

Supporting the DCT Filters
in PostScript Level 2

Adobe Developer Support

Technical Note #5116

24 November 1992

PN LPS5116

®

® ®

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright

 1991–1992 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Adobe, and the Adobe logo are trademarks of Adobe Systems
Incorporated which may be registered in certain jurisdictions. AppleTalk is a registered trademark of
Apple Computer, Inc. Other brand or product names are the trademarks or registered trademarks of
their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

iii

Contents

Supporting the DCT Filters in PostScript Level 2

 5

1 Introduction 5

2 Purpose of the DCTEncode and DCTDecode Filters 5

3 Alternative Compression Possibilities 6

4 Compatibility with JPEG Specifications 6

5 JPEG Interchange Format 7

6 DCTDecode Filter Summary 8

7 DCTEncode Filter Summary 10

8 DCTDecode Program Example 12

9 DCTEncode Program Example 14

10 Error Handling 14

11 RAM Requirements 15

12 Bugs and Incompatibilities 16

13 Color Transforms 18
CMYK-to-YCCK Color Transform 18
RGB-to-YCC Color Transform 19
An Alternative to the DCTDecode Color Transform 19

14 DCTEncode HSamples, VSamples, and Blend Downsampling 20

15 DCTDecode Upsampling 23

16 Default Quantization Tables and QFactor 23
Using Quantizers 25

17 HuffTables Specification 26

18 Adobe Application-Specific JPEG Marker 27

19 DCTEncode Markers String 28

20 JFIF Marker 28

21 Speed in DCT Filters 29

22 Accuracy of JPEG Implementation 31

iv Contents (24 Nov 92)

23 Accuracy of Image Reproduction 31

24 Reproduction Cyclic Stability After Initial Loss 33

Appendix A: PostScript Version 2011 Default Quantizers

 35

Appendix B: PostScript Version 2011 Default Huffman Tables

 39

Appendix C: Image Reproduction Study Results

 45

Appendix D: Changes Since Earlier Versions

 49

Index

 51

5

Supporting the DCT Filters
in PostScript Level 2

1 Introduction

This technical note describes the operation of the

DCTEncode

 and

DCTDecode

 filters in PostScript Level 2 version 2010 to 2012 interpreters.
Its purpose is to describe these two filters for application software writers
whose software must interface to PostScript Level 2 interpreters.

It is a supplement to the

PostScript Language Reference Manual, Second Edi-
tion

, and nothing in the technical note should conflict with the manual. How-
ever, there are several extensions to and explanations of that material. Adobe
reserves the right to change any part of this document and any part
of the implementation that this document describes without notice. This
information is for you to use at your own risk.

2 Purpose of the DCTEncode and DCTDecode Filters

The

DCTEncode

 filter compresses one, two, three, or four color continuous
tone images, where each sample of each color is specified by an 8-bit value.
(A one-color continuous tone image is a gray-scale image.) It is a lossy
compressor that does not reproduce the original image exactly, but the trade-
off between compression and image fidelity is controllable by parameters
of the method. On typical images, 15-to-1 compression is achieved without
perceptible impairment and 30-to-1 with little impairment. It is possible
to operate in a nearly-lossless mode and still achieve 2-to-1 compression.

The

DCTDecode

 filter decodes the compressed image. There are few options
for the

DCTDecode

 filter because nearly all choices are made at the time of
compression.

When a color image is composed of color samples that are 2 or 4 bits, the

DCTEncode

 and

DCTDecode

 filters cannot be used directly. However,
an application could swell the samples to 8 bits and still achieve significant
compression. 12-bit color samples are not handled by the method; applica-
tions must reduce the data to 8 bits before using the DCT filters. Only
interleaved images are handled by these filters.

6 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

It would be unusual to use the

DCTEncode

 filter in a printer or typesetter
while printing a document. Normally, the DCT encoding function is carried
out by an application program prior to downloading. However, the

DCTEncode

 filter is included in Level 2 printer and typesetter products any-
way. Applications that do not otherwise implement the DCT encoding func-
tion can use the printer or typesetter to compress an image onto a local disk,
for example. This abnormal use of the printer or typesetter is more plausible
if the communication channel is high speed and if the printer or typesetter has
a high performance controller.

3 Alternative Compression Possibilities

The

LZWEncode

 and

LZWDecode

 filters can be used to achieve lossless
image compression. When used without its pixel prediction feature, LZW
averaged only 8% compression over seven original scanned images, but it
averaged 40% with pixel prediction. LZW can achieve 8-to-1 compression on
many machine-generated images. The version 2010 to 2012 LZW filters are
somewhat slower than the DCT filters.

The

CCITTFaxEncode

 and

CCITTFaxDecode

 filters work on monochrome
(1 bit/pixel) images. They are not used with continuous tone images and do
not compete with the DCT filters.

Another possibility is to prepare a PostScript language program without com-
pression, run the entire program through an

LZWEncode

 filter, and then
decode and execute the program on a Level 2 printer. The following example
shows this with cascaded use of the

ASCII85Encode

 filter:

%!

currentfile /ASCII85Decode filter /LZWDecode filter cvx

exec ...ASCII85Encoded LZWEncoded PS program...

4 Compatibility with JPEG Specifications

The

 PostScript Language Reference Manual, Second Edition

 states that
the

DCTEncode

 and

DCTDecode

 filters are compatible with JPEG Revision
8, August 14, 1990. The committee preparing the international standard is

ISO/IEC JTC1/SC2/WG10 Photographic Image Coding

. Prior to the estab-
lishment of WG10 in 1990, the committee existed as an ad hoc group, known
as the

Joint Photographic Experts Group (JPEG)

 of ISO/IEC JTC1/SC2/
WG8. Both the committee and the image coding processes it has developed
are known informally by the name JPEG.

Our information from members of the JPEG committee is that revisions 8-R8
through 9-R7 and the committee draft 10918-1 (the most recent revision
at the time of this writing) are identical in technical content and vary only in
the exposition of the material. Furthermore, they believe that the technical

5 JPEG Interchange Format 7

content will not change when the JPEG/WG10 document is finally approved
as an international standard. In other words, the Level 2 interpreter imple-
mentation of the JPEG standard is compatible with all earlier revisions of the
JPEG draft standard from 8-R8 to the CD 10918-1 revision, and it is likely
to be compatible with what eventually becomes an international standard.

The earlier public revisions to the JPEG draft were 8-R2 and 8-R5. 8-R5 was
technically different in that it used 32-bit Huffman codes and was little-
endian, whereas 8-R8 to 9-R7 revisions are limited to 16-bit Huffman codes
and are big-endian. The marker codes in the representation also changed
between 8-R5 and 8-R8. Other differences might also exist. The DCT filters
will not interpret these earlier versions of JPEG.

The Level 2 interpreter

DCTEncode

 and

DCTDecode

 filters deal with the
format called

JPEG Interchange Format

 in the 9-R7 draft (see JPEG-9-R7:
Working Draft for Development of JPEG CD, 14 February 1991). The
Baseline method is supported subject to several limitations; several other
parts of the JPEG specification are also supported.

5 JPEG Interchange Format

As mentioned above, the embodiment of JPEG accepted by PostScript
Level 2 is the JPEG Interchange Format.

A JPEG Interchange Format compressed image begins with an SOI (start-of-
image) marker followed by a number of marker segments that define
compressed image parameters. This is followed by the coded body of the
compressed image and, finally, by an EOI (end-of-image) marker. Each
marker segment begins with a 0xFF byte called a Fill marker. The following
byte identifies the kind of marker. Many markers have a two-byte length
immediately after the marker identifier. The interpretation of the various
markers is discussed in the JPEG 9-R7 or other draft.

In the compressed image body, after the initial markers, Baseline images
use Huffman coding. An option is to insert Restart markers periodically.
When used, it is possible to edit and replace the section of an image between
any two Restart markers without having to reencode any other parts of the
compressed image.

There are no default values. Every parameter needed to decode the com-
pressed image is contained in the initial markers of the compressed image.

Color transforms (for example, RGB-to-YCC) commonly used with the
JPEG Interchange Format are not specified by the interchange format. They
are compatible with the interchange format but separate from it. Color
transforms are discussed later in this document.

8 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

The JPEG File Interchange Format and the JFIF marker it uses are also com-
monly used with the JPEG Interchange Format. Like the color transforms,
they are compatible with the JPEG Interchange Format but are separate from
it. An example that inserts a JFIF marker when using the

DCTEncode

 filter
is presented later in this document.

6 DCTDecode Filter Summary

The

DCTDecode

 filter implementation complies with the

PostScript
Language Reference Manual, Second Edition

 Level 2 specification, with
the additions described in this section. It can be described as follows:

• It will decode any JPEG Baseline DCT or Extended sequential DCT com-
pressed image in the JPEG Interchange Format subject to the following
restrictions:

The image may consist of one scan containing one, two, three, or four col-
ors. Images specifying a larger number of colors, having more than one
scan, or having more than one frame will not be decoded.

Zero-size images (

Columns

=0 or

Rows

=0) are invalid.

There must be enough RAM available in the PostScript interpreter to
support the filter. The RAM requirements are described later.

Note For JPEG experts only: The SOF0, SOF1, DHT, RSTm, EOI, SOS, DQT,
DRI, and COM markers are properly decoded. APPn (application-specific)
markers are skipped over harmlessly except for the Adobe reserved marker
described later.

These markers are not decoded: SOF2-SOF15, DAC, DNL, DHP, EXP,
JPGn, TEM, and RESn. If any occurs in a compressed image, it will be
rejected. With the exception of DNL, none of these markers is useful in a
Baseline DCT or Extended sequential DCT image.

• It will decode any file produced by the

DCTEncode

 filter. In particular it
will interpret the Adobe application-specific marker code produced by the

DCTEncode

 filter. This marker is compatible with but not part of the
JPEG Baseline specification. Also, it will perform optional YCC-to-RGB
or YCCK-to-CMYK color coordinate transforms that are not part of the
JPEG specification.

The following parameters can be included in the (optional) dictionary that
is supplied to the

DCTDecode

 filter. These parameters do not appear in the

PostScript Language Reference Manual, Second Edition

:

6 DCTDecode Filter Summary 9

•

Picky

integer

(default 0). Some Level 2 interpreters will perform a more
stringent level of error-checking compressed images if

Picky

=1. This is
intended as an application debugging option that can slow decoding and
might cause rejection of images that would be successfully decoded in its
absence. It also reports as bugs the occurrence of extraneous bytes at the
end of JPEG marker segments or MCUs and the replication of FIL (0xFF)
markers. (Replicated FIL markers are legal in JPEG but probably
unintended in most applications.)

Picky

 = 1 should not be used in any
shipping product.

•

Relax

integer

 (default 0).

Relax

 = 1 is a hack equivalent to using SOF1 as
the JPEG start-of-frame marker in the compressed image. It exists because
several JPEG implementations with which Adobe cross-tested in 1991
were non-Baseline, non-JPEG, or buggy; but they used SOF0 markers
anyway. Specifying

Relax

 = 1 will accommodate some of those buggy
implementations. In the absence of one of these indications, any non-
Baseline usage results in an error.

The Level 2 software implementation permits the following useful extensions
to the Baseline standard when the JPEG start-of-frame marker is SOF1
instead of SOF0 (or when

Relax

=1):

• Up to

Colors

 unique DC and AC

HuffTables

. Baseline allows no more
than two DC and two AC Huffman coding tables to facilitate hardware
implementations. This is a standard JPEG extension to Baseline described
in 9-R7 F.1.3.

• Sum (HS * VS) > 10. JPEG requires that the sum of the products of the
horizontal and vertical sampling parameters over all colors not exceed
ten, even for extensions to the Baseline standard. This allows hardware
implementations to have on-chip buffering for only ten 8x8 blocks. The
current software permits this option, which is not allowed by

 JPEG

.

However, non-Baseline options are likely to prevent the use of special
hardware on some Level 2 or other application products. The greatest degree
of interchangeability with other applications will be afforded by staying
strictly Baseline.

The following is a list of

PostScript Language Reference Manual, Second
Edition

 errata.

• The dictionary argument to the filter creation command is optional for the

DCTDecode

 filter.

10 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

• All references to YUV and YUVK should be changed to YCC and YCCK,
respectively, since YUV refers to an analog television signal and has no
place in digital imagery. The default

ColorTransform

 referred to as RGB-
to-YUV in the

PostScript Language Reference Manual, Second Edition

 is
used for RGB images conforming to the CCIR Rec. 601-1 standard.

7 DCTEncode Filter Summary

The

DCTEncode

 filter also complies with the

PostScript Language Reference
Manual, Second Edition

 specification with the additions described in this sec-
tion. It produces a JPEG Baseline compressed image consisting
of one frame and one scan with one to four colors. The following errata apply
to the arguments passed in the dictionary:

• Wherever the manual uses

array

 for arguments in the

DCTEncode

 filter
dictionary, either an array or a packed array can be used.

•

HSamples

 and

VSamples

 can optionally be strings instead of arrays or
packed arrays. Any extra elements in these arrays or strings are ignored.

• Each quantization table can optionally be a string instead of an array or
packed array. Also, when the table is an array or packed array, it might
contain not only integers but also real numbers.

• Only the first 2 x

Colors

 elements of the

HuffTables

 array are used. This
array is permitted to be longer without causing an error. Each element of
the

HuffTables

 array (that is, a Huffman table specification) can be a
string, array, or packed array of integers.

•

QFactor

 can be 0.0, and its maximum value is presently 1000000.0.

The following parameters can be included in the dictionary supplied to the

DCTEncode

 filter. These parameters are not in the

 PostScript Language
Reference Manual, Second Edition

:

•

NoMarker

boolean

 (default false). If true, the output of the Adobe applica-
tion-specific JPEG marker (described below) is suppressed.

•

Resync

integer

 (default 0). If a non-zero value N is supplied, the

DCTEncode

 filter inserts a DRI marker at the beginning of the coded data
and will put JPEG restart marker codes between MCUs of the coded data
at the spacing N.

•

Blend

integer

 (default 0). If the maximum sampling value N for any color
is greater than the sampling value M for a color, that color will be down-
sampled before compression. The JPEG specification does not specify
how downsampling should be carried out.

7 DCTEncode Filter Summary 11

If

Blend

 = 0 (

Chop

 mode), a fast method of downsampling will be used,
probably selection of particular samples from the group being down-
sampled. If

Blend

 =1 (

Blend

 mode), downsampling will average or merge
sample values to get a better representative value.

Blend

 = 1 is a hint
that asks

DCTEncode

 to strive for smoother downsampling. Its implemen-
tation might vary among Level 2 products.

•

Markers

 string (default none). The

DCTEncode

 filter copies this string
literally into the compressed output immediately after the JPEG SOI
marker. The Markers string can contain one or more COM or APPn (such
as JFIF) JPEG markers.

•

Picky

integer

 (default 0). Same as

DCTDecode

 filter.

•

Relax integer (default 0). Relax =1 allows DCTEncode to use any non-
Baseline JPEG extensions that are implemented (currently, Sum(HS * VS)
> 10 and separate HuffTables for each color, as described earlier for the
DCTDecode filter). If Relax = 0, inadvertent specification of non-Baseline
values for an option will result in an error.

The following information is supplementary to the PostScript Language
Reference Manual, Second Edition, description:

 Zero-size images (Columns = 0 or Rows = 0) are invalid. (A JPEG
indefinitely-long image is denoted by Rows = 0. The length of such an
image is defined by a DNL marker. This JPEG feature is not implemented
by DCTEncode or DCTDecode. Columns = 0 is disallowed by JPEG.)

12 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

8 DCTDecode Program Example

The following excerpt is from a Level 2 program, which images a DCT and
ASCII base-85 encoded compressed image using the colorimage operator:

%!PS-Adobe-3.0

%%LanguageLevel: 2

%%Creator: ()

%%CreationDate: ()

%%EndComments

save mark {{10 10 translate 0 rotate 648.0 518.4 scale

720 576 8 [720 0 0 -576 0 576]

currentfile /ASCII85Decode filter dup /A85dec exch def

<</ColorTransform 0>> /DCTDecode filter

false 3 colorimage} stopped {handleerror} if

cleartomark A85dec flushfile}

exec ASCII85Encoded JPEG INTERCHANGE FORMAT COMPRESSED IMAGE HERE

restore showpage

%%EOF

ASCII base-85 encoding allows the compressed image, with arbitrary binary
codes, to be downloaded to a printer on any communication channel. In addi-
tion, if an error occurs, the flushfile on the ASCII base-85 filter should skip
the residual image and resume execution of the PostScript language program
afterwards. If ASCII base-85 encoding is not used, the image will be 20%
smaller but can then only be downloaded on a channel that can handle binary
data (for example, AppleTalk), or by using the binary communication proto-
col, which Level 2 supports for serial channels.

Here is another example using the image operator but without error handling
and without using the ASCII base-85 encoding:

%!PS-Adobe-3.0

%%LanguageLevel: 2

%%Creator: ()

%%CreationDate: ()

%%EndComments

/DeviceRGB setcolorspace

126 270 translate% Center image on letter-size page

349 252 scale % Scale image to original size: 4.847 x 3.500

inches

% Create procedure to decode and image the DCT-encoded data.

% Note that ‘exec’ is followed by exactly one space character.

{ /Data currentfile /DCTDecode filter def

<< /ImageType 1

/Width 727

/Height 525

/ImageMatrix [727 0 0 -525 0 525]

/DataSource Data

/BitsPerComponent 8

/Decode [0 1 0 1 0 1]

>> image showpage } exec JPEG INTERCHANGE FORMAT COMPRESSED IMAGE HERE

%%EOF

8 DCTDecode Program Example 13

Note that there is exactly one blank between exec and the JPEG Interchange
Format data. Using a return or linefeed instead of a blank is unsafe because
some communication protocols will turn it into a ‘carriage return-linefeed’.
As discussed in section 12, “Bugs and Incompatibilities,” this substitution
could conceivably cause an ioerror in PostScript interpreters of versions
2010 and 2011, though it will succeed in versions 2012 and later.

Here is a third example without error handling, without ASCII base-85
encoding, and without exec:

%!PS-Adobe-3.0

%%LanguageLevel: 2

%%Creator: ()

%%CreationDate: ()

%%EndComments

/DeviceRGB setcolorspace

126 270 translate % Center image on letter-size page

349 252 scale % Scale image to original size: 4.847 x 3.500 inches

/Data currentfile /DCTDecode filter def

<< /ImageType 1

/Width 727

/Height 525

/ImageMatrix [727 0 0 -525 0 525]

/DataSource Data

/BitsPerComponent 8

/Decode [0 1 0 1 0 1]

>> image JPEG INTERCHANGE FORMAT COMPRESSED IMAGE HERE

showpage

%%EOF

This is a tricky example. The PostScript interpreter binds the source of
the DCTDecode filter to currentfile, which at that instant points at
/DCTDecode. However, decoding filters do not read from the source until
their first use, so the DCTDecode filter will begin processing its input
when the interpreter has processed image.

14 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

9 DCTEncode Program Example

The following excerpt is from a Level 2 program which compresses a left-to-
right, top-to-bottom raster 3-color RGB image using the DCTEncode filter,
and writes the compressed image on another file:

jpeg begin % Open dictionary containing optional params.

save mark 4 -2 roll

{ /dest exch (w) file def % Open arg2 as output file

/src exch (r) file def % Open arg1 as input file

/Colors 3 def % Setup image-specific dictionary params.

/Columns 512 def

/Rows 512 def

/buf Columns Colors mul string def

/filtdest dest jpeg /DCTEncode filter def

Rows {filtdest src buf readstring pop writestring} repeat

filtdest closefile dest closefile

} stopped {handleerror} if cleartomark restore

end

The default handleerror procedure handles all filter error messages
adequately.

10 Error Handling

For the DCTDecode filter, the Level 2 interpreter requires that no com-
pressed data be read until first use of the filter (because the image often will
be coming from currentfile, and the compressed image’s starting point
within currentfile is unknown when the filter is created). This means that
errors associated with bad parameters in the initial marker segments of the
compressed image will occur when the first byte is read rather than when the
filter is created and will typically manifest as an ioerror for the operator
using the filter.

For the DCTEncode filter, most errors associated with bad parameters in
the argument dictionary are detected during filter creation. These include
many rangecheck and typecheck conditions and a limitcheck (not enough
storage) for the filter operator. Some HuffTables error checks occur when
the first byte is written to the filter. If one of these errors occurred, it would be
reported as an ioerror for the operator using the filter.

Many different errors can also occur during image encoding or decoding.
Because the number of error conditions that can occur during filter operation
is large and complex, both filters utilize the errorinfo entry of the $error
dictionary to record ancillary information about each particular error. This is
discussed in section 3.10.2, “Error Handling,” in the PostScript Language
Reference Manual, Second Edition, although the section does not indicate

11 RAM Requirements 15

that errorinfo is used by filters. In some cases, the errorinfo report consists of
a key name in a dictionary (for example, HuffTables or Colors) followed by
an illegal value.

In other cases, the information recorded in errorinfo consists of two strings,
the name of the filter and an error message. The error messages are in English
and are not being translated into other languages. Some will be indecipher-
able by ordinary users. We judged these messages to be more useful than bare
TypeCheck or RangeCheck error reports; and they have been useful during
cross-checking with other JPEG implementations.

Applications are encouraged to implement a handleerror procedure, which
routinely prints any strings in errorinfo and then clears the array. The default
Level 2 handleerror procedure adequately reports these errors.

When several filters are used in cascade, it is sometimes difficult to figure out
which caused a particular ioerror. If a DCT filter raised it, it will report
something in errorinfo. If, for example, an ASCII85Decode filter (feeding a
DCTDecode filter) raised it, then the DCTDecode filter would not create
any errorinfo message. In this case, the ioerror would probably not have any
supplementary errorinfo message.

11 RAM Requirements

A DCTDecode filter’s total RAM requirement is about 7,000 bytes plus a one
scanline input buffer plus whatever is required to hold one MCU-strip (see
the JPEG specification), or roughly

 7000 + (Colors * Columns) + (Columns * hs * vs * 8)/maxh bytes

summed over all colors, where

Colors = number of colors in the image
Columns = width of the image in pixels
maxh = maximum horizontal sampling value of any color
hs = horizontal sampling value for the color component c
vs = vertical sampling value for a color c

For example, on a 700 x 500 pixel RGB image with a ColorTransform and
2:1:1 sampling horizontally and vertically, DCTDecode requires about

7000 + (3*500) + (500*((2*2*8) + (1*1*8)+ (1*1*8))) / 2 = 20,500

bytes

A DCTEncode filter requires about 8,000 more bytes of RAM than
DCTDecode.

16 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

For a large image, it might be important to notice that horizontal sampling
reduces the RAM requirement, while vertical sampling increases it.

In a DCTDecode filter’s typical use with the image operator in a printer,
image also requires significant RAM. The combination of requirements can
result in a limitcheck (not enough RAM) on low-RAM products. Users
should not expect to print large DCTEncoded images on a minimum-RAM
printer.

Because DCTEncode and DCTDecode use large blocks of RAM, an Insuffi-
cient RAM limitcheck caused by fragmentation of available RAM is
possible, even though total free RAM would otherwise have sufficed. To
avoid this, applications should attempt to manage RAM without fragmenting
it. A freshly-booted printer might succeed after such a limitcheck.

12 Bugs and Incompatibilities

The following bugs are known to exist in version 2010 products. These are
fixed in version 2011 products.

• flushfile on a DCTDecode filter gives an error.

• There are several TypeCheck versus RangeCheck mistakes in
DCTEncode error reporting.

• One of the unusable HuffTables entry error messages prints out ‘0x%2X’
instead of the value causing the error. Another, which is trying to print out
an RST marker name prints out a negative number instead.

• An errorinfo message left by a DCTDecode or DCTEncode filter error,
if it is not removed by the handleerror procedure, will lie in wait for the
following error condition and be reported there instead.

• The DCTEncode dictionary Markers key is not interpreted in version
2010 (but the 2010 DCTDecode filter correctly handles COM and APPn
JPEG markers).

In addition, 2011 has improved default values for HuffTables and
QuantTables and an improvement in the way it handles the right and bottom
edges of an image; this is discussed later. The DCTEncode Markers string
discussed in section 19, “DCTEncode Markers String” was added for version
2011 and did not exist in 2010.

12 Bugs and Incompatibilities 17

The following bugs are known to exist in version 2010 and 2011 products.
These are fixed in version 2012 products:

• The PostScript Language Reference Manual, Second Edition, states that
ColorTransform = 1 in the DCTEncode filter dictionary is ignored if
Colors = 1 or Colors = 2. However, PostScript interpreters of versions
2010 and 2011 will give a RangeCheck error with the errorinfo message
‘Unusable ColorTransform = 1’ in this case. Version 2012 systems will cor-
rectly ignore the requested color transform.

• The PostScript Language Reference Manual, Second Edition, states that
the scanner treats the sequence CR LF (carriage return, linefeed) as a
single white space character. PostScript interpreters of versions 2010 and
2011 treat this sequence as two characters; version 2012 correctly fixes
this bug. In some situations, a PostScript language program containing just
one of these characters can pass through a communication channel that
replaces the single CR or single LF character by the CR LF pair or charac-
ters. Clearly, if the binary DCT encoded data was subject to this transfor-
mation, it would be trashed; but sometimes the channel subtly transforms
only the single CR immediately preceding the binary-encoded data; in this
case PostScript interpreters of versions 2010 and 2011 will pass the LF
character to the DCTDecode filter as its first character, and an ioerror will
occur with the errorinfo message ‘Non-baseline or invalid marker
code = 10’; version 2012 systems do not have this bug.

18 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

13 Color Transforms

Adobe has implemented optional RGB-to-YCC and CMYK-to-YCCK color
transforms for the DCTEncode filter and matching YCC-to-RGB and YCCK-
to-CMYK color transforms for the DCTDecode filter.

The purpose of a color transform is to improve image compressibility by
using a color coordinate system that separates luminance, to which the
human eye is more sensitive, from chrominance which can be transmitted at
lower spatial resolution. The lower spatial resolution required can be
exploited during compression by downsampling and/or by choosing
QuantTables arrays, which heavily attenuate higher frequencies.

For RGB converted to YCC with Cb and Cr downsampled twice vertically and
twice horizontally, only half as many samples pass through inner loops, lead-
ing to faster execution despite the extra computation required for the color
transform itself.

A disadvantage of a color transform is a small loss of dynamic range and two
extra round-off errors that occur, one during encoding and the other during
decoding. These errors mean that the minimum error achievable at very small
quantizations is larger than if the color transform were not used. However,
preliminary experiments have suggested that the quality versus compression
trade-off favors use of the color transform, even for excellent quality images.
Only for nearly perfect reproductions does the color transform become unde-
sirable. Reproduction errors are discussed later.

The default of the DCTDecode filter is to use the YCC-to-RGB transform
and to not use the YCC-to-CMYK transform. That default can be overridden
by specifying a value for ColorTransform in the DCTDecode dictionary.

13.1 CMYK-to-YCCK Color Transform

The CMYK-to-YCCK color transform can only be applied to images for
which the image color order is first cyan, then magenta, then yellow, and
finally black; and the transformed color order is Y, Cb, Cr, and K (black).

CMYK-to-YCCK uses the same transform as RGB-to-YCC, described
below, on R = (255-C), G = (255-M), and B = (255-Y), where all color
sample values are integers in the range [0.255]. K is passed through
unchanged.

13 Color Transforms 19

13.2 RGB-to-YCC Color Transform

The DCTEncode RGB-to-YCC Color transform can only be applied to
images for which the original image color order is first red, then green, then
blue; and the output color order is Y, then Cb, then Cr.

The RGB-to-YCC and YCC-to-RGB transformations used are as follows:

Y = .299*R + .587*G + .114*B

Cb = -.168736*R - .331264*G + .500*B + 128

Cr = .500*R - .4186876*G - .08131241*B + 128

R = Y + 1.4020*(Cr - 128)

G = Y - .3441363*(Cb - 128) - .71413636*(Cr - 128)

B = Y + 1.772*(Cb - 128)

The color order of these transforms is RGB and YCbCr. While the above num-
bers are believed to be compliant with the CCIR Rec. 601-1 standard, the
above table contains the numbers really used in the filter, which might not be
exactly the same as 601-1.

DCTEncode quantization tables specified by QuantTables, coding tables
specified by HuffTables, and sampling specified by the HSamples and
VSamples, apply to the color samples emerging from the color transform.
For example, when the DCTEncode input is RGB, the RGB-to-YCC color
transform is used, HSamples = [3 2 1], then the Y component will be
sampled 3 times, Cb 2 times, and Cr 1 time. Similarly, if QuantTables and/or
HuffTables are specified, then the first table applies to Y, the next to Cb,
and the third to Cr.

At typical resolutions, application software presently in use has achieved
good results at 2:1:1 sampling both horizontally and vertically. In other
words, the good results were obtained with the luminance sampled four times
(2x2) more frequently than either of the chrominance terms (1x1).

13.3 An Alternative to the DCTDecode Color Transform

YCC and YCCK should not be regarded as Level 2 color spaces; the particu-
lar color transform used is an artifact of the filter intended to increase
compressibility. It is intended that the inverse transform be performed during
expansion before using the image.

However, it is possible to pass an image in any color coordinate system
through the DCTDecode filter without using the color transforms. To do this,
use the setcolorspace operator to specify direct imaging of YCC or YCCK
images using the CIEBasedABC color space machinery in the Level 2 inter-
preter. Then pass YCC or YCCK images through DCTDecode with no color
transform; the image machinery will then perform a single composite
transform from YCC or YCCK to output device coordinates.

20 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

This alternative might be faster when the color coordinates of the output
device differ from those of the RGB or CMYK source image. However, the
DCTDecode filter’s color transform is likely to be faster when the image
emerging from the filter’s color transform is in device color coordinates.

The color transforms used by DCTDecode are appropriate for RGB images
which comply with the CCIR Rec. 601-1 standard. Two other common RGB
color standards are CCIR 709 (formerly XA/11 MOD F) and SMPTE 240M.
These alternate RGB standards use slightly different equations to convert
from RGB to YCC. The CIEBasedABC alternative to the DCTDecode color
transform should be considered when RGB coordinates do not comply with
CCIR Rec. 601-1. An example of setting up the CIEBasedABC color space
for CCIR 709 input is given in Example 4.10 of the PostScript Language
Reference Manual, Second Edition.

In attempting to compress a CCIR 709 or SMPTE 240M RGB image, it
is possible to use the DCTEncode color transform based on CCIR 601.
Luminance differs slightly for these three standards, so the result of com-
pressing with the wrong transform is some luminance contamination of
the chrominance components; then the spatial sensitivity of the eye to these
not-quite-chrominance components will be higher than if the correct equa-
tions had been used. However, the transformed coordinates might still yield
better compression than the original RGB.

14 DCTEncode HSamples, VSamples, and Blend
Downsampling

As discussed in the PostScript Language Reference Manual, Second Edition,
Level 2 implements all combinations of HSamples and VSamples values for
one, two, three, and four colors. Whenever Sum(HS*VS) > 10, the sampling
combination is disallowed by JPEG and will result in an error unless
Relax=1.

The Blend parameter modifies DCTEncode downsampling as discussed in
this section.

Some choices of sampling values are favored within the software implemen-
tation; choosing these will result in slightly faster execution. The particular
fast and slow cases are the same for the DCTEncode and DCTDecode filters.
Fast HSamples cases:

[1]

[1 1 1]

[1 1 1 1]

[2 1 1] with or without RGB-to-YCC transform

[2 1 1 2] with CMYK-to-YCCK transform.

14 DCTEncode HSamples, VSamples, and Blend Downsampling 21

In other words, un-downsampled cases, the normal color transform cases,
and the 2:1:1 no-color-transform case (expected to be useful with non-RGB
color coordinates) are handled by faster loops without switches and condi-
tionals in them. Blend=1 slows horizontal downsampling only a little (typi-
cally, less than 4%) for both fast and slow sampling cases.

Fast VSamples cases:

[1 1 1] with or without RGB-to-YCC color transform

[2 1 1] with or without RGB-to-YCC color transform

[3 1 1] with or without RGB-to-YCC color transform

[4 1 1] with or without RGB-to-YCC color transform

[1 1 1 1] with or without CMYK-to-YCCK color transform

[2 1 1 2] with CMYK-to-YCCK color transform

[3 1 1 3] with CMYK-to-YCCK color transform

[4 1 1 4] with CMYK-to-YCCK color transform

These are faster only when Blend=0.

While JPEG allows every color component to be downsampled 1, 2, 3, or 4
times, it does not specify any particular way for the source image to be down-
sampled when these numbers are not all 1.

Adobe’s DCTEncode filter implements two downsampling methods: Chop,
if Blend=0 or if Blend does not appear in the dictionary; and Blend, if
Blend=1. Chop should result in simple, fast downsampling and Blend in
accurate downsampling. This feature is extensible in the sense that Blend=2,
3, and so on, variations can be added later. The initial implementation accepts
Blend=1 to 65535 as legal; however, all non-zero values presently are equiv-
alent to Blend=1.

Blend and Chop should be regarded as experimental and as hints rather than
commands. Blend might not result in any difference in some Level 2 inter-
preters. Also, software and hardware solutions will do this differently; and
Adobe will change its software, if experimentation reveals any advantage
to doing this. The likely implementation of Blend and Chop on a Level 2
interpreter with hardware JPEG support is to ignore the Blend option entirely
and to carry out downsampling in whatever way the hardware supports.

Table 1 shows the implementation of Blend and of Chop, where maxh or
maxv is the maximum sampling value over all colors in the frame, and hc or
vc is the sampling value for a particular color. The samples are numbered A,
B, C, and D.

22 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

Table 1 Blend and Chop

maxv vc Chop Blend
maxh hc Blend = 0 Blend = 1

2 1 A (A+B) / 2

3 1 B (A+2B+C) / 4

3 2 A, C (3A+B) / 4, (B+3C) / 4

4 1 B (A+B+C+D) / 4

4 2 A, C (A+B)/2, (C+D) / 2

4 3 A, B, D A, (B+C) / 2, D

The meaning of ‘accurate downsampling’ is pretty fuzzy. Table 1 above
does something close to a linear average of samples with fudging to avoid
division. The best representative value of several samples is clearly different
for linear color spaces like RGB than for exponential color spaces like
CIELAB. Downsampling in Chop mode attempts to pick a central pixel of
the group being downsampled; but when there is no central pixel, then the
particular sample slightly up and to the left of center is selected.

Adobe’s preliminary experience on scanned images (based on little data) is
that there is no visible difference in image quality between Blend and Chop.
Mathematically, on one image with HSamples = [2 1 1] and
VSamples = [2 1 1] using the YCC ColorTransform, Blend results in a 3%
smaller average error and a 6.4% smaller mean-square error on the Cb and Cr
components; it slows DCTEncode about 6%. Intuitively, one would expect
Blend to be less sensitive to dropout.

15 DCTDecode Upsampling 23

15 DCTDecode Upsampling

DCTDecode upsamples the compressed image in the same way, regardless of
whether or not Blend was used during DCTEncode. Table 2 shows how
upsampling is done for various sampling combinations, where the 0, 1, and 2
in the Upsampling table represent the first, second, and third samples of a
color that is being upsampled:

Table 2 DCTDecode Upsampling

maxv vc Upsampling maxh hc Upsampling

2 1 0, 0 2 1 0, 0

3 1 0, 0, 0 3 1 0, 0, 0

3 2 0, 0, 1 3 2 0, (0+1) / 2, 1

4 1 0, 0, 0, 0 4 1 0, 0, 0, 0

4 2 0, 0, 1, 1 4 2 0, 0, 1, 1

4 3 0, 1, 1, 2 4 3 0, 1, 1, 2

Also, the oddball sampling cases (maxv=3, vc=2) and (maxv=4, vc=3) verti-
cally and the same horizontally do not have pleasing solutions for either
downsampling or upsampling. The loss is spread unevenly, so it is probably a
bad idea to use these.

16 Default Quantization Tables and QFactor

The DCTDecode filter uses quantization tables supplied in the JPEG
Interchange Format and is unaffected by the encoder’s default values. The
quantization tables in the compressed image contain one-byte unsigned
integers in the range 1 to 255.

There are two ‘knobs’ in the DCTEncode filter for controlling the trade-off
between compression and image quality. The simple knob is QFactor, which
linearly scales each quantizer (discussed below) as follows: If no QFactor
parameter is specified in the dictionary, then the default value of 1.0 is used;
if QFactor is specified, then it must be a number in the range 0.0 to
1,000,000.0. Each unique quantization table entry is then converted to a real
number, multiplied by QFactor, and rounded to the nearest integer in the
range [1..255]. The resulting quantization table is then used to drive the
DCTEncode filter and is transmitted in the compressed image.

24 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

For values of QFactor that approach 0.0, multiplication of a QuantTables
element by QFactor will have a result less than 1.0 and then be raised up to 1.
When all quantizers become 1, DCTEncode and DCTDecode achieve little
compression but restore the original image almost exactly. As the quantizers
increase, compression and image degradation increase together.

For large values of QFactor, the quantizers will overflow and be lowered to
the maximum value of 255. At this value, little of the original image will be
retained in the compressed representation. For the default QuantTables, the
useful range of QFactor will be about 0.1 to 2.5.

The more complex knob on image quality versus compression is the
QuantTables array of Colors quantization tables. If QuantTables is omitted,
default arrays are used instead. Extra elements in QuantTables are ignored
and do not cause an error.

Each of the Colors quantization tables can be a string of one-byte integers or
an array or packed array of numbers (that is, integers or reals). The order of
elements in each quantization table supplied to the Level 2 interpreter is the
zigzag or snake order defined in the JPEG specification; the length of the
table is 64. Study the JPEG specification to understand how to choose the
quantizers, although a few comments are offered below.

To decide the number of quantization tables to include in the compressed
image, the DCTEncode filter compares pointers to the Colors quantization
tables; only unique arrays are transmitted with the image. Two different
strings or arrays will be found to be unequal, even if all of their elements are
identical. Only when a quantization table is the same string or the same array
as an earlier element is the equality discovered.

The default quantization tables are not constants of Level 2 interpreters.
Adobe expects to change and/or supplement these as more is learned about
color spaces and image compression. The results are sensitive to resolution,
viewing distance, and QFactor; image orientation and scaling after decom-
pression; and to many other factors. For uniform results across Level 2
interpreters, applications using the DCTEncode filter must supply their own
quantization tables because the Adobe defaults will vary.

16 Default Quantization Tables and QFactor 25

16.1 Using Quantizers

The following is a brief description of how the quantizers are used. For more
details, see the JPEG specification. The DCT transform converts an 8x8
block of 8-bit samples into an 8x8 block of 11-bit transform coefficients. The
transform tends to concentrate the ‘energy’ of an image in a few of the
transform coefficients, so most of the 64 coefficients will be small.

If these coefficients were coded as-is, the reverse transformation would
restore the original samples almost perfectly: less than 10% of the reconsti-
tuted samples would differ from the originals and about 2-to-1 compression
would typically be possible. However, before compressing, JPEG divides
each coefficient by a quantizer in the range [1..255]. These divisors are taken
from the QuantTables table corresponding to the color being compressed.
After quantization, typically all but about 14 of the transform coefficients
will become 0; 4 or 5 will become 1; and the rest will have larger values. This
sparse matrix is then coded compactly. Decoding restores the sparse matrix
and then multiplies each element by the quantizer to restore an approxima-
tion to the original transform coefficient. Finally, it performs the reverse
transformation to restore an approximation to the original 8x8 block of 8-bit
samples.

JPEG quantizes and codes the 8x8 coefficient block in a zigzag order starting
with the upper-left DC term and ending at the lower-right term. The first
(upper-left corner) term of the 8x8 coefficient block is the DC term, which
measures the average value of the samples in the 8x8 block. The next few ele-
ments are visually important low-frequency AC terms, followed by
successively higher-frequency terms with less visual significance.

The quantizers should be chosen to weigh each coefficient in accordance with
its importance to the human visual system. This varies with the color space,
the resolution of the image, the downsampling being used, and the desired
quality versus compression trade-off. For good quality, the DC and low fre-
quency AC quantizers are usually chosen to have values of about 13, with
high frequency AC terms increasing to 80 to 100; for very good quality, the
quantizers are halved; and for fair quality, the quantizers are doubled.

Carefully chosen quantizers take other factors into account. The original
image might have excess resolution/quality, or it might be already of mar-
ginal quality. Then the DCT transform does not uniformly emphasize the
coefficients, so the quantizers must be adjusted for this. Also, the human
visual system is more sensitive to horizontal and vertical features than
to those at odd angles, and slightly more sensitive to horizontal resolution
than to vertical. Finally, the spatial sensitivity and color sensitivity of
the human eye varies with the color coordinates.

26 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

17 HuffTables Specification

As with quantization tables, DCTDecode is driven solely by parameters
included in the compressed image, so it will operate correctly regardless of
the encoder’s default values for HuffTables.

The DCTEncode filter uses Huffman tables supplied to it by the optional
HuffTables entry in the filter dictionary. This entry consists of 2 x Colors
arrays, packed arrays, or strings. DCTEncode is only affected by the first
2 x Colors tables in the HuffTables array; extra tables are ignored and do not
cause an error. A DC table longer than 12 elements or an AC table longer than
162 elements will be rejected; these are the maximum useful lengths for these
tables.

The order of the DC and AC table elements is the same as that in the JPEG
specification’s DHT marker segment. The first 16 one-byte elements of
each array specify the number of code words of length 1 to 16, respectively.
These are followed by the one-byte values in sequence. The values for DC
codewords each specify the number of magnitude bits which follow; the
values for AC codewords each specify a 4-bit run length of zeroes between
non-zero values and 4-bit magnitude. To determine more about the format,
consult the JPEG specification.

As with QuantTables, the encoder transmits only unique tables in the
compressed image. Two code tables are found to be identical only if the
pointers to them are the same. This means that a different string or array
whose elements are identical to another coding table will not be found to
be identical. Only when the same string or same array is used is the identity
discovered.

The use of more than two different AC or DC HuffTables violates a JPEG
Baseline limit and causes an error unless Relax=1 in the DCTEncode argu-
ment dictionary. If Relax=1, then the encoded image with more than two
different tables will begin with an SOF1 marker indicating that it is non-
Baseline. Such a compressed image will be less interchangeable than a
Baseline image, although it might compress slightly better.

If the optional HuffTables entry does not exist in the filter’s dictionary, then
default arrays will be used. As with QuantTables, the defaults are not
constants of Level 2 PostScript and will change as more is learned about
image compression. In PostScript version 2010, the default tables are not
very good. The defaults are better in 2011, but applications can achieve
somewhat better compression with custom tables.

The DCTEncode filter will assume that HuffTables have been setup for
statistics determined at QFactor = 1.0. When QFactor is some different
value, it might (in some future PostScript interpreter version) modify the
HuffTables in some (unspecified) way to increase compression. For this rea-

18 Adobe Application-Specific JPEG Marker 27

son, to achieve consistent encoder operation across all Level 2 products,
applications should provide custom arrays for both QuantTables and
HuffTables and should specify QFactor = 1.0 to neutralize any scaling by the
DCTEncode filter.

The DC table elements are magnitude categories; any value outside the range
[0..11] will be rejected. Within each table, two special codes are allowed:
0 (denoting end-of-block) and 0xF (denoting a zero-run of length 16).
Excepting these special codes, each AC entry consists of a 4-bit zero-run
length and a 4-bit magnitude category. Any entry with magnitude category
outside the range [1..10] will be rejected.

18 Adobe Application-Specific JPEG Marker

Adobe uses the JPEG X’FFEE marker (or APPE marker) to record informa-
tion at the time of compression such as whether or not the sample values
were blended and which color transform was performed upon the data. The
format of the marker is as follows.

• Two-byte length field (specifies 14 byte marker length)

• The text ‘Adobe’ as a five-character ASCII big-endian string

• Two-byte DCTEncode/DCTDecode version number
(presently X’65)

• Two-byte flags0 0x8000 bit: Encoder used Blend=1 downsampling

• Two-byte flags1

• One-byte color transform code

DCTDecode ignores and skips any APPE marker segment that does not begin
with the ‘Adobe’ 5-character string. The convention for flags0 and flags1 is
that 0 bits are benign. 1 bits in flags0 pass information that is possibly useful
but not essential for decoding. 1 bits in flags1 pass information essential for
decoding. DCTDecode could reject a compressed image,
if there are 1 bits in flags1 or color transform codes that it cannot interpret.
The current implementation will reject only if the Picky option is non-zero.

The existing form of the APPE marker can be extended by defining new
‘flags0’ and ‘flags1’ flags or new color transform codes. Also, more bytes can
be added to the marker. The current plan is to provide, through options in
the DCTDecode dictionary, any parameter or option that can be specified in
the application-specific marker, so applications should not have to mimic
Adobe’s marker. Any application trying to mimic should arrange to cooperate
with Adobe.

28 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

19 DCTEncode Markers String

The Markers string in DCTEncode’s dictionary allows arbitrary data to
be inserted immediately after the JPEG SOI (Start of Image) marker that
commences a compressed JPEG Interchange Format image. It is intended to
be used only to insert COM (comment) and APPn (application) markers
in accordance with the JPEG specification. There is no error checking.

COM and APPn markers have the following syntax:

COM X’FF X’FE <2-byte length field> <arbitrary string>

APPn X’FF X’En <2-byte length field> <arbitrary string>

where X’En is X’E0 for an APP0 marker to X’EF for an APPF marker.

20 JFIF Marker

An important application of the DCTEncode Markers string is to include a
JFIF marker in a DCT encoded image; a JFIF marker is a JPEG APP0 marker
specially interpreted by many applications to specify size and color space
parameters of a compressed image and, optionally, a Thumbnail. At this writ-
ing, the most recent version of the emerging JFIF standard was 1.02.

A JFIF version 1.02 marker (which is an APP0 marker) can be inserted with
the following definition in the DCTEncode filter's argument dictionary:

/Markers <FF E0 00 10 4A 46 49 46 00 01 02 01 00 96 00 96 00 00> def

In this string, the bytes are interpreted as follows:

FF E0 == APP0 marker

00 10 == the marker length field (16, including the length field but

 not including the APP0 marker itself)

4A 46 49 46 00 == zero-terminated `JFIF' string

01 02 == JFIF version number

01 == units (0=aspect ratio only; 1=dots/inch; 2=dots/cm)

00 96 == Xdensity (150 dots/inch)

00 96 == Ydensity (150 dots/inch)

00 == Xthumbnail (horizontal pixel count)

00 == Ythumbnail (vertical pixel count)

Excluding the JFIF version number, the JFIF versions 1.00 and 1.01 markers
also have this format. Included in the marker (but not shown above) are
3*Xthumbnail*Ythumbnail bytes of the RGB thumbnail. JFIF follows a
common convention for application markers in which the marker purpose is
identified by a string at the beginning of the marker. When it is used, JFIF
must occur immediately after the JPEG SOI marker, before any other APP0
markers; and the extension markers must occur immediately after the JFIF
marker.

21 Speed in DCT Filters 29

JFIF version 1.02 sets the JFIF version number to `01 02' and may then
optionally specify the Thumbnail in a separate extension marker. To specify
the Thumbnail separately, set Xthumbnail and Ythumbnail to 0 in the exam-
ple above and use an extension JFXX marker immediately after the JFIF
marker to specify the Thumbnail in one of three different representations.
The possible formats for the JFXX extension marker are discussed in the
JPEG File Interchange Format Version 1.02 specification, 27 August 1992.

21 Speed in DCT Filters

This section attempts to relate the speed of the DCT filters to particular
parameters of the image and the controller or CPU.

The software DCTDecode filter on an image compressed to about 5% of
its original size using QFactor = 1.0, HSamples = [2 1 1], and
VSamples = [2 1 1] executes at about 1.5 to 2.0 seconds per megabyte of
source image on a 25 MHz MIPs CPU workstation using the MIPS compiler
with -O2 optimization. The DCTEncode filter takes 2.0 to 2.5 seconds per
megabyte of source on the same image. These times can be used as a refer-
ence point for the discussion below.

Floating point arithmetic is used only to scale quantizers, so speed is not
degraded much by the lack of floating point hardware in a controller. Many
integer multiplications and divisions are performed; the speed of these opera-
tions is important. The current implementation is tuned for 32-bit word size
CPUs, so there is some performance penalty on low-end 16-bit controllers.

Often, the DCTDecode filter’s execution time will be swamped by a larger
downstream execution time for halftoning. This depends on the relative reso-
lutions of the source image and the device, so it is more often true on high-
resolution output devices such as typesetters. Hence, DCTDecode perfor-
mance is not of primary interest except when the output device is of lower
resolution, requires no halftoning, or has hardware support for it.

On interesting images, the non-inner-loop execution time of the filter is
insignificant because it can be amortized over many samples, and the filter’s
overall performance is determined by the inner loops. So in discussing
execution speed, it suffices to discuss the following inner loops:

30 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

Table 3 Inner loops

Encoder Decoder

color transform decoding (7 code words/block typical)

strip handling dequantization

DCT reverse DCT

quantization (64/block) strip handling

coding color transform

As quantization is reduced to produce a more accurate image, time coding
or decoding and dequantizing increases significantly. Downsampling directly
reduces the time spent in DCT, quantization, and coding or in decoding,
dequantization, or reverse DCT. Hence, applications should consider aggres-
sively downsampling, while using smaller quantizers to recover some lost
image quality.

At normal quantization, where the image is visibly just barely degraded from
the original, the 8x8 blocks are compressed about 20-to-1, and 10 Huffman
code words/block is typical. In this situation, software DCTDecode is about
twice as fast as software DCTEncode. In an image with no quantization (that
is, the quantization tables consist of elements with the value 1), DCTEncode
will slow to about 50% of its normal speed and DCTDecode to about 25%
of its normal speed. This slowdown is due to the huge increase in Huffman
code processing from 10 code words/block to 64 code words/block.

22 Accuracy of JPEG Implementation 31

22 Accuracy of JPEG Implementation

In testing the fast DCT used in the implementation against an accurate DCT
computed slowly with double precision floating point, the following results
were obtained on a small image:

99% of transform coefficients were identical to the accurate ones.

No transform coefficients were in error by more than +/-1.

In this experiment, both the accurate and fast DCTs were rounded to nearest
before comparison. In the complete fast implementation, rounding does not
occur at the end of the transform. Instead, extra precision is carried into the
quantization step and rounding occurs after quantization.

Similarly, comparison of the implementation’s reverse DCT against an accu-
rate reverse DCT computed with double precision floating arithmetic yielded
the following results on a small test image:

99% of regenerated characters were identical to the accurate ones.

No regenerated characters were in error by more than +/-1.

All tests described above apply only to the transform and reverse transform
components of the system. Color transform, downsampling, and quantization
cause additional losses.

Excellent results can be obtained with relatively inaccurate JPEG implemen-
tations at normal quantizations, where quantizers are all greater than 7,
and coefficient errors of +/–3 have little effect. However, because the Level 2
software implementation is very accurate, the DCT filters can be used in a
near-lossless mode impossible for inaccurate implementations.

23 Accuracy of Image Reproduction

To determine accuracy limits, the following experiment was performed.
The quantization table was set to all 1’s (that is, no loss due to quantization)
by choosing QFactor = 0.0, ColorTransform was turned off, and a 1.2 mega-
byte image was run through the encoder and the decoder. Then color samples
in the decoded image were compared against the original with the following
results:

91.4% of color samples were unchanged.

No color samples had errors exceeding +/-1.

Although no errors larger than +/–1 were observed on this image, larger
errors would occur in a larger study. (A crude limit on the maximum error in
any sample can be estimated as follows: If every transform coefficient for a
particular 8x8 block was off by 0.5 in such a way that all rounding errors
added for a particular sample, then the error in that sample would be about
0.5*(1/8)*64 or +/– 4.)

32 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

The same experiment was performed on a large RGB image using the RGB-
to-YCC color transform. In this case the error, larger because of the color
transform, was as follows:

R max. err +4/-3 avg. err 0.478

G max. err +3/-3 avg. err 0.317

B max. err +4/-4 avg. err 0.587

A loss of dynamic range during the color transformations and two extra 8-bit
rounding steps causes the increased error. The loss of dynamic range is
evidenced by the sum of coefficient magnitudes for Y, Cb, and Cr in the R, G,
and B equations earlier (2.402, 2.059, and 2.772, respectively) being greater
than 1.

At the above accuracy levels, little compression is achieved by the JPEG
method. A more interesting question is the reproduction error at larger quan-
tization where significant compression is achieved. The empirical result
of comparing reconstituted against original image samples in a large image
using version 2010 to 2012 default quantizers is as follows. In rapidly
changing image areas, about 8% of sample errors exceed Qmax/8 and
about 1% exceed Qmax/4, where Qmax is the largest quantizer in the quanti-
zation table. In slowly changing areas, errors are determined by quantization
in the upper left quadrant of the 8x8 block because coefficients elsewhere are
quantized to 0 from initial magnitudes much smaller than Q[i,j]/2. The maxi-
mum sample error in a large image is typically between 0.4*Qmax and
0.8*Qmax, where Qmax is about 100 for QFactor = 1.0.

Total error would include an additional highly-variable component due to
downsampling and a fairly predictable component due to the color transform.
The color transform typically increases the maximum and average errors by
20% at normal values of QFactor. However, the compressed file size is also
reduced by the color transform. When all things are considered, the empirical
result is that, for QFactor greater than about 0.1 or 0.2, the color transform
seems to improve compressibility, even when there is no downsampling, for
any particular level of image quality.

24 Reproduction Cyclic Stability After Initial Loss 33

24 Reproduction Cyclic Stability After Initial Loss

For some image editing applications, there is a worry that JPEG will intro-
duce not only initial losses the first time an image is compressed but
also additional losses each time an image under construction is expanded,
modified, and recompressed. This is a legitimate concern, although it does
not matter on a printer, which throws away the image after expanding
and printing it. This section discusses the issue of progressive losses across
repeated compress-expand cycles.

For JPEG, cyclic stability is only achievable when the same quantizers
are used on each compression cycle. Further losses will normally be intro-
duced if quantization is changed. The desired behavior is as follows. The
original compress-expand cycle introduces loss proportional to quantization.
On the second cycle, nearly all 8x8 blocks reproduce exactly; these will
then be stable regardless of how many compress/expand cycles occur. Of
those blocks which change on the second cycle, most will stabilize on the
third cycle.

This behavior repeats for several cycles until all blocks stabilize. The addi-
tional loss before stabilization should be small. Alternatively, an oscillatory
stability would be acceptable in which repeated compress-expand cycles
reproduce an earlier state, but not the previous state.

A particular 8x8 sample block will become stable and suffer no further
increase in error when the quantized transform from which it was generated
is reproduced during recompression. When a color transform is used, an 8x8
block of pixels will stabilize when all of its component color blocks stabilize.
If some components are downsampled, a larger area must stabilize before
the interactions stop.

To see what would happen with the DCTEncode and DCTDecode filters, we
performed repeated compress-expand cycles on several images. On each
cycle, the image was compressed with the default QuantTables. We cycled
with QFactor = 1.0 and 0.1, with and without the RGB-to-YCC color
transform. There was no downsampling. Total stability was eventually
reached in each case.

At QFactor = 1.0 with no ColorTransform, when the first reconstructed
image is compared against the 15th, about 100 sample errors exceed 20, and
2 exceed 30. The maximum error was unchanged and the average error was
less than 10% greater than the one-time error. Total stability was achieved by
the 10th cycle.

For QFactor = 0.1 without any ColorTransform, the maximum error magni-
tude of any sample in the fifteenth reproduction with respect to the original
image was 12. 12 sample error magnitudes were greater than 10, and 166
error magnitudes were greater than +/–8. Crudely, it looks as though the

34 Supporting the DCT Filters in PostScript Level 2 (24 Nov 92)

maximum and average errors at stabilization are about 25% larger than the
one-time errors. Total stability was reached at the fifteenth cycle without
the color transform and at the twenty-third cycle with the color transform.
(The QFactor = 0.1 color transform case stabilized down to several unstable
8x8 blocks, which it then massaged for another 8 cycles before finally
reaching complete stability.)

These empirical results, which were obtained with the version 2011 imple-
mentation, might not be obtained on other images. Also, other JPEG
implementations might not have as good stability properties, even though
their one-time accuracy was acceptable.

The version 2010 implementation did not stabilize along the bottom and
right edges of the image, where incomplete 8x8 blocks are filled out by
DCTEncode before compressing. Adobe incorporated a superior block
extension for version 2011 and later products, which has the effect of stabil-
izing the right and bottom edges of images. This change has no effect on one-
time filter accuracy, where the version 2010 implementation is equivalent;
it affects only cyclic stability.

These small experiments suggest that JPEG might be usable by applications
that repeatedly compress and expand an image, if a cumulative loss 10% to
25% larger than the one-time loss is acceptable. However, a major problem
will be that when an expanded image is modified and recompressed, then
further losses will be introduced in all of the 8x8 sample blocks affected by
the modification.

35

Appendix A:
PostScript Version 2011
Default Quantizers

Default quantization tables are currently as shown below. The tables are
shown both in normal un-zigzagged order and in the zigzag, or snake, order
defined in the JPEG specification and required for DCTEncode. If no colors
are downsampled, then quantization Table A is used for all; if any are down-
sampled, then Table A is used for colors with the maximum sampling value
both horizontally and vertically, while Table B is used for downsampled col-
ors.

Table A Luminance Table

Zigzag = PostScript language order

0x12 0x0C 0x0D 0x0D 0x0E 0x0C 0x11 0x11

0x11 0x12 0x1B 0x13 0x14 0x15 0x1B 0x22

0x1D 0x1B 0x1B 0x19 0x24 0x34 0x33 0x29

0x20 0x29 0x30 0x32 0x3F 0x40 0x3C 0x3D

0x3D 0x3C 0x43 0x45 0x50 0x51 0x49 0x47

0x49 0x4A 0x41 0x4E 0x56 0x57 0x57 0x59

0x5D 0x67 0x67 0x67 0x65 0x5B 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Non-zigzag order

0x12 0x0C 0x0C 0x11 0x1B 0x22 0x32 0x3F

0x0D 0x0E 0x11 0x15 0x1D 0x30 0x40 0x41

0x0D 0x11 0x14 0x1B 0x29 0x3C 0x4A 0x4E

0x12 0x13 0x1B 0x20 0x3D 0x49 0x56 0x5B

0x1B 0x19 0x29 0x3D 0x47 0x57 0x65 0x67

0x24 0x33 0x3C 0x49 0x57 0x67 0x67 0x67

0x34 0x43 0x51 0x59 0x67 0x67 0x67 0x67

0x45 0x50 0x5D 0x67 0x67 0x67 0x67 0x67

36 Appendix A: PostScript Version 2011 Default Quantizers (24 Nov 92)

Table B Chrominance Table

Zigzag = PostScript language order; no downsampled components

0x13 0x14 0x14 0x1A 0x17 0x1A 0x32 0x1D

0x1D 0x32 0x45 0x45 0x3B 0x45 0x45 0x67

0x67 0x57 0x57 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Non-zigzag order

0x13 0x14 0x1A 0x32 0x45 0x67 0x67 0x67

0x14 0x17 0x1D 0x45 0x67 0x67 0x67 0x67

0x1A 0x1D 0x3B 0x57 0x67 0x67 0x67 0x67

0x32 0x45 0x57 0x67 0x67 0x67 0x67 0x67

0x45 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Some colors downsampled; zigzag = PostScript language order

0x13 0x14 0x14 0x17 0x16 0x17 0x1A 0x1A

0x1A 0x1B 0x27 0x24 0x20 0x24 0x25 0x30

0x33 0x3B 0x3B 0x33 0x33 0x3F 0x45 0x49

0x50 0x49 0x45 0x3A 0x41 0x53 0x55 0x60

0x60 0x57 0x56 0x49 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

0x67 0x67 0x67 0x67 0x67 0x67 0x67 0x67

Some colors downsampled; non-zigzag order

0x13 0x14 0x17 0x1A 0x25 0x30 0x3A 0x41

0x14 0x16 0x1A 0x24 0x33 0x45 0x53 0x67

0x17 0x1A 0x20 0x3B 0x49 0x55 0x67 0x67

0x1B 0x24 0x3B 0x50 0x60 0x67 0x67 0x67

0x27 0x33 0x49 0x60 0x67 0x67 0x67 0x67

0x33 0x45 0x57 0x67 0x67 0x67 0x67 0x67

0x3F 0x56 0x67 0x67 0x67 0x67 0x67 0x67

0x49 0x67 0x67 0x67 0x67 0x67 0x67 0x67

 37

The quantization tables are defaulted as follows when a QuantTables parame-
ter is not passed in the filter’s parameter dictionary: If a color transform is
used, the quantization tables are assigned correctly to the luminance and
chrominance components; the two chrominance tables are similar except that
the one used with quantized coefficients for downsampled images quantizes
high frequencies infrequently.

The particular quantization tables are not constants of Level 2 interpreters.
Adobe expects to change and/or supplement these as more is learned about
color spaces and image compression. An earlier version of the JPEG specifi-
cation suggested Table A as a good choice for compression of the Y compo-
nent and Table B as a good choice for the Cb and Cr components of the YCC
color space.

38 Appendix A: PostScript Version 2011 Default Quantizers (24 Nov 92)

39

Appendix B:
PostScript Version 2011
Default Huffman Tables

If the optional HuffTables entry does not exist in the filter’s dictionary, then
the default arrays appear as shown in Table A. Like the quantization tables, if
no colors are downsampled, then Table A is used for all colors; if any color is
downsampled, then Table A is used for those colors which have the maxi-
mum sampling value both horizontally and vertically, while Table B is used
for downsampled components.

Table A (DC luminance, QFactor >= 0.25)

0x00 0x01 0x05 0x01 0x01 0x01 0x01 0x01

0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x03 0x00 0x01 0x02 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

Table B (DC chrominance, QFactor >= 0.25)

0x00 0x01 0x05 0x01 0x01 0x01 0x01 0x01

0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x01 0x00 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

40 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

Table A (AC luminance, QFactor >= 0.25)

0x00 0x01 0x04 0x02 0x00 0x04 0x04 0x03

0x02 0x06 0x0A 0x06 0x0B 0x04 0x0F 0x59

0x01 0x00 0x02 0x11 0x03 0x04 0x21 0x12

0x31 0x41 0x05 0x51 0x61 0x13 0x22 0x71

0x81 0x32 0x06 0x14 0x91 0xA1 0xB1 0x42

0x23 0x52 0xC1 0xD1 0x33 0x15 0x62 0x72

0x82 0x24 0x34 0x92 0x43 0x53 0xA2 0xB2

0x25 0x07 0x44 0x54 0x35 0x63 0xE1 0xF0

0xF1 0xC2 0x16 0x73 0x26 0x08 0x09 0xD2

0x0A 0x17 0x18 0x45 0x36 0x55 0x83 0x46

0x19 0x1A 0x27 0x64 0x93 0x74 0x65 0xE2

0xF2 0xA3 0xB3 0x75 0x84 0xC3 0xD3 0x56

0xE3 0xF3 0x37 0x94 0xA4 0xB4 0xC4 0xD4

0xE4 0xF4 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x28 0x47 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x29 0x57

0x67 0x38 0x39 0x2A 0x77 0x87 0x97 0xA7

0xB7 0xC7 0xD7 0xE7 0xF7 0x48 0x58 0x68

0x78 0x88 0x98 0xA8 0xB8 0xC8 0xD8 0xE8

0xF8 0x49 0x59 0x69 0x79 0x89 0x99 0xA9

0xB9 0xC9 0xD9 0xE9 0xF9 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

 41

Table B (AC chrominance, QFactor >= 0.25)

0x00 0x01 0x04 0x00 0x05 0x01 0x05 0x03

0x06 0x07 0x0A 0x03 0x03 0x13 0x0C 0x53

0x01 0x00 0x11 0x02 0x03 0x21 0x31 0x12

0x04 0x41 0x51 0x05 0x61 0x13 0x71 0x22

0x81 0x32 0x91 0x42 0x52 0x23 0x14 0xA1

0xB1 0x33 0xC1 0xD1 0xF0 0xE1 0x62 0x72

0x82 0x92 0xF1 0x24 0x43 0x53 0x34 0x15

0xA2 0x63 0xB2 0x06 0x73 0x07 0x44 0x54

0x25 0x35 0x16 0xC2 0x26 0x08 0x09 0xD2

0x0A 0x17 0x83 0x18 0x45 0x36 0x55 0x46

0x19 0x1A 0x27 0x64 0x93 0x74 0x65 0xE2

0xF2 0xA3 0xB3 0x75 0x84 0xC3 0xD3 0x56

0xE3 0xF3 0x37 0x94 0xA4 0xB4 0xC4 0xD4

0xE4 0xF4 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x28 0x47 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x29 0x57

0x67 0x38 0x39 0x2A 0x77 0x87 0x97 0xA7

0xB7 0xC7 0xD7 0xE7 0xF7 0x48 0x58 0x68

0x78 0x88 0x98 0xA8 0xB8 0xC8 0xD8 0xE8

0xF8 0x49 0x59 0x69 0x79 0x89 0x99 0xA9

0xB9 0xC9 0xD9 0xE9 0xF9 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

Table A (DC luminance, QFactor < 0.25)

0x00 0x00 0x06 0x03 0x01 0x01 0x01 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x04 0x05 0x06 0x07 0x03 0x02 0x01 0x00

0x08 0x09 0x0A 0x0B

42 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

Table B (DC chrominance, QFactor < 0.25)

0x00 0x00 0x06 0x03 0x01 0x01 0x01 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x05 0x04 0x06 0x07 0x03 0x02 0x01 0x08

0x00 0x09 0x0A 0x0B

Table A (AC luminance, QFactor < 0.25)

0x00 0x01 0x03 0x02 0x04 0x03 0x05 0x04

0x04 0x0A 0x01 0x0D 0x00 0x08 0x07 0x61

0x01 0x11 0x02 0x03 0x04 0x05 0x00 0x21

0x31 0x12 0x06 0x07 0x41 0x08 0x13 0x51

0x22 0x61 0x71 0x81 0x14 0x09 0x91 0xA1

0x32 0x15 0xF0 0xB1 0x42 0x23 0xC1 0xD1

0x16 0xE1 0xF1 0x52 0x0A 0x62 0x33 0x24

0x17 0x72 0x43 0x34 0x18 0x82 0x92 0x19

0x25 0x44 0xA2 0x53 0x63 0x54 0x64 0x26

0x27 0x73 0xB2 0x83 0x93 0xA3 0x74 0x84

0x35 0x94 0xC2 0xD2 0x36 0x45 0xB3 0x46

0xA4 0xB4 0x56 0xC3 0xD3 0x55 0x28 0x1A

0xE2 0xF2 0xE3 0xF3 0xC4 0xD4 0xE4 0xF4

0x65 0x75 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x66 0x76 0x86 0x96 0xA6 0xB6

0xC6 0xD6 0xE6 0xF6 0x37 0x47 0x57 0x67

0x77 0x87 0x97 0xA7 0xB7 0xC7 0xD7 0xE7

0xF7 0x38 0x48 0x58 0x68 0x78 0x88 0x98

0xA8 0xB8 0xC8 0xD8 0xE8 0xF8 0x29 0x39

0x49 0x59 0x69 0x79 0x89 0x99 0xA9 0xB9

0xC9 0xD9 0xE9 0xF9 0x2A 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

 43

Table B (AC luminance, QFactor < 0.25)

0x00 0x01 0x02 0x03 0x05 0x04 0x04 0x07

0x0B 0x07 0x04 0x07 0x0B 0x06 0x05 0x55

0x01 0x02 0x03 0x11 0x04 0x00 0x21 0x31

0x05 0x12 0x06 0x41 0x51 0x61 0x07 0x71

0x81 0x22 0x13 0x91 0x14 0x32 0xA1 0xB1

0x08 0xC1 0x42 0x52 0x23 0x15 0xD1 0x62

0x72 0x82 0x92 0xF0 0xE1 0x33 0x43 0x53

0x24 0x09 0x16 0x17 0x34 0xF1 0x25 0xA2

0x63 0x44 0xB2 0x18 0x73 0x19 0x0A 0x35

0x26 0x36 0x54 0xC2 0xD2 0x83 0x93 0x27

0x1A 0x45 0x64 0x74 0x55 0x37 0xE2 0xF2

0xA3 0xB3 0xC3 0x28 0x29 0xD3 0xE3 0xF3

0x84 0x94 0xA4 0xB4 0xC4 0xD4 0xE4 0xF4

0x65 0x75 0x85 0x95 0xA5 0xB5 0xC5 0xD5

0xE5 0xF5 0x46 0x56 0x66 0x76 0x86 0x96

0xA6 0xB6 0xC6 0xD6 0xE6 0xF6 0x47 0x57

0x67 0x77 0x87 0x97 0xA7 0xB7 0xC7 0xD7

0xE7 0xF7 0x38 0x48 0x58 0x68 0x78 0x88

0x98 0xA8 0xB8 0xC8 0xD8 0xE8 0xF8 0x39

0x49 0x59 0x69 0x79 0x89 0x99 0xA9 0xB9

0xC9 0xD9 0xE9 0xF9 0x2A 0x3A 0x4A 0x5A

0x6A 0x7A 0x8A 0x9A 0xAA 0xBA 0xCA 0xDA

0xEA 0xFA

These tables work well with the default quantization tables. The luminance
and chrominance tables are used for the indicated components when either
the YCC or YCCK color space is used via a ColorTransform. The luminance
table is the default for other color coordinates that have maximum sampling
both horizontally and vertically. The chrominance tables are the defaults for
downsampled color components.

As with quantization defaults, these defaults are not constants of Level 2
interpreters and might change over Level 2 products as more is learned about
color spaces and image compression. Applications can achieve somewhat
better compression for a particular level of image quality with custom tables.

44 Appendix B: PostScript Version 2011 Default Huffman Tables (24 Nov 92)

45

Appendix C: Image
Reproduction Study Results

The default quantizers in Appendix A: PostScript Version 2011 Default
Quantizers are also used by Adobe Photoshop™, which scales the default
matrices by a QFactor to achieve different quality settings. The default quan-
tizers were chosen to have about the right relative magnitudes and to have
absolute sizes that achieve ‘fair’ to ‘good’ quality at QFactor = 1.0.

A choice of quantizers depends heavily on excess resolution in the original
image. With some excess resolution, throwing away high frequencies through
downsampling or quantization wins; but if the original image has minimum
resolution, then this is ineffective. There is no single choice that covers all
cases effectively.

Error studies on three images using scaled default quantizers are reported
below. The three images used were:

• Japan Store Front (small objects and signs seen through a glass display
window in front of a store).

• Musicians (three women of different skin tones, nicely dressed with musi-
cal instruments).

• Balloons (two colorful hot air balloons against a sky background).

Japan Store Front is busy with many high frequencies (edges, text, lines,
etc.). Its flaws, small ringing patterns around high frequency details, were
always more visible than other flaws. To reduce these, the relative importance
of luminance high frequencies was raised relative to low frequencies and to
chrominance. Here are the results of mathematical error studies with Adobe
Photoshop quantizer settings:

46 Appendix C: Image Reproduction Study Results (24 Nov 92)

Table C.1 For RGB (CMYK is the same):

1) 1:1 RGB-to-YCC QFactor = 0.00

2) 1:1 RGB-to-YCC QFactor = 0.05

3) 1:1 RGB-to-YCC QFactor = 0.10

4) 1:1 RGB-to-YCC QFactor = 0.20

5) 2:1 RGB-to-YCC QFactor = 0.25 Blend=1

6) 2:1 RGB-to-YCC QFactor = 0.50 Blend=1 Default

7) 2:1 RGB-to-YCC QFactor = 1.00 Blend=1

8) 2:1 RGB-to-YCC QFactor = 1.60 Blend=1

9) 2:1 RGB-to-YCC QFactor = 2.50 Blend=1

The exact compression results and approximate error results are as shown
below. To estimate the RMS error, multiply the average error by 1.4:

Table C.2 Japan Store Front; busy RGB image (598,752 bytes):

Bytes Max. Err. Avg. Err.

1) 452,741 (1.32:1) 3 0.6

2) 302,371 (1.98:1) 7 1.6

3) 216,978 (2.76:1) 14 2.4

4) 145,870 (4.10:1) 28 3.8

5) 91,914 (6.51:1) 34 4.1 (ignores downsampling)

6) 61,245 (9.78:1) 46 5.8 (ignores downsampling)

7) 40,857 (14.7:1) 75 7.0 (ignores downsampling)

8) 30,456 (19.7:1) 83 9.2 (ignores downsampling)

9) 22,696 (26.4:1) 108 10.2 (ignores downsampling)

 47

Table C.3 Musicians; average RGB image (1,997,850 bytes):

Bytes Max. Err. Avg. Err.

1) 977,339 (2.04:1) 3 0.6.

2) 520,553 (3.84:1) 7 1.3.

3) 334,520 (5.97:1) 11 1.7.

4) 221,032 (9.04:1) 23 2.3.

5) 148,951 (13.4:1) 26 2.4 (ignores downsampling)

6) 94,272 (21.2:1) 41 3.1 (ignores downsampling)

7) 61,087 (32.7:1) 61 3.5 (ignores downsampling)

8) 45,194 (44.2:1) 70 4.6 (ignores downsampling)

9) 34,092 (58.6:1) 95 5.5 (ignores downsampling)

Table C.4 Balloons; simple RGB image (1,244,160 bytes):

Bytes Max. Err. Avg. Err.

1) 450,909 (2.76:1) 3 0.5

2) 228,660 (5.44:1) 7 1.1

3) 144,400 (8.62:1) 11 1.4

4) 94,873 (13.1:1) 17 1.7

5) 56,976 (21.8:1) 21 1.8 (ignores downsampling)

6) 35,683 (34.9:1) 34 2.1 (ignores downsampling

7) 23,769 (52.3:1) 44 2.5 (ignores downsampling)

8) 18,334 (67.9:1) 46 3.2 (ignores downsampling)

9) 14,536 (85.6:1) 54 4.0 (ignores downsampling)

48 Appendix C: Image Reproduction Study Results (24 Nov 92)

Table C.5 Balloons; simple CMYK image (1,658,880 bytes):

Bytes Max. Err. Avg. Err.

1) 650,659 (2.55:1) 3 0.5

2) 364,548 (4.55:1) 7 1.1

3) 241,071 (6.88:1) 11 1.4

4) 158,435 (10.5:1) 16 1.7

5) 110,728 (15.0:1) 20 2.1 (ignores downsampling)

6) 67,019 (24.8:1) 23 2.5 (ignores downsampling)

7) 41,425 (40.0:1) 44 2.9 (ignores downsampling)

8) 31,086 (53.4:1) 60 3.5 (ignores downsampling)

9) 24,369 (68.1:1) 75 4.3 (ignores downsampling)

In the above study, where downsampling is involved, the average error com-
pares the original blended value to the reconstructed value after compression
and expansion; in other words, it omits the error due to downsampling.

Adobe Photoshop uses the RGB-to-YCC color transform on RGB images.
Most other applications use this; and our experiments have suggested that it
improves the quality vs. compression tradeoff down to about QFactor = 0.1.
Adobe Photoshop also uses the CMYK-to-YCCK color transform on CMYK
images. (Color transforms increase the error at QFactor = 0.00 and 0.05;
abandoning it would result in essentially no error at QFactor = 0.00 and very
small error at QFactor = 0.05; but it seemed better to uniformly use the trans-
form than to complicate compatibility for other applications.)

Adobe Photoshop uses the Blend option on all downsampled colors. This
slows compression slightly while reducing the average error 15% on down-
sampled colors.

Adobe Photoshop switches from 2:1 sampling of chrominance to 1:1 sam-
pling at QFactor = 0.2. This is probably about the right place to switch. The
default quantization and Huffman coding tables also switch at this point.

49

Appendix D: Changes Since
Earlier Versions

Changes since October 14, 1992 version

• Added the appendix, “Image Reproduction Study Results.”

Changes since August 20, 1992 version

• Several references to PostScript version numbers 2010 and 2011 were
changed to refer to 2010 to 2012.

• In section 13.2, “RGB-to-YCC Color Transform,” the equations were
modified.

• The JFIF section was broken out of section 19, “DCTEncode Markers
String,” and made into its own section (section 20, “JFIF Marker”).

Changes since May 12, 1992 version

• The technical changes and bugs fixed in version 2012 are discussed in sec-
tion 12, “Bugs and Incompatibilities.”

Changes since March 31, 1992 version

• The technical changes and bugs fixed between PostScript versions 2010,
2011, and 2012 are discussed in section 12, “Bugs and Incompatibilities.”

Changes since April 5, 1991 version

• This document has been completely rewritten.

50 Appendix D: Changes Since Earlier Versions (24 Nov 92)

51

Index

A

Adobe Photoshop 45

B

Baseline standard
extensions 9

Blend 11

C

CCITTFaxDecode 6
CCITTFaxEncode 6
Chop 11
chrominance 18, 20
chrominance table 36
CIEBasedABC 20
CIELAB 22

D

DCT filters
bugs and incompatibilities 16
color transforms 18–20

CMYK-to-YCCK 18
compatibility with JPEG 6
compression 6
error handling 14
image reproduction 31
JPEG Implementation 31
PostScript Language Reference

Manual, Second Edition
errata 9

RAM requirement 15
reproduction cyclic stability after

initial loss 33
speed 29

inner loops 29

YCC 19
YCCK 19
zero-size images 11

DCTDecode 5–34
APPE marker 27
ASCII85Encoded 12
ASCII85Encoding 12
color transform

alternative to 19
program example 12–13
summary 8
upsampling 23

DCTEncode 5–34
color transforms

RGB-to-YCC 19
downsampling 20–22

Blend 20–22
Chop 21–22
HSamples 20
VSamples 20, 21

errata 10
marker strings 28
program example 14
summary 10

H

Huffman tables 39–43
HuffTables 14, 26–27

I

Image Reproduction Study 45–48

J

JPEG Interchange Format 7
JPEG X’FFEE marker 27

52 Index (24 Nov 92)

L

lossy compressor 5
Luminance 20
luminance 18, 19, 20, 35
LZWDecode 6
LZWEncode 6

M

magnitude categories 27

N

NoMarker 10

P

Picky 9, 11, 27

Q

QFactor 23, 33
quantization tables 23–25
quantizers

default 35
using 25

QuantTables 18, 24, 25

R

Relax 9, 11
Resync 10

	Supporting the DCT Filters in PostScript Level 2
	1 Introduction
	2 Purpose of the DCTEncode and DCTDecode Filters
	3 Alternative Compression Possibilities
	4 Compatibility with JPEG Specifications
	5 JPEG Interchange Format
	6 DCTDecode Filter Summary
	7 DCTEncode Filter Summary
	8 DCTDecode Program Example
	9 DCTEncode Program Example
	10 Error Handling
	11 RAM Requirements
	12 Bugs and Incompatibilities
	13 Color Transforms
	13.1 CMYK-to-YCCK Color Transform
	13.2 RGB-to-YCC Color Transform
	13.3 An Alternative to the DCTDecode Color Transform

	14 DCTEncode HSamples, VSamples, and Blend �Downsampling
	15 DCTDecode Upsampling
	16 Default Quantization Tables and QFactor
	16.1 Using Quantizers

	17 HuffTables Specification
	18 Adobe Application-Specific JPEG Marker
	19 DCTEncode Markers String
	20 JFIF Marker
	21 Speed in DCT Filters
	22 Accuracy of JPEG Implementation
	23 Accuracy of Image Reproduction
	24 Reproduction Cyclic Stability After Initial Loss
	Appendix A: PostScript�Version 2011 Default Quantizers
	Appendix B: PostScript�Version 2011 Default Huffman Tables
	Appendix C: Image Reproduction Study Results
	Appendix D: Changes Since Earlier Versions
	Index

