portion of the document selected by the Range before and after the insertion will be
shown as bold text.

Suppose the Range selects the following:

<P>Abcd efgh X Y blah i jkl</P>

Consider the insertion of the text "inserted text" in the following locations:

1. Before the ’X’:

<P>Abcd efgh inserted text XY blah i jkl</P>

2. After the ’X’:

<P>Abcd efgh X inserted text Y blah i jkl</P>

3. After the ’Y’:

<P>Abcd efgh X Yinserted text blah i jkl</P>

4. After the ’h’ in "Y blah":

<P>Abcd efgh X Y blah inserted text i jkl</P>

Editor’s NOTE:All of these results make intuitive sense except, perhaps, for example 2. where it
might be expected that the result would be

<P>Abcd efgh X inserted text Y blah i jkl</P>

72

7.12.1. Insertions

7.12.2. Deletions

Any deletion from the document tree can be considered as a sequence of deleteContent() operations
applied to a minimal set of disjoint Ranges. To specify how a Range is modified under deletions we need
only consider what happens to a Range under a single deleteContent() operation of another Range. And, in
fact, we need on consider what happens to a single end-point of the Range since both end-points will be
modified using the same algorithm.

If an end-point is within the content being deleted, then it will be moved after the deletion to the same
location as the common end-point of the Range used to delete the contents.

If an end-point is after the content being deleted then it is not affected by the deletion unless its parent
node is also the parent node of one of the end-points of the range being deleted. If there is such a common
parent, then the index of the end-point is modified so that the end-point maintains its position relative to
the content of the parent.

If an end-point is before the content being deleted then it is not affect by the deletion at all.

Examples:

In these examples, the portion of the document selected by the Range before and after the insertion will be
shown as bold text and the content being deleted is underlined. When the Range after the deletion is an
insertion point, it will be shown as ’^ ’.

Example 1.

Before:

<P>Abcd efgh T he Range i jkl</P>

After:

<P>Abcd Range i jkl</P>

Example 2.

Before:

<p>Abcd efgh T he Range i jkl</p>

After:

<p>Abcd ^kl</p>

Example 3.

Before:

73

7.12.2. Deletions

<P>ABCD efgh T he Range ijkl</P>

After:

<P>ABCD ange ijkl</P>

Example 4.

Before:

<P>Abcd efgh T he Range i jkl</P>

After:

<P>Abcd he Range i jkl</P>

Example 5.

Before:

<P>Abcd efgh T he Range i jkl</P>

After:

<P>Abcd ^kl</P>

7.13. Formal Description of the Range Interface
To summarize, here is the complete, formal description of the Range [p.74] interface:

Interface Range
IDL Definition

interface Range {
 readonly attribute Node startParent;
 readonly attribute long startOffset;
 readonly attribute Node endParent;
 readonly attribute long endOffset;
 readonly attribute boolean isCollapsed;
 readonly attribute Node commonParent;
 void setStart(in Node parent,
 in long offset)
 raises(RangeException);
 void setEnd(in Node parent,
 in long offset)
 raises(RangeException);
 void setStartBefore(in Node sibling)
 raises(RangeException);
 void setStartAfter(in Node sibling)
 raises(RangeException);
 void setEndBefore(in Node sibling)
 raises(RangeException);
 void setEndAfter(in Node sibling)
 raises(RangeException);

74

7.13. Formal Description of the Range Interface

 void collapse(in boolean toStart);
 void selectNode(in Node n)
 raises(RangeException);
 void selectNodeContents(in Node n)
 raises(RangeException);
 typedef enum CompareHow_ {
 StartToStart,
 StartToEnd,
 EndToEnd,
 EndToStart
 } CompareHow;
 short compareEndPoints(in CompareHow how,
 in Range sourceRange)
 raises(DOMException);
 void deleteContents()
 raises(DOMException);
 DocumentFragment extractContents()
 raises(DOMException);
 DocumentFragment cloneContents();
 void insertNode(in Node n)
 raises(DOMException, RangeException);
 void surroundContents(in Node n)
 raises(DOMException, RangeException);
 Range cloneRange();
 DOMString toString();
};

Attributes
startParent

Node within which the range begins
startOffset

Offset in the starting node of the start of the range.
endParent

Node within which the range ends
endOffset

Offset in the ending node of the end of the range.
isCollapsed

TRUE if the range is collapsed
commonParent

The common ancestor node of the entire range
Methods

setStart
Sets the attribute values describing the start of the range.
Parameters

parent The startNode value. This parameter must be non-null.

offset The startOffset value.

Exceptions

75

7.13. Formal Description of the Range Interface

RangeException [p.80]

NULL_PARENT_ERR: Raised if startNode is null.

INVALID_NODE_TYPE_ERR: Raised if an ancestor of startNode is an Attr,
Entity, Notation or DocumentType node.

This method returns nothing.
setEnd

Sets the attributes describing the end of a range.
Parameters

parent The endNode value. This parameter must be non-null.

offset The endOffset value.

Exceptions
RangeException [p.80]

NULL_PARENT_ERR: Raised if endNode is null.

INVALID_NODE_TYPE_ERR: Raised if an ancestor of startNode is an Attr,
Entity, Notation or DocumentType node.

This method returns nothing.
setStartBefore

Sets the starting position before a node
Parameters

sibling Range starts before this node

Exceptions
RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of sibling is an Attr,
Entity, Notation or DocumentType node or if sibling itself is a Document or
DocumentFragment node.

This method returns nothing.
setStartAfter

Sets the starting position after a node
Parameters

sibling Range starts after this node

Exceptions
RangeException [p.80]

76

7.13. Formal Description of the Range Interface

INVALID_NODE_TYPE_ERR: Raised if an ancestor of sibling is an Attr,
Entity, Notation or DocumentType node or if sibling itself is a Document or
DocumentFragment node.

This method returns nothing.
setEndBefore

Sets the ending position of a range to be before a given node.
Parameters

sibling Range ends before this node

Exceptions
RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of sibling is an Attr,
Entity, Notation or DocumentType node or if sibling itself is a Document or
DocumentFragment node.

This method returns nothing.
setEndAfter

Sets the ending position of a range to be after a given node
Parameters

sibling Range ends after this node.

Exceptions
RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of sibling is an Attr,
Entity, Notation or DocumentType node or if sibling itself is a Document or
DocumentFragment node.

This method returns nothing.
collapse

Collapse a range onto one of the end points
Parameters

toStart If TRUE, collapses onto the starting node; if FALSE, collapses
the range onto the ending node.

This method returns nothing.
This method raises no exceptions.

selectNode
Select a node and its contents
Parameters

n Node to select from

77

7.13. Formal Description of the Range Interface

Exceptions
RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of n is an Attr, Entity,
Notation or DocumentType node or if n itself is a Document or
DocumentFragment node.

This method returns nothing.
selectNodeContents

Select the contents within a node
Parameters

n Node to select from

Exceptions
RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if an ancestor of n is an Attr, Entity,
Notation or DocumentType node.

This method returns nothing.
Type Definition CompareHow

Enumeration CompareHow_

Enumerator Values

StartToStart

StartToEnd

EndToEnd

EndToStart

Methods
compareEndPoints

Compare the end-points of two ranges in a document.
Parameters

how

sourceRange

Return Value
-1, 0 or 1 depending on whether the corresponding end-point of the Range is less than,
equal or greater than the corresponding end-point of sourceRange.

78

7.13. Formal Description of the Range Interface

Exceptions
DOMException

WRONG_DOCUMENT_ERR: Raised if the two Ranges are not in the same
document or document fragment.

deleteContents
Removes the contents of a range from the containing document or document fragment
without returning a reference to the removed content.
Exceptions

DOMException

NO_MODIFICATION_ALLOWED_ERR: Raised if any portion of the content
of the range is readonly or any of the nodes which contain any of the content of
the range are readonly.

This method has no parameters.
This method returns nothing.

extractContents
Moves the contents of a range from the containing document or document fragment to a
new DocumentFragment.
Return Value

A DocumentFragment containing the extracted contents.
Exceptions

DOMException

NO_MODIFICATION_ALLOWED_ERR: Raised if any portion of the content
of the range is readonly or any of the nodes which contain any of the content of
the range are readonly.

This method has no parameters.
cloneContents

Duplicates the contents of a range
Return Value

A DocumentFragment containing contents equivalent to those of this range.
This method has no parameters.
This method raises no exceptions.

insertNode
inserts the specified node into the document or document fragment at the start end-point of
the range.
Parameters

n The node to insert at the start end-point of the range

Exceptions
DOMException

79

7.13. Formal Description of the Range Interface

NO_MODIFICATION_ALLOWED_ERR: Raised if the parent or any ancestor
of the start end-point of the range is readonly.

RangeException [p.80]

INVALID_NODE_TYPE_ERR: Raised if n is an Attr, Entity, Notation,
DocumentType or Document node.

This method returns nothing.
surroundContents

Reparents the contents of the range to the given node and inserts the node at the location of
the start end-point of the range.
Parameters

n The node to surround the contents with.

Exceptions
DOMException

NO_MODIFICATION_ALLOWED_ERR: Raised if the parent or any ancestor
of the either end-point of the range is readonly.

RangeException [p.80]

BAD_ENDPOINTS_ERR: Raised if the range only partially contains a node.

INVALID_NODE_TYPE_ERR: Raised if n is an Attr, Entity, DocumentType,
Notation, Document or DocumentFragment node.

This method returns nothing.
cloneRange

Produces a new range whose end-points are equal to the end-points of the range.
Return Value

The duplicated range.
This method has no parameters.
This method raises no exceptions.

toString
Returns the contents of a range as a string.
Return Value

The contents of the range.
This method has no parameters.
This method raises no exceptions.

Exception RangeException

The Range object needs additional exception codes to those in DOM Level 1. These codes will need
to be consolidated with other exceptions added to DOM Level 2.
IDL Definition

80

7.13. Formal Description of the Range Interface

exception RangeException {
 unsigned short code;
};

// RangeExceptionCode
const unsigned short BAD_ENDPOINTS_ERR = 201;
const unsigned short INVALID_NODE_TYPE_ERR = 202;
const unsigned short NULL_PARENT_ERR = 203;

Definition group RangeExceptionCode

An integer indicating the type of error generated.
Defined Constants

BAD_ENDPOINTS_ERR
If the end-points of a range do not meet specific
requirements.

INVALID_NODE_TYPE_ERR
If the parent of an end-point of a range is being set
using either a node with an ancestor of an invalid
type or a node with an invalid type.

NULL_PARENT_ERR
If the parent of an end-point of a range is being set
to null.

81

7.13. Formal Description of the Range Interface

82

7.13. Formal Description of the Range Interface

Appendix A: Contributors
Members of the DOM Working Group and Interest Group contributing to this specification were:

Lauren Wood, SoftQuad Software Inc., chair
Arnaud Le Hors, W3C, W3C staff contact
Andy Heninger, IBM
Bill Smith, Sun
Bill Shea, Merrill Lynch
Bob Sutor, IBM
Chris Wilson, Microsoft
David Brownell, Sun
Don Park, Docuverse
Eric Vasilik, Microsoft
Gavin Nicol, INSO
Jared Sorensen, Novell
Joe Kesselman, IBM
Joe Lapp, webMethods
Jonathan Robie, Texcel
Mike Champion, Arbortext
Peter Sharpe, SoftQuad Software Inc.
Ramesh Lekshmynarayanan, Merrill Lynch
Ray Whitmer, iMall
Rich Rollman, Microsoft
Tom Pixley, Netscape
Vidur Apparao, Netscape

83

Appendix A: Contributors

84

Appendix A: Contributors

Appendix B: Glossary
Editors

Robert S. Sutor, IBM Research

85

Appendix B: Glossary

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an application programming interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model, a technology for building applications from binary
software components.

content model
The content model is a simple grammar governing the allowed types of the child elements and the
order in which they appear. See [XML]

context
A context specifies an access pattern (or path): a set of interfaces which give you a way to interact
with a model. For example, imagine a model with different colored arcs connecting data nodes. A
context might be a sheet of colored acetate that is placed over the model allowing you a partial view
of the total information in the model.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

cooked model
A model for a document that represents the document after it has been manipulated in some way. For
example, any combination of any of the following transformations would create a cooked model:

1. Expansion of internal text entities.
2. Expansion of external entities.
3. Model augmentation with style-specified generated text.
4. Execution of style-specified reordering.
5. Execution of scripts.

A browser might only be able to provide access to a cooked model, while an editor might provide
access to a cooked or the initial structure model (also known as the uncooked model) for a document.

CORBA
CORBA is the Common Object Request Broker Architecture from the OMG . This architecture is a
collection of objects and libraries that allow the creation of applications containing objects that make
and receive requests and responses in a distributed environment.

86

Appendix B: Glossary

http://www.microsoft.com/com
http://www.w3.org/TR/REC-xml#sec3.2
http://www.omg.org/

cursor
A cursor is an object representation of a node. It may possess information about context and the path
traversed to reach the node.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

deprecation
When new releases of specifications are released, some older features may be marked as being
deprecated. This means that new work should not use the features and that although they are
supported in the current release, they may not be supported or available in future releases.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

ECMAScript
The programming language defined by the ECMA-262 standard. As stated in the standard, the
originating technology for ECMAScript was JavaScript. Note that in the ECMAScript binding, the
word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. [XML]

event propagation, also known as event bubbling
This is the idea that an event can affect one object and a set of related objects. Any of the potentially
affected objects can block the event or substitute a different one (upward event propagation). The
event is broadcast from the node at which it originates to every parent node.

equivalence
Two nodes are equivalent if they have the same node type and same node name. Also, if the nodes
contain data, that must be the same. Finally, if the nodes have attributes then collection of attribute
names must be the same and the attributes corresponding by name must be equivalent as nodes. Two
nodes are deeply equivalent if they are equivalent, the child node lists are equivalent are equivalent as
NodeList objects, and the pairs of equivalent attributes must in fact be deeply equivalent. Two
NodeList objects are equivalent if they have the same length, and the nodes corresponding by index
are deeply equivalent. Two NamedNodeMap objects are equivalent if they are have the same length,
they have same collection of names, and the nodes corresponding by name in the maps are deeply
equivalent. Two DocumentType nodes are equivalent if they are equivalent as nodes, have the same
names, and have equivalent entities and attributes NamedNodeMap objects.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML 3.2] [HTML4.0]

87

Appendix B: Glossary

http://www.ecma.ch/stand/ecma-262.htm
http://developer.netscape.com/one/javascript/resources.html
http://www.w3.org/TR/REC-xml#sec-logical-struct
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html40

IDL
An Interface Definition Language (IDL) is used to define the interfaces for accessing and operating
upon objects. Examples of IDLs are the Object Management Group’s IDL , Microsoft’s IDL , and
Sun’s Java IDL .

implementor
Companies, organizations, and individuals that claim to support the Document Object Model as an
API for their products.

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

initial structure model
Also known as the raw structure model or the uncooked model, this represents the document before it
has been modified by entity expansions, generated text, style-specified reordering, or the execution of
scripts. In some implementations, this might correspond to the "initial parse tree" for the document, if
it ever exists. Note that a given implementation might not be able to provide access to the initial
structure model for a document, though an editor probably would.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually
inherit from one another.

language binding
A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

root node
The root node is the unique node that is not a child of any other node. All other nodes are children or
other descendents of the root node. [XML]

sibling
Two nodes are siblings if they have the same parent node.

88

Appendix B: Glossary

http://www.omg.org/
http://premium.microsoft.com/msdn/library/sdkdoc/mi-laref_49v0.htm
http://java.sun.com/products/jdk/preview/docs/ext/idl/
http://www.w3.org/TR/REC-xml#sec2.1

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from the Unicode 2.0 standard.

tag valid document
A document is tag valid if all begin and end tags are properly balanced and nested.

type valid document
A document is type valid if it conforms to an explicit DTD.

uncooked model
See initial structure model.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML which is completely
described in this document. The goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML. [XML]

89

Appendix B: Glossary

http://www.w3.org/TR/REC-xml

90

Appendix B: Glossary

Appendix C: IDL Definitions
This appendix contains the complete OMG IDL for the Level 1 Document Object Model definitions. The
definitions are divided into Stylesheets [p.91] , CSS [p.91] , Events [p.95] , Filters and Iterators [p.96] ,
and Range [p.97] .

C.1: Document Object Model Level 2 Stylesheets

stylesheets.idl:
// File: stylesheets.idl
#ifndef _STYLESHEETS_IDL_
#define _STYLESHEETS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module stylesheets
{
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;

 interface StyleSheet {
 readonly attribute DOMString type;
 attribute boolean disabled;
 readonly attribute Node owningNode;
 readonly attribute StyleSheet parentStyleSheet;
 readonly attribute DOMString href;
 readonly attribute DOMString title;
 readonly attribute DOMString media;
 };

 interface StyleSheetCollection {
 readonly attribute unsigned long length;
 StyleSheet item(in unsigned long index);
 };

};

#endif // _STYLESHEETS_IDL_

C.2: Document Object Model Level 2 CSS

css.idl:
// File: css.idl
#ifndef _CSS_IDL_
#define _CSS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"

91

Appendix C: IDL Definitions

module css
{
 typedef dom::DOMString DOMString;
 typedef dom::StyleSheet StyleSheet;

 interface CSSRule;
 interface CSSStyleSheet;
 interface CSSStyleDeclaration;

 interface CSSRuleCollection {
 readonly attribute unsigned long length;
 CSSRule item(in unsigned long index);
 };

 interface CSSRule {
 // RuleType
 const unsigned short UNKNOWN_RULE = 0;
 const unsigned short STYLE_RULE = 1;
 const unsigned short IMPORT_RULE = 2;
 const unsigned short MEDIA_RULE = 3;
 const unsigned short FONT_FACE_RULE = 4;
 const unsigned short PAGE_RULE = 5;

 readonly attribute unsigned short type;
 attribute DOMString cssText;
 // raises(DOMException) on setting
 readonly attribute CSSStyleSheet parentStyleSheet;
 readonly attribute CSSRule parentRule;
 };

 interface CSSStyleRule : CSSRule {
 attribute DOMString selectorText;
 readonly attribute CSSStyleDeclaration style;
 };

 interface CSSMediaRule : CSSRule {
 attribute DOMString mediaTypes;
 readonly attribute CSSRuleCollection cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index);
 };

 interface CSSFontFaceRule : CSSRule {
 readonly attribute CSSStyleDeclaration style;
 };

 interface CSSPageRule : CSSRule {
 attribute DOMString selectorText;
 readonly attribute CSSStyleDeclaration style;
 };

 interface CSSImportRule : CSSRule {
 attribute DOMString href;
 attribute DOMString media;
 readonly attribute CSSStyleSheet styleSheet;

92

css.idl:

 };

 interface CSSUnknownRule : CSSRule {
 };

 interface CSSStyleDeclaration {
 attribute DOMString cssText;
 // raises(DOMException) on setting
 DOMString getPropertyValue(in DOMString propertyName);
 DOMString removeProperty(in DOMString propertyName);
 DOMString getPropertyPriority(in DOMString propertyName);
 void setProperty(in DOMString propertyName,
 in DOMString value,
 in DOMString priority)
 raises(DOMException);
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 readonly attribute CSSRule parentRule;
 };

 interface CSS2Properties {
 attribute DOMString azimuth;
 attribute DOMString background;
 attribute DOMString backgroundAttachment;
 attribute DOMString backgroundColor;
 attribute DOMString backgroundImage;
 attribute DOMString backgroundPosition;
 attribute DOMString backgroundRepeat;
 attribute DOMString border;
 attribute DOMString borderCollapse;
 attribute DOMString borderColor;
 attribute DOMString borderSpacing;
 attribute DOMString borderStyle;
 attribute DOMString borderTop;
 attribute DOMString borderRight;
 attribute DOMString borderBottom;
 attribute DOMString borderLeft;
 attribute DOMString borderTopColor;
 attribute DOMString borderRightColor;
 attribute DOMString borderBottomColor;
 attribute DOMString borderLeftColor;
 attribute DOMString borderTopStyle;
 attribute DOMString borderRightStyle;
 attribute DOMString borderBottomStyle;
 attribute DOMString borderLeftStyle;
 attribute DOMString borderTopWidth;
 attribute DOMString borderRightWidth;
 attribute DOMString borderBottomWidth;
 attribute DOMString borderLeftWidth;
 attribute DOMString borderWidth;
 attribute DOMString bottom;
 attribute DOMString captionSide;
 attribute DOMString clear;
 attribute DOMString clip;
 attribute DOMString color;
 attribute DOMString content;
 attribute DOMString counterIncrement;

93

css.idl:

 attribute DOMString counterReset;
 attribute DOMString cue;
 attribute DOMString cueAfter;
 attribute DOMString cueBefore;
 attribute DOMString cursor;
 attribute DOMString direction;
 attribute DOMString display;
 attribute DOMString elevation;
 attribute DOMString emptyCells;
 attribute DOMString cssFloat;
 attribute DOMString font;
 attribute DOMString fontFamily;
 attribute DOMString fontSize;
 attribute DOMString fontSizeAdjust;
 attribute DOMString fontStretch;
 attribute DOMString fontStyle;
 attribute DOMString fontVariant;
 attribute DOMString fontWeight;
 attribute DOMString height;
 attribute DOMString left;
 attribute DOMString letterSpacing;
 attribute DOMString lineHeight;
 attribute DOMString listStyle;
 attribute DOMString listStyleImage;
 attribute DOMString listStylePosition;
 attribute DOMString listStyleType;
 attribute DOMString margin;
 attribute DOMString marginTop;
 attribute DOMString marginRight;
 attribute DOMString marginBottom;
 attribute DOMString marginLeft;
 attribute DOMString markerOffset;
 attribute DOMString marks;
 attribute DOMString maxHeight;
 attribute DOMString maxWidth;
 attribute DOMString minHeight;
 attribute DOMString minWidth;
 attribute DOMString orphans;
 attribute DOMString outline;
 attribute DOMString outlineColor;
 attribute DOMString outlineStyle;
 attribute DOMString outlineWidth;
 attribute DOMString overflow;
 attribute DOMString padding;
 attribute DOMString paddingTop;
 attribute DOMString paddingRight;
 attribute DOMString paddingBottom;
 attribute DOMString paddingLeft;
 attribute DOMString page;
 attribute DOMString pageBreakAfter;
 attribute DOMString pageBreakBefore;
 attribute DOMString pageBreakInside;
 attribute DOMString pause;
 attribute DOMString pauseAfter;
 attribute DOMString pauseBefore;
 attribute DOMString pitch;
 attribute DOMString pitchRange;

94

css.idl:

 attribute DOMString playDuring;
 attribute DOMString position;
 attribute DOMString quotes;
 attribute DOMString richness;
 attribute DOMString right;
 attribute DOMString size;
 attribute DOMString speak;
 attribute DOMString speakHeader;
 attribute DOMString speakNumeral;
 attribute DOMString speakPunctuation;
 attribute DOMString speechRate;
 attribute DOMString stress;
 attribute DOMString tableLayout;
 attribute DOMString textAlign;
 attribute DOMString textDecoration;
 attribute DOMString textIndent;
 attribute DOMString textShadow;
 attribute DOMString textTransform;
 attribute DOMString top;
 attribute DOMString unicodeBidi;
 attribute DOMString verticalAlign;
 attribute DOMString visibility;
 attribute DOMString voiceFamily;
 attribute DOMString volume;
 attribute DOMString whiteSpace;
 attribute DOMString widows;
 attribute DOMString width;
 attribute DOMString wordSpacing;
 attribute DOMString zIndex;
 };

 interface CSSStyleSheet : StyleSheet {
 readonly attribute CSSRuleCollection cssRules;
 unsigned long insertRule(in DOMString rule,
 in unsigned long index)
 raises(DOMException);
 void deleteRule(in unsigned long index)
 raises(DOMException);
 };

};

#endif // _CSS_IDL_

C.3: Document Object Model Level 2 Events

events.idl:
// File: events.idl
#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"

95

C.3: Document Object Model Level 2 Events

module events
{
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;

 interface EventListener;
 interface Event;

 interface EventTarget {
 void addEventListener(in DOMString type,
 in boolean postProcess,
 in boolean useCapture,
 in EventListener listener);
 void removeEventListener(in DOMString type,
 in boolean postProcess,
 in boolean useCapture,
 in EventListener listener);
 };

 interface EventListener {
 void handleEvent(in Event event);
 };

 interface Event {
 attribute DOMString type;
 attribute Node target;
 attribute Node currentNode;
 attribute boolean cancelBubble;
 attribute boolean cancelCapture;
 attribute boolean returnValue;
 };

 interface UIEvent : Event {
 attribute long screenX;
 attribute long screenY;
 attribute long clientX;
 attribute long clientY;
 attribute boolean altKey;
 attribute boolean ctrlKey;
 attribute boolean shiftKey;
 attribute unsigned long keyCode;
 attribute unsigned long charCode;
 attribute unsigned short button;
 };

 interface MutationEvent : Event {
 attribute Node relatedNode;
 attribute DOMString prevValue;
 attribute DOMString newValue;
 attribute DOMString attrName;
 };

};

#endif // _EVENTS_IDL_

96

events.idl:

C.4: Document Object Model Level 2 Filters and Iterators

fi.idl:
// File: fi.idl
#ifndef _FI_IDL_
#define _FI_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module fi
{
 typedef dom::Node Node;

 interface NodeIterator {
 Node nextNode();
 Node prevNode();
 };

 interface Document {
 boolean createTreeIterator(in Node root,
 in short whatToShow);
 };

 interface NodeFilter {
 boolean acceptNode(in Node n);
 };

};

#endif // _FI_IDL_

C.5: Document Object Model Level 2 Range

range.idl:
// File: range.idl
#ifndef _RANGE_IDL_
#define _RANGE_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module range
{
 typedef dom::Node Node;
 typedef dom::DocumentFragment DocumentFragment;
 typedef dom::DOMString DOMString;

 exception RangeException {
 unsigned short code;
 };

97

C.4: Document Object Model Level 2 Filters and Iterators

 // RangeExceptionCode
 const unsigned short BAD_ENDPOINTS_ERR = 201;
 const unsigned short INVALID_NODE_TYPE_ERR = 202;
 const unsigned short NULL_PARENT_ERR = 203;

 interface Range {
 readonly attribute Node startParent;
 readonly attribute long startOffset;
 readonly attribute Node endParent;
 readonly attribute long endOffset;
 readonly attribute boolean isCollapsed;
 readonly attribute Node commonParent;
 void setStart(in Node parent,
 in long offset)
 raises(RangeException);
 void setEnd(in Node parent,
 in long offset)
 raises(RangeException);
 void setStartBefore(in Node sibling)
 raises(RangeException);
 void setStartAfter(in Node sibling)
 raises(RangeException);
 void setEndBefore(in Node sibling)
 raises(RangeException);
 void setEndAfter(in Node sibling)
 raises(RangeException);
 void collapse(in boolean toStart);
 void selectNode(in Node n)
 raises(RangeException);
 void selectNodeContents(in Node n)
 raises(RangeException);
 typedef enum CompareHow_ {
 StartToStart,
 StartToEnd,
 EndToEnd,
 EndToStart
 } CompareHow;
 short compareEndPoints(in CompareHow how,
 in Range sourceRange)
 raises(DOMException);
 void deleteContents()
 raises(DOMException);
 DocumentFragment extractContents()
 raises(DOMException);
 DocumentFragment cloneContents();
 void insertNode(in Node n)
 raises(DOMException, RangeException);
 void surroundContents(in Node n)
 raises(DOMException, RangeException);
 Range cloneRange();
 DOMString toString();
 };

};

#endif // _RANGE_IDL_

98

range.idl:

Appendix D: Java Language Binding
This appendix contains the complete Java bindings for the Level 2 Document Object Model. The
definitions are divided into Stylesheets [p.99] , CSS [p.99] , Events [p.107] , Filters and Iterators [p.108] ,
and Range [p.109] .

D.1: Document Object Model Level 2 Stylesheets

org/w3c/dom/stylesheets/StyleSheet.java:
package org.w3c.dom.stylesheets;

import org.w3c.dom.*;

public interface StyleSheet {
 public String getType();
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public Node getOwningNode();
 public StyleSheet getParentStyleSheet();
 public String getHref();
 public String getTitle();
 public String getMedia();
}

org/w3c/dom/stylesheets/StyleSheetCollection.java:
package org.w3c.dom.stylesheets;

import org.w3c.dom.*;

public interface StyleSheetCollection {
 public int getLength();
 public StyleSheet item(int index);
}

D.2: Document Object Model Level 2 CSS

org/w3c/dom/css/CSSStyleSheet.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSStyleSheet extends StyleSheet {
 public CSSRuleCollection getCssRules();
 public int insertRule(String rule,
 int index)

99

Appendix D: Java Language Binding

 throws DOMException;
 public void deleteRule(int index)
 throws DOMException;
}

org/w3c/dom/css/CSSRuleCollection.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSRuleCollection {
 public int getLength();
 public CSSRule item(int index);
}

org/w3c/dom/css/CSSRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSRule {
 // RuleType
 public static final short UNKNOWN_RULE = 0;
 public static final short STYLE_RULE = 1;
 public static final short IMPORT_RULE = 2;
 public static final short MEDIA_RULE = 3;
 public static final short FONT_FACE_RULE = 4;
 public static final short PAGE_RULE = 5;

 public short getType();
 public String getCssText();
 public void setCssText(String cssText)
 throws DOMException;
 public CSSStyleSheet getParentStyleSheet();
 public CSSRule getParentRule();
}

org/w3c/dom/css/CSSStyleRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSStyleRule extends CSSRule {
 public String getSelectorText();
 public void setSelectorText(String selectorText);
 public CSSStyleDeclaration getStyle();
}

100

org/w3c/dom/css/CSSRuleCollection.java:

org/w3c/dom/css/CSSMediaRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSMediaRule extends CSSRule {
 public String getMediaTypes();
 public void setMediaTypes(String mediaTypes);
 public CSSRuleCollection getCssRules();
 public int insertRule(String rule,
 int index)
 throws DOMException;
 public void deleteRule(int index);
}

org/w3c/dom/css/CSSFontFaceRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSFontFaceRule extends CSSRule {
 public CSSStyleDeclaration getStyle();
}

org/w3c/dom/css/CSSPageRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSPageRule extends CSSRule {
 public String getSelectorText();
 public void setSelectorText(String selectorText);
 public CSSStyleDeclaration getStyle();
}

org/w3c/dom/css/CSSImportRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSImportRule extends CSSRule {
 public String getHref();
 public void setHref(String href);
 public String getMedia();
 public void setMedia(String media);
 public CSSStyleSheet getStyleSheet();
}

101

org/w3c/dom/css/CSSMediaRule.java:

org/w3c/dom/css/CSSUnknownRule.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSUnknownRule extends CSSRule {
}

org/w3c/dom/css/CSSStyleDeclaration.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSSStyleDeclaration {
 public String getCssText();
 public void setCssText(String cssText)
 throws DOMException;
 public String getPropertyValue(String propertyName);
 public String removeProperty(String propertyName);
 public String getPropertyPriority(String propertyName);
 public void setProperty(String propertyName,
 String value,
 String priority)
 throws DOMException;
 public int getLength();
 public String item(int index);
 public CSSRule getParentRule();
}

org/w3c/dom/css/CSS2Properties.java:
package org.w3c.dom.css;

import org.w3c.dom.*;

public interface CSS2Properties {
 public String getAzimuth();
 public void setAzimuth(String azimuth);
 public String getBackground();
 public void setBackground(String background);
 public String getBackgroundAttachment();
 public void setBackgroundAttachment(String backgroundAttachment);
 public String getBackgroundColor();
 public void setBackgroundColor(String backgroundColor);
 public String getBackgroundImage();
 public void setBackgroundImage(String backgroundImage);
 public String getBackgroundPosition();
 public void setBackgroundPosition(String backgroundPosition);
 public String getBackgroundRepeat();
 public void setBackgroundRepeat(String backgroundRepeat);
 public String getBorder();
 public void setBorder(String border);
 public String getBorderCollapse();

102

org/w3c/dom/css/CSSUnknownRule.java:

 public void setBorderCollapse(String borderCollapse);
 public String getBorderColor();
 public void setBorderColor(String borderColor);
 public String getBorderSpacing();
 public void setBorderSpacing(String borderSpacing);
 public String getBorderStyle();
 public void setBorderStyle(String borderStyle);
 public String getBorderTop();
 public void setBorderTop(String borderTop);
 public String getBorderRight();
 public void setBorderRight(String borderRight);
 public String getBorderBottom();
 public void setBorderBottom(String borderBottom);
 public String getBorderLeft();
 public void setBorderLeft(String borderLeft);
 public String getBorderTopColor();
 public void setBorderTopColor(String borderTopColor);
 public String getBorderRightColor();
 public void setBorderRightColor(String borderRightColor);
 public String getBorderBottomColor();
 public void setBorderBottomColor(String borderBottomColor);
 public String getBorderLeftColor();
 public void setBorderLeftColor(String borderLeftColor);
 public String getBorderTopStyle();
 public void setBorderTopStyle(String borderTopStyle);
 public String getBorderRightStyle();
 public void setBorderRightStyle(String borderRightStyle);
 public String getBorderBottomStyle();
 public void setBorderBottomStyle(String borderBottomStyle);
 public String getBorderLeftStyle();
 public void setBorderLeftStyle(String borderLeftStyle);
 public String getBorderTopWidth();
 public void setBorderTopWidth(String borderTopWidth);
 public String getBorderRightWidth();
 public void setBorderRightWidth(String borderRightWidth);
 public String getBorderBottomWidth();
 public void setBorderBottomWidth(String borderBottomWidth);
 public String getBorderLeftWidth();
 public void setBorderLeftWidth(String borderLeftWidth);
 public String getBorderWidth();
 public void setBorderWidth(String borderWidth);
 public String getBottom();
 public void setBottom(String bottom);
 public String getCaptionSide();
 public void setCaptionSide(String captionSide);
 public String getClear();
 public void setClear(String clear);
 public String getClip();
 public void setClip(String clip);
 public String getColor();
 public void setColor(String color);
 public String getContent();
 public void setContent(String content);
 public String getCounterIncrement();
 public void setCounterIncrement(String counterIncrement);
 public String getCounterReset();
 public void setCounterReset(String counterReset);

103

org/w3c/dom/css/CSS2Properties.java:

 public String getCue();
 public void setCue(String cue);
 public String getCueAfter();
 public void setCueAfter(String cueAfter);
 public String getCueBefore();
 public void setCueBefore(String cueBefore);
 public String getCursor();
 public void setCursor(String cursor);
 public String getDirection();
 public void setDirection(String direction);
 public String getDisplay();
 public void setDisplay(String display);
 public String getElevation();
 public void setElevation(String elevation);
 public String getEmptyCells();
 public void setEmptyCells(String emptyCells);
 public String getCssFloat();
 public void setCssFloat(String cssFloat);
 public String getFont();
 public void setFont(String font);
 public String getFontFamily();
 public void setFontFamily(String fontFamily);
 public String getFontSize();
 public void setFontSize(String fontSize);
 public String getFontSizeAdjust();
 public void setFontSizeAdjust(String fontSizeAdjust);
 public String getFontStretch();
 public void setFontStretch(String fontStretch);
 public String getFontStyle();
 public void setFontStyle(String fontStyle);
 public String getFontVariant();
 public void setFontVariant(String fontVariant);
 public String getFontWeight();
 public void setFontWeight(String fontWeight);
 public String getHeight();
 public void setHeight(String height);
 public String getLeft();
 public void setLeft(String left);
 public String getLetterSpacing();
 public void setLetterSpacing(String letterSpacing);
 public String getLineHeight();
 public void setLineHeight(String lineHeight);
 public String getListStyle();
 public void setListStyle(String listStyle);
 public String getListStyleImage();
 public void setListStyleImage(String listStyleImage);
 public String getListStylePosition();
 public void setListStylePosition(String listStylePosition);
 public String getListStyleType();
 public void setListStyleType(String listStyleType);
 public String getMargin();
 public void setMargin(String margin);
 public String getMarginTop();
 public void setMarginTop(String marginTop);
 public String getMarginRight();
 public void setMarginRight(String marginRight);
 public String getMarginBottom();

104

org/w3c/dom/css/CSS2Properties.java:

 public void setMarginBottom(String marginBottom);
 public String getMarginLeft();
 public void setMarginLeft(String marginLeft);
 public String getMarkerOffset();
 public void setMarkerOffset(String markerOffset);
 public String getMarks();
 public void setMarks(String marks);
 public String getMaxHeight();
 public void setMaxHeight(String maxHeight);
 public String getMaxWidth();
 public void setMaxWidth(String maxWidth);
 public String getMinHeight();
 public void setMinHeight(String minHeight);
 public String getMinWidth();
 public void setMinWidth(String minWidth);
 public String getOrphans();
 public void setOrphans(String orphans);
 public String getOutline();
 public void setOutline(String outline);
 public String getOutlineColor();
 public void setOutlineColor(String outlineColor);
 public String getOutlineStyle();
 public void setOutlineStyle(String outlineStyle);
 public String getOutlineWidth();
 public void setOutlineWidth(String outlineWidth);
 public String getOverflow();
 public void setOverflow(String overflow);
 public String getPadding();
 public void setPadding(String padding);
 public String getPaddingTop();
 public void setPaddingTop(String paddingTop);
 public String getPaddingRight();
 public void setPaddingRight(String paddingRight);
 public String getPaddingBottom();
 public void setPaddingBottom(String paddingBottom);
 public String getPaddingLeft();
 public void setPaddingLeft(String paddingLeft);
 public String getPage();
 public void setPage(String page);
 public String getPageBreakAfter();
 public void setPageBreakAfter(String pageBreakAfter);
 public String getPageBreakBefore();
 public void setPageBreakBefore(String pageBreakBefore);
 public String getPageBreakInside();
 public void setPageBreakInside(String pageBreakInside);
 public String getPause();
 public void setPause(String pause);
 public String getPauseAfter();
 public void setPauseAfter(String pauseAfter);
 public String getPauseBefore();
 public void setPauseBefore(String pauseBefore);
 public String getPitch();
 public void setPitch(String pitch);
 public String getPitchRange();
 public void setPitchRange(String pitchRange);
 public String getPlayDuring();
 public void setPlayDuring(String playDuring);

105

org/w3c/dom/css/CSS2Properties.java:

 public String getPosition();
 public void setPosition(String position);
 public String getQuotes();
 public void setQuotes(String quotes);
 public String getRichness();
 public void setRichness(String richness);
 public String getRight();
 public void setRight(String right);
 public String getSize();
 public void setSize(String size);
 public String getSpeak();
 public void setSpeak(String speak);
 public String getSpeakHeader();
 public void setSpeakHeader(String speakHeader);
 public String getSpeakNumeral();
 public void setSpeakNumeral(String speakNumeral);
 public String getSpeakPunctuation();
 public void setSpeakPunctuation(String speakPunctuation);
 public String getSpeechRate();
 public void setSpeechRate(String speechRate);
 public String getStress();
 public void setStress(String stress);
 public String getTableLayout();
 public void setTableLayout(String tableLayout);
 public String getTextAlign();
 public void setTextAlign(String textAlign);
 public String getTextDecoration();
 public void setTextDecoration(String textDecoration);
 public String getTextIndent();
 public void setTextIndent(String textIndent);
 public String getTextShadow();
 public void setTextShadow(String textShadow);
 public String getTextTransform();
 public void setTextTransform(String textTransform);
 public String getTop();
 public void setTop(String top);
 public String getUnicodeBidi();
 public void setUnicodeBidi(String unicodeBidi);
 public String getVerticalAlign();
 public void setVerticalAlign(String verticalAlign);
 public String getVisibility();
 public void setVisibility(String visibility);
 public String getVoiceFamily();
 public void setVoiceFamily(String voiceFamily);
 public String getVolume();
 public void setVolume(String volume);
 public String getWhiteSpace();
 public void setWhiteSpace(String whiteSpace);
 public String getWidows();
 public void setWidows(String widows);
 public String getWidth();
 public void setWidth(String width);
 public String getWordSpacing();
 public void setWordSpacing(String wordSpacing);
 public String getZIndex();
 public void setZIndex(String zIndex);
}

106

org/w3c/dom/css/CSS2Properties.java:

D.3: Document Object Model Level 2 Events

org/w3c/dom/events/EventTarget.java:
package org.w3c.dom.events;

import org.w3c.dom.*;

public interface EventTarget {
 public void addEventListener(String type,
 boolean postProcess,
 boolean useCapture,
 EventListener listener);
 public void removeEventListener(String type,
 boolean postProcess,
 boolean useCapture,
 EventListener listener);
}

org/w3c/dom/events/EventListener.java:
package org.w3c.dom.events;

import org.w3c.dom.*;

public interface EventListener {
 public void handleEvent(Event event);
}

org/w3c/dom/events/Event.java:
package org.w3c.dom.events;

import org.w3c.dom.*;

public interface Event {
 public String getType();
 public void setType(String type);
 public Node getTarget();
 public void setTarget(Node target);
 public Node getCurrentNode();
 public void setCurrentNode(Node currentNode);
 public boolean getCancelBubble();
 public void setCancelBubble(boolean cancelBubble);
 public boolean getCancelCapture();
 public void setCancelCapture(boolean cancelCapture);
 public boolean getReturnValue();
 public void setReturnValue(boolean returnValue);
}

107

D.3: Document Object Model Level 2 Events

org/w3c/dom/events/UIEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.*;

public interface UIEvent extends Event {
 public int getScreenX();
 public void setScreenX(int screenX);
 public int getScreenY();
 public void setScreenY(int screenY);
 public int getClientX();
 public void setClientX(int clientX);
 public int getClientY();
 public void setClientY(int clientY);
 public boolean getAltKey();
 public void setAltKey(boolean altKey);
 public boolean getCtrlKey();
 public void setCtrlKey(boolean ctrlKey);
 public boolean getShiftKey();
 public void setShiftKey(boolean shiftKey);
 public int getKeyCode();
 public void setKeyCode(int keyCode);
 public int getCharCode();
 public void setCharCode(int charCode);
 public short getButton();
 public void setButton(short button);
}

org/w3c/dom/events/MutationEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.*;

public interface MutationEvent extends Event {
 public Node getRelatedNode();
 public void setRelatedNode(Node relatedNode);
 public String getPrevValue();
 public void setPrevValue(String prevValue);
 public String getNewValue();
 public void setNewValue(String newValue);
 public String getAttrName();
 public void setAttrName(String attrName);
}

D.4: Document Object Model Level 2 Filters and Iterators

108

D.4: Document Object Model Level 2 Filters and Iterators

org/w3c/dom/fi/NodeIterator.java:
package org.w3c.dom.fi;

import org.w3c.dom.*;

public interface NodeIterator {
 public Node nextNode();
 public Node prevNode();
}

org/w3c/dom/fi/Document.java:
package org.w3c.dom.fi;

import org.w3c.dom.*;

public interface Document {
 public boolean createTreeIterator(Node root,
 short whatToShow);
}

org/w3c/dom/fi/NodeFilter.java:
package org.w3c.dom.fi;

import org.w3c.dom.*;

public interface NodeFilter {
 public boolean acceptNode(Node n);
}

D.5: Document Object Model Level 2 Range

org/w3c/dom/range/RangeException.java:
package org.w3c.dom.range;

import org.w3c.dom.*;

public abstract class RangeException extends RuntimeException {
 public RangeException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // RangeExceptionCode
 public static final short BAD_ENDPOINTS_ERR = 201;
 public static final short INVALID_NODE_TYPE_ERR = 202;
 public static final short NULL_PARENT_ERR = 203;

}

109

D.5: Document Object Model Level 2 Range

org/w3c/dom/range/Range.java:
package org.w3c.dom.range;

import org.w3c.dom.*;

public interface Range {
 public Node getStartParent();
 public int getStartOffset();
 public Node getEndParent();
 public int getEndOffset();
 public boolean getIsCollapsed();
 public Node getCommonParent();
 public void setStart(Node parent,
 int offset)
 throws RangeException;
 public void setEnd(Node parent,
 int offset)
 throws RangeException;
 public void setStartBefore(Node sibling)
 throws RangeException;
 public void setStartAfter(Node sibling)
 throws RangeException;
 public void setEndBefore(Node sibling)
 throws RangeException;
 public void setEndAfter(Node sibling)
 throws RangeException;
 public void collapse(boolean toStart);
 public void selectNode(Node n)
 throws RangeException;
 public void selectNodeContents(Node n)
 throws RangeException;

 public static final int StartToStart = 1;
 public static final int StartToEnd = 2;
 public static final int EndToEnd = 3;
 public static final int EndToStart = 4;

 public short compareEndPoints(int how,
 Range sourceRange)
 throws DOMException;
 public void deleteContents()
 throws DOMException;
 public DocumentFragment extractContents()
 throws DOMException;
 public DocumentFragment cloneContents();
 public void insertNode(Node n)
 throws DOMException, RangeException;
 public void surroundContents(Node n)
 throws DOMException, RangeException;
 public Range cloneRange();
 public String toString();
}

110

org/w3c/dom/range/Range.java:

Appendix E: ECMA Script Language Binding
This appendix contains the complete ECMA Script binding for the Level 2 Document Object Model
definitions. The definitions are divided into Stylesheets [p.111] , CSS [p.111] , Events [p.119] , Filters and
Iterators [p.120] , and Range [p.121] .

E.1: Document Object Model Level 2 Stylesheets
Object StyleSheet

The StyleSheet object has the following properties:
type

This property is of type String.
disabled

This property is of type boolean.
owningNode

This property is of type Node.
parentStyleSheet

This property is of type StyleSheet.
href

This property is of type String.
title

This property is of type String.
media

This property is of type String.
Object StyleSheetCollection

The StyleSheetCollection object has the following properties:
length

This property is of type int .
The StyleSheetCollection object has the following methods:

item(index)
This method returns a StyleSheet. The index parameter is of type unsigned long.

E.2: Document Object Model Level 2 CSS
Object CSSStyleSheet

CSSStyleSheet has the all the properties and methods of StyleSheet as well as the properties and
methods defined below.
The CSSStyleSheet object has the following properties:

cssRules
This property is of type CSSRuleCollection.

The CSSStyleSheet object has the following methods:
insertRule(rule, index)

This method returns a unsigned long. The rule parameter is of type DOMString . The
index parameter is of type unsigned long.

111

Appendix E: ECMA Script Language Binding

deleteRule(index)
This method returns a void. The index parameter is of type unsigned long.

Object CSSRuleCollection
The CSSRuleCollection object has the following properties:

length
This property is of type int .

The CSSRuleCollection object has the following methods:
item(index)

This method returns a CSSRule. The index parameter is of type unsigned long.
Object CSSRule

The CSSRule object has the following properties:
type

This property is of type short.
cssText

This property is of type String.
parentStyleSheet

This property is of type CSSStyleSheet.
parentRule

This property is of type CSSRule.
Object CSSStyleRule

CSSStyleRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSStyleRule object has the following properties:

selectorText
This property is of type String.

style
This property is of type CSSStyleDeclaration.

Object CSSMediaRule
CSSMediaRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSMediaRule object has the following properties:

mediaTypes
This property is of type String.

cssRules
This property is of type CSSRuleCollection.

The CSSMediaRule object has the following methods:
insertRule(rule, index)

This method returns a unsigned long. The rule parameter is of type DOMString . The
index parameter is of type unsigned long.

deleteRule(index)
This method returns a void. The index parameter is of type unsigned long.

Object CSSFontFaceRule
CSSFontFaceRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSFontFaceRule object has the following properties:

112

E.2: Document Object Model Level 2 CSS

style
This property is of type CSSStyleDeclaration.

Object CSSPageRule
CSSPageRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSPageRule object has the following properties:

selectorText
This property is of type String.

style
This property is of type CSSStyleDeclaration.

Object CSSImportRule
CSSImportRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.
The CSSImportRule object has the following properties:

href
This property is of type String.

media
This property is of type String.

styleSheet
This property is of type CSSStyleSheet.

Object CSSUnknownRule
CSSUnknownRule has the all the properties and methods of CSSRule as well as the properties and
methods defined below.

Object CSSStyleDeclaration
The CSSStyleDeclaration object has the following properties:

cssText
This property is of type String.

length
This property is of type int .

parentRule
This property is of type CSSRule.

The CSSStyleDeclaration object has the following methods:
getPropertyValue(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
removeProperty(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
getPropertyPriority(propertyName)

This method returns a DOMString . The propertyName parameter is of type DOMString .
setProperty(propertyName, value, priority)

This method returns a void. The propertyName parameter is of type DOMString . The
value parameter is of type DOMString . The priority parameter is of type DOMString .

item(index)
This method returns a DOMString . The index parameter is of type unsigned long.

Object CSS2Properties
The CSS2Properties object has the following properties:

113

E.2: Document Object Model Level 2 CSS

azimuth
This property is of type String.

background
This property is of type String.

backgroundAttachment
This property is of type String.

backgroundColor
This property is of type String.

backgroundImage
This property is of type String.

backgroundPosition
This property is of type String.

backgroundRepeat
This property is of type String.

border
This property is of type String.

borderCollapse
This property is of type String.

borderColor
This property is of type String.

borderSpacing
This property is of type String.

borderStyle
This property is of type String.

borderTop
This property is of type String.

borderRight
This property is of type String.

borderBottom
This property is of type String.

borderLeft
This property is of type String.

borderTopColor
This property is of type String.

borderRightColor
This property is of type String.

borderBottomColor
This property is of type String.

borderLeftColor
This property is of type String.

borderTopStyle
This property is of type String.

borderRightStyle
This property is of type String.

borderBottomStyle
This property is of type String.

114

E.2: Document Object Model Level 2 CSS

borderLeftStyle
This property is of type String.

borderTopWidth
This property is of type String.

borderRightWidth
This property is of type String.

borderBottomWidth
This property is of type String.

borderLeftWidth
This property is of type String.

borderWidth
This property is of type String.

bottom
This property is of type String.

captionSide
This property is of type String.

clear
This property is of type String.

clip
This property is of type String.

color
This property is of type String.

content
This property is of type String.

counterIncrement
This property is of type String.

counterReset
This property is of type String.

cue
This property is of type String.

cueAfter
This property is of type String.

cueBefore
This property is of type String.

cursor
This property is of type String.

direction
This property is of type String.

display
This property is of type String.

elevation
This property is of type String.

emptyCells
This property is of type String.

cssFloat
This property is of type String.

115

E.2: Document Object Model Level 2 CSS

font
This property is of type String.

fontFamily
This property is of type String.

fontSize
This property is of type String.

fontSizeAdjust
This property is of type String.

fontStretch
This property is of type String.

fontStyle
This property is of type String.

fontVariant
This property is of type String.

fontWeight
This property is of type String.

height
This property is of type String.

left
This property is of type String.

letterSpacing
This property is of type String.

lineHeight
This property is of type String.

listStyle
This property is of type String.

listStyleImage
This property is of type String.

listStylePosition
This property is of type String.

listStyleType
This property is of type String.

margin
This property is of type String.

marginTop
This property is of type String.

marginRight
This property is of type String.

marginBottom
This property is of type String.

marginLeft
This property is of type String.

markerOffset
This property is of type String.

marks
This property is of type String.

116

E.2: Document Object Model Level 2 CSS

maxHeight
This property is of type String.

maxWidth
This property is of type String.

minHeight
This property is of type String.

minWidth
This property is of type String.

orphans
This property is of type String.

outline
This property is of type String.

outlineColor
This property is of type String.

outlineStyle
This property is of type String.

outlineWidth
This property is of type String.

overflow
This property is of type String.

padding
This property is of type String.

paddingTop
This property is of type String.

paddingRight
This property is of type String.

paddingBottom
This property is of type String.

paddingLeft
This property is of type String.

page
This property is of type String.

pageBreakAfter
This property is of type String.

pageBreakBefore
This property is of type String.

pageBreakInside
This property is of type String.

pause
This property is of type String.

pauseAfter
This property is of type String.

pauseBefore
This property is of type String.

pitch
This property is of type String.

117

E.2: Document Object Model Level 2 CSS

pitchRange
This property is of type String.

playDuring
This property is of type String.

position
This property is of type String.

quotes
This property is of type String.

richness
This property is of type String.

right
This property is of type String.

size
This property is of type String.

speak
This property is of type String.

speakHeader
This property is of type String.

speakNumeral
This property is of type String.

speakPunctuation
This property is of type String.

speechRate
This property is of type String.

stress
This property is of type String.

tableLayout
This property is of type String.

textAlign
This property is of type String.

textDecoration
This property is of type String.

textIndent
This property is of type String.

textShadow
This property is of type String.

textTransform
This property is of type String.

top
This property is of type String.

unicodeBidi
This property is of type String.

verticalAlign
This property is of type String.

visibility
This property is of type String.

118

E.2: Document Object Model Level 2 CSS

voiceFamily
This property is of type String.

volume
This property is of type String.

whiteSpace
This property is of type String.

widows
This property is of type String.

width
This property is of type String.

wordSpacing
This property is of type String.

zIndex
This property is of type String.

E.3: Document Object Model Level 2 Events
Object EventTarget

The EventTarget object has the following methods:
addEventListener(type, postProcess, useCapture, listener)

This method returns a void. The type parameter is of type DOMString . The postProcess
parameter is of type boolean. The useCapture parameter is of type boolean. The listener
parameter is of type EventListener.

removeEventListener(type, postProcess, useCapture, listener)
This method returns a void. The type parameter is of type DOMString . The postProcess
parameter is of type boolean. The useCapture parameter is of type boolean. The listener
parameter is of type EventListener.

Object EventListener
The EventListener object has the following methods:

handleEvent(event)
This method returns a void. The event parameter is of type Event.

Object Event
The Event object has the following properties:

type
This property is of type String.

target
This property is of type Node.

currentNode
This property is of type Node.

cancelBubble
This property is of type boolean.

cancelCapture
This property is of type boolean.

returnValue
This property is of type boolean.

119

E.3: Document Object Model Level 2 Events

Object UIEvent
UIEvent has the all the properties and methods of Event as well as the properties and methods
defined below.
The UIEvent object has the following properties:

screenX
This property is of type long.

screenY
This property is of type long.

clientX
This property is of type long.

clientY
This property is of type long.

altKey
This property is of type boolean.

ctrlKey
This property is of type boolean.

shiftKey
This property is of type boolean.

keyCode
This property is of type int .

charCode
This property is of type int .

button
This property is of type short.

Object MutationEvent
MutationEvent has the all the properties and methods of Event as well as the properties and
methods defined below.
The MutationEvent object has the following properties:

relatedNode
This property is of type Node.

prevValue
This property is of type String.

newValue
This property is of type String.

attrName
This property is of type String.

E.4: Document Object Model Level 2 Filters and Iterators
Object NodeIterator

The NodeIterator object has the following methods:
nextNode()

This method returns a Node.
prevNode()

This method returns a Node.

120

E.4: Document Object Model Level 2 Filters and Iterators

Object Document
The Document object has the following methods:

createTreeIterator(root, whatToShow)
This method returns a boolean. The root parameter is of type Node. The whatToShow
parameter is of type short.

Object NodeFilter
The NodeFilter object has the following methods:

acceptNode(n)
This method returns a boolean. The n parameter is of type Node.

E.5: Document Object Model Level 2 Range
Object Range

The Range object has the following properties:
startParent

This property is of type Node.
startOffset

This property is of type long.
endParent

This property is of type Node.
endOffset

This property is of type long.
isCollapsed

This property is of type boolean.
commonParent

This property is of type Node.
The Range object has the following methods:

setStart(parent, offset)
This method returns a void. The parent parameter is of type Node. The offset parameter is
of type long.

setEnd(parent, offset)
This method returns a void. The parent parameter is of type Node. The offset parameter is
of type long.

setStartBefore(sibling)
This method returns a void. The sibling parameter is of type Node.

setStartAfter(sibling)
This method returns a void. The sibling parameter is of type Node.

setEndBefore(sibling)
This method returns a void. The sibling parameter is of type Node.

setEndAfter(sibling)
This method returns a void. The sibling parameter is of type Node.

collapse(toStart)
This method returns a void. The toStart parameter is of type boolean.

selectNode(n)
This method returns a void. The n parameter is of type Node.

121

E.5: Document Object Model Level 2 Range

selectNodeContents(n)
This method returns a void. The n parameter is of type Node.

compareEndPoints(how, sourceRange)
This method returns a short. The how parameter is of type CompareHow. The
sourceRange parameter is of type Range.

deleteContents()
This method returns a void.

extractContents()
This method returns a DocumentFragment.

cloneContents()
This method returns a DocumentFragment.

insertNode(n)
This method returns a void. The n parameter is of type Node.

surroundContents(n)
This method returns a void. The n parameter is of type Node.

cloneRange()
This method returns a Range.

toString()
This method returns a DOMString .

122

E.5: Document Object Model Level 2 Range

References
CORBA

OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification. See http://www.omg.org/corba/corbiiop.htm .

DOM-Level-1
W3C (World Wide Web Consortium) DOM Level 1 Specification. See
http://www.w3.org/TR/REC-DOM-Level-1 .

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification. See
http://www.ecma.ch/stand/ECMA-262.htm .

HTML4.0
W3C (World Wide Web Consortium) HTML 4.0 Specification. See
http://www.w3.org/TR/REC-html40 .

Java
Sun The Java Language Specification. See http://java.sun.com/docs/books/jls/ .

Namespaces
W3C (World Wide Web Consortium) Namespaces in XML . See
http://www.w3.org/TR/REC-xml-names .

Unicode
The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0. See
http://www.w3.org/TR/REC-xml .

123

References

http://www.omg.org/corba/corbiiop.htm
http://www.w3.org/TR/REC-DOM-Level-1
http://www.ecma.ch/stand/ECMA-262.htm
http://www.w3.org/TR/REC-html40
http://java.sun.com/docs/books/jls/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml

124

References

Index
BAD_ENDPOINTS_ERR 81 CSS2Properties 26 CSSFontFaceRule 23

CSSImportRule 23 CSSMediaRule 22 CSSPageRule 23

CSSRule 20 CSSRuleCollection 20 CSSStyleDeclaration 24

CSSStyleRule 21 CSSStyleSheet 18 CSSUnknownRule 24

Document 57 Event 44 EventListener 43

EventTarget 41 FONT_FACE_RULE 20 IMPORT_RULE 20

INVALID_NODE_TYPE_ERR 81 MEDIA_RULE 20 MutationEvent 46

NULL_PARENT_ERR 81 NodeFilter 58 NodeIterator 56

PAGE_RULE 20 Range 74 RangeException 80

STYLE_RULE 20 StyleSheet 14 StyleSheetCollection 15

UIEvent 45 UNKNOWN_RULE 20 acceptNode 59

addEventListener 41 altKey 46 attrName 47

azimuth 29 background 29 backgroundAttachment 29

backgroundColor 30 backgroundImage 30 backgroundPosition 30

backgroundRepeat 30 border 30 borderBottom 30

borderBottomColor 30 borderBottomStyle 30 borderBottomWidth 31

borderCollapse 30 borderColor 30 borderLeft 30

borderLeftColor 30 borderLeftStyle 30 borderLeftWidth 31

borderRight 30 borderRightColor 30 borderRightStyle 30

borderRightWidth 30 borderSpacing 30 borderStyle 30

borderTop 30 borderTopColor 30 borderTopStyle 30

borderTopWidth 30 borderWidth 31 bottom 31

button 46 cancelBubble 45 cancelCapture 45

captionSide 31 charCode 46 clear 31

clientX 46 clientY 46 clip 31

cloneContents 79 cloneRange 80 collapse 77

125

Index

color 31 commonParent 75 compareEndPoints 78

content 31 counterIncrement 31 counterReset 31

createTreeIterator 58 cssFloat 31 cssRules 19, 22

cssText 21, 24 ctrlKey 46 cue 31

cueAfter 31 cueBefore 31 currentNode 45

cursor 31 deleteContents 79 deleteRule 19, 23

direction 31 disabled 14 display 31

elevation 31 emptyCells 31 endOffset 75

endParent 75 extractContents 79 font 31

fontFamily 31 fontSize 31 fontSizeAdjust 32

fontStretch 32 fontStyle 32 fontVariant 32

fontWeight 32 getPropertyPriority 25 getPropertyValue 25

handleEvent 43 height 32 href 15, 24

insertNode 79 insertRule 19, 22 isCollapsed 75

item 15, 20, 26 keyCode 46 left 32

length 15, 20, 26 letterSpacing 32 lineHeight 32

listStyle 32 listStyleImage 32 listStylePosition 32

listStyleType 32 margin 32 marginBottom 32

marginLeft 32 marginRight 32 marginTop 32

markerOffset 32 marks 32 maxHeight 32

maxWidth 32 media 15, 24 mediaTypes 22

minHeight 32 minWidth 33 newValue 47

nextNode 57 orphans 33 outline 33

outlineColor 33 outlineStyle 33 outlineWidth 33

overflow 33 owningNode 14 padding 33

paddingBottom 33 paddingLeft 33 paddingRight 33

paddingTop 33 page 33 pageBreakAfter 33

pageBreakBefore 33 pageBreakInside 33 parentRule 21, 26

126

Index

parentStyleSheet 14, 21 pause 33 pauseAfter 33

pauseBefore 33 pitch 33 pitchRange 33

playDuring 33 position 33 prevNode 57

prevValue 47 quotes 34 relatedNode 46

removeEventListener 42 removeProperty 25 returnValue 45

richness 34 right 34 screenX 46

screenY 46 selectNode 77 selectNodeContents 78

selectorText 21, 23 setEnd 76 setEndAfter 77

setEndBefore 77 setProperty 25 setStart 75

setStartAfter 76 setStartBefore 76 shiftKey 46

size 34 speak 34 speakHeader 34

speakNumeral 34 speakPunctuation 34 speechRate 34

startOffset 75 startParent 75 stress 34

style 21, 23, 23 styleSheet 24 surroundContents 80

tableLayout 34 target 45 textAlign 34

textDecoration 34 textIndent 34 textShadow 34

textTransform 34 title 15 toString 80

top 34 type 14, 21, 45 unicodeBidi 34

verticalAlign 34 visibility 34 voiceFamily 34

volume 34 whiteSpace 34 widows 35

width 35 wordSpacing 35 zIndex 35

127

Index

	
	
	 WD-DOM-Level-2-19990304

	Document Object Model †DOM‡ Level 2 Specification
	
	Version 1.0
	W3C Working Draft 04 March, 1999

	Status of this document
	Abstract
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	1. Document Object Model †Core‡ Level 2
	1.1. Overview of the DOM Level 2 Core Interfaces

	2. Document Object Model Namespaces
	2.1. Introduction

	3. Document Object Model StyleSheets
	3.1. Introduction
	3.2. Style Sheet Interfaces

	4. Document Object Model CSS
	4.1. Overview of the DOM Level 2 CSS Interfaces
	4.2. CSS Fundamental Interfaces
	4.3. CSS Extended Interfaces
	4.4. Extensions to Level 1 Interfaces
	4.4.1. Document style sheets
	4.4.2. HTMLElement inline style
	4.4.3. HTMLStyleElement style sheet
	4.4.4. HTMLLinkElement style sheet

	4.5. Unresolved Issues

	5. Document Object Model Events
	5.1. Overview of the DOM Level 2 Event Model
	5.1.1. Terminology
	5.1.2. Requirements

	5.2. Description of event flow
	5.2.1. Basic event flow
	5.2.2. Event Capture
	5.2.3. Event bubbling
	5.2.4. Event cancellation

	5.3. Event listener registration
	5.3.1. Event registration interfaces
	5.3.2. Interaction with HTML 4.0 event listeners
	5.3.3. Event listener registration issues

	5.4. Event interfaces
	5.4.1. Event object issues

	5.5. Event set definitions
	5.5.1. User Interface event types
	5.5.2. Mutation event types
	5.5.3. HTML event types

	6. Document Object Model Filters and Iterators
	6.1. Overview of the DOM Level 2 Query, Iterator, and Filter Interfaces
	6.1.1. Iterators
	6.1.2. Filters

	6.2. Formal Interface Definition

	7. Document Object Model Range
	7.1. Introduction
	7.1.1. Motivation
	7.1.2. Basic Assumptions
	7.1.3. Notation

	7.2. Finding a Range's Position
	7.3. Partial and Complete Containment
	7.4. Creating a Range
	7.5. Changing a Range's Position
	7.6. Comparing Range End-Points
	7.7. Deleting Content with a Range
	7.8. Cloning Content
	7.9. Inserting Content
	7.10. Surrounding Content
	7.11. Miscellaneous Members
	7.12. Range behavior under document mutation
	7.12.1. Insertions
	7.12.2. Deletions

	7.13. Formal Description of the Range Interface

	Appendix A: Contributors
	Appendix B: Glossary
	Appendix C: IDL Definitions
	C.1: Document Object Model Level 2 Stylesheets
	stylesheets.idl:

	C.2: Document Object Model Level 2 CSS
	css.idl:

	C.3: Document Object Model Level 2 Events
	events.idl:

	C.4: Document Object Model Level 2 Filters and Iterators
	fi.idl:

	C.5: Document Object Model Level 2 Range
	range.idl:

	Appendix D: Java Language Binding
	D.1: Document Object Model Level 2 Stylesheets
	org/w3c/dom/stylesheets/StyleSheet.java:
	org/w3c/dom/stylesheets/StyleSheetCollection.java:

	D.2: Document Object Model Level 2 CSS
	org/w3c/dom/css/CSSStyleSheet.java:
	org/w3c/dom/css/CSSRuleCollection.java:
	org/w3c/dom/css/CSSRule.java:
	org/w3c/dom/css/CSSStyleRule.java:
	org/w3c/dom/css/CSSMediaRule.java:
	org/w3c/dom/css/CSSFontFaceRule.java:
	org/w3c/dom/css/CSSPageRule.java:
	org/w3c/dom/css/CSSImportRule.java:
	org/w3c/dom/css/CSSUnknownRule.java:
	org/w3c/dom/css/CSSStyleDeclaration.java:
	org/w3c/dom/css/CSS2Properties.java:

	D.3: Document Object Model Level 2 Events
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/MutationEvent.java:

	D.4: Document Object Model Level 2 Filters and Iterators
	org/w3c/dom/fi/NodeIterator.java:
	org/w3c/dom/fi/Document.java:
	org/w3c/dom/fi/NodeFilter.java:

	D.5: Document Object Model Level 2 Range
	org/w3c/dom/range/RangeException.java:
	org/w3c/dom/range/Range.java:

	Appendix E: ECMA Script Language Binding
	E.1: Document Object Model Level 2 Stylesheets
	E.2: Document Object Model Level 2 CSS
	E.3: Document Object Model Level 2 Events
	E.4: Document Object Model Level 2 Filters and Iterators
	E.5: Document Object Model Level 2 Range

	References
	Index

