
PostScript Printer
Description File Format
Specification

Version 4.2

29 Mar 1994

Adobe Developer Support

PN LPS5003

postc

Adobe Systems Incorporated

Corporate Headquarters
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400 Main Number
(415) 961-4111 Developer Support
Fax: (415) 961-3769

Adobe Systems Europe B.V.
Europlaza
Hoogoorddreef 54a
1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200
Fax: +31-20-6511 300

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F
4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
+81-3-3437-8950
Fax: +81-3-3437-8968

Copyright 1987-1994 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language.
The sentences in this book that use “PostScript language” as an adjective phrase are so constructed to
reinforce that the name refers to the standard language definition as set forth by Adobe Systems
Incorporated.

PostScript, the PostScript logo, Display PostScript, Adobe, and the Adobe logo are trademarks of
Adobe Systems Incorporated which may be registered in certain jurisdictions. Apple, AppleTalk,
LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc. Other brand or product
names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

iii

Contents

PostScript Printer Description File Format Specification 1

1 Introduction 1

2 Using PPD Files 2
Building a User Interface for Printing 3
Inserting Print-Time Features 4
Post-Processing 5
Error Handling 6
Order Dependencies 7
Local Customization of PPD Files 8

3 Format 11
ASCII Code Chart 11
Definition of Terms 12
General Parsing Summary 14
Main Keywords 14
Option Keywords 16
Syntax of Values 19
Translation String Syntax 24
Human-Readable Comments 27
PostScript Language Sequences 28
PPD File Structure 28

4 Syntax of Specification 29
General Syntax 29
Elementary Types 30
Sample Keyword Entries 32

5 Keywords 34
Standard Option Values for Main Keywords 34
General Information Keywords 36
Basic Device Capabilities 42
Emulations and Protocols 46
Structure Keywords 49
Symbolic References to Data 56
Installable Options 59
Introduction to Media Handling 62
Media Option Keywords 64
Media Selection 69
Information About Media Sizes 72

iv Contents (29 Mar 94)

Custom Page Sizes 75
Media Handling Features 84
Finishing Features 92
Imagesetter Features 104
Resolution and Appearance Control 106
Gray Levels and Halftoning 110
Color Issues 113
Color Separation Keywords 115
Font Related Keywords 119
Printer Messages 124
System Management 126
Features Accessible Only Through Job Control Language 131

6 Sample PPD File Structure 135
Level 1 300 DPI Monochrome Printer 135
Level 2 Color Printer 143
Level 1 Imagesetter 148

Appendix A: User Interface Keywords 155

Appendix B: Repeated Keywords 157

Appendix C: Character Encodings 159

C.1 All Encodings Indexed By Byte Code 160

C.2 Conversions from WindowsANSI Encoding 162

C.3 Conversions from MacStandard Encoding 164

C.4 Conversions from ISOLatin1 Encoding 166

Appendix D: Changes Since Earlier Versions 169

D.1 Changes since Version 4.1, April 9, 1993 169

D.2 Changes since Version 4.0, October 14, 1992 170

D.3 Changes since February 14, 1992 171

D.4 Changes since Version 3.0, dated March 8, 1989 171
Changes to Text 171
New Keywords 174
Changes to Existing Keywords 175
Changes to Descriptions of Existing Keywords 175

Index 179

1

PostScript Printer
Description File Format
Specification

1 Introduction

PostScript™ printer description files (also known as PPD files) are human-
readable, machine-parsable text files that provide a uniform approach to
using the diverse special features of devices that contain PostScript interpret-
ers. These features include different page sizes, different methods of paper
and film handling, memory size, font availability, and finishing features such
as duplex printing and stapling. All devices do not have the same set of
features, and even devices with the same features do not necessarily invoke
those features in the same way.

The information contained in PPD files serves as a list of available features,
as basis for building a user interface, and as a mechanism for invoking the
features on a particular device.

In this specification, the term device means any output device containing a
PostScript interpreter, such as a printer, imagesetter, or film recorder. Each
device has a PPD file associated with it. The PPD files for all devices that are
accessible to a given host computer are stored on that host computer, where
they can be parsed by applications.

Applications can parse PPD files to discover the list of available features on
the currently selected device. PPD files contain structures that allow “blind”
parsing of a list of features. Applications can parse for these structures with-
out understanding the features they contain. Applications can then build a
user interface from the list of features found in the PPD file for the selected
device.

The PPD file also contains the PostScript language code to invoke each fea-
ture. In this specification, the term output file refers to the file containing the
PostScript language description of the document composed by the user.
When a user selects a feature from the user interface, such as manual feed or
duplex printing, the code for each selected feature is extracted from the PPD
file and included in the output file before the output file is sent to the device.

2 PostScript Printer Description File Format Specification (29 Mar 94)

Local customizations to a PPD file can be added at the user site to accommo-
date additions to the printer, such as the addition of fonts or memory, or to
configure a device a certain way (for example, to always print on both sides
of the paper).

There is a close relationship between PPD files and the Adobe Systemsdocu-
ment structuring conventions (also known as DSC). These comment conven-
tions can be used in an output file to identify the code that invokes device-
specific features. This allows the output file to be redirected from one device
to another by a spooler or other post-processing software. As an output file is
routed across a network, a spooler can extract device-specific code by pars-
ing for the associated DSC comments. The spooler can then parse the PPD
file for the new device, extract new device-specific code, and insert new
device-specific code to satisfy the needs of the output file.

Every piece of code that is extracted from a PPD file and inserted into an
output file should be enclosed by the appropriate DSC comments. Version 3.0
of the Document Structuring Conventions specification is documented in
Appendix G of thePostScript Language Reference Manual, Second Edition.
Any later versions of this specification can be obtained from the Adobe™

Developers Association.

2 Using PPD Files

PPD files can be used during several phases of document production. First,
the user selects an output device and, implicitly or explicitly, a PPD file. The
association of the PPD file with the printer can be handled by an application,
or the user may select the PPD file explicitly. At this time, the PPD file can be
used as data for a configuration tool An application can parse the PPD file for
a list of the optional accessories, and display a configuration panel that asks
the user which accessories are installed. This information can be used later by
a printing application to choose which options to display to the user at print
time.

Note This specification does not address the uses of PPD files at document compo-
sition time. For information about using a PPD file at document composition
time, see Technical Note #5117, “Supporting Device Features.”

At print time, the selected PPD file can be used to construct a user interface
that displays the available features of the requested device, such as duplex
printing or manual feeding. After the user selects various printing features,
the code to invoke those features can be extracted from the PPD file and
inserted into the output file. Finally, PPD files for other devices can be used
by a post-processor, such as a spooler, to insert new device-specific code into
the output file and route the file to a different device. This section provides
more detail on the use of PPD files in each phase of document production.

2 Using PPD Files 3

In this specification, the application that parses the PPD file for device fea-
tures and provides the print panel function is referred to as a print manager.
Often, it is the same piece of software that converts an application’s internal
representation of a document to the PostScript language representation of the
same document. The function of the print manager might be provided by a
system-level driver, by a separate piece of software, or it might be part of an
application.

Among its other duties, the print manager

• takes input from the user via some user interface, such as a print panel or
command line,

• extracts from the PPD file the corresponding code sequences to invoke the
requested features,

• inserts the code sequences into the appropriate setup section of the output
file, and

• surrounds the code sequences with the appropriate DSC comments.

Some device features require additional memory or other hardware before
they can be invoked. For example, a device might need more than the mini-
mum amount of memory to print a legal-size page, or to do color separations,
or it might need an external device attached to fold paper. The PPD file for
the device will record support for all of these features if they are supported by
the device hardware and the PostScript interpreter; it is up to the user to
install the correct peripherals and memory needed to make these features
accessible.

2.1 Building a User Interface for Printing

At print time, a user must be able to select various device features, such as
paper size or manual feed, through a user interface such as a print panel or a
command line. The features offered to the user by a print panel can be con-
structed by parsing the PPD file for the selected device, discovering the avail-
able features, and displaying them to the user for selection. For example, the
PPD file contains a list of paper sizes supported by the device. A user inter-
face can display that list to the user and allow the user to select a paper size
from the list.

The PPD file also contains information about the default state of the device
as it is shipped from the factory. The default state of the device can be used as
a starting point for setting the initial state of the user interface. For example,
the default state of optional accessories can be used to indicate whether or not
those accessories are installed, and, therefore, whether or not to display them
to the user.

4 PostScript Printer Description File Format Specification (29 Mar 94)

Second, the default state of individual features can be used to determine how
they are initially displayed. For example, if the default state of the device is
to print on letter-size paper with manual feed turned off, the user interface
could initially appear with letter-size paper selected and manual feed not
selected. This tells the users that if they change nothing, their documents will
be printed on letter-size paper with manual feed disabled. The PPD file can
thus be used both to tell users both what they can do and what will happen if
they do nothing.

It is important to realize that the defaults in the PPD file do not necessarily
reflect the current state of the device, as a system manager or a previous job
could have changed the state of the device. It is also important to realize that
a print manager is not required to use the PPD defaults as an initial starting
point for display. Some print managers save the user’s previous job settings
and use those as initial settings, rather than using the device’s default settings.

2.2 Inserting Print-Time Features

When the user has finished selecting features, the print manager can consult
the PPD file for additional information, such as

• whether this is a Level 1 or a Level 2 device, so the print manager knows
whether or not it can generate code that uses Level 2 features

• if it is a Level 1 device, which extensions to the PostScript language are
supported, if any

• the code sequences that invoke the features the user has selected via the
user interface

• any additional information that the author of the print manager thinks
would be useful in generating an efficient output file.

Armed with information, the print manager converts the internal representa-
tion of the document into the PostScript language representation of the docu-
ment. It includes the device-specific code for the features requested by the
user, and surrounds these feature requests with DSC comments for possible
later parsing by other applications.

The following example shows a PostScript language output file that describes
a very small document. In this example, the output file does not yet contain
DSC comments or device-specific code. Throughout this section, this output
file will grow as DSC comments and device-specific code are added.

/sp /showpage load def

100 100 translate

20 50 moveto

2 Using PPD Files 5

20 100 lineto

stroke

sp

In the next example, assume that the user requested letter-size paper via some
user interface. The print manager extracts from the PPD file the device-spe-
cific code to invoke letter-size paper, inserts the code into the output file,
inserts the appropriate DSC comments, and sends the output file to the output
device.

The following is the example with DSC comments and device-specific code
added. The code sequence extracted from a PPD file is in boldface.

%!PS-Adobe-3.0

%%Title: test.ps

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter

statusdict /lettertray get exec

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

%%Trailer

When the output file is sent to the output device, the interpreter ignores the
comments and executes the PostScript language commands, including the
code sequence that sets up the letter-size input tray.

For most user-selectable features of a device, there is no clear inverse opera-
tion. That is, unsetting, for example, a ledger-size paper tray will typically
mean establishing a different paper tray as the current paper tray. Explicitly
setting the device back to its default condition has the same effect; it will
“undo” the effects of having previously set a given feature. Unless there is a
specific reason to do so, it is not necessary to reverse the effects of invoking
device-specific features for any particular print job, since the job server
should provide that service, returning device features to their default settings
at the end of each job.

2.3 Post-Processing

In some environments, there might be a post-processor, such as a spooler,
which also acts as a print manager. In this context, the requested device might
be unavailable, and the print manager/spooler might need to redirect an
output file from one device to another. If an output file is to be redirected, the

6 PostScript Printer Description File Format Specification (29 Mar 94)

print manager parses the DSC comments in the output file, and strips out the
original device-specific code. It then parses the PPD file of the newly
selected device, extracts from the new PPD file the device-specific code
requested by the DSC comments, inserts the device-specific code from the
new PPD file into the output file, and sends the output file to the new device.

The following is the example file as it is sent to the new device (note that the
device-specific code is different):

%!PS-Adobe-3.0

%%Title: test.ps

%%LanguageLevel: "2"

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter

1 dict dup /PageSize [612 792] put setpagedevice

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

%%Trailer

2.4 Error Handling

It is possible that a print manager might encounter PPD files that contain
errors. Print managers are encouraged to include a reasonable level of error-
handling. Examples of possible errors that need handling are dangling sym-
bolic references (section 5.6), missing information about page sizes (section
5.8, section 5.10, and section 5.11), and missing required keywords (section
3.4).

Files that conform to this specification are portable across systems and com-
munication channels, with the exception of system-dependent filenames in
*Include statements (see section 2.6 and section 4.2.) Non-conforming files
might be accepted by some software, but their portability is at risk. For exam-
ple, some software might accept out-of-range byte codes in a PPD file and
treat them in a system-dependent manner, but when ported to another system
with stricter software, the same file might fail.

When inserting invocation code from a PPD file into a job stream, print man-
agers are encouraged to execute such code in astopped context to catch any
errors, and to surround the code withmark andcleartomark to ensure that
the operand stack is cleaned up if an error occurs while executing the code.

2 Using PPD Files 7

2.5 Order Dependencies

When a print manager is inserting device-specific code into an output file, the
order of certain operators with respect to each other is important and must be
considered. The following are the types of operators concerned, shown in
their respective order

• resolution invocations

• media tray invocations

• media size/imageable region invocations

Any of the types of operators listed can occur in either the document setup or
page setup sections of the output file. For information about the document
setup and page setup sections of an output file, see the Document Structuring
Conventions specification referenced on page 2.

If any of these types of invocations occur together in any setup section, the
order shown above must be maintained to achieve the expected results. Spe-
cifically, the following guidelines for ordering should be applied:

• Any resolution invocation (available only on devices where the user can
change the resolution of the device via software) must occur before any
media tray or media size selection. This is important because on many
devices, the resolution is not actually set until the tray or size selection
occurs, so the tray or size selection must occur after the resolution
invocation.

• If both a specific media tray invocation (for example, Upper) and a spe-
cific imageable region invocation (for example, Letter) occur in the output
file, the media tray invocation should precede the imageable region invo-
cation. Otherwise, the tray invocation might invalidate the imageable
region invocation.

The following items generally occur after media size selection:

• job control requests such as duplex, automatic tray switching, signaturing,
output bin selection, fine tuning, facsimile, and finishing features

• halftone invocations (including halftone screen setup, transfer functions,
and accurate screens)

Any modifications to the halftone screens, including modifications to the
screen angle, screen frequency, spot function, transfer function, and the invo-
cation of the accurate screens feature, must occur after the media size invoca-
tion. This is because the media size invocation will set the halftone screen

8 PostScript Printer Description File Format Specification (29 Mar 94)

settings to their default settings. Modifications to the halftone screens are not
confined to the setup sections; they can occur anywhere on a page in the
output file.

The keyword*OrderDependency provides information about the appropriate
setup section and ordering of each PostScript invocation in a PPD file.

2.6 Local Customization of PPD Files

A PPD file is a static representation of the features available on a device. It
contains information on the features available on a device as it is shipped
from the factory. In general, this will be the minimum amount of memory
available for that device, the minimum font set, and the maximum list of
optional accessories, such as paper trays, so that all the necessary invocation
code is present in the PPD file, even if the accessories are not installed when
shipped from the factory. Optional accessories will be marked as optional in
the PPD file.

Once a device is installed, features such as additional memory and fonts
might be added to the device. In this specification, the term“system adminis-
trator” is used to mean the person who adds memory and fonts and otherwise
is generally responsible for the device. In a single-user, single-printer envi-
ronment, the role of system administrator is typically played by the user.

The task of managing a device is a dynamic issue that requires keeping track
of fonts downloaded to disk, error handlers, RAM-based fonts and procedure
sets, default device setup, and so forth. This kind of device management is
beyond the scope of PPD files. However, there are provisions for customiz-
ing the information contained in PPD files to adapt them to local instances of
devices.

One approach to customization is for a print manager to parse all of the PPD
files available on a host system and store the data into a database. The print
manager (or other utility) can then update the database dynamically to
accommodate additional memory, fonts, available trays, and other change-
able printer features.

Another approach is to permiteditable customization files, which include a
reference to the original PPD file. In any given computing environment, there
should be a single PPD file for each type of device in use. If particular soft-
ware products (or individual users) want to add to or modify the contents of a
PPD file, they should do so by creating a local customization file that con-
tains entries only for items they want to change or add. For example, a cus-
tomization file might contain information about additional memory and fonts
that were added to the device after it was received from the factory. Using
local customization files permits a system administrator to replace the origi-
nal PPD without forcing users to reedit their local customization files.

2 Using PPD Files 9

To be understood by applications parsing PPD files, this local customization
file must conform to the PPD specification, so in a sense, the customization
file is itself a PPD file. The customization file should be given a unique name
that represents a particular device (for example,MyPrntr.PPD). The.PPD
extension should be preserved, with case irrelevant, in case applications or
print managers are searching for files with that extension. In addition, certain
application developers might create customization files with different exten-
sions, which are read only by their application.

The local customization file and the original PPD file are related through the
use of the following entry:

 *Include: "filename"

Because the original PPD file should not be modified by the addition of the
*Include keyword, this keyword appears in the customization file, and refer-
ences the original PPD file by naming it withfilename (see the sample local
customization file below).

When a PPD file is included by another file, the parsing details change some-
what. In particular, there might be several instances of the same keyword in
the “composite” file. In this case, thefirst instance of a given keyword (or, if
the keyword takes an option, of a keyword-option pair) is correct. This
enables a parser to ignore subsequent versions of the same entry, possibly
reducing the parsing time.

Note The concept of “first instance is correct” does not apply to optionless key-
words such as*PrinterError, which normally have multiple instances in a
PPD file, and which do not have option keywords to distinguish those
instances. In this case, all instances must always be parsed and recorded.

For a keyword such as *FreeVM, which would not normally have multiple
entries, or for a main keyword-option keyword combination such as
*PageSize Letter, which has an option keyword to distinguish the entry and,
therefore, would normally have only one instance in a PPD file, the first
instance encountered is considered correct. This implies that a parser must
either have knowledge of the semantics of the PPD keywords when parsing,
or it must save all instances in some form for a later, smarter processor to
decide which are rightfully multiple instances. See Appendix B for a list of
optionless keywords that might occur multiple times in a file.

10 PostScript Printer Description File Format Specification (29 Mar 94)

By logical extension, if the first instance of a keyword is the correct instance,
than all keywords in a local customization file should occurbefore the
*Include statement that references the original PPD file.For example, assum-
ing the original PPD file is calledTIm35521.PPD, a local customization file
would look like this

*% Local Customization File for TI microLaser in Bldg A

*NickName: "microLaser - Building A"

*FreeVM: "1907408"

*DefaultManualFeed: True

*Include: "TIm35521.PPD"

*% end of local customization file

The local customization file might be namedMicro-A.PPD. A parser reading
this file would record the values of*NickName, *FreeVM, and
*DefaultManualFeed as shown above, and would ignore subsequent occur-
rences of those keywords in the included PPD file,TIm35521.PPD.

This inclusion scheme permits the original file,TIm35521.PPD, to be easily
replaced if a new version is issued. Users will not have to edit their local cus-
tomization files to take advantage of a new version of a PPD file; if the new
PPD file has the same name as the old one, it will automatically be referenced
by the local customization file.

If a keyword that is normally enclosed by the*OpenUI/*CloseUI keyword
pair in the original PPD file is repeated (replaced) in a local customization
file, it should also be bracketed by *OpenUI/*CloseUI in the customization
file. It should also include any*OpenGroup/*CloseGroup keywords, if appro-
priate. See section 5.5 for details on the*OpenUI/*CloseUI and*OpenGroup/
*CloseGroup keywords. This means that a print manager, when parsing the
PPD file, must be prepared to find multiple instances of a given*OpenUI/
*CloseUI group, both in the original PPD file and in any local customization
files that might exist.

Using and Changing Default Settings

When building a user interface from a PPD file, a print manager can use the
*Default- keywords to select defaults for the various features displayed to the
user. For example, if the PPD file for the selected device contains this entry:

*DefaultManualFeed: False

then the print manager can indicate in the user interface that manual feeding
of the media is, by default, turned off, and provide a way for the user to turn
on manual feeding.

3 Format 11

The defaults listed in the original PPD file reflect the state of the device when
it is shipped from the factory. If the system administrator wants to set up the
device differently, the new defaults should be included in the local customi-
zation files. For example, if the device in the previous example was set up to
always feed from the manual feed slot, then the local customization file
should contain this entry

*DefaultManualFeed: True

This allows the print manager to indicate in the user interface that manual
feeding of the media on this device is, by default, turned on.

3 Format

PPD files provide several fundamental kinds of information about device fea-
tures, including the feature options, the default settings, how to change the
settings, and other information that might be used for scheduling jobs. The
syntax of PPD files is a simple line-oriented format where the options,
defaults, and invocation strings (PostScript language code sequences that
change a feature setting) are made available through a regular set of key-
words. Where applicable, there is also information supplied about how to
determine the current setting of any of these configurable options (known as
querying the device).

3.1 ASCII Code Chart

Throughout the next few sections, certain ASCII characters are referenced
repeatedly. For completeness, they are all shown here with their decimal
ASCII equivalents:

• space (decimal ASCII 32)

• tab (horizontal), (decimal ASCII 9)

• asterisk, ‘*’ (decimal ASCII 42)

• colon, ‘:’ (decimal ASCII 58)

• slash, ‘/’ (decimal ASCII 47)

• question mark, ‘?’ (decimal ASCII 63)

• double quote, ‘"‘ (decimal ASCII 34)

• newline — any combination of carriage return (decimal ASCII 13) and
line feed (decimal ASCII 10)

• caret, ‘^’ (decimal ASCII 94)

12 PostScript Printer Description File Format Specification (29 Mar 94)

• open angle bracket, ‘<‘ (decimal ASCII 60)

• closing angle bracket, ‘>’ (decimal ASCII 62)

3.2 Definition of Terms

This section defines many of the terms used throughout this specification.

There are two basic types of keywords:main keywords andoption keywords.
Main keywords describe a class of features, such as page sizes and input slots
(*PageSize, *InputSlot). Main keywords either provide information about a
feature, such as how much memory is available or which fonts are resident,
or they provide the code to invoke a user-selectable feature, such as an input
tray or manual feed.

Option keywords, which modify main keywords, describe the list of available
options for a feature. For example, the option keywords for the keyword
*PageSize describe the available page sizes, such asLetter, Legal, A4,
Tabloid, and so on. The option keywords for the main keyword*InputSlot
describe the available input slots, such asUpper, Lower, and so on.

The registry of main keywords is controlled by Adobe Systems, and all valid
main keywords are described in this specification. Adobe Systems will issue
an addendum to this specification when new main keywords are added to the
registry.

The registry of option keywords is also controlled by Adobe Systems, but is
subject to more frequent change and additions. Any OEM can add the option
keywords necessary to describe new device features, but these option key-
words must be approved by Adobe Systems. This is to avoid proliferation of
different option keywords that mean the same thing or of one option keyword
meaning different things on different devices. All currently registered option
keywords are documented herein, but more can be added at any time.

Note Releases of the keyword registry are uniquely identified by the date of the
release. Send requests to the appropriate address on the title page of this
specification.

Two subsets of the main keyword class aredefault keywords andquery key-
words. Default keywords provide information about the default state of the
device as shipped from the factory. Query keywords provide a code
sequence, which, when downloaded to the device, returns information about
the current state of the device. This can be useful for print managers/spoolers
to determine the state of a device and perhaps request operator intervention
(for example, if the appropriate media tray is not present). Queries can only
be used when the physical interface to the device permits feedback from the
device.

3 Format 13

An entry is a convenient term used to describe a main keyword and its associ-
ated option and value, or a group of main keywords, options, and values that
are specified as belonging together.

There are seven canonical forms of entries:

• *MainKey

• *MainKey: StringValue

• *MainKey: "QuotedValue"

• *MainKey: ^SymbolValue

• *MainKey OptionKey: StringValue

• *MainKey OptionKey: "InvocationValue"

• *MainKey OptionKey: ^SymbolValue

Each entry in a PPD file falls into one of these forms. The various value types
are defined in section 3.6.

The line length of any line in a PPD file must be less than or equal to 255
characters, including line termination characters. Line termination in PPD
files can consist of any combination of carriage return (decimal ASCII 13)
and line feed (decimal ASCII 10). In this specification, the set of line termi-
nation characters is referred to asnewline. Different computer systems can
represent the line endings differently without affecting the actual data repre-
sentation.

White space is defined as any combination of the characters spaceand tab.
Newline characters should not be treated the same as white space characters,
because the newline character (or pair of characters) signals termination of an
individual PPD entry (exceptions to this rule are noted later).

All byte codes in a PPD file must be within a range corresponding to print-
able 7-bit ASCII; that is, byte codes must be within the range of decimal
ASCII 32 through decimal ASCII 126 inclusive, plus decimal ASCII 9 (hori-
zontal tab), decimal ASCII 10 (line feed), and decimal ASCII 13 (carriage
return). Characters that fall within this range are called in-range byte codes.
Characters that fall outside of this range are calledout-of-range byte codes.
See section 3.7 for details on how to handle byte codes outside this range.

A hexadecimal substring consists of a sequence of zero or more pairs of
hexadecimal digits, preceded by the < (less than) character (decimal
ASCII 60) and followed by the > (greater than) character (decimal
ASCII 62). Hexadecimal digits consist of the characters 0 through 9,

14 PostScript Printer Description File Format Specification (29 Mar 94)

a through f, and A through F (case is insignificant). Spaces, newlines, and
tabs can be intermixed with the hexadecimal digits and should be ignored,
with exceptions to this rule noted later. See section 3.7 for details on the treat-
ment of newlines. All other characters should be considered an error. An odd
number of hexadecimal digits is also an error.

3.3 General Parsing Summary

The following are parsing rules that apply to the PPD file as a whole:

• Any line that exceeds 255 characters in length is considered an error.

• Any character that falls outside the byte code range of decimal ASCII 32
through decimal ASCII 126 inclusive, plus decimal ASCII 9 (horizontal
tab), decimal ASCII 10 (line feed), and decimal ASCII 13 (carriage
return), is considered an error.

3.4 Main Keywords

All main keywords start with the leading special character* (decimal ASCII
42). This makes recognition of keywords easier, and reduces the possibility
of keywords being confused with PostScript language identifiers in code
sequences.

Query keywords start with the leading characters*?, differentiated from other
main keywords by the presence of the ? character (decimal ASCII 63).

Default keywords start with the prefix*Default, as in*DefaultPageSize.
Where applicable, there is a relationship between the three kinds of main
keywords, as in*PageSize, *DefaultPageSize, and*?PageSize. A complete
list of keywords appears later in this specification.

There is also a relationship between keywords that start with the prefix
*Param, as in*ParamCustomPageSize, and the associated root keyword
(*CustomPageSize, in this case). The prefix*Param signifies that this key-
word documents parameters needed by the root keyword. See
*CustomPageSize and*ParamCustomPageSize for more explanation.

No single keyword is wholly contained as a substring in another keyword, so
that line-oriented searching programs such asgrep can be used to parse for
complete keywords, including the* as part of the keyword name. For exam-
ple, there will not be similar keywords such as*Paper and*PaperSize. How-
ever,*PageSize and*CustomPageSize are legal, because*PageSize is not a
substring of*CustomPageSize.

Since the format is line-oriented, all entries will start at the beginning of a
line. The* (asterisk) character that begins the main keywords in the entry
must be in the first column.

3 Format 15

Main keywords can contain anyprintable ASCII characters within the range
of decimal 33 to decimal 126 inclusive, except for the characters colon, slash,
space, or tab, because these characters serve as keyword delimiters.There is
no escape mechanism for this prohibition, such as using double quotes to sur-
round illegal characters (for example, *“Quoted Keyword” is not legal,
because of the space in the keyword name).

The basic format of an entry looks like this

*Default< main keyword >: < option n>

*< main keyword > < option 1>: " PostScript language code "

*< main keyword > < option n>: " some other PostScript language code "

*?< query keyword >: " PostScript language query code "

An example entry

*DefaultPageSize: Letter

*PageSize Letter: "lettertray"

*PageSize Legal: "legaltray"

*?PageSize: "save [(Letter)(Legal)] papertray get = flush restore"

The information is represented as tuples. They will typically either be
2-tuples (keyword/value pairs) or 3-tuples (keyword/option/value triplets).
Where simple information is supplied, such as the name of the device, a
simple keyword/value pair is used. Where there are optional parameters,
3-tuples are used (as in the example above) to provide information about a
specific option.

The format conveys the possibilities for a feature: the default setting for this
feature, the current setting, and how to invoke each of the options. Any lines
that start with the same keyword will be contiguous in the PPD file, to make
it easier to parse them. However, there is no mandatory order to the lines in
an entry; for example, the query could appear above the default.

Parsing Summary for Main Keywords

When parsing main keywords, remember

• The absence of a main keyword means that the feature does not exist (or
does not make sense) on that particular device.

• The following keywords are required to be present:

*NickName *ModelName *PCFileName
*Product *PSVersion *FileVersion
*FormatVersion *LanguageEncoding *LanguageVersion
*PageSize *PageRegion *ImageableArea
*PaperDimension *PPD-Adobe

16 PostScript Printer Description File Format Specification (29 Mar 94)

For parsing, a chain of local customization files and included PPD files are
considered one file, so the required keywords can appear anywhere in the
chain of files and do not have to be repeated in each file in the chain. The
absence of any of these keywords might be considered an error, or the
parser might have backup strategies for handling their absence.

• If a main keyword is not recognized, the entire entry (including multi-line
code segments) should be skipped. However, keep in mind that the point
of the*OpenUI/*CloseUI structures is to allow new main keywords to
appear without a print manager explicitly recognizing them. The most
functionality will be provided to the user if a print manager handles all
main keywords that occur within the*OpenUI/*CloseUI structure, display-
ing them and invoking their associated code to the best of its ability.
Unrecognized main keywords that occur outside of the*OpenUI/*CloseUI
structure should be skipped.

• A * in the first column denotes the beginning of a main keyword. Any text
or white space before the* should be considered an error.

• The case of main keywords is significant. For example,*PageSize is dis-
tinct from *Pagesize. The proliferation of keywords, which are the same
textually except for case is strongly discouraged.

• 40 characters is the maximum length for main keywords.

• Main keywords can contain any printable ASCII characters within the
range of decimal 33 to decimal 126 inclusive, excluding the characters
space, tab, colon or newline, because these characters serve as keyword
delimiters.

• Delimiters for main keywords are space, tab, colon, or newline. After the
initial * symbol is recognized, all characters through (but not including)
the next space, tab, colon, or newline character are considered part of the
main keyword.

• If a main keyword is not terminated with a colon or newline, an option
keyword can be expected. See section 3.5 for information on option key-
words.

3.5 Option Keywords

Option keywords are provided whenever there are several choices for a par-
ticular feature. For example, there might be many different media sizes listed
in the*PageSize section. These choices are specified using option keywords.
The option keyword immediately follows the main keyword, separated from
it by one or more spaces. For example, in the following entry, the stringLetter
is the option keyword:

3 Format 17

*PaperDimension Letter: 612 792

The list of option keywords is completely extensible by the person building
the PPD file (generally, someone at Adobe Systems). This enables a PPD file
to be generated for a device using names specified by the device manufac-
turer, without making constant updates to the PPD specification.

The option keywords currently known for each main keyword are registered
by Adobe Systems, and their semantics are described in this specification. As
new option keywords are added, updates will be generated. It should be clear,
however, that the list of option keywords is never complete. That is, a new
option keyword can be registered at any time. Registering the option key-
words is done to prevent redundancy in naming; it is not meant to restrict the
list of option keywords available.

Option keywords are composed of printable ASCII text. The following char-
acters are forbidden, either because they are not representable within the
valid byte code range or because they have special meaning:

• out-of-range byte codes

• the characters slash, colon, space, tab, or newline

An option keyword can be the name of a main keyword or of a symbol. The
following examples all contain valid option keywords:

*InputSlot Letter: "code"

*OpenUI *InputSlot: PickOne

*SymbolValue ^MySymbol: "code"

An option keyword is terminated by a colon or a slash if there is a translation
string (see section 3.7 for information on translation strings). There is no
escape mechanism for the forbidden characters listed above.

Option keywords can have extensions called qualifiers. Qualifiers are
appended to option keywords with the . (period) character (decimal
ASCII 46) as a separator. Any number of these qualifiers can be appended to
an option keyword, as appropriate.

The following is an example:

*PageSize Letter: "0 setpapertray"

*PageSize Letter.Transverse: "1 setpapertray"

*PageSize Letter.2: "2 setpapertray"

In this example, qualifiers are used to differentiate between several instances
of a particular media type that differ only slightly. For example, the
.Transverse qualifier signifies thatLetter differs fromLetter.Transverse only
in the direction that the media is fed into the device.

18 PostScript Printer Description File Format Specification (29 Mar 94)

The numeric qualifier.2 in Letter.2 is called a serialization extension. A seri-
alization extension is an integer appended to an option keyword to distin-
guish it from an otherwise identical option keyword (for example, a device
with two letter trays might refer to them asLetter.1 andLetter.2). Qualifiers
will be registered when appropriate, with the exception of serialization exten-
sions, which make no sense to register.

Parsing Summary for Option Keywords

For print managers, the rapid extensibility of option keywords implies that a
print manager should not parse for specific option keywords for two reasons:

• There might be option keywords in the PPD file that are not in this specifi-
cation. New option keywords can be added to PPD files at build time
when necessary. If a parser only recognizes the option keywords registered
in this specification, it might limit the feature set that can be offered to the
user.

• Certain option keywords might not be present in the PPD file for a given
device. Manufacturers will inevitably call features by different names and
use different option keywords to describe those features, so parsing for
*PageSize Ledger is futile if the PPD file being parsed describes that par-
ticular feature as*PageSize 11x17. Again, this can limit the feature set
offered to the user, and might cause an error if the parser cannot find a spe-
cific option keyword.

Rather than parsing for specific option keywords, a print manager should
parse for main keywords and display all available option keywords found. To
facilitate easier parsing, all option keywords of a given main keyword (that is
conceivably part of a user interface) are bracketed by the*OpenUI/*CloseUI
keywords (more on this later).

Other things to remember about parsing option keywords:

• An option keyword begins with the first character after white space after a
main keyword. In other words, if a main keyword is not terminated by a
colon, but is followed by white space instead, an option keyword will be
the next non-white-space text encountered.

• The case of option keywords is significant. For example,letter is distinct
from Letter.

• 40 characters is the maximum length for option keywords.

3 Format 19

• Option keywords can contain any printable ASCII characters within the
range of decimal 33 to decimal 126 inclusive, except for the characters
colon and slash, which serve as keyword delimiters. Once the option key-
word is encountered, and before it is properly terminated, a space, tab, or
newline character should be regarded as an error.

• The option keyword is terminated by either a colon or a slash, which indi-
cates the presence of a translation string. If a translation string is present, it
is terminated by a colon (spaces and slashes are allowed in the translation
string). A newline encountered before the colon should considered an
error.

• There can be spaces and/or tabs after the colon, as in most of the examples
in this specification. Spaces or tabs before the colon are interpreted as key-
word delimiters, if appearing before the option keyword; as errors, if
appearing within the option keyword; or, if appearing after a slash, as part
of a translation string.

3.6 Syntax of Values

The : (colon) character (decimal ASCII 58) is used to separate keywords
(and options, if any) from values. Any number of tabs and spaces are permit-
ted after the colon and before the value.

Values can contain any printable ASCII characters within the range of deci-
mal 32 to decimal 126 inclusive, except for the character slash, which serves
as a delimiter. The characters caret and double quote also have special mean-
ing for some values; exceptions to their use will be noted later.

A simple key/value pair looks like this

*MainKeyword: value

and a 3-tuple typically looks like this:

*MainKeyword option: value

There are five basic types of values:

• InvocationValue

• QuotedValue

• SymbolValue

• StringValue

• NoValue

20 PostScript Printer Description File Format Specification (29 Mar 94)

InvocationValue

An InvocationValue is a value that meets the following conditions:

• Occurs only in entries where there is an option keyword present.

• Starts and ends with the double quote character " (decimal ASCII 67).

• Everything between the double quotes is treated as literal; that is,newlines
and hexadecimal substrings are allowed and are placed in the output file to
be passed on to the interpreter. In this case, a newline does not terminate
the PPD file entry.

• The following characters are forbidden between the starting and ending
double quote characters:

- out-of-range byte codes

- double quote character " (decimal ASCII 67)

There is no escape mechanism or alternate way to represent forbidden
characters.

The syntax of an InvocationValue is usable directly by the PostScript inter-
preter. This allows InvocationValue to be stripped out of the PPD file and
placed directly into output files being generated.

QuotedValue

A QuotedValue is a value that meets the following conditions:

• Occurs only in entries where there is no option keyword present. The
exception to this rule is that the*JCL keywords may have an option
present.

• Starts and ends with a double quote character " (decimal ASCII 67).

• Between the double quote characters, a QuotedValue consists of a
sequence of literal and/or hexadecimal substrings. A hexadecimal sub-
string is defined in section 3.2. A literal substring is a sequence of in-range
byte codes, with the following characters forbidden:

- out-of-range byte codes

- double quote character " (decimal ASCII 67)

- open angle bracket < (decimal ASCII 60) because this character marks
the beginning of a hexadecimal substring

3 Format 21

- closing angle bracket > (decimal ASCII 62) because this character
marks the end of a hexadecimal substring

Unlike an InvocationValue, forbidden literal substring characters in a
QuotedValue can be represented as hexadecimal substrings, bounded by
opening and closing angle brackets < (decimal ASCII 60) and > (decimal
ASCII 62) as defined in section 3.2. A print manager parsing a QuotedValue
is responsible for converting a hexadecimal substring into a sequence of
bytes, which might include out-of-range byte codes, and placing the byte
codes in the output file.

• The < and > characters must be represented as hexadecimal substrings if
they occur in the value as anything other than hexadecimal substring
delimiters.

• The value can be intermixed literal and hexadecimal substrings. For exam-
ple, the following entries both have valid QuotedValues:

*MainKeyword: "Hi there <ABCDEF> everybody"

*MainKeyword: "<ABCDEF>"

Note As a guideline, PostScript language code should not appear in a
QuotedValue, but rather in anInvocationValue. If older parsers expecting lit-
eral substrings encounter a hexadecimal substring, which is new as of the 4.0
specification, errors will probably result.

SymbolValue

A SymbolValue is a value that meets the following conditions:

• Starts with a caret ^ (decimal ASCII 94)

• Contains only in-range byte codes and is terminated by a newline. No
white space is allowed.

• The actual text of the SymbolValue is further constrained by the require-
ments documented in section 5.6.

A SymbolValue is used as pointer to a body of PostScript language code (an
InvocationValue). ASymbolValue can occur in an entry whether or not there
is an option keyword present.

StringValue

A value of the form StringValue meets the following conditions:

• The value is not surrounded by the double quote character.

22 PostScript Printer Description File Format Specification (29 Mar 94)

• The first character of the value cannot be a double quote character, to
avoid a parser confusing a StringValue with a QuotedValue or an
InvocationValue.

• The first character of the value cannot be a caret ^ (decimal ASCII 94), to
avoid confusing a StringValue with a SymbolValue.

• The value is composed of in-range byte codes (printable ASCII strings),
possibly separated by white space into multiple components. It is termi-
nated by a newline, or a slash, in the case of a translation string.

• There is no escape mechanism for forbidden characters. The following
characters are not allowed in the value:

- out-of-range byte codes

- the character slash / (decimal ASCII 47)

A StringValue can occur in an entry whether or not there is an option key-
word present.

NoValue

A value of type NoValue meets the following conditions:

• There is no option keyword present.

• There is no value present.

• The main keyword stands alone.

Parsing Summary for Values

When parsing values, be aware of the following:

• If there is an option keyword in an entry, and the first nonwhite-space
character after the colon is a double quote, " (decimal ASCII 67), the value
is an InvocationValue. The exception to this rule is that if the main key-
word starts with the string*JCL, the value should be treated like a
QuotedValue. See section 5.23 for a description of the*JCL keywords.

• If there is an option keyword in an entry, and the first nonwhite-space
character after the colon is a caret, ^ (decimal ASCII 94), the value is a
SymbolValue.

• If there is an option keyword in an entry, and the first nonwhite-space
character after the colon is neither a double quote, " (decimal ASCII 67)
nor a caret, ^ (decimal ASCII 94), the value is a StringValue.

3 Format 23

• If there is no option keyword, and the first nonwhite-space character after
thecolon is a double quote, " (decimal ASCII 67), the value is a
QuotedValue.

• If there is no option keyword, and the first nonwhite-space character after
the colon is a caret, ^ (decimal ASCII 94), the value is a SymbolValue.

• If there is no option keyword, and the first nonwhite-space character after
the colon is neither a double quote, " (decimal ASCII 67) nor a caret, ^
(decimal ASCII 94), the value is a StringValue.

• The value of a*Default- main keyword entry must be a StringValue and
must be a string matching a valid option keyword in that entry.

• StringValues can contain spaces, because there might be multiple compo-
nents of a value.

• An InvocationValue or aQuotedValue is terminated by the closing double
quote, and can be followed by a translation string, indicated by a slash
after the closing double quote and before the newline. If the value has a
translation string, the translation string is terminated by a newline.

• A SymbolValue, StringValue, or NoValue is terminated by a newline.

• When parsing an InvocationValue or a QuotedValue, parsing should con-
tinue until the matching closing double quote is found, even if it crosses a
line boundary. Line boundaries are considered significant white space
within an InvocationValue or QuotedValue. That is, lines will not be
broken in the middle of PostScript language tokens. An InvocationValue
or QuotedValue are considered a single “token” when parsing PPD files.

• If an InvocationValue or QuotedValue breaks across a line, the*End key-
word should occur as the next entry in the PPD file after the closing
double quote delimiter. If it is not found, this is considered aparse error
with a missing close delimiter. The*End keyword appears only where an
InvocationValue or QuotedValue extends across a line boundary. Care
should be taken to preserve the line breaks in InvocationValues and
QuotedValues. This will ensure that comments within code segments will
end where they were intended to end.

• All characters inside an InvocationValue are treated as literals and are
placed directly in the output file. Particularly: a slash appearing within the
double quotes is not treated as a marker for the beginning of the translation
string, newlines do not terminate the entry, and hexadecimal substrings do
not have to be specially interpreted by the parser.

24 PostScript Printer Description File Format Specification (29 Mar 94)

• When parsing a QuotedValue, an open angle bracket signifies the begin-
ning of a hexadecimal substring, which is terminated by a closing angle
bracket. Everything between the angle brackets should be converted to
byte codes, which can be out-of range, and placed in the output file. Any
non-hex data found between the angle brackets is considered an error, as is
an odd number of hex digits. Ignore any white space or newlines found
between the angle brackets.

• A file referenced by the*Include keyword should be treated as though it
were in-line in the including (local customization) file. Be prepared for
nested includes. See section 2.6 for discussion on the semantics of
repeated entries and keywords.

3.7 Translation String Syntax

There are many entries in a PPD file that can be encountered at the user level,
including main keywords and option keywords displayed as selectable
choices in a user interface, and messages from the device. Sometimes these
keywords and device messages can be cryptically worded and must be
reworded for clarity, or they might need to be translated into another lan-
guage for the user to understand them.

If keywords and messages changed with each translation of the PPD file to a
new language, a parsing program would have to be written to recognize the
keywords in each new language, which would greatly expand the size of the
parser and the amount of work involved in writing it. Instead, a syntax is pro-
vided for the optional use oftranslation strings, which are appended to the
original keywords and messages. Thus, normal keyword searches can be car-
ried out, and the translation strings can optionally be presented to users
instead of (or in addition to) the keywords.

If the PPD file is translated into several languages, there will be one PPD file
for each language. There will be a main keyword entry in the PPD file that
identifies the language of the translation strings to make clear in which lan-
guage and encoding these strings are expressed. In various language versions
of a PPD file, only the translation strings, and possibly the comments, will
differ. All other information, including main keywords and option keywords,
will remain the same.

A translation string can occur after an option keyword or after any type of
value except a SymbolValue. A translation string is detected by the presence
of a slash (/) character (decimal ASCII 47), and continues until a colon (if the
translation string is on an option keyword) or a newline (if the translation
string is on a value) is encountered.

3 Format 25

The following is an example of the translation string syntax showing both the
translation from English into French of an option keyword (Ledger) and a
value (the message “out of paper”):

*LanguageVersion: French

*PageSize Ledger/Papier Ledger: "statusdict /ledgertray get exec"

*PrinterError: "out of paper"/Il n’y en a plus de papier.

This example shows the translation of an option keyword and a cryptic mes-
sage into strings that are more meaningful to the user (for example, a “trans-
lation” into English):

*LanguageVersion: English

*PageSize Letter/Portrait Letter: "letter"

*PrinterError: "CVR OPN"/cover open

The presence of translation strings in a PPD file is optional. If translation
strings are present, the translation strings should be used for display to the
user, rather than the option keywords or messages themselves. If there are no
translation strings, the option keywords and values must be displayed directly
as appropriate. A parser must be especially careful not to confuse a transla-
tion string following an option keyword with the PostScript language
sequence that follows in the value field, after thecolon.

Note A*Default– entry would not normally have a translation string, because the
*Default– entry is typically thought of as a pointer to one of the entries in a
list of options, in which case the option keyword in the list provides the trans-
lation string. However, if there is a*Default– entry with no associated option
list, the*Default– entry can have a translation string. See section 2.6 and sec-
tion 3.4 for more information about*Default– entries.

To unambiguously relate natural-language characters to byte codes, an
encoding is specified for each language that can be used in a PPD file. These
encodings are documented in the description of the*LanguageVersion key-
word in section 5.2. Translation strings in these encodings often include byte
codes that are outside the valid range of byte codes allowed in a PPD file,
such as characters with accents, or they may include characters that conflict
with the translation string syntax, such as translation string delimiters.

To resolve these issues, a translation string can be represented partially or
wholly as a hexadecimal substring surrounded by single angle brackets (<
and> decimal ASCII 60 and 62). The print manager, when parsing the file,
converts the hexadecimal substring to a sequence of byte codes, which might
be out-of-range, and insert the sequence into the output file.

For example, the following is a legal representation in a PPD file of the
Swedish translation string for the printer error message “cover open,” using a
hexadecimal substring to represent the single eight-bit ISOLatin1 character
“Odieresissmall.”

26 PostScript Printer Description File Format Specification (29 Mar 94)

*LanguageVersion: Swedish

*PrinterError: "cover open"/lucka <F6>ppen

Here is the same message, with the Swedish translation displayed entirely as
a hexadecimal substring:

*PrinterError: "cover open"/<6C75636B61 20 F67070656E>

The following characters must be represented as hexadecimal substrings:

• All byte codes outside the valid range, as described in section 3.2.

• The character colon : (decimal ASCII 58, if the translation string is on an
option keyword.

• The characters < and > (decimal ASCII 60 and 62), if they are part of the
actual text of the translation string.

3 Format 27

Parsing Summary for Translation Strings

When parsing option keywords and values, remember:

• The translation string is optional (there might be 0 or 1 translation string).
All parsers should be written to permit them without requiring them. If
present, translation strings should be used for display to the user.

• If present, the translation string consists of a sequence of literal and/or
hexadecimal substrings.

• A literal substring is a sequence of in-range byte codes, except that it
cannot contain the following characters: newline, < (decimal ASCII 60)
and > (decimal ASCII 62). Additionally, a colon is forbidden when the
translation string is on an option keyword, because an option keyword is
terminated by a colon.

• A hexadecimal substring is as defined in section 3.2 except that in a trans-
lation string, a newline in a hexadecimal string is illegal, since a newline
terminates the translation string.

• The translation string begins with the first character immediately after the
slash, even if it is white space. Note that the slash and white space charac-
ters are permitted in a literal substring.

• If the translation string occurs before a colon (that is, on an option key-
word), it is terminated by a colon (:) or a newline. However, a newline
encountered after an option keyword and before the colon will violate the
syntax of option keywords.

• If the translation string occurs after a colon (that is, on a value), it is termi-
nated by a newline.

• Out-of-range byte codes should be considered an error.

3.8 Human-Readable Comments

Comments are supported in the PPD files using the main keyword ‘*%’. Any-
thing following this main keyword (through the end of the line on which it
appears) should be ignored by a parsing program. The* character is the same
introductory symbol used for all main keywords, and the% character is bor-
rowed from PostScript language syntax as its comment character. These com-
ments will begin only in column one, for simplicity.

There can also be comments in any PostScript language code, using the stan-
dard syntax of starting the comment with a%. Comments in code should be
kept to a minimum, however, to reduce transmission time.

28 PostScript Printer Description File Format Specification (29 Mar 94)

3.9 PostScript Language Sequences

The PostScript language sequences supplied for invoking device features are
usually represented as InvocationValues. Sometimes they are represented as
QuotedValues, for example, when they contain binary data.

For multiple-lineInvocationValues orQuotedValues, the main keyword*End
is used as an extra delimiter to help line-extraction programs (such asgrep or
awk in UNIX). The keyword*End also makes the PPD file more easily read-
able by humans, because the double quote delimiter is sometimes difficult to
see at the end of a long string of code. The*End keyword will not be needed
by most parsers, since the delimiting double quotes uniquely define the code
segment.

*End is used only when the code requires more than one line in the PPD file.
The following are two examples, one of which fits on one line, the other of
which is an “extended” code sequence:

*PageSize Legal: "serverdict begin legaltray end"

*?PageRegion: "save

newpath clippath pathbbox

4 -1 roll =

3 -1 roll =

exch = = flush restore "

*End

The PostScript language sequences supplied in the PPD files are guaranteed
to work only on the device for which the file was prepared. The sequences
assume the default state of the interpreter. Onlyuserdict andsystemdict
(andglobaldict on Level 2 devices) are assumed to be on the dictionary
stack. There will be no memory use (save andrestore are used where appro-
priate) except as in setting frame buffers, where memory use is necessary.

3.10 PPD File Structure

To enable parsing, there is some minimal structure to a PPD file.

The first line of a PPD file must be

*PPD-Adobe: " nnn"

where the value “nnn” is a real number that designates conformance to a ver-
sion of the PPD specification. (See section 5.5 for details on this keyword.)
Files conforming to this version of the specification would have the follow-
ing entry:

*PPD-Adobe: "4.2"

4 Syntax of Specification 29

This line is generally followed by comment lines containing copyright and
licensing restrictions.

Certain keywords are required in a PPD file. Required keywords are marked
as such in their individual descriptions in this document and are listed in
Parsing Summary for Main Keywords on page 15. By convention, the fol-
lowing subset of required keywords generally appears immediately after the
copyright, in any order. This general information is often needed by print
managers, and parsing the PPD file may be faster if the following informa-
tion is included near the beginning of the file:

*PPD-Adobe *NickName *ModelName
*Product *PSVersion *PCFileName
*FormatVersion *LanguageEncoding *LanguageVersion
*FileVersion

*ShortNickname is not required, but if it is present, it must occur before
*NickName.

4 Syntax of Specification

Throughout this specification, certain syntactical conventions are followed to
make things clearer for the reader.

4.1 General Syntax

The following notation is used to describe keywords.

• Main keywords, option keywords, and actual values always appear in sans
serif type:*MainKeyword:, True, Null.

• Placeholder items (which will be replaced by an actual value in the PPD)
appear in sans italic type:mediaOption, invocation.

• The vertical bar (|) character is used to mean “or”, where “or” is an exclu-
sive or. For example, this entry in the PPD specification:

*DefaultManualFeed: True | False

This entry in the PPD file will read either*DefaultManualFeed: True or
*DefaultManualFeed: False, butTrue andFalse cannot both appear in this
entry.

• The ellipsis (...) means that more than one instance of a token can appear,
separated by white space. For example, this entry in the PPD specification

*Extensions: extension ...

30 PostScript Printer Description File Format Specification (29 Mar 94)

This main keyword has several possible values, indicating which language
extensions are supported by the device. Because a device can support sev-
eral language extensions, this keyword can have multiple values, sepa-
rated by white space.

For example, both of these PPD file entries are valid

*Extensions: FileSystem

*Extensions: CMYK FileSystem Composite

Note that a few of the main keywords may require exiting the server loop for
correct execution. These have been flagged by a dagger in the left margin as
shown here. The print manager is responsible for obtaining the value sup-
plied by the*Password entry, or an alternate password as supplied by system
software or the user, and prepending it to the code sequence that is the value
of the flagged entry. The code contained in these flagged entries must check
for the existence of a valid password on the operand stack when executing.

Main keywords that will be bracketed with the*OpenUI/*CloseUI keywords
in PPD files built by Adobe Systems will be marked in this specification with
this symbol (for “user interface”) by the keyword definition. See section 5.5
for more details on*OpenUI/*CloseUI.

4.2 Elementary Types

The PPD specification employs various elementary types of expressions.
These types are defined in this section.

filename
A filename is a QuotedValue and is subject to the rules of QuotedValues.

Currently, filename is used only by the*Include keyword. It can be the name
of the file itself, or it might be a path to the file. The following are all exam-
ples of legal filenames:

*Include: "MyDevice.PPD"

*Include: "/home/adobe/PPDfiles/myfile.ppd"

*Include: "My<3C>test<3C>file.ppd"

*Include: "C:\lib\MyDevice.PPD"

In the third example, the filename contains the double quote character. This
character is represented as a hex string, according to the rules of a
QuotedValue. The encoding of a filename is system-dependent and is not
necessarily portable to other systems. At minimum, the filename or pathname
might have to be edited when porting.

†

UIU I

4 Syntax of Specification 31

fontname
A fontname is a simple text string, subject to the rules defined in section 3.3.
A fontname is delimited by blanks. Examples of standard fontnames can be
found in Standard Character Sets and Encoding Vectors, in Appendix E of the
PostScript Language Reference Manual, Second Edition, and some are listed
here:

Times-Roman

Helvetica-Bold

NewCenturySchoolbook-Italic

Notice that fontname does not start with a slash character (/) as it does in the
PostScript language when the fontname is specified as a literal.

int
An integer, as used in this specification, is a non-fractional number that has
no sign. There are practical limitations for aninteger’s maximum value, but
as a default it should range between 0 and 4.295 x 109 (32 bits).

invocation
An invocation is an arbitrary sequence of valid PostScript language com-
mands. An invocation is generally used to perform some manipulation of the
device. It can be represented either as a QuotedValue or as an
InvocationValue, depending on the keyword described.

JCL
JCL is an arbitrary sequence of valid job control language commands. This
code is generally used to perform some manipulation of the device outside of
the control of the PostScript interpreter. It is represented as a QuotedValue
because it may contain out-of-range byte codes.

option
An option keyword, or simplyoption, is a text string subject to the rules
defined in section 3.3. In this specification, the placeholders for option key-
words are generally preceded by some sort of nominal qualifier, such as
mediaOption or trayOption.

query
A query is an arbitrary sequence of valid PostScript language commands that
returns one or more values to the host via the reverse channel of the device.
Queries are used to request information from the device about the current
state. Queries only work on devices that are connected to a host by a bidirec-
tional channel, so information can be returned to the host.

32 PostScript Printer Description File Format Specification (29 Mar 94)

Note Because of its format, the value of a query is aQuotedValue, but it is strongly
recommended that writers of PPD files follow the rules for InvocationValues
when writing queries. Older parsers might produce errors if faced with the
hexadecimal substrings and other odd characters allowed in QuotedValues
but not in InvocationValues.

real
A real number is a fractional number that can be signed or unsigned. There
are practical limitations on the maximum size of areal, but as a default it
should range between 3.4 × 10-38 to 3.4× 10+38.

string
A string is comprised of any printable characters. It is delimited by blanks
except when it is specifically stated that the string may contain blanks, in
which case another set of delimiters is also stated. For example, in translation
strings, the delimiters are a preceding slash and a succeeding colon or new-
line, and the string may contain blanks.

Thisisatextstring

keyword/This is a translation string:

The length of a string is limited by the 255 characters-per-line limit described
in section 3.3.

4.3 Sample Keyword Entries

The format of this section shows the main keyword, the possible option key-
words, and a pseudo-code syntax to illustrate its value. A main keyword can
have either a restricted option keyword list (option keywords are restricted to
those listed), an unlimited option keyword list (option keywords can be
added at any time), or no option keywords at all.

The value type of each keyword (InvocationValue, QuotedValue,
SymbolValue, StringValue) is recorded in the description of the keyword,
with the following exceptions:

• Query keywords, which are always of type QuotedValue

• *Default- keywords, which are always of type StringValue

4 Syntax of Specification 33

Here are examples of what each type of entry looks like in this specification:

*MainKeyword Option1 | Option2: “invocation”

This indicates that for the main keyword*MainKeyword, there are two viable
option keywords (Option1, Option2), and the appropriate syntax for the value
of the tuple is a PostScript language invocation string enclosed in double
quotes. In the PPD file, there would be one entry for each main keyword-
option keyword pair:

*MainKeyword Option1: "invocation"

*MainKeyword Option2: "invocation"

A typical example of a restricted option list would be a keyword whose only
options areTrue andFalse:

*Collate True: "1 dict dup /Collate true put setpagedevice"

*Collate False: "1 dict dup /Collate false put setpagedevice"

*MainKeyword optiontype: “invocation”

This indicates that for the keyword*MainKeyword, there can be many viable
option keywords. The currently known option keywords will be listed in this
specification with the main keyword, but others can be added at any time. As
above, the appropriate syntax for the value of the tuple is a PostScript lan-
guage invocation string enclosed in double quotes. Again, in the PPD file,
there would be one entry for each main keyword-option keyword pair:

*DifferentKeyword Option 1: "invocation"

...

*DifferentKeyword Option n: "invocation"

For example, the list of page sizes offered by a device is an extensible list:

*OpenUI *PageSize: PickOne

*DefaultPageSize: Letter

*OrderDependency: 30 AnySetup *PageSize

*PageSize Letter: "lettertray"

*PageSize Legal: "legaltray"

*PageSize Ledger: "ledgertray"

*PageSize A4: "a4tray"

*PageSize B5: "b5tray"

*?PageSize: “query code”

*CloseUI: *PageSize

34 PostScript Printer Description File Format Specification (29 Mar 94)

*MainKeyword: “int”

This main keyword has no option keywords, and the appropriate syntax for
the value of the tuple is an integer enclosed in double quotes. For example

*FreeVM: "110980"

5 Keywords

This section contains a list of the currently defined keywords and a descrip-
tion of their uses. The keywords are grouped according to their functionality.
Where appropriate, registered option keywords are documented along with
the keywords with which they are associated. This is to ensure that there will
never be two different PPD files containing the same option keyword, where
the keyword has different semantics in each file.

If there is no option keyword describing a particular aspect of a documented
feature, then the device manufacturer can request a new option keyword from
Adobe. If an option keyword already exists to describe a feature, it will be
used.

All keywords are optional in a PPD file, unless noted asRequired in the key-
word description.

Note If a feature is not supported by a device, that feature’s default, invocation,
and query are omitted from the PPD file. Absence of a feature in the PPD
implies lack of device support for that feature.

5.1 Standard Option Values for Main Keywords

The following option keywords are used with many different main keywords
and have universal meaning throughout a PPD file.

True
True is used in a PPD file in two ways. When used as the value of a*Default
keyword,True means that the default state of that particular feature is on. For
example, the following entry means that this device will feed media from the
manual feed slot unless explicitly told to do otherwise.

*DefaultManualFeed: True

When used as an option to a main keyword,True means that the value of that
option of the keyword is the PostScript language code required to “turn on”
or invoke the feature. For example, the following entry contains the code to
enable the manual feed slot:

*ManualFeed True: "statusdict /manualfeed true put"

5 Keywords 35

False
Like True, False is used throughout a PPD file in two ways. When used as the
value of a*Default- keyword whose value is a booleanTrue or False, False
means that the default state of that particular feature is “off.” For example,
the following entry means that this device will not feed media from the
manual feed slot unless explicitly told to do so.

*DefaultManualFeed: False

When used as an option to a main keyword,False means that the value of
that option of the keyword is the PostScript language code required to “turn
off” or disable the feature. For example, the following entry contains the code
to disable the manual feed slot.

*ManualFeed False: "statusdict /manualfeed false put"

None
Like False, None is used to indicate that a certain feature is disabled (off) by
default, and also to indicate how to disable (turn off) a feature.False is used
with boolean features;None is used for features with more than two states.
For example:

*DefaultFoldType: None

*FoldType None: "code to turn off folding"

*FoldType Saddle: "code to invoke a saddle fold"

*FoldType ZFold: "code to invoke a z-gate fold"

Code associated with aNone option will explicitly disable the feature in
question. In the example above, theNone option would contain code to
explicitly invoke “no folding.”

Note None is never used to indicate the absence of a feature. If a feature is absent,
the feature’s keywords will be omitted from the PPD file. For example, if a
device does not support manual feed, the manualfeed keywords are omitted
entirely.*DefaultManualFeed: None is invalid.

Unknown
This string is returned from queries if the correct information can not be
determined, or none of the valid keywords can be returned. It is also used as
an option keyword with*Default- keywords to denote that there is no specific
default state (for example,*DefaultPageSize: Unknown on a device whose
page size is not set until the user requests a page size.)

Note LikeNone, Unknown is not used to indicate complete absence of a feature; if
a feature is absent, the feature’s keywords will be completely omitted from the
PPD file.

36 PostScript Printer Description File Format Specification (29 Mar 94)

5.2 General Information Keywords

The keywords in this section provide general information about the PPD file
and the device it describes. The keywords in this section do not invoke any
device features.

*FileVersion: “string”

Required. This keyword identifies the version number of the PPD file itself.
It is used only to distinguish between releases of the same file, not to distin-
guish one file from another.

The value, a QuotedValue, is a string of the form “1.0. A standard version
numbering scheme is employed. For major changes to the device and the
PPD file, the entire number will be incremented to the next whole number
(for example, from 1.0 to 2.0). For minor fixes to the PPD file (including
typographical errors), the integer to the right of the decimal will be incre-
mented (for example, from 1.0 to 1.1). This permits the various versions of a
PPD file to be identical in most ways (including file name) but still be distin-
guished from one another. All released PPD files will initially have the string
“1.0” in this field

*FormatVersion: “string”

Required. This provides the version number of the PPD file format specifica-
tion to which the PPD file conforms. It is retained primarily for backward
compatibility, as the newer keyword*PPD-Adobe provides both the informa-
tion that this file is a PPD fileand the specification version to which the file
conforms.

The value, a QuotedValue, is a string of the form“1.0.” A standard version
numbering scheme is employed, where digits to the left of the decimal imply
incompatible changes, and digits to the right of the decimal imply minor revi-
sions. Any revisions to the format will be documented in an update to this
specification. For a PPD file to conform to the version of the specification
detailed in this document, the value of*FormatVersion must be“4.2”.

5 Keywords 37

*LanguageEncoding: encodingOption

Required.This keyword complements and partially supercedes the older
*LanguageVersion keyword (see page 38 for a description of*LanguageVer-
sion). *LanguageEncoding identifies the encoding (mapping from natural
language characters to byte codes) used in the human-readable comments,
translation strings, and certain QuotedValues such as the value of*NickName.
The encoding of any part of the PPD file other than these strings is system-
dependent.

*LanguageEncoding does not identify the natural language of the PPD file;
that is the role of the*LanguageVersion keyword. In most cases, a parser
needs only to parse the*LanguageEncoding keyword, and*LanguageVersion
can be ignored. The value of*LanguageEncoding contains the information
needed to allow a parser to convert text strings from the encoding used in the
PPD file to the encoding used on the host system.

If *LanguageEncoding is present, its value overrides the default encoding
implied by the*LanguageVersion keyword.

The values ofencodingOption, a StringValue, are as follows:

• ISOLatin1—Uses the ISOLatin1 encoding

• JIS83-RKSJ—Uses the RKSJ (informally known as “Shift JIS”) encoding
and the JIS X0208-1983 character set

• MacStandard—Uses Macintosh® standard encoding

• WindowsANSI—Uses Windows® ANSI encoding, as defined by
Microsoft® for use in the Windows operating system

• None—The encoding is not specified

Appendix C provides tables to convert between theISOLatin1, MacStandard,
andWindowsANSI encodings.

Translation strings and QuotedValues may include byte codes that are outside
the valid range allowed in a PPD file. To resolve this, a translation string or
QuotedValue can be represented wholly or partially as a hexadecimal sub-
string. See section 3.7 for details on translation string syntax.

38 PostScript Printer Description File Format Specification (29 Mar 94)

*LanguageVersion: languageOption

Required. This identifies the natural language used in the PPD file. For sim-
plicity, the valid values oflanguageOption are the English words for the natu-
ral languages. The value oflanguageOption (for instance,French orGerman)
affects only the human-readable comments, translation strings, and certain
QuotedValues such as the value of*NickName. The encoding (mapping from
natural language characters to byte codes) of any part of the PPD file other
than these strings is system-dependent.

The*LanguageEncoding keyword (defined on page 37) specifies the encod-
ing for the strings mentioned above. If*LanguageEncoding is absent, the
encoding of these strings can be deduced from the value of
*LanguageVersion. The currently registered values forlanguageOption,
which is a StringValue, and their corresponding encodings (defined under
*LanguageEncoding) are:

Table 1 Values for languageOption and their encodings

languageOption encoding

English ISOLatin1

Chinese None

Danish ISOLatin1

Dutch ISOLatin1

Finnish ISOLatin1

French ISOLatin1

German ISOLatin1

Italian ISOLatin1

Japanese JIS83-RKSJ

Norwegian ISOLatin1

Portuguese ISOLatin1

Russian None

Spanish ISOLatin1

Swedish ISOLatin1

*ModelName: “string”

Required. This value, a QuotedValue, is a string created by the builder of the
PPD file that represents the common name of the device. It is unique for a
given model of device, but not for a given instance of that model. Because
*Product is not always unique or descriptive,*ModelName can be used to

5 Keywords 39

identify a PPD file for a specific device model. See the description of
*Product for an example of how*ModelName, *NickName, and*Product are
used together.

Because*ModelName is used as a base for the PPD file name in some envi-
ronments, certain punctuation characters are illegal. The value of
*ModelName can contain only the following:

• alphanumeric characters

• space (decimal ASCII 32)

• period, . (decimal ASCII 46

• hyphen, - (decimal ASCII 45)

• slash, / (decimal ASCII 47)

• plus, + (decimal ASCII 43)

No other punctuation characters are allowed.

Because*ModelName describes a unique printer model, and because it may
be used as a filename in some environments, there should be only one
*ModelName entry per PPD file. If a PPD file describes two or more models,
that fact should be reflected in the value of*ModelName. For example:

*ModelName: “Acme FunPrinter or NiftyPrinter”

*NickName: “string”

Required. This value, a QuotedValue, is the local name for the device. It is
unique for an instance of a device model. It is used primarily at the user inter-
face level when selecting a device or to distinguish between two otherwise
indistinguishable devices (for example, if a single controller is used to drive
more than one type of marking engine).

Initially, the value of *NickName is usually the same as the value of*Model-
Name, but it can be edited in a local customization file, to reflect a local
instance of a printer. Alternatively, the value may have a translation string for
localization. See the description of*Product for an example of how
*ModelName, *NickName, and*Product are used together.

Note that the value of*NickName, as a QuotedValue, can include hexadeci-
mal substrings. These substrings should be translated to natural language
characters according to the values of*LanguageEncoding and/or*Language-
Version.

40 PostScript Printer Description File Format Specification (29 Mar 94)

Because*NickName can be used to describe a single instance of a unique
printer model, there should be only one*NickName entry per PPD file. The
length of the value of*NickName is unrestricted. For situations where the
length of the nickname must be restricted, see the description of
*ShortNickName on page 42.

*PCFileName: “string”

Required. This value, a QuotedValue, provides the name of the PPD file as it
would appear in a PC environment. This name is limited to eight characters
followed by a dot and a three character suffix. It is provided in the PPD file
so that a PPD file with a longer name, transferred from another platform, can
be renamed to a unique PPD filename appropriate to the PC environment.

*Product: “(string)”

Required. This value, a QuotedValue, corresponds exactly to the product
string of the device. On Level 1 devices, it is the value returned by the code
sequence

statusdict /product get exec == flush end

and on Level 2 devices, the value is returned by this code sequence

product == flush

There can be more than one instance of the*Product keyword if the PPD file
is valid for more than one product.

*Product, *NickName, and*ModelName are used together in the following
manner. In this example,*NickName has been customized by a system
administrator at a local site:

*Product: "(LaserPrinter)"

*ModelName: "Acme SuperPrinter"

*NickName: "Joe’s Printer in Room 101"

*PSVersion: “(string) int”

Required. This QuotedValue is composed of two parts. The string in paren-
theses is the version number of the PostScript interpreter, as returned by the
code sequence

version == flush

5 Keywords 41

The integer following the parentheses is the interpreter’s revision number. On
Level 2 devices, this number is returned by the code sequence

revision == flush

On Level 1 devices, the revision number is returned by the code sequence

statusdict /revision get exec == flush

The values are presented in PostScript language form so that they can be
compared with the actual values in the device to determine whether or not the
PPD file matches the device.

There can be more than one instance of the*PSVersion keyword in a PPD file
if the PPD file is valid for more than one version (and revision) of the inter-
preter. For example, when the PPD file is built, it might be known that the
PPD files for version 52.3 revision 1 and for version 54.0 revision 0 of the
interpreter on that device are identical, so they can be combined into one PPD
file with the following entries:

*PSVersion: "(52.3) 1"

*PSVersion: "(54.0) 0"

For a given device, the PPD file can be useful even if the interpreter version
number in the PPD file does not match the version number of the interpreter
in the device. For example, the device’s interpreter can be upgraded with
faster font rasterization algorithms. The upgraded interpreter would have a
new version number, but, because faster algorithms are not reflected in the
PPD file, a new PPD file is not necessary. Therefore, as long as the change to
the interpreter does not affect the PPD file, a user can safely use a newer ver-
sion of the interpreter with a PPD file built for an older interpreter. Con-
versely, if a PPD file is available for the newer version of the interpreter, a
user could use that PPD file with an older version of the interpreter.

Likewise, a match between the version number in the PPD file and the ver-
sion number of the interpreter is not necessarily significant. For example, a
manufacturer might use a single controller to drive several different marking
engines. In this case, a PPD file should be built to describe each controller-
engine combination, not just the controller alone. However, the product
name, version, and revision number might be the same in each PPD file.

For example, imagine a controller called SuperRIP, which can drive two dif-
ferent engines called the S2500 and the S5000. The SuperRIP controller con-
tains interpreter version 50.3, and the product name is always “SuperRIP,”
regardless of which engine is attached to the controller. In this case, there
would be two PPD files: one for the combination of SuperRIP and the S2500
engine, and one for the combination of SuperRIP and the S5000 engine.
These PPD files would be called, respectively,S2500503.PPD and
S5000503.PPD.

42 PostScript Printer Description File Format Specification (29 Mar 94)

 The relevant entries inS2500503.PPD would look like this:

*PSVersion: (50.3) 1

*Product: "(SuperRIP)"

*NickName: "SuperRIP with S2500 v.50.3"

and the relevant entries inS5000503.PPD would look like this

*PSVersion: (50.3) 1

*Product: "(SuperRIP)"

*NickName: "SuperRIP with S5000 v.50.3"

These two PPD files, while matching in product name and interpreter version
number, are differentiated by their*NickName entries and their filenames.
The real responsibility of matching PPD files with physical devices lies with
the system administrator and/or system software that uses these files. The
process might be to simply ask the user to select one, or the installation pro-
cess might make the proper association between PPD file and device.

*ShortNickName: “string”

This keyword is identical to the*NickName keyword except that the length of
the string value is limited to 31 or fewer characters. This keyword is provided
to overcome certain string length restrictions in some host environments.

The value, a QuotedValue describing the device, must be unique within the
set of PPD files on the local system. That is, there should not be two different
PPD files with the same value for*ShortNickName. Also, there should be
only one instance of*ShortNickName per PPD file.

Generally,*ShortNickName will only appear in a PPD file when the value of
*NickName is longer than 31 characters. If*ShortNickName is present, it
must occur in the PPD file before the instance of*NickName.

5.3 Basic Device Capabilities

The keywords in this section provide information about the device’s basic
capabilities.

*ColorDevice: True | False

This keyword indicates whether or not the device physically outputs color.
See*Extensions for information about black and white devices that support
the color extensions to the PostScript language. The value is of type
StringValue.

5 Keywords 43

*DefaultColorSpace: colorspaceOption

This keyword indicates the default native color space of the device. The
native color space is the color space that all colors are converted into before
rendering. The currently registered values forcolorspaceOption (a StringValue)
are

• CMY—This device uses the cyan-magenta-yellow color space as its native
color space.

• CMYK—This device uses the cyan-magenta-yellow-black color space as
its native color space.

• RGB—This device uses the red-green-blue color space as its native color
space.

• Gray—This device uses a gray-scale native color space.

*Extensions: extensionOption ...

This keyword indicates that this device supports the PostScript language
extensions listed. One or more extensions may be listed, separated by white
space. Operators specific to each extension are documented in Appendix A of
thePostScript Language Reference Manual, Second Edition.

The currently registered values forextensionOption (a StringValue) are

• DPS—This device contains a PostScript language Level 1 implementation
that also supports the Display PostScript™ Extensions.

• CMYK—This device contains a PostScript language Level 1 implementa-
tion that also supports the Color Extensions

• Composite—This device contains a PostScript language Level 1 imple-
mentation that also supports the Composite Font Extensions

• FileSystem—This device contains a PostScript language Level 1 imple-
mentation that also supports the File System Extensions

*FaxSupport: faxOption

If the device can act as a facsimile (fax) device, this keyword lists the various
fax-related capabilities of the device. One or more capabilities can be listed,
separated by white space.

44 PostScript Printer Description File Format Specification (29 Mar 94)

 Currently, the only registered value (a StringValue) is

• Base—This device can encode the rasterized version of a document in fax
format and transmit the fax to another fax device.

*FileSystem: True | False

This StringValue indicates whether or not the PostScript output device has
the capability for a writable file system. Normally this means the presence of
a hard disk or SCSI controller on the device. This information can be used by
a printing manager to determine the capability for internal file system sup-
port. Note that some devices might have the capability for a file system but
might not in fact have a disk installed (in this case the value for this keyword
would beTrue, but the associated query would returnFalse). The*?FileSys-
tem query can be used to dynamically determine whether or not a file system
is actually present. If the device has no capability of having a file system, this
entry can be omitted.

*?FileSystem: “query”

This query will returnTrue if a writable file system is currently online,False
if not, andUnknown if the state cannot be determined. The results of this
query do not convey any information about whether or not the disk is initial-
ized, or how many free pages there are. If this device cannot support a file
system, this entry will be omitted.

*LanguageLevel: “int”

This QuotedValue designates the PostScript language level supported by the
PostScript interpreter in this device. If the value is 2, the PostScript inter-
preter in this device supports all PostScript language Level 2 features. If the
value is 1 or if this keyword is not present, the PostScript interpreter supports
all PostScript language Level 1 features. See*Extensions for further informa-
tion.

*Throughput: “int”

This QuotedValue is the nominal throughput in pages per minute. It repre-
sents the marking engine’s rated capacity for throughput. It might be used to
determine the fastest of a number of devices if there are many to choose
from, but should not be construed as any kind of “benchmark” figure.

In the case of roll-fed machines, the number indicates the number of 8-1/2
inch sections of media that can be fed in one minute by the marking engine.
In the case of duplex devices, which can print on both sides of the paper, the

5 Keywords 45

number indicates the number of pages that can be printed in one minute in
simplex (one-sided) mode. If the value is fractional, it is rounded up to the
nearest number (it must be 1 or larger).

*TTRasterizer: rasterizerOption

This keyword indicates whether or not this device contains software to create
font bitmaps from Type 42 (TrueType™) font outlines. If the device does con-
tain such “rasterizer” software, therasterizerOption indicates whether the
software is built into the device, is downloadable, or other details.

The currently registered values (of type StringValue) forrasterizerOption are

• None—This device does not contain a Type 42 rasterizer and the device is
not capable of receiving a downloaded rasterizer.

• Accept68K—This device does not contain a Type 42 rasterizer, but the
device can accept a downloaded rasterizer that is 68000-compatible. A
driver wishing to download a rasterizer should also query the current state
of free VM on the device to determine whether there is enough memory to
accept the rasterizer.

• Type42—This device contains a Type 42 rasterizer in ROM.

• TrueImage—This device contains a TrueImage rasterizer, which accepts
the TrueImage version of a TrueType font.

*?TTRasterizer: “query”

This query returns therasterizerOption corresponding to the device’s capa-
bility regarding Type 42 rasterizer software. The value returned must be one
of therasterizerOptions listed under*TTRasterizer or it will be Unknown. If
Accept68K is returned by this query, a parser should also query the current
state of free VM to determine whether there is enough memory to download
the rasterizer.

46 PostScript Printer Description File Format Specification (29 Mar 94)

5.4 Emulations and Protocols

The keywords in this section provide information about emulators and proto-
cols supported by the device.

*Protocols: protocolOption ...

This provides a StringValue that indicates the protocols supported by this
device. One or more extensions can be listed, separated by white space.

Valid values forprotocolOption are:

• BCP—This device supports the Adobe binary communications protocols,
as documented in section 3 of the Technical Specification, “Adobe Serial
and Parallel Communications ProtocolsSpecification”, available from the
Adobe Developers Association. The binary communications protocol pro-
vides a clear channel on a serial or parallel line and is used to transparently
pass certain control characters that might be contained in binary data. On a
clear channel, switching between the PostScript language and certain emu-
lators can be accomplished transparently using language commands from
within a job.

• PJL—This device can support multiple printer languages, including the
PostScript language. Hewlett Packard’s printer job language (PJL) pro-
vides a means of switching between languages. This device supports the
PJL language switching sequences that begin and end PostScript language
jobs.

Note: PPD files that conform to specification version 4.1 and higher and that
contain this entry will also contain the *JCL keywords that provide the
appropriate PJL language switching sequences. In version 4.0 PPD files, the
*JCL keywords do not exist and the print manager must provide the appro-
priate PJL commands.

• TBCP—This device supports the tagged binary communications protocol,
as documented in section 4 of the Technical Specification, “Adobe Serial
and Parallel Communications ProtocolsSpecification”, available from the
Adobe Developers Association.

5 Keywords 47

*Emulators: emulatorOption ...

This keyword provides a StringValue that enumerates the emulators that can
be invoked from within a PostScript language job on this device. The value
consists of one or moreemulatorOption keywords.

For eachemulatorOption present, corresponding main keywords may also be
present which describe the command sequence necessary to start and stop the
emulator namedemulatorOption. These main keywords are formed by concate-
nating the strings*StartEmulator_ and*StopEmulator_ with theemulatorOption
string.

For example:

*Emulators: hplj proprinter

*StartEmulator_hplj: "code"

*StopEmulator_hplj: "code"

*StartEmulator_proprinter: "code"

*StopEmulator_proprinter: "code"

An emulatorOption must appear in a*Emulators entry before the corresponding
*StartEmulator_ and*StopEmulator_ keywords appear. Multiple
*Emulators entries may appear, and their contents should be accumulated. For
eachemulatorOption listed under*Emulators, there must be corresponding
*StartEmulator_ and*StopEmulator_ entries.

The currently registered option keywords foremulatorOptions are

• diablo630—Diablo 630

• decppl3—Digital ANSI-Compliant Printing Protocol (level 3)

• hpgl—Hewlett Packard Graphics Language

• hplj—Hewlett Packard LaserJet and LaserJet Plus (HP-PCL)

• proprinter—IBM ProPrinter

• ti855—Texas Instruments 855

48 PostScript Printer Description File Format Specification (29 Mar 94)

*StartEmulator_emulatorOption: “invocation”

This QuotedValue provides the PostScript language code to invoke the emu-
lator namedemulatorOption, from within the current job. The invocation is rep-
resented as a QuotedValue in case the invocation code contains 8-bit control
characters, which must be represented as hexadecimal substrings. This key-
word is formed by concatenating the string*StartEmulator_ with the string
from the list of validemulatorOptions listed under*Emulators.

The code in the QuotedValue must end with a space or newline, so that the
final PostScript language token is executed. Any data sent by the print man-
ager following the invocation code will be executed by the named emulator.
For example:

*Emulators: hplj

*StartEmulator_hplj: "currentfile /hpcl statusdict /emulate get exec "

Before invoking any emulators, a clear channel must be established. See the
description of the keyword*Protocols for more information about establish-
ing a clear channel.

Note Before beginning an emulation, most emulators will erase the current page,
initialize the graphics state, and clear the operand and execution stacks.

*StopEmulator_emulatorOption: “hexadecimal data”

This QuotedValue provides the data needed to exit the emulator named
emulatorOption and return to PostScript interpretation. The invocation is repre-
sented as a QuotedValue because typically the code contains control charac-
ters, which must be represented as hexadecimal substrings.These
hexadecimal substrings should be parsed by the print manager, and the appro-
priate 8-bit characters should be sent to the device.

This keyword is formed by concatenating the string*StopEmulator_ with the
a string from the list of validemulatorOptions listed under*Emulators. For
example:

*Emulators: hplj

*StartEmulator_hplj: "currentfile /hpcl statusdict /emulate get exec "

*StopEmulator_hplj: "<1B7F>0"

5 Keywords 49

5.5 Structure Keywords

The keywords in this section provide structure to the PPD file by enclosing
certain groups of keywords to provide added meaning to a parser. The key-
words in this section do not invoke any device features. Instead, they are
intended to assist with parsing the PPD file and building a user interface.

*PPD-Adobe: “4.2”

Required. This keyword must be the first line in a valid PPD file. The 4.2 at
the end signifies conformance to the 4.2 version of this specification. Con-
formance to a later version of this specification would be indicated by a
higher number. This entry is of type QuotedValue.

*OpenUI mainKeyword: PickOne | PickMany | Boolean

*CloseUI: mainKeyword

When parsing a list of options, it is convenient for a parser to distinguish
between main keywords that refer to features commonly displayed in a user
interface for selection by a user, and main keywords that provide information
about the device. To this end,*OpenUI and*CloseUI are used to bracket all
the information about a given main keyword, if that main keyword describes
device features that can be selected by the user.

For example, the list of page size options offered by the*PageSize keyword
will be bracketed with*OpenUI/*CloseUI, because the device supports
the user selection of a page size, but the keyword*Throughput, which
describes the rated printing capacity of the device, would not be bracketed by
*OpenUI/*CloseUI, because the throughput is not selectable by the user.
Query keywords,*Default- keywords, and any other associated keywords,
such as*Param- keywords and*OrderDependency, are included in the
*OpenUI/*CloseUI bracketing for convenience and readability.

The StringValue valuesPickOne, PickMany, andBoolean denote the type of
option list for this feature. They assist in building a user interface that makes
sense for this feature.

• PickOne means that, for this feature, the device supports only one choice
at a time from the list of available options. The print manager can use this
information when building a user interface, so that when a user selects any
single choice from the list, the other choices are disabled. An example of a
PickOne type of list is*PageSize, which displays the list of available page
sizes. A page must always have a size, and it cannot be two sizes at once.

50 PostScript Printer Description File Format Specification (29 Mar 94)

In aPickOne type of option list, the optionNone has special meaning. If
one of the options isNone, the code associated withNone will explicitly
disable the other options. For example, a list of stapling options might
includeNone, meaning “do not staple.” If the user selectsNone, the print
manager is responsible for sending the code supplied to disable stapling,
in case the device is set up to staple by default.

• PickMany means that, for this feature, the device supports one or more
choices at a time from the list of available options. For example, a device
might allow two kinds of folding to occur at once. The print manager can
use this information when building a user interface, so that when a user
selects any single choice, the other choices in the list are not disabled or
deselected.

In aPickMany type of option list, one of the options must beNone. The
None option is an exception to the generalPickMany rule of allowing
more than one choice at a time. As with aPickOne list, the code associated
with the optionNone must explicitly disable all other choices. In a user
interface, if a user selectsNone, all other options should be deselected by
the print manager. If a user selects any option other thanNone, thenNone
should be deselected.

• Boolean means that there are only two choices,True andFalse, and thus
informs a print manager that this item could be displayed as a check box or
as radio buttons, rather than as a menu list.

The option of*OpenUI and theStringValue value of*CloseUI, mainKeyword, is
the keyword whose options are listed within the*OpenUI/*CloseUI pair. It
must be one of the main keywords registered in this specification or in an
addendum to this specification. The value may optionally have a translation
string to record the manufacturer’s preferred name for this particular feature.

The following is a sample entry:

*OpenUI *Smoothing/Smooth Characters: Boolean

*DefaultSmoothing: False

*OrderDependency: 40 AnySetup *Smoothing

*Smoothing True: "invocation code"

*Smoothing False: "invocation code"

*?Smoothing: “query code”

*CloseUI: *Smoothing

Given this entry in a PPD file, the print manager could use this information to
display a menu or radio buttons labeled “Smooth Characters” with two
options,True andFalse.

*OpenUI/*CloseUI allows for the automatic building of a user interface. The
user-selectable options bracketed by*OpenUI/*CloseUI all follow a certain
form. Each entry consists of a main keyword, an option keyword, and a

5 Keywords 51

value, which is a code sequence. The print manager can display all options
listed bracketed by*OpenUI/*CloseUI, record the user’s selection of an
option, extract the code related to that option, and send the code to the device.

The print manager never has to know exactly which code is being sent. It fol-
lows, then, that options could be added to a main keyword without the print
manager having to be rewritten to parse for them. As long as the print man-
ager displays and executes all options bracketed by*OpenUI/*CloseUI,
options can be added to this specification without rewriting the print manager
code.

Likewise, new main keywords can be parsed, if they are of the proper form
that can be enclosed in*OpenUI/*CloseUI. A print manager that parses
*OpenUI/*CloseUI properly should not parse for a specific main keyword,
and, therefore, should not care if a new main keyword is added. Not all new
main keywords fall into the*OpenUI/*CloseUI category, but if they do, a print
manager should read them, display their options, and execute the associated
code without having to be rewritten.

Before invoking certain features, a print manager must do extra work, such as
opening a communication channel or requesting information from a user.
These more complex features are not amenable to the simplistic syntax of
*OpenUI/*CloseUI, so their keyword/option lists will not be bracketed with
*OpenUI/*CloseUI.

Main keywords that will be bracketed with*OpenUI/*CloseUI in PPD files
built by Adobe Systems will be marked in this specification with the UI
symbol (for user interface) by the keyword definition.

*OpenUI/*CloseUI is provided as a supplementary service designed to assist
in building a user interface. It is not intended to constrain a print manager or
other application in any way. If a print manager does not want to display to
the user a feature marked with*OpenUI/*CloseUI, the print manager can
parse for that feature’s keyword and not display the feature. Likewise, if a
print manager wants to display additional features not marked by*OpenUI/
*CloseUI, the print manager can parse for that feature’s keyword and display
the feature to the user.

The*OpenUI/*CloseUI provides most of what typically constitutes a user
interface, so that a “dumb” parser could construct a reasonable user interface
simply by reading all the features marked by*OpenUI/*CloseUI and display-
ing them. It is not meant to be a complete user interface design tool.

UIU I

52 PostScript Printer Description File Format Specification (29 Mar 94)

*OpenGroup: string

*CloseGroup: string

Like *OpenUI/*CloseUI, this pair of keywords is provided to assist in building
a user interface. Because of the limited physical space of some displays, print
manager writers often need a way to group certain features behind one
“button” or menu item. Within a PPD file, certain classes of features lend
themselves particularly well to grouping. A selection of features can be
grouped by placing a*OpenGroup/*CloseGroup pair around the feature set.

Features within a group are not mutually exclusive; several features can be
chosen from a group. For example, a group of finishing features might con-
tain stapling, folding, binding, and other finishing features that are not exclu-
sive of one another.

TheStringValue value of both*OpenGroup and*CloseGroup is a descriptive
string that represents the name of the group. It is provided for the print man-
ager to display to the user.

The example below groups all of the finishing features of the device (the
invocation code is completely imaginary):

*OpenGroup: Finishing

*OpenUI *FoldType: PickOne

*DefaultFoldType: None

*FoldType Saddle: "1 dict dup /Fold 1 put setpagedevice"

*FoldType None: "1 dict dup /Fold 0 put setpagedevice"

*CloseUI: *FoldType

*OpenUI *Collate: Boolean

*DefaultCollate: True

*Collate True: "1 dict dup /Collate true put setpagedevice"

*Collate False: "1 dict dup /Collate false put setpagedevice"

*CloseUI: *Collate

*CloseGroup: Finishing

The sample PPD file at the end this specification groups imagesetter features
into one group. Another logical group is finishing features. By parsing for
*OpenGroup/*CloseGroup, a print manager can display Finishing and Image-
setting to the user, and all the finishing features and imagesetting features can
be in separate dialog boxes, hidden from the user until they are needed.

This syntax, like the syntax of*OpenUI/*CloseUI, allows features to be added
to a group without the print manager needing to know about them. New
*OpenUI/*CloseUI features can be added within an*OpenGroup/*CloseGroup
grouping, and a print manager that parses for*OpenUI/*CloseUI correctly
should be able to parse for the new features in the same manner. This enables
a print manager to add new items to the user interface without the print man-
ager itself having to be rewritten.

5 Keywords 53

*OrderDependency: real section mainKeyword optionKeyword

This keyword classifies and provides a partial ordering of the fragments of
device-specific code in a PPD file. This allows a print manager to output the
code in the correct order, so that later fragments will not undo the effects of
earlier fragments. See section 2.5 for more information about order depen-
dency.

The values are all StringValues. ThemainKeyword andoptionKeyword parameters
specify a piece of device-specific code present in the PPD file. TheoptionKey-
word must be omitted if the feature in question has no option keyword. The
optionKeyword may be omitted if the code fragments for all option keywords for
the given feature have the same classification and ordering.

Thesection parameter describes where in the job the code fragment can be
emitted. The possible values forsection correspond to the sections of a docu-
ment file, as defined by theAdobe Document Structuring Conventions, ver-
sion 3.0. Valid values forsection are as follows:

• ExitServer—This code makes a change to the device which will take effect
at the start of the next job. This code should be sent as a separate job,
before the job which it will affect. The correct password (the value of
*Password) must be supplied before this invocation.

• Prolog—This code supplies resources that must be in the Prolog section of
a document.

• DocumentSetup—This code must be emitted in the Document Setup sec-
tion, after the%%BeginSetup comment

• PageSetup—This code must be emitted in the Page Setup section after the
%%BeginPageSetup comment and before the page levelsave .

• JCLSetup—This code provides job level control for devices that support a
job control language. This code must be emitted after the code emitted by
*JCLBegin and before the code emitted by*JCLToPSInterpreter.

• AnySetup—This code must be emitted in either the document setup or
page setup section.

The parameterreal specifies the relative order in which this code should be
emitted. It defines the ordering across all device-specific code fragments, not
just the code in the samesection. The absolute values of ordering numbers are
not important, only their values relative to other ordering numbers. Code
assigned a lower number should be emitted before code assigned a higher
number. Multiple code fragments can be assigned the same ordering number.
If the numbers assigned to two code fragments are equal, they can be emitted
in either order.

54 PostScript Printer Description File Format Specification (29 Mar 94)

Some code fragments might not have an*OrderDependency entry, and thus
are not assigned an ordering number or a section. Such code fragments can be
used anywhere during the imaging of a page. Executing such code will affect
the appearance of future imaging, but will not affect imaging already done.
Such code has no defined order, except that it must be emitted after all frag-
ments that do have ordering numbers.

The following example illustrates that code to change the resolution must be
emitted before code to change the input slot:

*OpenUI *Resolution: PickOne

*OrderDependency: 10 AnySetup *Resolution

*Resolution 2504: " ... "

*CloseUI: *Resolution

*OpenUI *InputSlot: PickOne

*OrderDependency: 20 AnySetup *InputSlot

*InputSlot Upper: " ... "

*InputSlot Lower: " ... "

*CloseUI: *InputSlot

The*OrderDependency entry for a given main keyword should be within the
*OpenUI/*CloseUI bracketing for that keyword.

*UIConstraints: keyword1 option1 keyword2 option2

This keyword, whose values are StringValues, denotes a mutually exclusive
set of keywords representing device features. It tells a print manager which
device features cannot be supported together, allowing the print manager to
prevent the selection of both features at once in the user interface. For exam-
ple, a device might forbid duplex printing when feeding from the envelope
tray, or perhaps A4 size paper can only be fed from the upper slot, which
would be expressed as a constraint between the A4 page size and all input
slots other than the upper slot.

*UIConstraints can also be used to express the relationship between an
optional hardware component and the user-selectable features it enables. For
example, the presence of an envelope feeder would enable printing on enve-
lopes, or the presence of an extra memory board might enable higher resolu-
tion settings, but the absence of these optional components would prevent the
display and use of their associated features. See section 5.7 for a description
of theInstallableOptions group and how it interacts with*UIConstraints.

A print manager can use the information found in a*UIConstraints entry to
make disabled choices unavailable to the user, either by “graying out” or
removing these items from the print panel, or by some other method appro-
priate to the user interface. To obtain consistent behavior from print manag-
ers,*UIConstraints should only be used between pairs of UI keywords
(keywords whose entries are surrounded by the*OpenUI/*CloseUI keyword

5 Keywords 55

pair). Since all UI keywords are presented to the user as choices in a user
interface, their behavior is consistent; when they are constrained, that choice
should not be offered to the user. While*UIConstraints are allowed on non-UI
keywords, each such keyword must have a carefully documented description
of what it means to constrain that keyword, and PPD file authors should be
aware that print managers may ignore a constrained non-UI keyword.

The syntax of*UIConstraints is that the first keyword-option pair invalidates
the second keyword-option pair. That is, if the first keyword-option pair is
invoked, the device will not allow the second keyword-option pair to be
invoked. Constraints on a device are usually reciprocal, so there will usually
be two entries for each pair of features. One entry tells you that FeatureA-
Option1 constrains FeatureB-Option5, and the other entry tells you that
FeatureB-Option5 constrains FeatureA-Option1.

For example, a device might not allow transparencies to be output into the
upper output bin, because transparency stock is too stiff to go through the
convoluted paper path leading to the upper output bin. The*UIConstraints
entry would look like this:

*UIConstraints: *MediaType Transparent *OutputBin Upper

*UIConstraints: *OutputBin Upper *MediaType Transparent

The semantics of this in a user interface might be as follows: When the media
typeTransparent has been selected, the output bin labeledUpper is not avail-
able. The reverse is also true; when the output bin labeledUpper has been
selected, the media typeTransparent is not available.

Each feature or both features may also be specified without any options. For
example, a constraint might take this form:

*UIConstraints: *FeatureA *FeatureB Option1

If no option is specified for Feature A, then Feature B is unconstrained until
some option of the first feature, other thanNone or False, is selected. At that
point, Option 1 of Feature B becomes constrained. For example:

*UIConstraints: *Staple *MediaType Transparent

The semantics of this are as follows: If any option for*Staple, other than
None or False, is selected, transparent media cannot be selected.

The complement of the above form is

*UIConstraints: *FeatureA Option1 *FeatureB

If no option is specified for Feature B, and Option 1 of Feature A is selected,
the constraint forces the selection of theNone or False option of Feature B.
For example:

56 PostScript Printer Description File Format Specification (29 Mar 94)

*UIConstraints: *MediaType Transparent *Staple

If transparent media is selected, no*Staple options can be selected, except for
None or False.

Finally, it is legal to omit options for both Feature A and Feature B. This
means that if the option selected for Feature A isNone or False, Feature B is
unconstrained, but if any other option of Feature A is selected, the only valid
options for Feature B areNone or False.

It is illegal to omit an option for Feature B if it is aPickOne style without a
None option, because that effectively disables all options of Feature B. It is
also illegal to omit an option for Feature A if it is a style without aNone
style, because it effectively disables the specified option of Feature B for all
cases.

*Include: “filename”

This allows the explicit inclusion of another PPD file (or partial file) into the
current PPD file. The QuotedValuefilename is the name of the file to be
included. See section 4.2 for details on the syntax offilename.

*End

This keyword is used to close multiple-line InvocationValues and
QuotedValues. The double quotes are still used to delimit the code sequence,
but as an extra parsing check and for added human readability, the*End key-
word is included after the closing double quote of a multiple-line PostScript
language sequence. The keyword itself is of type NoValue.

5.6 Symbolic References to Data

The keywords in this section provide a way for parsers to skip large amounts
of data contained in a PPD file when the parsers are not interested in that par-
ticular type of data. This is accomplished by providing a symbolic reference
in place of a large body of PostScript language code.

Where anInvocationValue is normally permitted, it is legal to have a symbol
name instead. A symbol name must start with the character caret,^ (decimal
ASCII 94). This symbol name is associated with a PostScript language
sequence (InvocationValue) that appears at some later place in the PPD file
(or in an attached local customization file). Since the InvocationValue might
be large, a length hint can be provided to allow parsers to skip the large value
quickly.

5 Keywords 57

For example:

*OpenUI *MainFeature: PickOne

*MainFeature Option1: ^MySymbol

*MainFeature Option2: "..."

*CloseUI: *MainFeature

...

*SymbolLength ^MySymbol: bytecount EOLcount

*SymbolValue ^MySymbol: "

 ... bulky data here (e.g. color rendering dictionary)

"

*SymbolEnd: ^MySymbol

If a parser encounters a symbol name as a value, the parser should expect to
find a *SymbolValue entry with the same symbol name later in the file. The
rest of this section describes the individual keywords used to indicate sym-
bolic pointers to bodies of data.

Note The use of a symbol name in place of anInvocationValue is incompatible with
version 3.0 of the PPD file specification and might cause problems for exist-
ing parsers. It is intended for use only when the code is very large—on the
order of tens of kilobytes—and this is likely to occur only with new feature
keywords which existing parsers are not scanning. Symbol names should not
be used as the values of keywords that existed in older versions of this speci-
fication or for commonly-referenced keywords, such as *PageSize.

*SymbolLength symbolName: bytecount EOLcount

This keyword provides a hint to a parser about how long the body of data is,
so the parser knows how many bytes to skip if it wants to skip this data. The
optionsymbolName must be the same as thesymbolName used in the associated
*SymbolValue entry.

TheStringValue valuesbytecount andEOLcount are unsigned integers. Together
they measure the length in bytes of the data from the ‘*’ byte of
SymbolValue to the ‘’ byte of*SymbolEnd. The first value gives the number
of bytes, excluding the bytes that comprise end-of-line sequences. The
second value gives the number of end-of-line sequences.

The parser must determine the number of bytes in an end-of-line sequence in
the PPD file (usually 1 or 2).This number is usually a function of the operat-
ing system or platform on which the parser is operating, so it is usually
known to the parser. It can then compute the byte offset of the*SymbolEnd
keyword in the file by the formula

ibEnd = ibValue + bytecount + (cbEOL*EOLcount)

where

58 PostScript Printer Description File Format Specification (29 Mar 94)

ibEnd = byte offset of '*' in '*SymbolEnd'

ibValue = byte offset of '*' in '*SymbolValue'

cbEOL = number of bytes per end-of-line sequence

and the values ofbytecount andEOLcount are taken from the*SymbolLength
keyword.

The information given by the*SymbolLength keyword is a hint only; parsers
must not rely on it being correct or even present. If it is not correct or present,
the parser must skip the value definition by scanning through the file until it
reaches the*SymbolEnd keyword with the appropriatesymbolName.

*SymbolLength must occur in a PPD file immediately before*SymbolValue.

*SymbolValue symbolName: “invocation”

This keyword marks the beginning of a body of data of typeInvocationValue.
Symbol names must be defined in a*SymbolValue entry if they are refer-
enced by a main keyword. It is an error for a PPD file to reference a symbol
name that is not later defined. If a name is referenced but not defined, parsers
can substitute a value of " " (empty quotes). The*SymbolValue entry for a
givensymbolName must occur after the reference tosymbolName by a main key-
word. That is, once a parser encounters a main keyword referencing
symbolName, it can expect to find a corresponding*SymbolValue entry either
later in the PPD file or in an included PPD file. The following two examples
are both valid.

Example 1: PPD file ‘A’

*%File: A

...

*Jog True: ^JogTrue

...

*SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue

...

Example 2: PPD file ‘B’

*%File: B

...

*Jog True: ^JogTrue

...

*Include: "C" ---------> *%File: C

...

... *SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue

5 Keywords 59

Alternatively, the reference tosymbolName can be in an included PPD file as
long as the*SymbolValue entry is encountered after the*Include statement in
the including file. For example, the following is valid because included files
are treated as in-line files, so the parser must finish parsing File E before it
encounters the*SymbolValue in File D

*%File: D

...

*Include: "E" -------------------> *%File: E

... *Jog True: ^JogTrue

... ...

*SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue

The rules for legalsymbolNames are the same as for legal option keywords. By
convention, Adobe-generated PPD files will construct symbol names by con-
catenating the main and option keywords together (omitting theasterisk from
the main keyword). For example:

*ColorRenderDict Bond: ^ColorRenderDictBond

...

*SymbolValue ^ColorRenderDictBond: “...”

If there are multiple occurrences of*SymbolValue for a givensymbolName, the
first occurrence has precedence.

*SymbolEnd: symbolName

This keyword must appear on the next line following the closingdouble
quote of the symbol value. The StringValue value,symbolName, must be the
same as thesymbolName used in the associated*SymbolValue entry.

5.7 Installable Options

Most printers ship in some standard, minimal configuration but accept
optional features or accessories, usually sold separately. Theseinstallable
options can be paper trays, envelope feeders, memory modules, and so on.
The PPD specification provides a way to describe these accessories, to label
them as optional and initially not installed, and a way to install them later.
Thus an application can list the installable options in its user interface, but
can display them in some special way (for instance, grayed out) to indicate
that the basic configuration does not support them.

Additionally, a customization file can be created to reflect a specific printer,
and within that customization file, certain accessories can be marked as
installed, so that applications can then allow them to be selected from the

60 PostScript Printer Description File Format Specification (29 Mar 94)

user interface. The PPD specification also offers a way for an application to
query the user for this configuration information, which can be used to
update an application’s internal database.

Without this information, an application might display all installable options,
whether they are installed or not, and risk having the user select an unin-
stalled option and get errors or unexpected results.

Syntax and Use

The *OpenGroup structure keyword (described in section 5.5) is used to
denote the beginning of the installable options group. The option keyword
InstallableOptions describes this special group.InstallableOptions is a regis-
tered option keyword that should not be used as an option for any other group
in a PPD file. Like other values, it can have a translation string attached for
clarity.

For example:

*OpenGroup: InstallableOptions/Options Installed

The installable options group contains one entry for each optional accessory
that the printer can accept. Each entry consists of an*OpenUI/*CloseUI key-
word pair, which surrounds the choices for the accessory. Within the entry,
the*Default- entry denotes the current state of the accessory; that is, whether
it is installed or not.

Because there is no need for them to have meaningful names, the main key-
words used within the*OpenUI/*CloseUI entries consist of the generic string
*Option followed by an integer; for example,*Option1, *Option2. Each
installable option (each*OpenUI entry) must have a unique main keyword
name. The*UIConstraints section then maps the generic*Option keywords to
the actual PPD feature entries. For example:

*OpenGroup: InstallableOptions/Options Installed

*OpenUI *Option1/Envelope Feeder: Boolean

*DefaultOption1: False

*Option1 True/Installed: ""

*Option1 False/Not Installed: ""

*CloseUI: *Option1

*CloseGroup: InstallableOptions

*UIConstraints: *Option1 False *InputSlot Envelope

The *UIConstraints entry tells a print manager that if*Option1 is False (the
envelope feeder is not installed), then theEnvelope option of the*InputSlot
keyword is not available for selection by the user.

5 Keywords 61

It is also legal to have a named keyword within the InstallableOptions group.
This might be done for a keyword whose effect is important enough or com-
plex enough that a print manager might want to generate a separate configu-
ration panel for that keyword. A named keyword might also be used where
that keyword needs to be matched to other keywords by some method other
than*UIConstraints. In either case, the print manager needs to be able to rec-
ognize that keyword. For an example, see the discussion of*InstalledMemory
in section 5.22 and later in this section. In general, the use of the generic key-
words is recommended, to discourage special casing by print managers, key-
word proliferation, and additional documentation.

A print manager can use the InstallableOptions group in at least two ways.
First, at printer installation or configuration time, a print manager can create a
configuration panel based on the information found in theInstallableOptions
group. On this configuration panel the print manager posts the optional
accessories listed, using thePickOne andBoolean values of the*OpenUI
entries to determine whether an accessory requires a menu of choices or a
boolean check box that denotes whether or not an accessory is installed. The
user then informs the print manager which printer accessories are installed by
selecting from the menus or checking the check boxes for each optional
accessory. The print manager then stores this information in an internal data-
base and later uses it to decide which options to offer the user at print time.

Second, a user or application might permanently configure the print manager
by providing a local customization file that contains*Default- settings that
reflect the installation of accessories.

 For example, a local customization file might contain the following:

*OpenUI *Option1/Envelope Feeder: Boolean

*DefaultOption1: True

*CloseUI: *Option1

From this entry, a print manager can record that the value of*Option1 is cur-
rently True and use that information, in conjunction with the*UIConstraints
entry in the base PPD file, to later decide which other options to offer to the
user at print time. If the author of the print manager does not want to offer a
configuration panel that interacts with the user, the print manager can be
coded so that it looks at the*Default- setting and treats it as if it were a selec-
tion from the user. Instead of querying the user for configuration information,
the print manager relies on the*Default- settings to be correct. This method is
perhaps simpler to implement, but is less flexible for the user and requires
that the user or some application edit a local customization file to record the
configuration information.

Most *OpenUI entries in theInstallableOptions group are Boolean choices, as
shown in the previous examples, but PickOne entries are equally legal. For
example, the following entry provides a short list of mutually exclusive

62 PostScript Printer Description File Format Specification (29 Mar 94)

choices (the user can install 2MB or 4MB of memory, but not both at once).
This is also an example of using a named keyword instead of a generic main
keyword:

*OpenGroup: InstallableOptions

*OpenUI *InstalledMemory/Memory Configuration: PickOne

*DefaultInstalledMemory: None

*InstalledMemory None/Basic Memory: ""

*InstalledMemory 2Meg/2Meg Memory Upgrade: ""

*InstalledMemory 4Meg/4Meg Memory Upgrade: ""

*CloseUI: *InstalledMemory

*CloseGroup: InstallableOptions

*UIConstraints: *InstalledMemory None *Smoothing Medium

*UIConstraints: *InstalledMemory None *Smoothing Dark

*UIConstraints: *InstalledMemory 2Meg *Smoothing Dark

This *UIConstraints entry tells a print manager that ifNone has been selected
for *InstalledMemory, then neither theMedium norDark options of the
*Smoothing keyword are available, and if2Meg has been selected for
*InstalledMemory, then only theDark option of*Smoothing is not available.
This provides a way for the print manager to present various options to the
user based on the amount of memory installed in the printer.

TheInvocationValues of the main keywords are typically null quotes because
no code is invoked during configuration; the print manager is simply record-
ing information either from the user or from the*Default- entries. However,
in some cases, there may be actual PostScript language code between the
quotes, perhaps to perform some sort of job setup related to the device’s con-
figuration. In that case, the*OpenUI entry must also contain an*OrderDepen-
dency statement, so that the print manager knows where to insert the code in
the job stream.

5.8 Introduction to Media Handling

PPD files are most commonly used to take advantage of the different media
sizes supported by a device. There are many devices on the market and many
different sizes and types of media and finishing features supported on each
device. The actual invocation code for a particular type of media often varies
from one device to another—it might require the use of the operator
setpageparams on one device,setpapertray on another, and
setpagedevice on a third. The keywords in the next several sections are used
to address the issues of choosing the input media, selecting a method of
output, and requesting various finishing features.

In many instances what is wanted, at a user level, is “please print this on
ledger paper,” where the user does not care from which tray the paper comes.
For this situation, there is a keyword,*PageSize, whose corresponding invo-

5 Keywords 63

cation code selects a tray that contains the requested size of paper. Unless
there are special media handling needs, it is suggested that the*PageSize
keyword be used to set an input media type.

For more control over the media handling capabilities, there are keywords for
directly selecting the input slots, the output bins, the output order of the
pages, the imageable area of a given page, and finishing features, such as sta-
pling. Each of these has a specific use that might be needed beyond the sim-
plistic notion “please give me ledger paper.” For instance, if the manual feed
feature is used, the*PageRegion keyword should be used to set up an image-
able area for the manually fed sheet of paper.

Note The author of a print manager should assume that all media handling
requests (requests for a particular page size, media tray, and so on) will ini-
tiate a new, blank page. That is, assume that a request for a media handling
feature will clear the frame buffer and perform the equivalent of the
PostScript operatorsinitgraphics anderasepage .

This does not happen on all PostScript language Level 1 devices, but is true
for all PostScript language Level 2 devices, and to be safe, you should
assume it will happen on all Level 1 devices. Print managers should ensure
that all media handling requests are placed in the output file before any page
manipulation is performed and before any marks are made on the page.

A primary use of a PPD file is for a print manager to be able to determine a
list of all supported media types and to be able to determine the salient fea-
tures of each page size (for example, the media dimensions and the imagea-
ble area). This list can then be displayed to the user in a user interface, or
consulted by the print manger when a user requests a certain page size. In
addition to the keywords that supply invocation code for the various media
types, there are keywords that provide information about each media size.
For example, the physical media dimensions are described by the
*PaperDimension keyword, and the actual area of the page which is “writ-
able” by the PostScript interpreter is described by the*ImageableArea key-
word.

64 PostScript Printer Description File Format Specification (29 Mar 94)

5.9 Media Option Keywords

In a PPD file, each type of media is described by an option keyword. The
same option keyword is used with several different main keywords to
describe different aspects of a given media type. For example, the entries
*PageSize Letter, *PaperDimension Letter, and*ImageableArea Letter all
address different aspects of a letter-size page. Because the same option key-
words are used often in the next several sections, they are all described in this
introductory section. Any of these option keywords can be substituted where
the placeholder wordmediaOption appears in a main keyword description.

Note that other media option keywords can be added to the list of registered
option keywords at any time. To ensure that the set of features is not artifi-
cially limited, a parser should parse for the complete list of option keywords
in a main keyword entry delimited by*OpenUI/*CloseUI rather than parsing
for specific option keywords. See section 5.5 for more information about the
extensibility of option keywords using the*OpenUI/*CloseUI delimiters.

Remember that not all known media sizes are specified here, only the most
common. A device manufacturer is free to request a new size to be listed in
the PPD file for a new device. However, when Adobe is creating the PPD
file, care will be taken to avoid duplicating the semantics of a registered
option with a new option of a different name. Also, when creating a new
option keyword, the capitalization conventions shown in the following tables
will be followed as much as possible; that is, the first letters of logical words
should be capitalized.

Each of these option keywords can be further qualified by an extension to
indicate a slightly distinct treatment of the media size. The only currently
defined qualifier isTransverse, which indicates that the paper is fed in an ori-
entation that is rotated 90 degrees from the orientation of the base paper size.
Since most printers feed paper with the short edge of the paper perpendicular
to the feed direction (“short edge feed”),Transverse generally means “long
edge feed.” That is, aTransverse size generally indicates that the long edge
of the image (on an imagesetter) or of the physical page (on a cut-sheet
printer) is perpendicular to the feed direction. The option keyword qualifiers
are appended with a period, like this:Letter.Transverse, A5.Transverse, and
so on.

Note Feeding the media transversely does not affect the relationship of user space
to the physical page, but it does mean that the page is oriented differently
with respect to device space. Transverse isnot the same as landscape orienta-
tion of a page. The orientation of the image on the page is exactly the same
for transverse as for non-transverse pages. A page fed transversely will
appear identical to a page fed non-transversely, except that on certain print-
ers, certain patterns and asymmetric halftone screens will image differently

5 Keywords 65

when the page is fed transversely, due to device and driver limitations. Also,
on older devices, the printing speed when using theimage operator might be
different for a page that is fed transversely.

Any of the media option keywords can have a serialization extension which
is a number used to distinguish between two otherwise equivalent instances
of the same option keyword. For example, if there are two Letter-size media
trays, they can be numbered to differentiate them (as inLetter.1, Letter.2).
These extensions can be combined withTransverse (for example,
Letter.1.Transverse) or other qualifiers, as appropriate.

The option keywords describing page sizes are shown in a series of tables.
The dimensions given below are in PostScript language default units, and
they refer to the actual physical dimensions of the page, not the imageable
region, unless otherwise specified. When media sizes are given as ISO or JIS
standard sizes, the dimensions in millimeters (mm) are exact, and the dimen-
sions in PostScript language default units and inches are approximate.

ISO/JIS Standard “A” Sizes

The following is a table of option keywords for the standard ISO/JIS “A”
paper sizes. All sizes are given with thex dimension first, followed by they
dimension.

Table 2 Option keywords for standard ISO/JIS “A” paper sizes

Option Keyword Size (points) Size (mm) Size (inches)

A0 2384 x 3370 841 x 1189 33.11 x 46.81

A1 1684 x 2384 594 x 841 23.39 x 33.11

A2 1191 x 1684 420 x 594 16.54 x 23.39

A3 842 x 1191 297 x 420 11.69 x 16.54

A4 595 x 842 210 x 297 8.27 x 11.69

A5 420 x 595 148 x 210 5.83 x 8.27

A6 297 x 420 105 x 148 4.13 x 5.83

A7 210 x 297 74 x 105 2.91 x 4.13

A8 148 x 210 52 x 74 2.05 x 2.91

A9 105 x 148 37 x 52 1.46 x 2.05

A10 73 x 105 26 x 37 1.02 x 1.46

66 PostScript Printer Description File Format Specification (29 Mar 94)

JIS Standard “B” Sizes

The following is a table of keywords for the standard JIS “B” paper sizes. All
sizes are given with thex dimension first, followed by they dimension.

Table 3 Option keywords for standard JIS “B” paper sizes

Option Keyword Size (points) Size (mm) Size (inches)

B0 2920 x 4127 1030 x 1456 40.55 x 57.32

B1 2064 x 2920 728 x 1030 28.66 x 40.55

B2 1460 x 2064 515 x 728 20.28 x 28.66

B3 1032 x 1460 364 x 515 14.33 x 20.28

B4 729 x 1032 257 x 364 10.12 x 14.33

B5 516 x 729 182 x 257 7.17 x 10.12

B6 363 x 516 128 x 182 5.04 x 7.17

B7 258 x 363 91 x 128 3.58 x 5.04

B8 181 x 258 64 x 91 2.52 x 3.58

B9 127 x 181 45 x 64 1.77 x 2.52

B10 91 x 127 32 x 45 1.26 x 1.77

5 Keywords 67

ISO Standard “B” Sizes

The following is a table of keywords for the standard ISO “B” paper sizes.
All sizes are given with thex dimension first, followed by they dimension.

Table 4 Option keywords for standard ISO “B” paper sizes

Option Keyword Size (points) Size (mm) Size (inches)

ISOB0 2835 x 4008 1000 x 1414 39.37 x 55.67

ISOB1 2004 x 2835 707 x 1000 27.83 x 39.37

ISOB2 1417 x 2004 500 x 707 19.68 x 27.83

ISOB3 1001 x 1417 353 x 500 13.90 x 19.68

ISOB4 709 x 1001 250 x 353 9.84 x 13.90

ISOB5 499 x 709 176 x 250 6.93 x 9.84

ISOB6 354 x 499 125 x 176 4.92 x 6.93

ISOB7 249 x 354 88 x 125 3.46 x 4.92

ISOB8 176 x 249 62 x 88 2.44 x 3.46

ISOB9 125 x 176 44 x 62 1.73 x 2.44

ISOB10 88 x 125 31 x 44 1.22 x 1.73

ISO Standard “C” Envelope Sizes

The following is a table of keywords for the standard ISO “C” envelope
sizes. All sizes are given with thex dimension first, followed by they dimen-
sion.

Table 5 Option keywords for standard ISO “C” envelope sizes

Option Keyword Size (points) Size (mm) Size (inches)

C0 2599 x 3676 917 x 1297 36.10 x 51.06

C1 1837 x 2599 648 x 917 25.51 x 36.10

C2 1298 x 1837 458 x 648 18.03 x 25.51

C3 918 x 1296 324 x 458 12.75 x 18.03

C4 649 x 918 229 x 324 9.02 x 12.75

C5 459 x 649 162 x 229 6.38 x 9.02

C6 323 x 459 114 x 162 4.49 x 6.38

C7 230 x 323 81 x 114 3.19 x 4.49

DL 312 x 624 110 x 220 4.33 x 8.66

68 PostScript Printer Description File Format Specification (29 Mar 94)

Other Standard Page Sizes

The following option keywords include U.S. standard paper and envelope
sizes and other sizes that printer manufacturers have created and found
useful. Unlike the ISO and JIS standard sizes, these U.S. standard sizes are
typically defined in inches, and the millimeter measurements are provided
only for comparison with the ISO and JIS standard sizes. All sizes are given
with thex dimension first, followed by they dimension.

Table 6 Other standard page sizes

Option Keyword Size (points) Size (mm) Size (inches)

Letter 612 x 792 215.9 x 279.4 8.5 x 11

Legal 612 x 1008 215.9 x 355.6 8.5 x 14

Statement 396 x 612 139.7 x 215.9 5.5 x 8.5

Tabloid 792 x 1224 279.4 x 431.8 11 x 17

Ledger 1224 x 792 431.8 x 279.4 17 x 11

7x9 504 x 648 177.8 x 228.6 7 x 9

9x11 648 x 792 228.6 x 279.4 9 x 11

9x12 648 x 864 228.6 x 304.8 9 x 12

10x13 720 x 936 254.0 x 330.2 10 x 13

10x14 720 x 1008 254.0 x 355.6 10 x 14

• LetterSmall—This is used to describe a reduced-size imageable region
based on the Letter media size. Its imageable area varies across devices,
but is generally about 552 x 730 points, centered on an 8.5 x 11 inch page.

• A4Small—This is used to describe a reduced-size imageable region based
on the A4 media size. Its imageable area varies across devices, but is gen-
erally about 537 x 780 points, centered on an A4 page.

• Executive—This describes a page whose physical size is generally about
540 x 720 points (7.5 x 10 inches). If a device offers several “executive”
sizes that are very similar (7.25 x 10.5 inch (522 x 756 points), 7.5 x 10.5
inch, 7 x 10.5 inch, and so on), these sizes can be differentiated by a serial-
ization extension and a translation string that denotes the exact size. For
example:

*PageSize Executive.1/7.5 x 10 in: "7.5x10inchtray"

*PageSize Executive.2/7.25 x 10.5 in: "7.25x10.5inchtray"

*PageSize Executive.3/7.5 x 10.5 in: "7.5x10.5inchtray"

5 Keywords 69

• Folio—This is a metric page size of 210mm x 330mm (595 x 935 points),
with an approximate imageable region of 567 x 903.5 points centered on
the page.

• Quarto—This is a 567 x 744 point imageable region, centered on a 610 x
780 point page.

• Comm10—This is a 297 x 684 point (4.125 x 9.5 inch) envelope.

• Monarch—This is a 279 x 540 point (3.875 x 7.5 inch) envelope.

• Envelope—This is a page size reserved for printing envelopes that have no
standard name. This keyword can be qualified by anx andy dimension
(specified in points), in the orderx.y, wherex is perpendicular to the feed
direction andy is parallel to the feed direction.

Note In the 3.0 specification, all envelope sizes were specified in the format
Envelope.x.y, where x and y were the width and height of the envelope in
PostScript language default units, with the x dimension perpendicular to the
feed direction. The option keyword could be followed by a translation string
for clarity. For example,Envelope.612.792/Letter Envelope was a valid
option. In the 4.0 and later specifications, envelopes are simply another size
of media, and most envelope sizes will be listed by their common names
(Comm10, Monarch), but the 3.0 format is still recognized and is useful for
envelopes without common names.

5.10 Media Selection

*PageSize mediaOption: “invocation”

Required. This keyword provides the InvocationValue to invoke supported
page sizes. The invocations in this section will establish both an input slot
and a frame buffer (an area in device memory to hold the imageable region of
the page). The exception to this is on roll-fed devices, such as imagesetters,
where there are no selectable input slots and the invocation will only set up
the frame buffer.

*PageSize should be used for the common case of a request for a certain size
of media, with no special handling of media requested (for example, the user
says, “give me legal size paper,” but does not care which tray is used).
*PageSize is intended to be used in all but very specific circumstances (such
as when using manual feed or when directly controlling a media tray).

The invocation strings provided in the*PageSize section can provoke an
error if the appropriate size of media is not available. The error message can
be caught by the print manager and a more meaningful message generated.

UIU I

70 PostScript Printer Description File Format Specification (29 Mar 94)

An invocation string supplied by*PageSize will generally override an invo-
cation string supplied by*PageRegion. Therefore, if a*PageRegion invoca-
tion is present in the output file, it must come after a*PageSize invocation to
achieve the expected results. In a PPD file for an imagesetter, the invocation
strings for*PageSize and*PageRegion are usually identical.

*DefaultPageSize: mediaOption

This keyword indicates the default page size for the device when powered on.
The value will correspond to one of the media options listed under
*PageSize, or it will beUnknown. On devices that support more than one
page size, the value will generally beUnknown, as it is impossible to predict
which media tray will be inserted or designated as the default tray.

*?PageSize: “query”

This query returns the media option corresponding to the current page size.
The value returned must be one of the options listed under*PageSize or it
will be Unknown.

*PageRegion mediaOption: “invocation”

Required. These InvocationValues set the imageable area to the appropriate
media type without explicitly specifying the source of the media. It is
intended to be used in conjunction with manual feed so that the imageable
area is appropriate for the media to be fed. It is also used instead of the
*PageSize invocations when the user specifies an input tray and a page size
(for example, Upper Tray, Letter Size), because the*PageSize invocations
generally select an input tray and would override the user’s previous selec-
tion of a specific input tray.

*DefaultPageRegion: mediaOption

This indicates the default imageable area (in terms of media options) for the
device when powered on. The value will correspond to one of the media
options listed under*PageRegion or it will be Unknown. Like
*DefaultPageSize, on most devices the value will beUnknown, because the
imageable area is usually based on the size of the current media tray.

Note The keywords*DefaultPaperTray, *PaperTray, and*?PaperTray, which were
present in the 3.0 spec, have been removed because they were redundant. In
their place,*PageSize should be used to select a particular size of paper,
*PageRegion should be used to select a particular imageable area for manu-
alfeed, and*InputSlot should be used to select a specific media tray.
*InputSlot is documented in section 5.13.

UIU I

5 Keywords 71

*MediaType typeOption: “invocation”

This keyword provides InvocationValues to select media by some character-
istic other than size (or in addition to size). The options are product-depen-
dent strings that describe the media. For example, a user might be able to
select letterhead paper by specifying Letterhead as a media type. This method
usually requires prior device setup, so that the device knows how to access a
certain type of media.

*DefaultMediaType: typeOption

This indicates the default media type. The value must match one of the
options listed under*MediaType.

*?MediaType: “query”

This query returns a string denoting the currently selected media type. The
returned value must match one of the options under*MediaType or it will be
Unknown.

*MediaColor colorOption: “invocation”

This keyword provides InvocationValues to select media by color. The
options are product-dependent strings that describe the available colors of
media. This method usually requires prior device setup, so that the device
knows how to access a certain color of media.

*DefaultMediaColor: colorOption

This indicates the default media color. The value must match one of the
options listed under*MediaColor.

*?MediaColor: “query”

This query returns a string denoting the currently selected media color. The
returned value must match one of the options under*MediaColor or it will be
Unknown.

*MediaWeight weightOption: “invocation”

This keyword provides InvocationValues to select media by weight. The
options are product-dependent strings that describe the available media
weights. This method of media selection usually requires prior device setup,
so that the device knows how to access a certain weight of media

UIU I

UIU I

UIU I

72 PostScript Printer Description File Format Specification (29 Mar 94)

*DefaultMediaWeight: weightOption

This indicates the default media weight. The value must match one of the
options listed under*MediaWeight.

*?MediaWeight: “query”

This query returns a string denoting the currently selected media weight. The
returned value must match one of the options under*MediaWeight or it will
beUnknown.

5.11 Information About Media Sizes

*ImageableArea mediaOption: “llx lly urx ury”

Required. This provides the bounding box of the imageable area for each
given page size (mediaOption). The bounding box is given as four real num-
bers, representing the x and y coordinates of the lower left and upper right
corners of the region, respectively, in the PostScript language default user
space coordinate system. Thex andy axes of a given page size correspond to
thex andy axes of that page size in the*PaperDimension entry.

The imageable region is defined as the part of the page where marks can
actually be made. On many devices, there are margins imposed by the media
transport mechanism in the marking engine that might prevent marks from
being made close to the edges of the media. The*ImageableArea entry will
supply a region that represents a “reliable” area of the page in which marks
can be made. This might exactly correspond to theclipping path set by the
PostScript interpreter. The value is represented as an InvocationValue.

On some devices, the imageable area of a given page size varies as a result of
the current resolution, amount of memory, the direction of paper feed, and
other factors. For example, the imageable area of a Legal size page might be
smaller at higher resolutions on a printer with variable resolution, or it might
be shifted left or right depending on whether the page was fed long-edge-first
or short-edge-first. In PPD files where the imageable area of a given page
size can vary depending on other factors, the imageable area recorded for that
page size will be the intersection of all possible imageable areas for that page
size. While this means that the imageable area available in the current config-
uration might actually be larger than the imageable area shown in the PPD
file, it at least guarantees that the available imageable area will not be smaller
than that shown in the PPD file, and all marks made within the given imagea-
ble area will be visible.

5 Keywords 73

*DefaultImageableArea: mediaOption

This provides the default imageable area in terms of media options. This
value must be one of the media options listed under*ImageableArea or it will
beUnknown.

*?ImageableArea: “query”

This query returns four real numbers representing the bounding box of the
imageable area, as defined under*ImageableArea. Since it is virtually impos-
sible to determine hardware restrictions from software polling, this query will
usually return the default clipping region for the page size in effect. In gen-
eral, it is better to use the values supplied in the*ImageableArea keyword
section, since they can be adjusted by hand for particular hardware con-
straints.

*PaperDimension mediaOption: “real real”

Required. This lists physical dimensions for a particular media size, indepen-
dent of the imageable area of the page. There are only two numbers specified,
which represent thewidth (in thex dimension) andheight (in they dimen-
sion) of the media, respectively, in PostScript language default units. Thex
andy axes of a given page size correspond to thex andy axes of that page
size in the*ImageableArea entry. The value is represented as an
InvocationValue.

*DefaultPaperDimension: mediaOption

This provides the default physical media dimension in terms of media
options. This value must be one of the options listed under*PaperDimension
or it will be Unknown.

*LandscapeOrientation: Plus90 | Minus90 | Any

Every print manager makes assumptions about the location of the origin of
default user space on the physical page. When a user selects landscape orien-
tation, a print manager must rotate and translate the origin of default user
space on the page. On certain printers, the orientation of the physical page is
dictated by either physical markings on the printer case, or by instructions in
the user manual. This dictated orientation might be incompatible with the
print manager's assumptions about the orientation of the physical page. This
is not significant for blank paper, but for pre-marked paper, such as letter-
head, 3-hole-punched paper, or envelopes, the printed output might appear
upside-down with respect to the letterhead, punch holes, envelope flap, or
other pre-markings on the page.

74 PostScript Printer Description File Format Specification (29 Mar 94)

This keyword, whose value of type StringValue is determined from knowl-
edge of the printer's markings and instructions, provides a hint to a print man-
ager as to which way it should rotate and translate the page, for the printed
output to be compatible with the page feeding instructions on the printer or in
the printer's user manual. If this keyword is present, it means that the printer
requires the use of the transformations listed below for the correct printing
results to occur.

The values have the following meanings:

• Plus90—This means that the print manager should perform the functional
equivalent of the following fragment of PostScript language code:

90 rotate 0 pagewidth neg translate

wherepagewidth is the width of the page in default user space. For exam-
ple, on a letter-size page in portrait mode, after this transformation has
been performed, the default user space would look like this:

• Minus90—This means that the print manager should perform the func-
tional equivalent of the following fragment of PostScript language code:

90 neg rotate pageheight neg 0 translate

wherepageheight is the height of the page in default user space. For
example, on a letter-size page in portrait mode, after this transformation
has been performed, the default user space would look like this:

+x

+y

+x

+y

5 Keywords 75

• Any—This means that no hint is provided and the driver can follow its
normal assumptions, but the results might be incorrect for certain printers.

*LandscapeOrientation should appear only in the PPD files of printers in
which the orientation of page feeding is dictated by printer markings or the
printer's user manual. If this keyword is missing, assume thatAny is the
default value.

Note If a printer treats envelopes differently from paper (for example, when an
envelope size is requested, the printer performs its own rotations and transla-
tions to print “correctly” on the envelope), this keyword might not provide
any assistance and the printing results might still be incorrect.

5.12 Custom Page Sizes

Some devices support user-defined page sizes by allowing the user to supply
the page dimensions rather than selecting from a list of pre-defined page
sizes. The keywords in this section are provided to support that capability.

Devices are divided into two categories, based on whether the device sup-
portsroll-fed media orcut-sheet media. On roll-fed media devices, such as an
imagesetter supplied by a roll of film, the media is larger than the page size
requested by the user. The requested page size is positioned somewhere on
the larger physical media, and the imageable area is assumed to be identical
to the requested page size.

Cut-sheet media devices accept individual pages of physical media of differ-
ent sizes. The user is expected to supply media of the correct physical size,
usually in a tray that adjusts to different media sizes. The requested page size
is identical to the physical page size. However, due to media handling hard-
ware requirements, the imageable area may be smaller than the requested
page size. The unimageable margin area required by the hardware is denoted
by the keyword *HWMargins, which is described in this section.

The location and orientation of the page image on the media and of the initial
PostScript language coordinate system depends on the combination of the
custom page size parameters. These parameters are named the same but are
treated differently on roll-fed and on cut-sheet devices.

76 PostScript Printer Description File Format Specification (29 Mar 94)

Custom Page Size Parameters for Roll-Fed Devices

On a roll-fed device, custom page size and orientation parameters are speci-
fied relative to themedia feed direction, which is parallel to the length of the
roll of media. Figure 1 illustrates media feed direction on a roll-fed device:

Figure 1 Media feed direction

Custom page sizes are defined in terms of the following parameters:

• Width—On a roll-fed device, this indicates the width of the page perpen-
dicular to the direction of media feed, in PostScript language default units.

• Height— On a roll-fed device, this indicates the height of the page parallel
to the direction of media feed, in PostScript language default units.

• WidthOffset—On a roll-fed device, this indicates the amount, in PostScript
language default units, to offset the image perpendicular to the direction of
media feed. The direction of the offset is in the direction of increasingy in
user space for orientation 0.

• HeightOffset—On a roll-fed device, this indicates the amount, in
PostScript language default units, to offset the image parallel to the
direction of media feed. The direction of the offset is in the direction of
increasingx in user space for orientation 0.

• Orientation—On a roll-fed device, this indicates the orientation of the
image with respect to the media feed direction. Devices support a subset
of four possible values. In orientation 0, thex axis in user space decreases
in the media feed direction. They axis therefore increases 90 degrees
counterclockwise relative to increasingx, orthogonally to media feed
direction. Orientations 1, 2, and 3 are rotated 90, 180, and 270 degrees
(respectively) counterclockwise from orientation 0.

media feed direction

roll-fed media
(capstan imagesetter)

roll-fed media
(drum imagesetter)

5 Keywords 77

Figure 2 shows the interaction betweenWidth, Height andOrientation for roll-
fed media devices. Note thatWidth andHeight are always defined with
respect to the media feed direction. For a givenWidth andHeight, two values
of Orientation will produce a landscape coordinate system and two will pro-
duce a portrait coordinate system.

Figure 2 Roll-fed media devices

Note On both cut-sheet and roll-fed devices, the actual size of a page might not be
exactly what was requested, according to the current configuration of the
device. On a roll-fed device, the actual orientation of a page might not
exactly match the request, again because of the device’s configuration. For
example, an imagesetter manufacturer might configure a product to rotate a
page automatically if the page cannot fit in the requested long-edge feed ori-
entation. The*CustomPageSize invocation code cannot be expected to over-
ride such behavior.

Custom Page Size Parameters for Cut-Sheet Devices

On a cut-sheet device, there is no relationship between the media feed direc-
tion and the custom page size parameters. The parameters are defined as fol-
lows:

• Width—On a cut-sheet device,Width describes, in PostScript language
default units, the width of the physical page as measured along thex axis.

• Height— On a cut-sheet device,Height describes, in PostScript language
default units, the height of the physical page as measured along they axis.

• WidthOffset—On cut-sheet devices, this parameter has no effect, so the
*CustomPageSize code will discard it.

0 1 2 3
Width > Height,

Orientation:

+y

+x
0,0

0 1 2 3
Height > Width,

Orientation:

+y

+x
0,0

+y

+x

0,0

+y

0,0

+y

+x

0,0

media feed
direction

+y

+x

0,0
+y

+x
0,0

+y

+x

0,0

+x

Width

Height

78 PostScript Printer Description File Format Specification (29 Mar 94)

• HeightOffset—On cut-sheet devices, this parameter has no effect, so the
*CustomPageSize code will discard it.

• Orientation—On cut-sheet devices, this parameter has no effect, so the
*CustomPageSize code will discard it. If a print manager wants to offer
landscape orientation to the user, it must provide its own rotation code and
user interface.

Figure 3 shows the interaction betweenWidth andHeight on cut-sheet media
devices. The image is assumed to be in portrait orientation. Note thatWidth
andHeight are constant relative to thex andy axes of the page respectively,
even though the media is fed long-edge first in one case and short-edge first
in the other case.

Figure 3 Cut-sheet media devices

*CustomPageSize True: “invocation”

This InvocationValue provides the code to set up a custom page size. The
print manager is responsible for obtaining five parameters from the user and
placing them on the operand stack in the correct order before executing the
invocation code. The parameters areWidth, Height, WidthOffset, HeightOff-
set, andOrientation, as described earlier. The order in which these parameters
must be placed on the stack is described under*ParamCustomPageSize.

Note To be compatible with existing parsers,*CustomPageSize conforms to the
syntax of other True/False entries, but there is no reason to ever have a
*CustomPageSize False entry, since there is no sensible corresponding invo-
cation code.

*ParamCustomPageSize paramOption: order type min max

This provides the allowable types and ranges, expressed as aStringValue, for
each of the custom page size parameters required by the invocation code of
the*CustomPageSize entry. There must be one*ParamCustomPageSize
entry for each of the custom page parameters:Width, Height, WidthOffset,

+y

+x
0,0

+y

+x

0,0

long-edge feed,
Width in x, Height in y,

portrait orientation

short-edge feed,
Width in x, Height in y,

portrait orientation

Width

Height

Height

Width

5 Keywords 79

HeightOffset, andOrientation. Like any option keyword, these options can
have translation strings, allowing a print manager a more meaningful string
to display to the user.

The value oforder indicates the order in which this parameter must be placed
on the stack and passed to the*CustomPageSize code. A parameter with an
order of “1” is placed on the stack first, followed by a parameter with an
order of “2”, and so on. An application program is responsible for obtaining
these parameters from the user and putting them on the stack in the correct
order before invoking the*CustomPageSize code.

Thetype of each parameter is eitherint, real, orpoints, wherepoints is a real
number of PostScript language default units. A value ofpoints tells an appli-
cation that, although the units might be obtained from the user in any form,
such as inches or millimeters, they must be translated to PostScript interpret-
er’s default units (1/72 inch) before they are placed on the stack.

The allowable range for each parameter is expressed as the minimum and
maximum acceptable numbers, inclusive, with the minimum value first. The
type of the minimum and maximum acceptable values for a parameter must
match thetype entry for that parameter. A print manager should use the mini-
mum and maximum values for each parameter to ensure that the user pro-
vides parameters in the valid range.

The following is a sample custom page size entry for a PostScript Level 1
roll-fed output device:

*LanguageLevel: "1"

*CustomPageSize True:"exch pop% discard HeightOffset

statusdict /setpageparams get exec"

*End

*ParamCustomPageSize Width: 1 points 1 792

*ParamCustomPageSize Height: 2 points 1 5184

*ParamCustomPageSize WidthOffset: 3 points 0 791

*ParamCustomPageSize HeightOffset: 4 points 0 0

*ParamCustomPageSize Orientation: 5 int 0 1

Note On some devices, requesting a width or height of zero will cause an error.
Because of this, the minimum width and height bounds are set to small posi-
tive numbers. On PostScript Level 1 roll-fed output devices that use the
setpageparams operator in the*CustomPageSize code,HeightOffset is not
used, and thus will be discarded by the*CustomPageSize invocation code, as
shown above.

80 PostScript Printer Description File Format Specification (29 Mar 94)

The following is a sample custom page size entry for a PostScript Level 2
roll-fed output device:

*LanguageLevel: "2"

*CustomPageSize True: "

 4 dict begin

 dup /Orientation exch def

 /PageOffset [5 -2 roll] def

 /PageSize [

 5 2 roll dup 0 eq exch 2 eq or {exch} if

] def

 /ImagingBBox null def

currentdict end setpagedevice

"

*End

*ParamCustomPageSize Width: 1 points 100 864

*ParamCustomPageSize Height: 2 points 100 5184

*ParamCustomPageSize WidthOffset: 3 points 0 764

*ParamCustomPageSize HeightOffset: 4 points 0 5084

*ParamCustomPageSize Orientation: 5 int 0 3

The following is a sample custom page size entry for a PostScript Level 2
cut-sheet output device:

*LanguageLevel: "2"

*CustomPageSize True: "

pop pop pop % discard orientation & offsets

2 dict begin

/PageSize [

 4 -2 roll

] def

 /ImagingBBox null def

currentdict end setpagedevice

"

*End

*ParamCustomPageSize Width: 1 points 100 864

*ParamCustomPageSize Height: 2 points 100 1008

*ParamCustomPageSize WidthOffset: 3 points 0 0

*ParamCustomPageSize HeightOffset: 4 points 0 0

*ParamCustomPageSize Orientation: 5 int 0 0

Note On cut-sheet media devices,Orientation, HeightOffset andWidthOffset are
not used, and thus are discarded by the*CustomPageSize invocation code.

*MaxMediaWidth : "real"

On devices that support custom page sizes, this QuotedValue entry indicates
the maximum media width allowed by the device when a custom page size is
requested. On both roll-fed and cut-sheet devices,*MaxMediaWidth is mea-
sured perpendicular to the media feed direction and is expressed in PostScript
language default units.

5 Keywords 81

On roll-fed devices, a print manager must ensure that the sum of the
requestedWidth plus the requestedWidthOffset does not exceed the value of
*MaxMediaWidth. On cut-sheet devices, since the media feed direction and
orientation of the image are unknown, a print manager must ensure that the
larger ofWidth andHeight is less than or equal to the larger of*MaxMediaW-
idth and*MaxMediaHeight. Likewise, a print manager must ensure that the
smaller ofWidth andHeight is less than or equal to the smaller of*MaxMedi-
aWidth and*MaxMediaHeight.

*?CurrentMediaWidth: “query”

The absolute maximum width of media supported by a device, as measured
perpendicular to media feed direction, can be obtained from the value of
*MaxMediaWidth. However, some devices support different sizes of media
cassettes, so the current maximum width might be less than the absolute max-
imum width. This query returns a real number specifying the maximum
width, in PostScript language default units, of the currently installed media.

If this query is available, a print manager can use it to replace the value of
*MaxMediaWidth in the print manager’s internal data structures with the
value returned by the query. The print manager can then proceed with range-
checking as described under*MaxMediaWidth.

*MaxMediaHeight : "real"

On devices that support custom page sizes, this QuotedValue entry indicates
the maximum media height allowed by the device when a custom page size is
requested. On both roll-fed and cut-sheet devices,*MaxMediaHeight is mea-
sured parallel to the media feed direction and is expressed in PostScript lan-
guage default units.

On roll-fed devices, a print manager must ensure that the sum of the
requestedHeight plus the requestedHeightOffset does not exceed the value of
*MaxMediaHeight. On cut-sheet devices, since the media feed direction and
orientation of the image are unknown, a print manager must ensure that the
larger ofWidth andHeight is less than or equal to the larger of*MaxMediaW-
idth and*MaxMediaHeight. Likewise, a print manager must ensure that the
smaller ofWidth andHeight is less than or equal to the smaller of*MaxMedi-
aWidth and*MaxMediaHeight.

*?CurrentMediaHeight: "query"

The absolute maximum height of media supported by a device, as measured
parallel to media feed direction, can be obtained from the value of
*MaxMediaHeight. However, some devices support different sizes of media

82 PostScript Printer Description File Format Specification (29 Mar 94)

cassettes, so the current maximum height might be less than the absolute
maximum height. This query returns a real number specifying the maximum
height, in PostScript language default units, of the currently installed media.

If this query is available, a print manager can use it to replace the value of
*MaxMediaHeight in the print manager’s internal data structures with the
value returned by the query. The print manager can then proceed with range-
checking as described under*MaxMediaHeight.

*HWMargins: left bottom right top

This keyword applies only to cut-sheet devices. It provides a StringValue that
describes how much space around the outer edge of the page cannot be
imaged because of hardware restrictions. A print manager might use this
information to tell a user when the entire requested custom page size cannot
be printed upon, or to show the user which part of the page can be imaged.
For non-custom page sizes, the keyword*ImageableArea provides the same
information for each supported page size.

The values of*HWMargins are in PostScript language default units, and are
defined in default user space as follows:

top = distance, in PostScript language default units, from the top edge of
the page to the nearest beginning of imageable area. The top edge is the
edge of the page that enters the printer first.

right, left, and bottom are similarly defined, as shown in Figure 4.

Figure 4 Margins of*HWMargins

media feed
direction

top

bottom

left

right

short-edge feed long-edge feed

right

left

bottom

top

+x

+y

+x

+y

5 Keywords 83

For example, a printer might have an adjustable tray that accepts several sizes
of paper, but the printer always needs 1 inch along the sides and 1/2 inch at
the top and bottom to handle paper of any size. The*HWMargins entry to
describe this would be

*HWMargins: 72 36 72 36

If the margin requirements of the printer vary with the paper size (for exam-
ple, if the printer needs a 1 inch margin to handle some page sizes, and a 2
inch margin to handle other page sizes), the values of*HWMargins will
reflect the largest margin required by the printer (in this case, the 2 inch
margin). For some page sizes, this might provide a smaller imageable area
than is actually achievable by the printer, but at least it guarantees that marks
made within the indicated imageable area will be visible on the page.

Since the media feed direction on cut-sheet devices is not known, a print
manager does not know which edge, long or short, is the top edge. Therefore.
the print manager must pick the largest of the four*HWMargin values and
subtract it from each edge of the page, to ensure a guaranteed imageable area.

*HWMargins applies only to cut-sheet media devices. Roll-fed media devices
are assumed to be able to image over the complete requested page size; any
restrictions on page size due to hardware control mechanisms are described
by *MaxMediaWidth and*MaxMediaHeight. The presence of*HWMargins
indicates a cut-sheet media device which supports*CustomPageSize. If such
a device has no hardware restrictions on imageable area, it should still
include the following entry to distinguish it from a roll-fed device that sup-
ports custom page sizes:

*HWMargins: 0 0 0 0

 This keyword mustnot be present in the PPD file of a roll-fed media device
or of a cut-sheet media device that does not support *CustomPageSize.

*CenterRegistered: True | False

This keyword applies only to roll-fed devices. It provides a StringValue that
tells whether the device registers the film or paper stock from the center or
from the edge of the scan. If a device uses center-registering, it is up to the
user or the application to provide the correct value forWidthOffset, to move
the image to the beginning edge of the stock. For example, on a center-regis-
tered device, if the user requests 10-inch wide stock on a 12-inch wide trans-
port mechanism, either the user or the application must provide a 1-inch
WidthOffset to get the image to start at the edge of the stock. On a device that
does not use center-registering, this additional calculation is unnecessary.

84 PostScript Printer Description File Format Specification (29 Mar 94)

*VariablePaperSize: True | False

This StringValue indicates whether the device supports infinitely variable
media sizes.

Note *VariablePaperSize is retained only for backward compatibility with the 3.0
specification. The*CustomPageSize and*ParamCustomPageSize keywords
handle custom media size more comprehensively and should be used instead.

5.13 Media Handling Features

*InputSlot inputSlotOption: “invocation”

This provides the InvocationValue to select input slots for media trays. If
present, this keyword implies that media can be selected by specifying, for
instance, the upper or the lower slot, and accepting whatever is found there.
The most common use of this keyword is to select a media tray that contains
letterhead or other special paper. One entry is provided for each input slot.

*DefaultInputSlot: inputSlotOption

This denotes the default input slot. The value must match one of the available
input tray options listed under*InputSlot or it will be Unknown.

*?InputSlot: “query”

This query returns a string denoting the currently chosen input slot. The value
returned must match one of the options listed under*InputSlot or it will be
Unknown.

Any arbitrary strings that appropriately describe the printer’s input slots are
valid inputSlotOptions. The following list documents commonly usedinputSlo-
tOptions:

• Lower—This is used for any tray for which there is no particular distin-
guishing feature other than it is lower than another tray similar to it. For
instance, if there are two media input slots that are identical, they can be
distinguished by their position relative to each other.

• Middle—This designates a tray that is in between other trays. SeeLower.

• Upper—This designates a tray that is above other trays. SeeLower.

• Rear—This designates a tray at the rear of the printer.

UIU I

5 Keywords 85

• Cassette—This keyword can be used whereUpper, Middle, andLower
make little sense (that is, if there is only one input slot, or if the printer is a
roll-fed device). Since many print managers display the choices of input
slot and manual feed on a single menu,Cassette provides differentiation
for the user between the paper or film cassette and the manual feed slot, if
one exists.

• LargeCapacity—This is used to refer to a large capacity media tray, such
as an input paper tray that can hold more than one ream of paper.

• LargeFormat—This refers to an input slot that can hold “large format”
media trays (ledger paper, for instance).

• AnySmallFormat—This is used to indicate a media tray that can hold any
of the smaller format medias. This includes any media size that is up to
(and including) 11 inches on the longer side.

• AnyLargeFormat—This option allows selection of a “universal” media
tray that can contain any of the large format media sizes (those with one
dimension greater than 11 inches).

*RequiresPageRegion inputSlotOption: True | False

This keyword provides a StringValue that indicates, for each input slot,
whether or not the page size installed in that slot can be sensed by the printer.
If the page size cannot be sensed, any invocation of that input slot must be
followed by an invocation of the appropriate*PageRegion code to set up the
requested frame buffer and imageable area for the page. Therefore, if the
printer cannot sense the page size in a slot, the*PageRegion code is required,
and the value of*RequiresPageRegion will be True for that slot. If the page
size in that slot can be sensed, the*PageRegion code is not required, and the
value of*RequiresPageRegion will be False.

The option keywordinputSlotOption must be a validinputSlotOption listed in the
*InputSlot entry in the PPD file. For example:

*InputSlot Lower: "code"

*InputSlot Envelope: "code"

...

*RequiresPageRegion Lower: False

*RequiresPageRegion Envelope: True

An additional special option keywordAll means that the entry applies to all
paper sources on the printer. For example:

*RequiresPageRegion All: False

86 PostScript Printer Description File Format Specification (29 Mar 94)

This entry indicates that all the input slots can sense the page size in them,
and the*PageRegion code is never required after an input slot invocation.

 If *RequiresPageRegion for any slot (or all slots) is omitted from a PPD file,
it is assumed to beFalse for those slots. That is, the*PageRegion code
should not be invoked after an input slot invocation.

*OutputBin binOption: “invocation”

This provides the InvocationValue to select different output paths for media.
If this entry is absent, this device does not provide software-selectable output
paths.

*DefaultOutputBin: binOption

This denotes the default output path. The value must match one of the avail-
able output paths listed under*OutputBin or it will be Unknown.

*?OutputBin: “query”

This query returns a string denoting the current output path. The string
returned must match one of the option keywords listed under*OutputBin or it
will be Unknown.

The currently registered values forbinOption are:

• Upper—This refers to an output bin located above any other output bins.

• Lower—This refers to an output bin located below any other output bins.

• Rear—This designates an output bin located to the rear of the device.

• OnlyOne—This keyword is used whereUpper, Rear, and other positional
keywords make little sense (that is, if there is only one output bin).

*OutputOrder orderOption: “invocation”

This entry provides the InvocationValue to invoke a specific page stacking
order for the duration of the current job. On many devices, the output order is
tied to the selection of the output bin. On some devices, invoking a new page
stacking order will cause a new output bin to be selected. On other devices, a
new output bin must be explicitly selected.

UIU I

UIU I

5 Keywords 87

*DefaultOutputOrder: orderOption

This entry indicates the default page stacking order (in other words, the page
stacking order of the default output bin). This entry is useful in determining
in which order the pages should be sent from the host. The value must match
one of the options listed under*OutputOrder.

88 PostScript Printer Description File Format Specification (29 Mar 94)

*?OutputOrder: “query”

This query returns a string denoting the page stacking order of the current
output bin. The returned value must match one of the option keywords listed
under*OutputOrder.

The currently registered values fororderOption are:

• Normal—This keyword indicates that if the pages are transmitted to the
device in1-n order, they will be in1-n order when they are picked up from
the output tray. This usually, but not always, means that the output pages
are stacked face down in the output tray.

• Reverse—This keyword indicates that if the pages are transmitted to the
device in1-n order, they will be inn-1 order when they are picked up from
the output tray (the last page will be on the top of the stack). This usually,
but not always, means that the output pages are stacked face up in the
output tray.

*PageStackOrder binOption: Normal | Reverse

This is an informational entry with a value of type StringValue, which indi-
cates the page stacking order of each output bin, for a device with multiple
software-selectable output bins. The option keywordbinOption must be a valid
option keyword listed under*OutputBin. Normal andReverse have the same
meaning as defined under*OutputOrder.

There is an implicit assumption that the stacking order of a given bin cannot
be changed. This entry is useful in determining either which output path to
select (to get the proper page ordering) or in which order the pages should be
sent from the host (to utilize the stacking order of the chosen output path).
This keyword will not be present if the device has only one output bin.

*TraySwitch True | False: “invocation”

This provides theInvocationValue to turn automatic tray switching on (True)
and off (False). Automatic tray switching is provided by some devices with
multiple input trays, so that when one input tray runs out of media, another
tray with the same type of media can be automatically used.

*DefaultTraySwitch: True | False

This denotes the default state of the automatic tray switching mechanism.

UIU I

5 Keywords 89

*?TraySwitch: “query”

This query returnsTrue if automatic tray switching is currently enabled, and
False if it is currently disabled.

*ManualFeed True | False: “invocation”

This provides the InvocationValue to turn manual feed on (True) and off
(False).

*DefaultManualFeed: True | False

This denotes the default state of the manualfeed mechanism.True means that
manualfeed is enabled;False means that manualfeed is disabled.

*?ManualFeed: “query”

This query returnsTrue if manualfeed is currently enabled, orFalse if manu-
alfeed is currently disabled.

*Signature signatureOption: “invocation”

This provides theInvocationValue to invoke signature options. Signaturing is
the automatic ordering of virtual pages on physical pages, so that the output,
when properly folded and collated, will have all the virtual pages in the
proper order. One of the options must beNone or False, to turn off the auto-
matic signature feature. Option keywords might include the number of virtual
images per physical page.

The currently registered values forsignatureOption are:

• True—Turn on the signature option.

• False—Turn off the signature option.

*DefaultSignature: signatureOption

This denotes the default state of the automatic signature feature. The value
must be one of the options listed under*Signature or it will be Unknown.

UIU I

UIU I

90 PostScript Printer Description File Format Specification (29 Mar 94)

*?Signature: “query”

This returns a string denoting the current state of the automatic signature fea-
ture. The value returned must be one of the options listed under*Signature or
it will be Unknown.

*Duplex duplexOption: “invocation”

This keyword provides the InvocationValue to control the duplex (two-sided
printing) feature. One of the options must beNone or False, for “no duplex-
ing” (that is, produce simplex or one-sided printing).

*DefaultDuplex: duplexOption

This denotes the default state of the duplex feature. The value must be one of
the options listed under*Duplex or it will be Unknown.

*?Duplex: “query”

This query returns a string denoting the current state of the duplexing mecha-
nism. The value returned must be one of the option keywords listed under
*Duplex or it will returnUnknown.

These are the current option keywords used by the*Duplex keywords. Tum-
bling is defined in section 4.11 of thePostScript Language Reference
Manual, Second Edition. Briefly, to print a book, where the binding is along
the left edge, the user selectsNoTumble. To print a calendar, bound along the
top edge so that successive pages are flipped upward, the user selectsTumble.
Tumble is also referred to as “HeadToToe.”

• DuplexTumble—Print on both sides of the paper and tumble the images
while printing.

• DuplexNoTumble—Print on both sides of the paper but do not tumble the
images.

• SimplexTumble—Print on only one side of the paper, but tumble the
images while printing.

• None—Print the image on one side of the paper and do not tumble succes-
sive images (this is “normal” one-sided printing, equivalent to
SimplexNoTumble).

UIU I

5 Keywords 91

*OutputMode modeOption: “invocation”

This provides InvocationValue to invoke different output modes. Output
modes might be caused by mechanical variations in the printer, such as vary-
ing print-head direction or speed. The valid values formodeOption are strings
that describe the level of output quality (for example,Draft or LetterQuality).

*DefaultOutputMode: modeOption

This denotes the default output mode. The value must be one of the options
listed under*OutputMode or it will be Unknown.

*?OutputMode: “query”

This query returns a string denoting the current output mode. The value
returned must be one of the options listed under*OutputMode or it will be
Unknown.

UIU I

92 PostScript Printer Description File Format Specification (29 Mar 94)

5.14 Finishing Features

This section documents finishing features, which typically affect a document
after it has been printed or imaged. For the convenience of print managers, all
finishing features in a PPD are grouped with*OpenGroup/*CloseGroup. For
a complete example, refer to the sample PPD file in section 6.

*Collate collateOption: “invocation”

This keyword provides the InvocationValue to control collating. Collating is
defined as follows: for three copies of a three-page document, collated pages
are produced in the order 1-2-3-1-2-3-1-2-3, while uncollated pages are pro-
duced in the order 1-1-1-2-2-2-3-3-3. One of the options must beNone or
False, to turn off collating.

The currently registered values forcollateOption are

• True—Turn on collation.

• False—Turn off collation.

*DefaultCollate: collateOption

This denotes the default state of the collator mechanism. The value must be
one of the options listed under*Collate or it will be Unknown.

*?Collate: “query”

This query returns a string denoting the current state of the collator mecha-
nism. The value returned must be one of the options listed under*Collate or it
will be Unknown.

*FoldType foldOption: “invocation”

This keyword provides the InvocationValue to control which type of fold is
invoked, if any.*FoldType should be ignored by a print manager unless
*FoldWhen has been invoked with a value other thanNone.

The following are the currentfoldOptions. Many of these folds are illustrated by
Figure G.3 in Appendix G of thePostScript Language Reference Manual,
Second Edition.

ZFold Saddle DoubleGate LeftGate
RightGate Letter XFold

UIU I

UIU I

5 Keywords 93

*DefaultFoldType: foldOption

This denotes the default type of fold for the folding mechanism. The value
must be one of the options listed under*FoldType or it will be Unknown.

*?FoldType: “query”

This query returns a string denoting the current type of fold on the folding
mechanism. The value returned must be one of the options listed under
*FoldType or it will be Unknown.

*FoldWhen foldOption: “invocation”

This keyword provides theInvocationValue to control when a job is folded, if
folding has been invoked. Examples include “end of job”, “end of group.”
One of the options must beNone or False, to turn off folding.

ThesefoldOptions are used with the*FoldWhen keyword to determine when the
document should be folded:

• None—Do not fold.

• DeviceDeactivation—Fold immediately after the device has been deacti-
vated.

• EndOfJob—Fold when the last page has joined the other pages in the job,
so the entire job can be folded together. The notion of “job” is explained in
section 3.7.7 of thePostScript Language Reference Manual, Second
Edition.

• EndOfSet—Fold when the last page has joined the other pages in the set,
so the entire set can be folded together. The definition of “set” depends on
whether the document is collated. For a definition of “set,” see the
NumCopies andCollate entries in Table 4.11 of thePostScript Language
Reference Manual, Second Edition.

• EndOfPage—Fold after eachshowpage or copypage .

*DefaultFoldWhen: foldOption

This denotes the default for when the folding mechanism will fold a job. The
value must be one of the options listed under*FoldWhen or it will be
Unknown.

UIU I

94 PostScript Printer Description File Format Specification (29 Mar 94)

*?FoldWhen: “query”

This query returns a string denoting the current state of when the folding
mechanism will fold a job. The value returned must be one of the options
listed under*FoldWhen or it will be Unknown.

*Sorter sortOption: “invocation”

This keyword provides the InvocationValue to invoke sorting. On some
devices, there might be different kinds of sorting; on other devices, sorting
may simply be on or off. One of the options must beNone or False to turn off
sorting.

The currently registered values forsortOption are:

• True—Turn on sorting.

• False—Turn off sorting.

*DefaultSorter: sortOption

This denotes the default state of the sorter mechanism. The value must be one
of the options listed under*Sorter or it will be Unknown.

*?Sorter: “ query”

This query returns a string denoting the current state of the sorter mechanism.
The value returned must be one of the options listed under*Sorter or it will
beUnknown.

*StapleLocation stapleOption: “invocation”

This keyword provides an InvocationValue that controls where the staple is
placed on the page—for devices where the location is expressed as a single
parameter. A PPD file will contain either*StapleLocation or *StapleX and
*StapleY but not both.*StapleLocation should be ignored by a print manager
unless*StapleWhen has been invoked with a value other thanNone.

*DefaultStapleLocation: stapleOption

This denotes the default location for stapling. The value must be one of the
options listed under*StapleLocation or it will be Unknown.

UIU I

UIU I

5 Keywords 95

*?StapleLocation: “query”

This query returns a string that denotes the current stapling location. It will
return one of the options listed under*StapleLocation or it will be Unknown.

The followingstapleOptions are used with the*StapleLocation keyword to
determine the location of staples:

• SinglePortrait—With the page in portrait orientation, a single staple is put
at the upper left.

• SingleLandscape—With the page in landscape orientation, a single staple
is put at the upper left.

• DualLandscape—With the page in landscape orientation, two staples are
put along the top edge of the page, approximately 1/3 and 2/3 of the way
across the page, respectively.

*StapleX stapleOption: “invocation”

This keyword provides an InvocationValue that controls thex dimension (in
default user space) of where the staple is placed on the page—for devices
where the location is expressed as two parameters,x andy. This keyword
must appear in PPD files in which*StapleY appears. A PPD file will contain
either*StapleLocation or *StapleX and*StapleY but not both.*StapleX
should be ignored by a print manager unless*StapleWhen has been invoked
with a value other thanNone.

ThesestapleOptions are used with the*StapleX keyword to determine the loca-
tion of staples in relation to thex axis when the page is in portrait orientation:

• Left—The staple is placed along the left side of the page. Exactly where it
is placed in relation to the left edge is device-dependent.

• Right—The staple is placed along the right side of the page. Exactly where
it is placed in relation to the right edge is device-dependent.

• Saddle—The staple is placed halfway along thex axis of the page. This is
commonly used when the page is to be stapled along the center and then
folded in half along the staple line to form a booklet.

*DefaultStapleX: stapleOption

This denotes the default location for stapling. The value must be one of the
options listed under*StapleX or it will be Unknown.

UIU I

96 PostScript Printer Description File Format Specification (29 Mar 94)

*?StapleX: “query”

This query returns a string that denotes the current stapling location. It will
return one of the options listed under*StapleX or it will be Unknown.

*StapleY stapleOption: “invocation”

This keyword provides an InvocationValue that controls they dimension (in
default user space) of where the staple is placed on the page—for devices
where the location is expressed as two parameters,x andy. This keyword
must appear in PPD files in which*StapleX appears. A PPD file will contain
either*StapleLocation or *StapleX and*StapleY but not both.*StapleY
should be ignored by a print manager unless*StapleWhen has been invoked
with a value other thanNone.

ThesestapleOptions are used with the*StapleY keyword to determine the loca-
tion of staples in relation to they axis with the page in portrait orientation:

• Top—The staple is placed at the top of the page. Exactly where it is placed
in relation to the top edge is device-dependent

• OneThird—The staple is placed 1/3 of the way down the page.

• Middle—The staple is placed halfway down the page.

• TwoThirds—The staple is placed 2/3 of the way down the page.

• Bottom—The staple is placed at the bottom of the page. Exactly where it is
placed in relation to the bottom edge is device-dependent

*DefaultStapleY: stapleOption

This denotes the default location for stapling. The value must be one of the
options listed under*StapleY or it will be Unknown.

*?StapleY: “query”

This query returns a string that denotes the current stapling location. It will
return one of the options listed under*StapleY or it will be Unknown.

*StapleWhen stapleOption: “invocation”

This keyword provides the InvocationValue to control when a job is stapled,
if stapling has been invoked. Examples include “end of job,” “end of group.”
One of the options must beNone or False to turn off stapling.

UIU I

UIU I

5 Keywords 97

*DefaultStapleWhen: stapleOption

This denotes the default time for stapling. The value must be one of the
options listed under*StapleWhen or it will be Unknown.

*?StapleWhen: “query”

This query returns a string that denotes when stapling will occur under the
current setting. It will return one of the options listed under*StapleWhen or it
will be Unknown.

ThesestapleOptions are used with the*StapleWhen keyword to determine
when the document should be stapled:

• None—Do not staple.

• DeviceDeactivation—Staple immediately after the device has been deacti-
vated.

• EndOfJob—Staple when the last page has joined the other pages in the job,
so the entire job can be stapled together. The notion of “job” is explained
in section 3.7.7 of thePostScript Language Reference Manual, Second
Edition.

• EndOfSet—Staple when the last page has joined the other pages in the set,
so the entire set can be stapled together. The definition of “set” depends on
whether or not the document is collated. For a definition of “set,” see the
NumCopies andCollate entries in Table 4.11 of thePostScript Language
Reference Manual, Second Edition.

• EndOfPage—Staple after eachshowpage or copypage .

98 PostScript Printer Description File Format Specification (29 Mar 94)

*StapleOrientation orientationOption: “invocation”

This keyword provides the InvocationValue to control the orientation of the
staple; for example, 45 degrees.*StapleOrientation should be ignored by a
print manager unless*StapleWhen has been invoked with a value other than
None.

ThesestapleOptions are used with the*StapleOrientation keyword to determine
the orientation of the staple with respect to default user space:

• 0—The staple is not turned. That is, the staple is horizontal, or parallel to
thex axis of the page.

• 45—The staple is rotated 45 degrees clockwise from thex axis of the page.

• 90—The staple is rotated 90 degrees clockwise from thex axis of the page.
That is, the staple is vertical, or parallel to the y axis of the page.

• 135—The staple is rotated 135 degrees clockwise from thex axis of the
page.

*DefaultStapleOrientation: orientationOption

This denotes the default orientation for the staple. The value must be one of
the options listed under*StapleOrientation or it will be Unknown.

*?StapleOrientation: “query”

This query returns a string that denotes the current orientation for stapling. It
will return one of the options listed under*StapleOrientation or it will be
Unknown.

UIU I

5 Keywords 99

*BindEdge bindOption: “invocation”

This provides theInvocationValue to control which edge is bound. One of the
options must beNone to turn off binding.*BindEdge should be ignored by a
print manager unless*BindWhen has been invoked with a value other than
None.

ThesebindOptions are used with the*BindEdge keyword to determine the loca-
tion of binding relative to the page in default user space (portrait orientation):

• Left—The binding is placed along the left side of the page.

• Right—The binding is placed along the right side of the page.

• Bottom—The binding is placed along the bottom of the page.

• Top—The binding is placed along the top of the page.

*DefaultBindEdge: bindOption

This denotes the default edge for binding. The value must be one of the
options listed under*BindEdge or it will be Unknown.

*?BindEdge: “query”

This query returns a string denoting which edge will be bound under the cur-
rent setting. The value returned must be one of the options listed under
*BindEdge or it will be Unknown.

*BindType bindOption: “invocation”

This provides the InvocationValue to control the type of binding.*BindType
should be ignored by a print manager unless*BindWhen has been invoked
with a value other thanNone.

*DefaultBindType: bindOption

This denotes the type of binding. The value must be one of the options listed
under*BindType or it will be Unknown.

*?BindType: “query”

This query returns a string denoting which type of binding will occur under
the current setting. The value returned must be one of the options listed under
*BindType or it will be Unknown.

UIU I

UIU I

100 PostScript Printer Description File Format Specification (29 Mar 94)

*BindColor colorOption: “invocation”

This provides the InvocationValue to control the binding color. The valid
values forcolorOption are strings describing the color of the binding. These
strings vary from product to product.*BindColor should be ignored by a print
manager unless*BindWhen has been invoked with a value other thanNone.

*DefaultBindColor: colorOption

This denotes the default color of binding. The value must be one of the
options listed under*BindColor or it will be Unknown.

*?BindColor: “query”

This query returns a string denoting which binding color will be used under
the current setting. The value returned must be one of the options listed under
*BindColor or it will be Unknown.

*BindWhen bindOption: “invocation”

This keyword provides theInvocationValue to turn on binding and to control
when a job is bound. One of the options must beNone or False to turn off
binding.

*DefaultBindWhen: bindOption

This denotes the default time for binding. The value must be one of the
options listed under*BindWhen or it will be Unknown.

UIU I

UIU I

5 Keywords 101

*?BindWhen: “query”

This query returns a string that denotes when binding will occur under the
current setting. It will return one of the options listed under*BindWhen or it
will be Unknown.

ThesebindOptions are used with the*BindWhen keyword to determine when
the document should be bound:

• None—Do not bind.

• DeviceDeactivation—Bind immediately after the device has been deacti-
vated.

• EndOfJob—Bind when the last page has joined the other pages in the job,
so the entire job can be bound together. The notion of “job” is explained in
section 3.7.7 of thePostScript Language Reference Manual, Second Edi-
tion.

• EndOfSet—Bind when the last page has joined the other pages in the set,
so the whole set can be bound together. The definition of “set” depends on
whether or not the document is collated. For a definition of “set,” see the
NumCopies andCollate entries in Table 4.11 of thePostScript Language
Reference Manual, Second Edition.

*Booklet bookletOption: “invocation”

This provides theInvocationValue to make booklets. Booklets are created by
saddle stitching, folding, and trimming. One of the options must beNone or
False, to turn off booklet-making.

The currently registered values forbookletOption are:

• True—Make a booklet.

• False—Do not make a booklet.

*DefaultBooklet: bookletOption

This denotes the default state of booklet making. The value must be one of
the options listed under*Booklet or it will be Unknown.

*?Booklet: “query”

This query returns a string denoting the current state of booklet making. The
value returned must be one of the options listed under*Booklet or it will be
Unknown.

UIU I

102 PostScript Printer Description File Format Specification (29 Mar 94)

*Slipsheet slipsheetOption: “invocation”

This provides theInvocationValue to control slipsheeting. Slipsheeting is the
insertion of pages of a different color or type between sets of documents. One
of the options must beNone or False to turn off slipsheeting.

The currently registered values for slipsheetOption are:

• None—Turn off slipsheeting.

• DeviceDeactivation—Insert slipsheet at device deactivation.

• EndOfJob—Insert slipsheet at the end of the current job.

• EndOfSet—Insert slipsheet at the end of the current set.

• True—Turn on slipsheeting—for devices in which slipsheeting is a binary
state. Whether this activates slipsheeting at the end of the job, end of set,
or device deactivation is device-dependent.

• False—Turn off slipsheeting—for devices in which slipsheeting is a
binary state.

*DefaultSlipsheet: slipsheetOption

This denotes the default state of slipsheeting. The value must be one of the
options listed under*Slipsheet or it will be Unknown.

*?Slipsheet: “query”

This query returns a string denoting the current state of slipsheeting. The
value returned must be one of the options listed under*Slipsheet or it will be
Unknown.

*InsertSheet True | False: “invocation”

This provides the InvocationValue to insert a sheet at a specific place in the
document. For example, a printer might allow the insertion of a photograph
between specific pages of the document after the pages have passed through
the heated elements in the printer. To accomplish this, a print manager would
emit the code for aTrue value at the beginning of the specific page, emit the
showpage operator to insert the special sheet, and then emit the code for the
False value of*InsertSheet.

UIU I

UIU I

5 Keywords 103

*DefaultInsertSheet: True | False | Unknown

This denotes the default state of*InsertSheet. A value ofTrue means that the
next page will be drawn from a special input tray and inserted in the page
sequence. A value ofFalse means that the next page will be drawn from one
of the regular input trays.

*?InsertSheet: “query”

This query returns a string denoting the current state of*InsertSheet. The
value returned must be one of the options listed under*InsertSheet or it will
beUnknown.

*Jog jogOption:“invocation”

This provides the InvocationValue to control jogging.When jogging is
invoked, the next job or set is offset to the left or right from the previous job
or set in the output bin. Jogging is also known as “offset stacking”. One of the
options must beNone or False to turn off jogging.

The currently registered values forjogOption are:

• None—Turn off jogging.

• DeviceDeactivation— Jog at device deactivation.

• EndOfJob— Jog at the end of the current job.

• EndOfSet— Jog at the end of the current set.

*DefaultJog: jogOption

This denotes the default state of jogging. The value must be one of the
options listed under*Jog or it will be Unknown.

*?Jog: “query”

This query returns a string denoting the current state of jogging. The value
returned must be one of the options listed under*Jog or it will be Unknown.

UIU I

104 PostScript Printer Description File Format Specification (29 Mar 94)

5.15 Imagesetter Features

This section contains features that are usually found only on imagesetters
(also referred to as typesetters and filmsetters). These features are imple-
mented by device-dependent means, but a uniform interface to them is pro-
vided by the PostScript interpreter. Each of these features is documented in
section 4.11 of thePostScript Language Reference Manual, Second Edition.

*MirrorPrint True | False: “invocation”

This keyword provides theInvocationValue to turn the mirror print feature on
(True) and off (False).

*DefaultMirrorPrint: True | False

This denotes the default state of mirror printing.

*?MirrorPrint: “query”

This query returnsTrue if the device is currently set up to print mirror prints;
False if it is not.

*NegativePrint True | False: “invocation”

This keyword provides theInvocationValue to turn the negative print feature
on (True) and off (False).

*DefaultNegativePrint: True | False

This denotes the default state of negative printing.

*?NegativePrint: “query”

This query returnsTrue if the device is currently set up to print negative
prints;False if it is not.

UIU I

UIU I

5 Keywords 105

*AdvanceMedia advanceOption: “invocation”

This keyword provides the InvocationValue to tell the device when to
advance roll-fed media by a preset distance.

The currently registered values foradvanceOption are:

• None—Do not advance the medium.

• DeviceDeactivation—Advance the medium at device deactivation.

• EndOfJob—Advance the medium at the end of the job.

• EndOfSet—Advance the medium after each set.

• EndOfPage—Advance the medium after eachshowpage or copypage.

*DefaultAdvanceMedia: advanceOption

This denotes the default state of*AdvanceMedia.The value must be one of
the options listed under*AdvanceMedia or it will be Unknown.

*?AdvanceMedia: “query”

This query returns a string denoting the current state of*AdvanceMedia. The
value returned must be one of the options listed under*AdvanceMedia or it
will be Unknown.

*CutMedia cutOption: “invocation”

This keyword provides the InvocationValue to tell the device when to cut
roll-fed media.

The currently registered values forcutOption are:

• None—Do not cut the medium.

• DeviceDeactivation—Cut the medium at device deactivation.

• EndOfJob—Cut the medium at the end of the job.

• EndOfSet—Cut the medium after each set.

• EndOfPage—Cut the medium after eachshowpage or copypage.

UIU I

UIU I

106 PostScript Printer Description File Format Specification (29 Mar 94)

*DefaultCutMedia: cutOption

This denotes the default state of*CutMedia.The value must be one of the
options listed under*CutMedia or it will be Unknown.

*?CutMedia: “query”

This query returns a string denoting the current state of*CutMedia. The value
returned must be one of the options listed under*CutMedia or it will be
Unknown.

5.16 Resolution and Appearance Control

This section contains keywords that control the resolution and related appear-
ance characteristics of the device.

*DefaultResolution: resolutionOption | Unknown

This entry provides the default resolution of the device, in dots (spots) per
linear inch, in bothx andy dimensions and in PostScript language default
user space. The valueresolutionOption must be a string either of the form300dpi
or of the form300x300dpi, or it can beUnknown if the resolution cannot be
determined upon power-up. The value ofresolutionOption appearing here must
be a valid resolution listed under*SetResolution or *Resolution.

If the format ofresolutionOption is 300x300dpi, the device supports anamorphic
resolution; that is, the resolution in thex dimension can be different from the
resolution in they dimension. For example, a printer might support a resolu-
tion of 300x600dpi. The first number denotes the resolution in thex dimen-
sion; the second number denotes the resolution in they dimension. The “x” in
the middle is a convenient separator, and thedpi signifies “dots per inch.”

The format300dpi is a shorthand form of300x300dpi and means that the res-
olution is the same in both the x and y dimensions (the device does not sup-
port anamorphic resolution). This is the most common case found in PPD
files.

The format ofresolutionOption used by*DefaultResolution must be used consis-
tently wherever aresolutionOption appears. The two formats300dpi and
300x300dpi cannot be intermixed in a PPD file.

*Resolution resolutionOption: “invocation”

For devices that support resolution changes from within a PostScript lan-
guage job, this entry will provide the properInvocationValue for each resolu-
tion supported by the device. There can be several of these entries, if the

UIU I

5 Keywords 107

PostScript output device supports multiple selectable resolutions. The string
resolutionOption is of the form specified in the*DefaultResolution entry. Print
managers need to ensure that any resolution changes occur before the page
size is selected.

Note *Resolution does not require a password to precede the invocation. If a device
requires a password to change the resolution, the PPD file should contain
*SetResolution, instead of*Resolution.

*SetResolution resolutionOption: “invocation”

For devices that support resolution changes from software and require that
the resolution be changed “outside the server loop,” in initial virtual memory,
this entry will provide the proper InvocationValue for each resolution sup-
ported by the device. There can be several of these entries, if the PostScript
output device supports multiple selectable resolutions. The stringresolutionOp-
tion is of the form specified under*DefaultResolution. Print managers need to
ensure that any resolution changes occur before the page size is selected.

Note *SetResolution requires a password to precede the invocation, and thus
should be present only in the PPD files of devices that require a password to
change the resolution. Devices that do not require a password to change the
resolution should use*Resolution.

*?Resolution: “query”

This query returns a string denoting the current resolution of the device. The
returned value will be a string of the form specified under*DefaultResolution
or it will be Unknown. The resolution returned must be a valid resolution
listed under*SetResolution or *Resolution.

†

† This keyword requires the *Password value to be supplied in front of the invocation.

108 PostScript Printer Description File Format Specification (29 Mar 94)

*Smoothing smoothOption: “invocation”

This provides the InvocationValues to invoke various levels of “smoothing”
the edges of text and graphics after they have been rendered by the device.
Smoothing is also sometimes referred to as “bit smoothing,” “anti-aliasing,”
or “resolution enhancement,” Option keywords describe the level of smooth-
ing. One of the options must beNone or False to turn off smoothing.

The currently registered values forsmoothOption are:

• None—No smoothing.

• Light—Turn on light smoothing.

• Medium—Turn on medium smoothing

• Dark—Turn on dark smoothing

• True—Turn on smoothing (for a device that has only a binary setting).

• False—Turn off smoothing (for a device that has only a binary setting).

*DefaultSmoothing: smoothOption

This denotes the default state of the smoothing mechanism. The value must
be one of the options listed under*Smoothing or it will be Unknown.

*?Smoothing: “query”

This query returns a string that denotes the current state of the smoothing
mechanism. The returned value must be an option listed under*Smoothing or
it may beUnknown.

UIU I

5 Keywords 109

*BitsPerPixel depthOption: “invocation”

This provides the InvocationValues to select various gray-scale levels or
color depths. Option keywords are strings that denote the number of bits per
pixel that should be used to represent a color when rendering the job on the
device. One of the options must beNone, which is equivalent to 1 bit per
pixel.

The currently registered values fordepthOption are:

• None—Use 1 bit per pixel.

• 2—Use 2 bits per pixel.

• 4—Use 4 bits per pixel.

• 8—Use 8 bits per pixel.

*DefaultBitsPerPixel: depthOption

This denotes the default number of bits per pixel used to render color or gray-
scale on this device. The value must be one of the options listed under
*BitsPerPixel or it will be Unknown.

*?BitsPerPixel: “query”

This query returns a string that denotes the current number of bits per pixel
used to render color or gray-scale on this device. The returned value must be
an option listed under*BitsPerPixel or it will be Unknown.

UIU I

110 PostScript Printer Description File Format Specification (29 Mar 94)

5.17 Gray Levels and Halftoning

*AccurateScreensSupport: True | False

This string value indicates whether or not the device supports Adobe’s Accu-
rate Screens technology. The value isTrue if accurate screens are supported,
otherwise it isFalse. The accurate screens feature is documented in section
6.4 of thePostScript Language Reference Manual, Second Edition.

*ScreenFreq: “real”

This QuotedValue is thefrequency argument returned by thecurrentscreen
operator after powering on the device. It represents the halftone screen fre-
quency.

*ScreenAngle: “real”

ThisQuotedValue is theangle argument returned by thecurrentscreen opera-
tor after powering on the device. It represents the halftone screen angle.

*ResScreenFreq resolutionOption: "real"

*ResScreenAngle resolutionOption: "real"

On devices with user-settable resolution, the halftone screen frequency and
angle may be changed by the device when the resolution is changed by the
user. These keywords provide the halftone screen frequency and angle that is
applied by the device for each settable resolution. The option must be a valid
resolutionOption listed under*Resolution, *SetResolution, or *JCLResolution
in the PPD file for this device. There should be one*ResScreenFreq and
*ResScreenAngle entry for each settable resolution. See section 5.16 for an
explanation of the format ofresolutionOption.

*ScreenProc spotOption: “{ procedure }”

This InvocationValue provides a procedure body that is suitable for use as a
“spot function” with thesetscreen or sethalftone (Level 2) operator. The
spotOption represents the name of the spot function. These options are used to
specify an alternate shape for the halftone spot. There can be one or more of
these spot shape options in a PPD file.

5 Keywords 111

*DefaultScreenProc: spotOption

This represents theproc argument (the default halftone spot function)
returned by thecurrentscreen operator after powering on the device. The
stringspotOption must correspond to one of the options listed under
*ScreenProc.

These spot options are used by the*ScreenProc keyword to set the halftone
screen spot function. Any of these options can also have a.Inverse qualifier,
which would invert the color of the spot function, or it can have a serializa-
tion qualifier to distinguish it from other options.

The currently registered values forspotOption are:

• Dot—This keyword represents a standard dot-shaped halftone screen func-
tion. This is the default shape for the halftone cell on many PostScript lan-
guage implementations, and basically consists of small, black, roughly
circular spots that vary in size with the gray level. This keyword also
encompasses more sophisticated functions that also produce circular dots
(for example, as found on higher-resolution devices), but which might
slightly differ from the most basic dot screen.

• Line—This keyword represents a line screen halftone function. Gray levels
will be rendered by parallel lines which vary in thickness according to the
gray level.

• Ellipse—This keyword provides an “elliptical spot” screen, which is simi-
lar to a dot screen except that the dots are elliptical rather than circular.

• Cross—This provides a “crosshatch” screen halftone function.

• Mezzo—This provides a pseudorandom “mezzotint” screen function for
the halftone mechanism.

• DiamondDot—This provides a screen in which low gray levels produce
round dots, medium gray levels produce diamond-shaped dots, and high
gray levels produce negative dots. This screen produces smoother transi-
tions among medium gray levels.

*Transfer transferOption: “{ procedure }”

This keyword provides InvocationValues for possible transfer functions
which may be invoked with the operatorssettransfer , setcolortransfer , and
sethalftone (Level 2 only). A transfer function is a procedure that corrects
for the characteristics of a particular marking engine or display technology to
obtain “true” optical gray or color densities. A transfer function is expected
to return accurate results at the 10% increments and should return reasonable
values at any point between 0 and 1.

112 PostScript Printer Description File Format Specification (29 Mar 94)

Since transfer functions are inherently specific to aninstance of a type of
device, any transfer functions should be entered into a local customization
file for a specific device. Most PPD files will ship without any transfer func-
tions defined for a class of devices.

Note When transfer functions are used at the PostScript language level, always
concatenate the transfer function with the existing one, rather than replacing
it. See section 6.3 of the PostScript Language Reference Manual, Second Edi-
tion for more information about transfer functions and their uses.

*DefaultTransfer: Null | Factory

On monochrome devices, this is the built-in transfer function, as returned by
thecurrenttransfer operator immediately after powering up the device. Most
devices ship with a null default transfer function.

Any of these transfer option keywords can also have the .Inverse qualifier or
a serialization qualifier to distinguish it from other options. Inversion is typi-
cally performed by appending1 exch sub to the existing transfer function,
but an inverse normalized function can be much more complex.

The currently registered values fortransferOption are:

• Null—This is provided to indicate a null procedure body for the transfer
function. A null procedure body is represented in the PostScript language
as a pair of curly braces,{ }.

• Factory—For a monochrome device that ships from the factory with a
built-in non-null transfer function, this entry lists the transfer function
built into the device.

• Normalized—For a monochrome device, this provides a normalized trans-
fer function to obtain “true” optical gray densities. For a color device, the
Normalized option provides the transfer function to correct the gray values
on an RGB device and the black colorant on a CMYK device.

• Red—For a color device, this provides a normalized transfer function to
correct the red colorant on an RGB device or the cyan colorant on a
CMYK device.

• Green—For a color device, this provides a normalized transfer function to
correct the green colorant on an RGB device or the magenta colorant on a
CMYK device.

• Blue—For a color device, this provides a normalized transfer function to
correct the blue colorant on an RGB device or the yellow colorant on a
CMYK device.

5 Keywords 113

5.18 Color Issues

This section contains keywords used to adjust colors on color devices.

*BlackSubstitution True | False: “invocation code”

This provides theInvocationValue to invoke black substitution. WhenTrue, it
indicates that the printer should substitute process black ink for any pixel that
is marked in composite black (cyan, magenta, and yellow inks all requested)
to produce better black.

*DefaultBlackSubstitution: True | False

This denotes the default state of the black substitution feature.

*?BlackSubstitution: “query”

This query returnsTrue if black substitution is currently invoked andFalse if
it is not.

*ColorModel colormodelOption:: “invocation”

This keyword provides InvocationValues to select different native color
models to be used by the device for imaging. The native color model is the
color model to which all colors are converted before rendering.

*DefaultColorModel: colormodelOption

This denotes the default native color model of the device. The value must be
one of the options listed under*ColorModel or it will be Unknown.

*?ColorModel: “query”

This query returns the current native color model. The returned value must
match one of the options under*ColorModel or it will be Unknown.

UIU I

UIU I

114 PostScript Printer Description File Format Specification (29 Mar 94)

The currently registered values forcolormodelOption are

• CMY—Cyan-magenta-yellow color model.

• CMYK—Cyan-magenta-yellow-black color model.

• RGB—Red-green-blue color model.

• Gray—Gray-scale color model.

*ColorRenderDict dictOption: “invocation”

On Level 2 color devices, manufacturers can supply different built-in color
rendering dictionaries to calibrate the device colors for different types of
paper, different halftone screens, or for many other purposes. The keyword
*ColorRenderDict provides the InvocationValue to set up the new color ren-
dering dictionary referred to bydictOption.

The optiondictOption will typically be an integer because there is no logical
name for each dictionary, so it will also typically have a translation string
representing a more meaningful dictionary name to display to the user.

5 Keywords 115

For example:

*ColorRenderDict 1/Bond Paper: "

/CRD1 /ColorRendering findresource

setcolorrendering"

*End

An instance of this keyword will be supplied for each built-in color rendering
dictionary. The code for this keyword will invoke the named color rendering
dictionary.

In addition, if a user wants to supply new color rendering dictionaries, new
instances of this keyword can be added to a local customization file for a
given device. For new dictionaries in the local customization file, the code
would have to create the dictionary and fill it with the appropriate values for
color calibration. For example:

*ColorRenderDict 2/Paper Towels: "10 dict dup begin

...

setcolorrendering"

*End

The “...” represents key-value pairs that are created and put into the dictio-
nary by this code. The key-value pairs represent color calibration values.

5.19 Color Separation Keywords

Color separations are device-dependent. A color separation is a monochrome
print that represents a single color plate that is later printed in combination
with other plates on a full color press system. In this sense, a color separation
can be one of the four standardprocess colors (cyan, magenta, yellow, and
black) from which all other colors are simulated by mixing, or it can be a par-
ticularspot color, which is simply an ink of a particular color.

For color separations to work well, it must be possible to print several layers
one on top of the other on a color printing press. The way the color mixing is
optimized is to print each color plate with a different halftone screen, usually
rotated at some specific angle to minimize both dot interference with other
plates and to avoid moiré patterns.

The selection of these halftone screens is typically done by hand for a partic-
ular device, taking resolution and other device characteristics into account
(even variations in the speed of media travel). Once a good set of screen
parameters have been established, they are used for almost all separations on
that machine, unless screens of different granularity are desired, in which
case the process is repeated.

116 PostScript Printer Description File Format Specification (29 Mar 94)

In addition to the halftoning process necessary for producing separations,
there are issues of color matching that are equally device-dependent. As an
example, many companies have specific names for their entire range of col-
ored inks. These colors can be simulated or approximated with various color
technologies (screen phosphors or process inks) but it might not be possible
to render them exactly. There is usually a color mapping table that associates
a particular combination of process inks (or screen phosphor intensities) to
one of the named colors. This is, of course, device-specific.

Option Keywords

Color separation option keywords (the notationcolorsepkey in the keyword
listings) are designed to reflect particular combinations of separation charac-
teristics. For example, a given separation typically is designed for a particular
process color (for example, the cyan separation), at a certain halftone screen
frequency, for a particular resolution device. To this end, the color separation
option keywords are complex and modular, but they can be made more
human-readable through use of the general translation string mechanism pro-
vided in the file format.

A colorsepkey consists of a name that can optionally have any number of qual-
ifiers (sub-components), each separated by a dot (., decimal ASCII 46). The
key is typically a color name, and the qualifiers typically refer to a screen fre-
quency, a resolution, and sometimes to vendor-specific or printer-specific
features that can affect the appearance of the color separation, such as a spe-
cial screening method or a specific type of controller.

Two common qualifiers are defined in this spec: screen frequency, which
must end in the stringlpi, and resolution, which must end in the stringdpi.
These qualifiers occur in the following relationship:

colorname.frequency.resolution

Any number of other qualifiers can appear after the resolution qualifier and
will be separated from each other by a dot.

The idea is to be able to associate many different components of a color sepa-
ration package by keyword. The keywords are arbitrary, but the structured
qualifiers make it possible for an application to separate the components, if
necessary, to allow a user to choose from several frequencies, optional reso-
lutions, and so on. Otherwise, these keywords behave similarly to any other
option keywords in PPD files. For devices where the resolution cannot be
varied (most of them), the resolution qualifier will usually be omitted from
thecolorsepkey keyword.

5 Keywords 117

The following are several examples, to help illustrate the format more
clearly:

*ColorSepScreenAngle ProcessCyan.60lpi.1270dpi: "37"

*ColorSepScreenAngle ProcessMagenta.60lpi.1270dpi: "45"

*ColorSepScreenAngle ProcessYellow.60lpi.1270dpi: "75"

*ColorSepScreenAngle ProcessBlack.60lpi.1270dpi: "0"

*ColorSepScreenFreq ProcessBlack.60lpi.1270dpi: "60"

*ColorSepScreenProc ProcessBlack.60lpi.1270dpi: "{ pop }"

*ColorSepTransfer ProcessBlack.60lpi.1270dpi: "{ 1 exch sub }"

*ColorSepScreenFreq ProcessCyan.90lpi.1270dpi: "90"

*ColorSepScreenFreq ProcessCyan.60lpi.600dpi: "60"

The following keywords provide suggested values for manipulating the
PostScript language halftone machinery to provide good color separations.
Each separate process color should be printed with a different screen angle
and perhaps different transfer functions or at various screen frequencies.

Be aware that all color separation entries are optional. If an entry does not
exist for a specific color, the default value should be used. For example, there
might be entries for screen frequencies and screen angles for a color but not
an entry for a screen procedure for that color.

*DefaultColorSep: colorsepkey

This keyword provides the default color separation in the form of acolorsepkey
keyword. This is used in conjunction with the other entries listed below.

*ColorSepScreenFreq colorsepkey: “real”

This keyword provides the InvocationValue for the appropriate screen fre-
quency for a color separation keyed to the givencolorsepkey.

*ColorSepScreenAngle colorsepkey: “real”

This entry gives the halftone screen angleInvocationValue for the given color
separation.

*ColorSepScreenProc colorsepkey: “{procedure}”

This provides the halftone spot function InvocationValue for the specified
color separation.

118 PostScript Printer Description File Format Specification (29 Mar 94)

*ColorSepTransfer colorsepkey: “{procedure}”

This entry provides the transfer functionInvocationValue appropriate for the
given color separation keyword.

*CustomCMYK inkname: “cyan magenta yellow black”

This entry provides an InvocationValue containing the CMYK equivalents
for a named custom color. These can be user-defined or names used in a com-
mercial color matching system that can provide CMYK approximations for
particular marking technologies. The idea is to associate any given named ink
(whether it be from a commercial color matching system or a local custom
color) with a set of process color values to approximate it. For example:

*CustomCMYK HarvestGold: "0 .01 .9 .01"

The keyword*CustomCMYK is kept deliberately brief because there might be
hundreds of entries of this sort in a PPD file. For some devices, in fact, these
entries can be put into a separate file (considered a customization of the stan-
dard file) and reference the original with the*Include convention mentioned
in section 2.6.

*InkName: inkname / alias

This keyword provides a StringValue that is an alternative name for one of
the inkname keywords used in the*CustomCMYK section. It provides slightly
more human-readable versions of the keywords that can be presented in a
user interface (the keywords themselves cannot contain spaces). Here is an
example:

*InkName: p305/COLORNAME 305

Alternatively, you can omit the*InkName entry and simply supply a transla-
tion string for the option keyword of the*CustomCMYK entry. For example:

*CustomCMYK p305/Harvest Gold 305: "0 .01 .9 0.1"

*Separations True | False: “invocation”

If the device can provide automatic generation of color separations, this pro-
vides theInvocationValue to tell the device to output either color separations
(True) or composite color (False). True means that this device will produce
each page by printing multiple color separations, one for each device colo-
rant.False means that the device will produce each page as a single compos-
ite page with all the colors, if any, combined on the same page. Color
separations are explained in section 4.8 of thePostScript Language Refer-
ence Manual, Second Edition.

UIU I

5 Keywords 119

*DefaultSeparations: True | False

This denotes the default state of the automatic separations mechanism.

*?Separations: “query”

This query will returnTrue if the device is set up to produce color separations
of a given file, andFalse if the device is set up to produce all colors on a
single page.

5.20 Font Related Keywords

This section contains keywords that provide information about the fonts on
the device.

*Font fontname: encoding “(version)” charset status

This entry provides a StringValue that gives one line of information for each
font resident on the product. An initial PPD file will contain only the fonts
shipped with the product in its minimal configuration. These fonts may be in
ROM or on a peripheral device such as a hard disk.

The optionfontname is the valid PostScript language name of the font, without
the leading slash. The value ofencoding is a keyword indicating the type of
encoding. A list of validencoding values can be found at the end of this sec-
tion.

Theversion field contains the version number of the font (as found under the
key version in theFontInfo dictionary that is a subdictionary of the particular
font dictionary). Thecharset field indicates the character set of the font, which
may be different from the encoding of the font. A list of validcharset options
can be found at the end of this section.

Thestatus field indicates whether or not the font can be removed without
causing the printer to cease its normal functioning.Valid keywords for the
status field areROM andDisk. The distinction betweenROM andDisk is that
upon powering up the device, a font from theROM list will be inaccessible
only if there is a printer malfunction. A font from theDisk list, while usually
available, could possibly be inaccessible without a printer malfunction.

The following table contains examples of typical cases of font distribution
and under whichstatus keyword they would be assigned. Note that this table
is not exhaustive as to the different methods of font distribution; more exist
than are documented here.

120 PostScript Printer Description File Format Specification (29 Mar 94)

Table 7 Designation of fonts: ROM versus Disk

Font distribution Erasable Removable Status

ROM-resident No No ROM

auto-loaded into RAM, read-only No No ROM

internal read-only CD-ROM No No ROM

downloaded to RAM, writable Yes No Disk

external read-only CD-ROM No Yes Disk

internal writable hard disk Yes No Disk

external writable hard disk Yes Yes Disk

It is possible for a device to ship with all fonts listed underDisk. For example,
a device can exist on which all fonts are shipped on an external CD-ROM
(the fonts are not erasable, but the CD-ROM is removable, therefore these
fonts would be listed underDisk).

Fonts that are added to the printer any time after its initial shipment from the
factory can be added to a local customization file for the printer. Such fonts
will usually have astatus field of Disk, as it is highly likely that aftermarket
fonts would be freely removable.

Note Thecharset andstatus fields of the*Font keyword are new in version 4.0 of this
specification. They did not exist in version 3.0.

Font Encoding Options

Theencoding value of the*Font keyword indicates the default encoding of
each font. Fonts can be re-encoded to provide other encodings; the character
set options for each font indicate which encodings are possible for that font.
The following are the currentencoding options:

• Standard—This indicates a font which, by default, uses the Adobe
StandardEncoding vector.

• Special—This indicates a font with nonstandard font-specific encoding
(for instance, the Sonata font).

• ISOLatin1—This indicates a font which, by default, uses the Adobe
ISOLatin1Encoding vector.

• Expert—This indicates a font which, by default, uses the Adobe Expert
encoding vector.

5 Keywords 121

• ExpertSubset—This indicates a font which, by default, uses the Adobe
ExpertSubset encoding vector.

• JIS—This indicates a Japanese font with JIS (Japan Industrial Standard)
encoding. (This is a two byte-per-character encoding.)

• RKSJ—This indicates a Japanese font with RKSJ (Romaji-Kana-Shift-
JIS) encoding. (This is a mixed one and two byte-per-character encoding,
common on PCs, and often informally referred to as “Shift JIS.” In this
specification, “Shift-JIS” refers to the two byte-per-character encoding,
which is a proper subset of RKSJ.)

• EUC—This indicates a Japanese font with EUC (Extended UNIX Code)
encoding. (This is a two byte-per-character encoding.)

• Shift-JIS—This indicates a Japanese font with Shift-JIS encoding. (This is
a two byte-per-character encoding. It is a proper subset of RKSJ. The Jap-
anese PC encoding commonly referred to as “Shift JIS,” which includes
one-byte Romaji and Katakana codes, is referred to in this specification as
RKSJ.)

Character Set Options

Thecharset value of the*Font keyword indicates which shape descriptions
(glyphs) are contained in the font and are available for re-encoding. For
example, most Roman fonts from Adobe contain enough glyphs to support
both theStandard andISOLatin1 encodings, and so would be labeled
Standard.

The distinction between encodings and character sets can be confusing. For
most Roman fonts, a given encoding corresponds to one, or at most two,
character sets. For example, Roman fonts that useStandard encoding will
have either theStandard or OldStandard character set. For Japanese fonts, on
the other hand, almost all combinations of encoding and character set are
supported.

• Standard—This indicates a Roman font that contains the character set that
supports both theStandard andISOLatin1 encodings.

• OldStandard—This indicates a Roman font that contains the character set
necessary to support theStandard encoding.OldStandard is a subset of the
Standard character set.

• Special—This indicates a font that supports a font-specific character set
(for example, Sonata).

122 PostScript Printer Description File Format Specification (29 Mar 94)

• ISOLatin1—This indicates a Roman font that contains the character set
that supports theISOLatin1 encoding.ISOLatin1 is a subset of theStan-
dard character set.

• Expert—This indicates a Roman font that contains the character set that
supports the Expert encoding.

• ExpertSubset—This indicates a Roman font that contains the character set
that supports the ExpertSubset encoding.

• JIS-83—This indicates a Japanese font that supports the JIS X0208-1983
character set.

• JIS-78—This indicates a Japanese font that supports the JIS 1978 charac-
ter set.

• 83pv—This indicates a Japanese font that supports the 83pv (Apple®

Macintosh-compatible) character set.

• Add—This indicates a Japanese font that supports the Add (Fujitsu FM
system-compatible) character set.

• Ext—This indicates a Japanese font that supports the Extended (NEC PC-
98-compatible) character set.

• NWP—This indicates a Japanese font that supports the NWP (NEC Word
Processor) character set.

*DefaultFont: Error | fontname

This gives the name of the default font provided byfindfont if the requested
font is not available. Note that in some devices this might not be well-defined
(especially where there might be a network font server, for instance), and in
these cases, this entry might not be present. For many devices this field will
contain the nameCourier. If this value isError, an execution error will occur
if the font is not found. Any other value implies that a font substitution will
take place (such as substituting Courier).

*?FontList: “query”

Provides a PostScript language sequence to return a list of all available fonts.
It should consult theFontDirectory dictionary as well as any mass storage
devices available to the device. The list does not need to be in any particular
order, but each name is returned separated by a slash ‘/’ character. This is nor-
mally the way the PostScript== operator will return a font name. All white
space characters should be ignored. The end of the font list is indicated by a
trailing * sign on a line by itself (decimal ASCII 42).

5 Keywords 123

The following is a look at two valid returns from the query:

/Optima/Optima-Bold/Optima-Oblique/Optima-BoldOblique/Courier/Symbol

*

/Courier

/Symbol

/Times-Roman

*

Note In previous versions of this specification, usingflush to separate names into
packets was recommended. This turns out to result in major performance
degradation, and is no longer recommended.

*?FontQuery: “query”

This provides a PostScript language query that should be combined with a
particular list of font names being sought. It looks for any number of names
on the stack, and will print a list of values depending on whether or not the
font is known to the PostScript interpreter. The font names must be provided
on the operand stack by the print manager. This is done by emitting the
names, with leading slash ‘/’ characters, before emitting the query itself. To
avoid stack overflow, the number of names on the stack should be less than
150.

So that the Document Manager does not have to keep track of the precise
order in which the values are returned and to guard against errors from
dropped information, the syntax of the returned value will be/fontname:Yes or
/fontname:No, where each font in the list is returned in this manner. The slashes
delimit the individually returned font names, althoughnewlines should be
expected (and ignored) between them. A final* character will follow the
returned values.

/Times-Roman:Yes

/Optima:Yes

/CircleFont:No

/Adobe-Garamond:No

*

The query provided by*?FontQuery is in many cases preferable to the
*?FontList query, since that query can return a very long list of fonts in some
devices (with mass storage such as built-in hard disks or network font serv-
ers) available to the PostScript interpreter.

124 PostScript Printer Description File Format Specification (29 Mar 94)

5.21 Printer Messages

In an environment which the output device is connected to the host by a bidi-
rectional channel, such as serial communication, the output device can return
various status messages to the host. A print manager can recognize these
messages and convert some of them to a more readable form before display-
ing them to the user. The messages are divided into categories and enumer-
ated in the PPD file for recognition purposes.

*PrinterError: “string”

Printer errors are reported automatically by the output device when some-
thing is wrong. The same printer errors can often be returned in a status mes-
sage as a response to a request for status (see*Status). This provides a list of
QuotedValues that are possible Printer Error messages returned by the device
in the following form:

%%[PrinterError: cover open]%%

%%[PrinterError: paper exit misfeed]%%

The PPD file entries for these error messages would be as follows:

*PrinterError: "cover open"

*PrinterError: "paper exit misfeed"

The brackets, percent signs, and the word “PrinterError” from the original
error message are not included in the PPD file.

If a translation string were included, the PPD file entry would look like this:

*PrinterError: "cover open"/lucka <F6>ppen

The translation string translates the error message into Swedish; the hexadec-
imal substring ‘F6’ represents the 8-bit character ‘Odieresissmall’. See sec-
tion 3.7 for details on translation string syntax.

*Status: “string”

This lists the possible responses to a status query as QuotedValues. A status
query is typically accomplished by sending ^T (control-T, decimal ASCII 20)
over a serial connection or by a special status packet if a network protocol is
used (for instance, AppleTalk®).

The status message may be composed of up to three parts. There is always at
least the word “status: message” with an appropriate status message (those
messages are listed in this section of the PPD file). There may also be two

5 Keywords 125

other sections in the message from the device, listing the currently executing
job name (job: name) as defined by the variablejobname in statusdict , and a
source field, like this:source: connection.

The following are examples of status messages returned by a PostScript
output device:

%%[status: warming up]%%

%%[status: busy; source: AppleTalk]%%

%%[job: userjob; status: waiting; source: serial25]%%

%%[job: myjob; status: PrinterError: cover open; source: serial25]%%

The entries in the PPD file will not have the brackets, the percent signs, or the
extraneous fields forjobname andsource. The PPD file will contain only the
message field:

*Status: "warming up"

*Status: "busy"

*Status: "waiting"

*Status: "PrinterError: cover open"

Note that the message portion of a status message can contain a printer error,
so the same list of printer errors that appears under*PrinterError may appear
under*Status.

*Source: “sourceOption”

This lists the possible sources for print jobs, as QuotedValues. These corre-
spond to thesource: field in the status message (as shown under the*Status
section). The following are example entries for Level 1 devices:

*Source: "serial25"

*Source: "serial9"

*Source: "AppleTalk"

*Source: "Centronics"

and for Level 2 devices:

*Source: "Serial"

*Source: "SerialB"

*Source: "LocalTalk"

*Source: "Parallel"

The status message in which the source is found can contain other fields (as
in the example under*Status), depending on the values ofjobname in
statusdict and whether or not there is an active job (in which case thesource
is listed). Just the strings for thesource field are provided in this section.

126 PostScript Printer Description File Format Specification (29 Mar 94)

*Message: “string”

This provides, asQuotedValues, a list of possible device messages that do not
fit into the categories of*Status, *PrinterError, or *Source. Messages that are
listed under those keywords are not repeated here. The strings listed under
the keyword*Message will contain the text delimiters (brackets and percent
signs), if they exist in the original error message generated by the device.

The following are two examples. The first example contains the delimiters as
the device generated them. The second example contains no delimiters
because the device generates this message without delimiters. The second
example also contains a translation string and some special syntax, which is
explained below.

*Message: "%%[exitserver: permanent state may be changed]%%"

*Message: "\fontname\ not found, using Courier"/no \fontname\ on this printer

Notice the\fontname\ notation in the last example, with the backslashes. The
exact text of this message depends on which font was requested by the user
program. This backslash notation is a PPD file syntax that indicates that any
arbitrary PostScript language name may be found at the beginning of that
message (substituted for\fontname\). A parser, parsing a PPD file, should parse
for the complete string\fontname\. Special significance should not be given to
the single character \, because a backslash can occur in other contexts.

5.22 System Management

*PatchFile: “invocation”

This represents a (perhaps large) PostScript language sequence that is a
downloadable patch to ROM code, which is downloaded outside the server
loop, into initial VM. It is represented as a QuotedValue. It can be used if
there are any known bugs in existing PostScript output devices or to provide
some initial state to all jobs. A program that is managing a PostScript output
device should make every attempt to guarantee that this information is resi-
dent in the PostScript interpreter’s memory before any jobs are run.

Code in a patch file must adhere to the following requirements. These restric-
tions are intended to ensure that this patch code will only execute on the
printer for which it was intended, and will not execute if it has already been
executed on this particular printer (to conserve memory space and avoid pos-
sible conflicts). A conforming patch file must do the following:

• Check a unique key to see if the patch has already been downloaded to the
printer.

†

† This keyword requires the *Password value to be supplied in front of the invocation.

5 Keywords 127

• Compare theproduct , version , andrevision strings on the printer to the
values of the *Product and*PSVersion entries in the PPD file to make sure
that this patch will be downloaded only to the printer for which it was
written.

• If downloading the patch, define or set a unique key in a dictionary or oth-
erwise indicate the patch’s presence, so that its existence can be checked
later.

*?PatchFile: “query”

This query checks the key set by the code in*PatchFile and returnsTrue if the
patch file is present behind the server loop, andFalse if it is not. This allows
a print manager to decide whether it is necessary to download the patch file
outside the server loop as a separate job. The patch file’s presence is deter-
mined by the presence or absence of a certain key in a dictionary, or by any
other method that the implementor of the patch file chooses. If a patch file is
implemented, a patch file query must be provided.

*JobPatchFile int: “invocation”

Like *PatchFile, this is used to download a PostScript language sequence, but
it does not require a password and is not downloaded outside the server loop.
It is used to provide initial state for certain jobs, and should be attached to the
beginning of the job and the pair of files should be downloaded as one job.
The option keyword is provided so that multiple patch files on a device may
be numbered.

*FreeVM: “int”

This keyword gives the amount of memory available for use by a PostScript
language job in the product’s minimal memory configuration. The
QuotedValue is the value returned by the PostScript language sequence

vmstatus exch sub == pop

when the device is first powered on.*FreeVM does not necessarily reflect the
current amount of VM available on the device, since either more memory
may have been added or VM may have been used up by downloaded fonts or
other resources. It should be regarded as a maximum limit of free VM in the

† This keyword requires the *Password value to be supplied in front of the invocation.

128 PostScript Printer Description File Format Specification (29 Mar 94)

minimal memory configuration, rather than as a measure of current availabil-
ity. Historically, *FreeVM has been used by print managers to determine
which of several devices has more memory built into it.

Because*FreeVM is generated using the product’s minimal memory configu-
ration, it is of limited use on devices that support additional memory mod-
ules. In that case, the combination of*InstalledMemory and*VMOption is
more useful for determining how much memory might be available.

*VMOption vmOption: “int”

ThisQuotedValue denotes potential values of the*FreeVM keyword with var-
ious optional memory (VM) configurations installed. ThevmOption None
denotes the basic, standard memory configuration, with no additional
memory upgrades.

A PPD file with a*VMOption entry must also have a*FreeVM entry. At least
one*VMOption entry must contain the same value as the*FreeVM entry.

For example, the following entry indicates that the standard configuration
contains 100,000 bytes of free memory at boot time, while the upgrade called
2Meg provides 1,100,000 bytes of free memory:

*FreeVM: "100000"

*VMOption None/Standard: "100000"

*VMOption 2Meg: "1100000"

*VMOption is used with*InstalledMemory to determine how much memory is
installed and how much VM is available as a result. See the description of
*InstalledMemory for an explanation.

*InstalledMemory vmOption:"invocation"

This keyword is used to link the amount of physical memory in the device
with the amount of available VM. The stringvmOption must match a valid
vmOption listed under*VMOption.

This entry would typically appear in theInstallableOptions group and would
be used to ask the user how much memory is installed. (See section 5.7 for a
description of theInstallableOptions group). The print manager would match
the user’s choice of an option for*InstalledMemory to the same option of
*VMOption to find out how much VM is available.

UIU I

5 Keywords 129

For example, the print manager could read the following entry and add it to a
configuration panel, asking the user to select which memory module had
been installed in their printer:

*OpenGroup: InstallableOptions

*OpenUI *InstalledMemory: PickOne

*DefaultInstalledMemory: 2MB

*InstalledMemory 2MB/Standard: " "

*InstalledMemory 3MB/3 MB Upgrade: " "

*InstalledMemory 4MB/4 MB Upgrade: " "

*CloseUI: *InstalledMemory

*CloseGroup: InstallableOptions

The print manager could then take the user’s selection (let’s say it was 4MB)
and search the following entries to find out how much VM would be pro-
vided by the 4MB option:

*VMOption 2MB: "1234567"

*VMOption 3MB: "2345678"

*VMOption 4MB: "3456789"

This provides, essentially, a method of obtaining an updated value for
*FreeVM. While this value still may not reflect the true amount of VM avail-
able, due to resource downloading, in a communications environment where
the print manager cannot query the printer for the actual amount of VM avail-
able, this provides something closer to the truth.

In most cases, the invocation value for*InstalledMemory will be null; that is,
there will be no code between the quotes (like most values in the
InstallableOptions group). However, in some cases, the invocation value
might contain code. For example, on a host-based system, the invocation
code might request memory allocation or some similar activity. If there is
actual code in the quotes, the*InstalledMemory entry must have an
*OrderDependency statement. The*InstalledMemory keyword might also
occur outside theInstallableOptions group.

*DefaultInstalledMemory : vmOption

This indicates the default state of installed memory modules. The value must
match one of the options listed under*InstalledMemory. See*VMOption for a
description of the value vmOption.

*Reset: “invocation”

This QuotedValue is a PostScript language sequence that will perform a
“soft” restart of the PostScript interpreter. It can be used by a printing man-
ager to reboot the device under some circumstances.

†

130 PostScript Printer Description File Format Specification (29 Mar 94)

*Password: “invocation”

ThisQuotedValue provides the password required to persistently set values in
initial VM on the device. It is used in conjunction with the*ExitServer key-
word and other keywords that are flagged with the dagger. See section 2.6 for
details on local customization for instructions on changing this password for
a specific device.

*ExitServer: “invocation”

This QuotedValue provides the appropriate PostScript language sequence to
exit the job server loop (on a Level 1 device, this code would typically use
theexitserver operator, and on a Level 2 device, thestartjob operator). This
should be used carefully, if at all, by a print manager. Its purpose is to make
changes to device memory permanent until the device is turned off. It is usu-
ally only appropriate for error patches or to change the system defaults on a
device. The value of*Password or the current password input by a user must
precede this invocation.

*SuggestedJobTimeout: "int"

This QuotedValue provides the time, in seconds, that the device manufacturer
suggests for the value of the user parameterJobTimeout (Level 2) or the
argument tosetjobtimeout (Level 1). This value may be the default value set
in the device at the factory, or it may be an alternative to the factory-set value,
provided for performance or other reasons. This keyword is intended for print
managers that allow the user to change the job timeout value; it provides an
initial value for display to the user.

*SuggestedWaitTimeout: "int"

This QuotedValue provides the time, in seconds, that the device manufacturer
suggests for the value of the user parameterWaitTimeout (Level 2) or the
argument tosetwaittimeout (Level 1). This value may be the default value
set in the device at the factory, or it may be an alternative to the factory-set
value, provided for performance or other reasons.This keyword is intended
for print managers that allow the user to change the wait timeout value; it
provides an initial value for display to the user.

† This keyword requires the *Password value to be supplied in front of the invocation.

†

5 Keywords 131

*PrintPSErrors: True | False

This StringValue indicates to a print manager whether or not the device man-
ufacturer thinks that PostScript interpreter error information should be
printed on the device. Printing interpreter error information is appropriate on
some devices, but not on others. IfTrue, the device manufacturer suggests
that printing interpreter error information is appropriate for this device. A
print manager may, of course, let the user override this suggested setting; this
keyword is intended to provide default behavior for a print manager, and a
value for initial display to the user if the behavior is to be changed.

*DeviceAdjustMatrix: “[transformation matrix]”

This QuotedValue provides a device-specific transformation matrix to com-
pensate for any anamorphic scaling or offset problems inherent in the under-
lying mechanical marking device. If the device has no such inherent
problems, the value of*DeviceAdjustMatrix is the identity matrix
[1 0 0 1 0 0], and the entire entry is omitted from the PPD file.

A system administrator might need to add*DeviceAdjustMatrix to a local cus-
tomization file for a particular device to compensate for slight shrinkage or
magnification caused by motor speeds, media thicknesses, and so on. See
section 2.6 for information on local customization files.

Note The*ImageableArea figures given in the PPD files will no longer be exactly
accurate if the device matrix is adjusted. Bear in mind, if this field is
changed, any operations sensitive to the page boundaries might have to be
recomputed slightly, or the results might be off the page.

5.23 Features Accessible Only Through Job Control Language

On some devices, certain features can be accessed only through a job control
language (JCL), which is managed independently from the PostScript inter-
preter. Keywords pertaining to such features are referred to throughout this
document as “*JCL keywords”. A typical job which accesses certain features
via JCL code would contain these components in this order:

• the code from*JCLBegin, which starts the JCL job

• the code, if any, to change the desired feature, such as*JCLResolution or
*JCLFrameBufferSize

• the code from*JCLToPSInterpreter, which invokes the PostScript inter-
preter

• the PostScript language job

132 PostScript Printer Description File Format Specification (29 Mar 94)

• the code from*JCLEnd, which ends the job and returns the device to its
idle state, awaiting further JCL commands.

*JCLBegin: "JCL"

*JCLToPSInterpreter: "JCL"

*JCLEnd: "JCL"

These QuotedValues provide the JCL commands to bracket one or more
PostScript language jobs into one printed document. The job is emitted in the
order shown in the introduction to this section. If any of the*JCL- keywords
are present in a PPD file, then these three keywords must all be present.

Here is an example of these keywords, using Hewlett Packard’s PJL as the
JCL:

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"

*JCLToPSInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"

*JCLEnd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

*JCLOpenUI mainKeyword: PickOne | PickMany | Boolean

*JCLCloseUI : mainKeyword

These keywords are identical to the*OpenUI/*CloseUI keywords (see section
5.5 for a description), except that they are used to enclose only*JCL key-
words. Like keywords for other selectable features, JCL keywords affect the
user interface, and as such must be presented to the user in a consistent fash-
ion. All JCL keywords that provide the user with selectable features will be
enclosed in the*JCLOpenUI/*JCLCloseUI keywords. If a print manager does
not wish to offer selection of features via JCL to the user, the parser can
simply skip all sections of the PPD file that are bracketed by*JCLOpenUI/
*JCLCloseUI.

*JCLFrameBufferSize frameBufferOption: "JCL"

This entry provides the JCL code to change the frame buffer size. Note that
requesting a larger frame buffer size means that less memory is available for
resources such as downloaded fonts.

Although the value looks like an InvocationValue, the*JCL keywords have
special parsing rules and such values are treated like QuotedValues. This is
because the values usually contain out-of-range byte codes in hexadecimal
strings, which the print manager must translate before emitting into the job
stream.

5 Keywords 133

The values forframeBufferOption are device-specific. One of the options
must beOff, with a corresponding QuotedValue that sends the JCL code to
turn off the ability to set the frame buffer size. The results of this action are
device-dependent. Other possibilities for options include any of the media
size options supported by the device, with the corresponding JCL code
requesting the frame buffer size appropriate for that media size. See section
5.9 for a description of media option keywords.

Note On some devices, setting the frame buffer size may cause the device’s memory
to be reinitialized, removing anything that had previously been downloaded
outside the server loop (at save level 0). For example, downloaded fonts, pat-
terns, prologs, forms, and other downloaded resources would be removed
from the device’s memory.

Here is an example of the frame buffer size keywords in a PPD file:

*JCLOpenUI *JCLFrameBufferSize/Frame Buffer Size: PickOne

*DefaultJCLFrameBufferSize: Letter

*OrderDependency: 20 JCLSetup *JCLFrameBufferSize

*JCLFrameBufferSize Off: '@PJL SET PAGEPROTECT = OFF<0A>'

*JCLFrameBufferSize Letter: '@PJL SET PAGEPROTECT = LTR<0A>'

*JCLFrameBufferSize Legal: '@PJL SET PAGEPROTECT = LGL<0A>'

*JCLCloseUI: *JCLFrameBufferSize

*DefaultJCLFrameBufferSize :frameBufferOption:

This indicates the default frame buffer size set by a JCL command. The value
must match one of the options listed under*JCLFrameBufferSize.

*?JCLFrameBufferSize : "query"

This query returns a string denoting the current frame buffer size set by a JCL
command. The string returned must be a validframeBufferOption listed under
*JCLFrameBufferSize. If it is not possible to determine the frame buffer size,
this query will be omitted.

*JCLResolution resolutionOption: "JCL"’

This entry provides the JCL code to change the resolution. There is one entry
for each resolution supported by the device. For a complete explanation of
resolutionOption and its possible values, see the description of
*DefaultResolution in section 5.16.

134 PostScript Printer Description File Format Specification (29 Mar 94)

Although the value looks like an InvocationValue, the*JCL keywords have
special parsing rules and such values are treated like QuotedValues. This is
because the values usually contain out-of-range byte codes in hexadecimal
strings, which the print manager must translate before emitting into the job
stream.

Note On some devices, setting the resolution may cause the device’s memory to be
reinitialized, removing anything that had previously been downloaded out-
side the server loop (at save level 0). For example, downloaded fonts, pat-
terns, prologs, forms, and other downloaded resources would be removed
from the device’s memory.

*DefaultJCLResolution : resolutionOption | Unknown

This indicates the default resolution set by a JCL command. The value must
match one of the options listed under*JCLResolution. For a complete expla-
nation ofresolutionOption, see the description of*DefaultResolution in sec-
tion 5.16.

*?JCLResolution : “query”

This query returns a string denoting the device resolution set by a JCL com-
mand. The resolution returned must be a validresolutionOption listed under
*JCLResolution. If it is not possible to determine the resolution, this query
will be omitted.

Here is a typical entry, using PJL as the JCL:

*JCLOpenUI *JCLResolution/Resolution Settings: PickOne

*DefaultJCLResolution: 300dpi

*OrderDependency: 10 JCLSetup *JCLResolution

*JCLResolution 300dpi/300 DPI: "@PJL SET RESOLUTION = 300<0A>"

*JCLResolution 600dpi/600 DPI: "@PJL SET RESOLUTION = 600<0A>"

*JCLCloseUI: *JCLResolution

6 Sample PPD File Structure 135

6 Sample PPD File Structure

This section contains examples of PPD files for three types of devices

• a generic Level 1 black and white printer

• a generic Level 2 color printer

• a generic Level 1 imagesetter

6.1 Level 1 300 DPI Monochrome Printer

This PPD file describes a black and white duplex printer containing a
PostScript Level 1 interpreter. The printer has a resolution of 300 spots per
inch, and supports four levels of software-selectable resolution enhancement.
The printer has multiple input and output trays, including an optional
envelope feeder. It supports automatic tray switching, the Adobe Binary
Communications Protocol, and contains a software-selectable Hewlett-
Packard LaserJet emulator. It also supports Hewlett Packard’s PJL job
control language. It does not support the attachment of a writable file system,
such as a hard disk.

*PPD-Adobe: "4.2"

*FormatVersion: "4.2"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatin1

*LanguageVersion: English

*Product: "(Acme LaserPrinter II)"

*PSVersion: "(52.3) 1"

*ModelName: "Acme LaserPrinter Model II"

*ShortNickName: “Acme Laser Model 2 v52.3”

*NickName: "Acme LaserPrinter Model II v.52.3"

*PCFileName: “ACNIFTY1.PPD”

*%===== Installable Options =============

*OpenGroup: InstallableOptions/Options Installed

*OpenUI *Option1/Optional Envelope Feeder: Boolean

*DefaultOption1: False

*Option1 True/Installed: ““

*Option1 False/Not Installed: ““

*CloseUI: *Option1

*CloseGroup: InstallableOptions

*% ====== Constraints ===========

*% This device cannot print duplex on envelopes or transparencies,

*% It cannot output legal size paper to the rear output tray. It

*% cannot print from the envelope feeder unless the feeder is installed

*UIConstraints: *PageSize Envelope *Duplex

*UIConstraints: *Duplex *PageSize Envelope

*UIConstraints: *Duplex *MediaType Transparent

*UIConstraints: *MediaType Transparent *Duplex

*UIConstraints: *PageSize Legal *OutputBin Rear

*UIConstraints: *OutputBin Rear *PageSize Legal

136 PostScript Printer Description File Format Specification (29 Mar 94)

*UIConstraints: *Option1 False *InputSlot Envelope

*%=== Basic Capabilities ===============

*LanguageLevel: 1

*DefaultColorSpace: Gray

*FreeVM: "1133530"

*Throughput: "8"

*Protocols: BCP PJL

*Emulators: hplj

*StartEmulator_hplj: "currentfile /hpcl statusdict /emulate get exec "

*StopEmulator_hplj: "<1B7F>0"

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"

*JCLToPSInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"

*JCLEnd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

*Password: "0"

*ExitServer: " count 0 eq { % is the password on the stack?

 true

 }{dup% potential password

 statusdict /checkpassword get exec not

 } ifelse

 { % if no password or not valid

 (WARNING : Cannot perform the exitserver command.) =

 (Password supplied is not valid.) =

 (Please contact the author of this software.) = flush quit

 } if

 serverdict /exitserver get exec"

*End

*Reset: "count 0 eq { % is the password on the stack?

 true

 }{dup% potential password

 statusdict /checkpassword get exec not

 } ifelse

 { % if no password or not valid

 (WARNING : Cannot reset printer.) =

 (Password supplied is not valid.) =

 (Please contact the author of this software.) = flush quit

 } if

 serverdict /exitserver get exec

 systemdict /quit get exec

 (WARNING : Printer Reset Failed.) = flush"

*End

*%=== Resolution ======================

*DefaultResolution: 300dpi

*?Resolution: "save

 initgraphics

 0 0 moveto currentpoint matrix defaultmatrix transform

 0 72 lineto currentpoint matrix defaultmatrix transform

 3 -1 roll sub dup mul

 3 1 roll exch sub dup mul

 add sqrt round cvi

 () cvs print (dpi) = flush

restore"

*End

6 Sample PPD File Structure 137

*OpenUI *Smoothing/Resolution Enhancement Level: PickOne

*OrderDependency: 40 AnySetup *Smoothing

*DefaultSmoothing: Medium

*Smoothing None/Off: "0 statusdict /setdoret get exec"

*Smoothing Light: "1 statusdict /setdoret get exec"

*Smoothing Medium: "2 statusdict /setdoret get exec"

*Smoothing Dark: "3 statusdict /setdoret get exec"

*?Smoothing: "save

[(None)(Light)(Medium)(Dark)]

statusdict /doret {get exec}

stopped { pop pop (Unknown)} if

= flush restore"

*End

*CloseUI: *Smoothing

*% Halftone Information ===========================

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1

sub}{dup mul exch dup mul add 1 exch sub}ifelse}

"

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

 sqrt 1 exch sub}

"

*End

*DefaultTransfer: Null

*Transfer Null: "{}"

*Transfer Null.Inverse: "{1 exch sub}"

138 PostScript Printer Description File Format Specification (29 Mar 94)

*% === Paper Handling ===================

*% Use these entries to set paper size unless there is specific reason

*% to use PageRegion, such as when using manual feed.

*OpenUI *PageSize: PickOne

*OrderDependency: 20 AnySetup *PageSize

*DefaultPageSize: Unknown

*PageSize Letter: "statusdict /lettertray get exec"

*PageSize Legal: "statusdict /legaltray get exec"

*PageSize A4: "statusdict /a4tray get exec"

*PageSize Envelope.270.500/AcmeCorp Envelope: "

statusdict/acmeenvelopetray get exec"

*End

*PageSize Comm10/Comm #10 Envelope: "

 statusdict /4.125x9.5envelopetray get exec"

*End

*?PageSize: "save

8 dict

 dup /lettertray (Letter) put

 dup /legaltray (Legal) put

 dup /a4tray (A4) put

 dup /4.125x9.5envelopetray (Comm10) put

 dup /acmeenvelopetray (Envelope.270.500) put

statusdict /papersize get exec

3 1 roll {get} stopped {(Unknown)}if

exch not { print (.Transverse) }if

= flush

restore

"

*End

*CloseUI: *PageSize

*% These entries set up the frame buffer. Usually used with manual feed.

*OpenUI *PageRegion: PickOne

*OrderDependency: 30 AnySetup *PageRegion

*DefaultPageRegion: Unknown

*PageRegion Letter: "letter"

*PageRegion Legal: "legal"

*PageRegion A4: "a4"

*PageRegion Envelope.270.500/AcmeCorp Envelope: "acmeenvelope"

*PageRegion Comm10/Comm #10 Envelope: "4.125x9.5envelope"

*CloseUI: *PageRegion

*% These entries provide the imageable areas of the media option keywords.

*DefaultImageableArea: Unknown

*ImageableArea Letter: "13.1 12.1 596.2 774.3 "

*ImageableArea Legal: "15.1 13.1 597.2 991.1 "

*ImageableArea A4: "16.1 14.3 583.2 823.6 "

*ImageableArea Envelope.270.500/AcmeCorp Envelope: "16.3 20.2 265.2 495.1 "

*ImageableArea Comm10/Comm #10 Envelope: "17.2 21.3 292.12 672.23"

*?ImageableArea: "save

 /cvp {() cvs print () print } bind def

 /upperright {10000 mul floor 10000 div} bind def

 /lowerleft {10000 mul ceiling 10000 div} bind def

 newpath clippath pathbbox

 4 -2 roll exch 2 {lowerleft cvp} repeat

 exch 2 {upperright cvp} repeat flush

restore"

*End

6 Sample PPD File Structure 139

*% These provide the physical dimensions of the media, by option keyword.

*DefaultPaperDimension: Unknown

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension A4: "595 842"

*PaperDimension Envelope.270.500/AcmeCorp Envelope: "270 500"

*PaperDimension Comm10/Comm #10 Envelope: "297 684"

*OpenUI *MediaType: PickOne

*OrderDependency: 20 AnySetup *MediaType

*DefaultMediaType: Opaque

*MediaType Transparent: "1 statusdict /setmediatype get exec"

*MediaType Opaque: "0 statusdict /setmediatype get exec"

*?MediaType: "save

[(Opaque)(Transparent)]

statusdict /mediatype {get exec}

stopped {pop pop (Unknown)}if = flush restore"

*End

*CloseUI: *MediaType

*OpenUI *InputSlot: PickOne

*OrderDependency: 15 AnySetup *InputSlot

*DefaultInputSlot: Upper

*InputSlot Upper: " 0 statusdict /setpapertray get exec"

*InputSlot Lower: " 1 statusdict /setpapertray get exec"

*InputSlot Envelope: " 2 statusdict /setpapertray get exec"

*?InputSlot: "

 save

 3 dict

 dup /0 (Upper) put

 dup /1 (Lower) put

 dup /2 (Envelope) put

 statusdict /papertray get exec

 {get} stopped {pop pop (Unknown)} if = flush

 restore"

*End

*CloseUI: *InputSlot

*OpenUI *ManualFeed: Boolean

*OrderDependency: 15 AnySetup *ManualFeed

*DefaultManualFeed: False

*ManualFeed True: "statusdict /manualfeed true put"

*ManualFeed False: "statusdict /manualfeed false put"

*?ManualFeed: "save

 statusdict /manualfeed get

 {(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *ManualFeed

*DefaultOutputOrder: Normal

*DefaultOutputBin: Upper

*PageStackOrder Upper: Normal

*PageStackOrder Rear: Reverse

140 PostScript Printer Description File Format Specification (29 Mar 94)

*OpenUI *TraySwitch: Boolean

*OrderDependency: 30 AnySetup *TraySwitch

*DefaultTraySwitch: False

*TraySwitch True: "statusdict /trayswitch true put"

*TraySwitch False: "statusdict /trayswitch false put"

*?TraySwitch: "save

statusdict /trayswitch get

{(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *TraySwitch

*OpenUI *Duplex: PickOne

*OrderDependency: 30 AnySetup *Duplex

*DefaultDuplex: None

*Duplex DuplexTumble: "

true statusdict /setduplexmode get exec

true statusdict /settumble get exec"

*End

*Duplex DuplexNoTumble: "

true statusdict /setduplexmode get exec

false statusdict /settumble get exec"

*End

*Duplex None: "

false statusdict /setduplexmode get exec

false statusdict /settumble get exec"

*End

*?Duplex: "save

 statusdict /duplexmode get exec

 {tumble{(DuplexTumble)}{(DuplexNoTumble)}ifelse}

 {(None)}ifelse = flush restore"

*End

*CloseUI: *Duplex

*% Font Information =====================

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard ROM

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard ROM

*Font AvantGarde-Demi: Standard "(001.003)" Standard ROM

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard ROM

*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-BoldItalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM

*Font ZapfDingbats: Special "(001.002)" Special ROM

6 Sample PPD File Structure 141

*?FontQuery: "save

 /str 100 string dup 0 (fonts/) putinterval def

 {

 count 1 gt

 {

 exch dup str 6 94 getinterval cvs

 (/) print dup print (:) print exch

 FontDirectory exch known

 { pop (Yes) }

 {

 length 6 add str 0 3 -1 roll getinterval

 mark exch status

 {cleartomark (Yes)}{cleartomark (No)} ifelse

 } ifelse = flush

 }

 {exit} ifelse

 }bind loop

 (*) = flush

restore

"

*End

*?FontList: "save

 FontDirectory { pop == } bind forall flush

(*) = flush

restore

"

*End

*% Printer Messages (verbatim from printer):

*Message: "%%[exitserver: permanent state may be changed]%%"

*Message: "\FontName\ not found, using Courier"

*% Status (format: %%[status: <one of these>]%%)

*Status: "idle"

*Status: "busy"

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: Optical System Error "

*Status: "PrinterError: Main Motor Err "

*Status: "PrinterError: Prn not Rdy"/Error: Printer Not Ready

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)

*Source: "serial9"

*Source: "serial25"

*Source: "AppleTalk"

*Source: "Centronics"

*% Printer Error (format: %%[PrinterError: <one of these>]%%)

*PrinterError: "Optical System Error "

*PrinterError: " Main Motor Err "

*PrinterError: "Prn not Rdy"/Error: Printer Not Ready

142 PostScript Printer Description File Format Specification (29 Mar 94)

*% Color Separation Information =====================

*DefaultColorSep: ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

*% For 60 lpi / 300 dpi ===============================

*ColorSepScreenAngle ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "15"

*ColorSepScreenAngle ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "75"

*ColorSepScreenAngle ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "0"

*ColorSepScreenFreq ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "60"

*% For 53 lpi / 300 dpi ===============================

*ColorSepScreenAngle ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "71.5651"

*ColorSepScreenAngle ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "18.43"

*ColorSepScreenAngle ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "50.0"

*% end of PPD file for Acme LaserPrinter II

6 Sample PPD File Structure 143

6.2 Level 2 Color Printer

This PPD file describes a Level 2 color printer with one input slot, one output
bin, and two supported page sizes. The printer accepts manually fed pages,
and can have a hard disk attached to it. It can also do color separations at the
printer, when sent a composite color file.

*PPD-Adobe: "4.2"

*FormatVersion: "4.2"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatin1

*LanguageVersion: English

*Product: "(Acme Color Printer)"

*PSVersion: "(2000.0) 0"

*ModelName: "Acme Color Printer v.2000"

*NickName: "Acme Color Printer v.2000"

*PCFileName: “ACCOLOR1.PPD”

*%=== Basic Capabilities ===============

*LanguageLevel: 2

*DefaultColorSpace: CMYK

*FreeVM: "8134935"

*FileSystem: True

*?FileSystem: "save statusdict /diskonline get exec

{(True)}{(False)} ifelse = flush restore"

*End

*Throughput: "1"

*Password: "0"

*ExitServer: "

 count 0 eq

 { false } { true exch startjob } ifelse

not { (WARNING: Cannot modify initial VM.) =

 (Missing or invalid password.) =

 (Please contact the author of this software.) = flush quit

} if"

"

*End

*Reset: "

 count 0 eq

 { false } { true exch startjob } ifelse

 not { (WARNING: Cannot reset printer.) =

 (Missing or invalid password.) =

 (Please contact the author of this software.) = flush quit

 } if

 systemdict /quit get exec

 (WARNING : Printer Reset Failed.) = flush

"

*End

144 PostScript Printer Description File Format Specification (29 Mar 94)

*%=== Built-In Color Rendering Dictionaries ===========

*ColorRenderDict 1/Copy Paper: “

/OEMDict1 /ColorRendering findresource setcolorrendering"

*End

*ColorRenderDict 2/Bond Paper: “

/OEMDict2 /ColorRendering findresource setcolorrendering"

*End

*ColorRenderDict 3/Transparency: “

/OEMDict3 /ColorRendering findresource setcolorrendering"

*End

*%=== Resolution Information ======================

*DefaultResolution: 300dpi

*?Resolution: "save

currentpagedevice /HWResolution get

0 get

() cvs print

(dpi) = flush

restore

"

*End

*% Halftone Information ===========================

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1

sub}{dup mul exch dup mul add 1 exch sub}ifelse}

"

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

 sqrt 1 exch sub}

"

*End

*DefaultTransfer: Null

*Transfer Null: "{}"

*Transfer Null.Inverse: "{1 exch sub}"

*% Paper Handling ===================

*% Use these entries to set paper size, unless there is

*% specific reason to use PageRegion, such as with manual feed.

*OpenUI *PageSize: PickOne

*OrderDependency: 20 AnySetup *PageSize

*PageSize Letter: "1 dict dup /PageSize [612 792] put setpagedevice"

*PageSize Legal: "1 dict dup /PageSize [612 1008] put setpagedevice"

*DefaultPageSize: Letter

6 Sample PPD File Structure 145

*?PageSize: "save

 currentpagedevice /PageSize get aload pop

 2 copy gt {exch} if (Unknown)

 2 dict

 dup [612 792] (Letter) put

 dup [612 1008] (Legal) put

 { exch aload pop 4 index sub abs 5 le exch 5 index sub abs 5 le and

 { exch pop exit } {pop} ifelse

 } bind forall = flush pop pop

 restore

"

*End

*CloseUI: *PageSize

*% These entries set up the frame buffer. Usually used with manual feed.

*OpenUI *PageRegion: PickOne

*OrderDependency: 30 AnySetup *PageRegion

*PageRegion Letter: "1 dict dup /PageSize [612 792] put setpagedevice"

*PageRegion Legal: "1 dict dup /PageSize [612 1008] put setpagedevice"

*DefaultPageRegion: Letter

*CloseUI: *PageRegion

*% The following entries provide information about specific paper keywords.

*DefaultImageableArea: Letter

*ImageableArea Letter: "13 12 596 774 "

*ImageableArea Legal: "15 13 597 991 "

*?ImageableArea: " save /cvp { cvi () cvs

 print () print } bind def

 newpath clippath pathbbox

 4 -2 roll exch 2 {ceiling cvp} repeat

 exch 2 {floor cvp} repeat flush

 restore

"

*End

*% These provide the physical dimensions of the paper (by keyword)

*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*OpenUI *ManualFeed: Boolean

*OrderDependency: 15 AnySetup *ManualFeed

*ManualFeed True: "1 dict dup /ManualFeed true put setpagedevice"

*ManualFeed False: "1 dict dup /ManualFeed false put setpagedevice"

*DefaultManualFeed: False

*?ManualFeed: "save

currentpagedevice /ManualFeed get

{(True)}{(False)}ifelse

= flush

 restore"

*End

*CloseUI: *ManualFeed

146 PostScript Printer Description File Format Specification (29 Mar 94)

*% Font Information =====================

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard ROM

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard ROM

*Font AvantGarde-Demi: Standard "(001.003)" Standard ROM

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard ROM

*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-BoldItalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM

*Font ZapfDingbats: Special "(001.002)" Special ROM

*?FontQuery: "

 save

 { count 1 gt

 { exch dup 127 string cvs (/) print print (:) print

 /Font resourcestatus {pop pop (Yes)} {(No)} ifelse =

 } { exit } ifelse

 } bind loop

 (*) = flush

 restore"

*End

*?FontList: "

 save (*) {cvn ==} 128 string /Font resourceforall

 (*) = flush restore"

*End

*% Printer Messages (verbatim from printer):

*Message: "%%[exitserver: permanent state may be changed]%%"

*Message: "\FontName\ not found, using Courier"

*% Status (format: %%[status: <one of these>]%%)

*Status: "idle"

*Status: "busy"

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: "Optical System Error "

*Status: "PrinterError: " Cover Open "

*Status: "PrinterError: "Prnter Wrmng"/PrinterError: Printer Warming Up

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)

*Source: "%Serial%"

*Source: "%SerialB%"

*Source: "%LocalTalk%"

*Source: "%Parallel%"

6 Sample PPD File Structure 147

*% Printer Error (format: %%[PrinterError: <one of these>]%%)

*PrinterError: "Optical System Error "

*PrinterError: " Cover Open "

*PrinterError: "Prnter Wrmng"/Printer Warming Up

*% Color Separation Information =====================

*OpenUI *Separations: Boolean

*OrderDependency: 40 AnySetup *Separations

*Separations True: "1 dict dup /Separations true put setpagedevice"

*Separations False: "1 dict dup /Separations false put setpagedevice"

*DefaultSeparations: False

*?Separations: "save currentpagedevice /Separations get

{(True)}{(False)}ifelse = flush restore

"

*End

*CloseUI: *Separations

*DefaultColorSep: ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

*% For 60 lpi / 300 dpi ===============================

*ColorSepScreenAngle ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "15"

*ColorSepScreenAngle ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "75"

*ColorSepScreenAngle ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "0"

*ColorSepScreenFreq ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "60"

*% For 53 lpi / 300 dpi ===============================

*ColorSepScreenAngle ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "71.5651"

*ColorSepScreenAngle ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "18.43"

*ColorSepScreenAngle ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "50.0"

*% end of PPD file for Acme Color Printer

148 PostScript Printer Description File Format Specification (29 Mar 94)

6.3 Level 1 Imagesetter

This paragraph describes a generic Level 1 imagesetter. This is a roll-fed
device, and it allows the user to invoke a custom page size. It supports vari-
able resolution and accurate screens. It supports the features mirror print and
negative print, which have been grouped together by the*OpenGroup/
*CloseGroup keyword pair. This device ships with several fonts built into the
ROM of the device, and the font Avant-Garde on a separate hard disk.

*PPD-Adobe: "4.2"

*FormatVersion: "4.2"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatin1

*LanguageVersion: English

*Product: "(Acme Imagesetter)"

*PSVersion: "(52.3) 7"

*ModelName: "Acme Imagesetter v.52.3"

*NickName: "Acme Imagesetter v.52.3"

*PCFileName: “ACIMAGE1.PPD”

*%=== Basic Capabilities ===============

*LanguageLevel: 1

*Extensions: CMYK FileSystem

*ColorDevice: False

*DefaultColorSpace: Gray

*VariablePaperSize: True

*FreeVM: "8134935"

*FileSystem: True

*?FileSystem: "save statusdict /diskonline get exec

{(True)}{(False)} ifelse = flush restore"

*End

*Throughput: "1"

*Password: "0"

*ExitServer: " count 0 eq { % is the password on the stack?

 true

 }{dup% potential password

 statusdict /checkpassword get exec not

 } ifelse

 { % if no password or not valid

 (WARNING : Cannot perform the exitserver command.) =

 (Password supplied is not valid.) =

 (Please contact the author of this software.) = flush quit

 } if

 serverdict /exitserver get exec"

*End

6 Sample PPD File Structure 149

*Reset: "count 0 eq { % is the password on the stack?

 true

 }{dup% potential password

 statusdict /checkpassword get exec not

 } ifelse

 { % if no password or not valid

 (WARNING : Cannot reset printer.) =

 (Password supplied is not valid.) =

 (Please contact the author of this software.) = flush quit

 } if

 serverdict /exitserver get exec

 systemdict /quit get exec

 (WARNING : Printer Reset Failed.) = flush"

*End

*%=== Resolution Information ===================

*OpenUI *Resolution/Choose Resolution: PickOne

*OrderDependency: 10 AnySetup *Resolution

*Resolution 600dpi: "600 statusdict /setresolution get exec"

*Resolution 1200dpi: "1200 statusdict /setresolution get exec"

*Resolution 2400dpi: "2400 statusdict /setresolution get exec"

*DefaultResolution: 1200dpi

*?Resolution: "save

 initgraphics

 0 0 moveto currentpoint matrix defaultmatrix transform

 0 72 lineto currentpoint matrix defaultmatrix transform

 3 -1 roll sub dup mul

 3 1 roll exch sub dup mul

 add sqrt round cvi

 () cvs print (dpi) = flush

restore

"

*End

*CloseUI: *Resolution

*% === Halftone Information ===========================

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1

sub}{dup mul exch dup mul add 1 exch sub}ifelse}

"

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

 sqrt 1 exch sub}

"

*End

*AccurateScreensSupport: True

*DefaultTransfer: Null

*Transfer Null: "{}"

*Transfer Null.Inverse: "{1 exch sub}"

150 PostScript Printer Description File Format Specification (29 Mar 94)

*% Paper Handling ===================

*% Use these entries to set paper size most of the time, unless there is

*% specific reason to use PageRegion or PaperTray.

*OpenUI *PageSize: PickOne

*OrderDependency: 30 AnySetup *PageSize

*DefaultPageSize: Letter

*PageSize Letter: "letter"

*PageSize Legal: "legal"

*PageSize Ledger: "ledger"

*PageSize Tabloid: "11x17"

*?PageSize: "save

 mark

 statusdict /pageparams get exec

 pop pop % margins and orientation

 4 dict

 dup [792 612] (Letter) put

 dup [1008 612] (Legal) put

 dup [1224 792] (Tabloid) put

 dup [792 1224] (Ledger) put

 (Unknown) exch

 { exch aload pop

 4 index eq exch 5 index eq and

 { exch pop exit } { pop } ifelse

 } bind forall = flush cleartomark

restore

"

*End

*CloseUI: *PageSize

*% These entries set up the frame buffer. Same as *PageSize for an

*% imagesetter, which has no input trays or manual feed slot.

*OpenUI *PageRegion: PickOne

*OrderDependency: 40 AnySetup *PageRegion

*DefaultPageRegion: Letter

*PageRegion Letter: "letter"

*PageRegion Legal: "legal"

*PageRegion Ledger: "ledger"

*PageRegion Tabloid: "11x17"

*CloseUI: *PageRegion

*% These entries provide the imageable area for specific paper keywords.

*DefaultImageableArea: Letter

*ImageableArea Letter: "0.0 0.0 612.0 792.0"

*ImageableArea Legal: "0.0 0.0 612.0 1008.0"

*ImageableArea Ledger: "0.0 0.0 1224.0 792.0"

*ImageableArea Tabloid: "0.0 0.0 792.0 1224.0"

*?ImageableArea: "

save

 /cvp { () cvs print () print } bind def

 /upperright {10000 mul floor 10000 div} bind def

 /lowerleft {10000 mul ceiling 10000 div} bind def

 newpath clippath pathbbox

 4 -2 roll exch 2 {lowerleft cvp} repeat

 exch 2 {upperright cvp} repeat flush

 restore

"

*End

6 Sample PPD File Structure 151

*% These provide the physical dimensions of the page (by option keyword)

*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension Ledger: "1224 792"

*PaperDimension Tabloid: "792 1224"

*%=== Custom Page Sizes ==================================

*% These entries provide the code and parameter ranges for a user to set up custom page sizes.

*CustomPageSize True: "exch pop statusdict /setpageparams get exec"

*ParamCustomPageSize Width: 1 points 1 612

*ParamCustomPageSize Height: 2 points 1 1224

*ParamCustomPageSize WidthOffset: 3 points 0 512

*ParamCustomPageSize HeightOffset: 4 points 0 0

*ParamCustomPageSize Orientation: 5 int 0 1

*CenterRegistered: False

*?CurrentMediaWidth: "save statusdict /mediawidth get exec = flush restore"

*% === Imagesetter Information ===========================

*OpenGroup: Imagesetter

*OpenUI *MirrorPrint/Mirror Print: Boolean

*OrderDependency: 40 AnySetup *MirrorPrint

*MirrorPrint True: "true statusdict /setmirrorprint get exec"

*MirrorPrint False: "false statusdict /setmirrorprint get exec"

*DefaultMirrorPrint: False

*?MirrorPrint: "save statusdict /mirrorprint get exec

{(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *MirrorPrint

*OpenUI *NegativePrint/Negative Print: Boolean

*OrderDependency: 40 AnySetup *NegativePrint

*NegativePrint True: "true statusdict /setnegativeprint get exec"

*NegativePrint False: "false statusdict /setnegativeprint get exec"

*DefaultNegativePrint: False

*?NegativePrint: "save statusdict /negativeprint get exec

 {(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *NegativePrint

*CloseGroup: Imagesetter

*% Font Information =====================

*% For example purposes, this device ships with several fonts built into

*% the ROM of the device, and Avant-Garde on a separate hard disk

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard Disk

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard Disk

*Font AvantGarde-Demi: Standard "(001.003)" Standard Disk

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard Disk

*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-BoldItalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM

*?FontQuery: "

152 PostScript Printer Description File Format Specification (29 Mar 94)

save

 /str 100 string dup 0 (fonts/) putinterval def

 {

 count 1 gt

 {

 exch dup str 6 94 getinterval cvs

 (/) print dup print (:) print exch

 FontDirectory exch known

 { pop (Yes) }

 {

 length 6 add str 0 3 -1 roll getinterval

 mark exch status

 {cleartomark (Yes)}{cleartomark (No)} ifelse

 } ifelse = flush

 }

 {exit} ifelse

 }bind loop

 (*) = flush

restore

"

*End

*?FontList: "

save

 FontDirectory { pop == } bind forall flush

 /filenameforall where

 { pop (fonts/*)

{ dup length 6 sub 6 exch getinterval cvn == } bind

 128 string filenameforall flush

 } if

 (*) = flush

restore

"

*End

*% Printer Messages (verbatim from printer):

*Message: "%%[exitserver: permanent state may be changed]%%"

*Message: "\FontName\ not found, using Courier"

*% Status (format: %%[status: <one of these>]%%)

*Status: "idle"

*Status: "busy"

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: Cassette not loaded"

*Status: "PrinterError: Film Unit Error"

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)

*Source: "Appletalk"

*Source: "Centronics"

*Source: "serial9"

*Source: "serial25"

*% Printer Error (format: %%[PrinterError: <one of these>]%%)

*PrinterError: "Cassette not loaded"

*PrinterError: "Film Unit Error"

*% Color Separation Information =====================

6 Sample PPD File Structure 153

*DefaultColorSep: ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

*% For 90 lpi / 1200 dpi ===============================

*ColorSepScreenAngle ProcessCyan.90lpi.1200dpi/90 lpi / 1200 dpi: "71.565"

*ColorSepScreenAngle ProcessMagenta.90lpi.1200dpi/90 lpi/1200 dpi: "18.43"

*ColorSepScreenAngle ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "0"

*ColorSepScreenAngle ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi: "45"

*ColorSepScreenAngle CustomColor.90lpi.1200dpi/90 lpi / 1200 dpi: "45"

*ColorSepScreenFreq ProcessCyan.90lpi.1200dpi/90 lpi / 1200 dpi: "94.8683"

*ColorSepScreenFreq ProcessMagenta.90lpi.1200dpi/90 lpi/1200 dpi: "94.86"

*ColorSepScreenFreq ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "30"

*ColorSepScreenFreq ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi: "84.852"

*ColorSepScreenFreq CustomColor.90lpi.1200dpi/90 lpi / 1200 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "

{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat

abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1

sub }{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 110 lpi / 1200 dpi ==============================

*ColorSepScreenAngle ProcessCyan.110lpi.1200dpi/110 lpi /1200 dpi: "70.01"

*ColorSepScreenAngle ProcessMagenta.110lpi.1200dpi/110 lpi/1200 dpi: "19"

*ColorSepScreenAngle ProcessYellow.110lpi.1200dpi/110 lpi / 1200 dpi: "0"

*ColorSepScreenAngle ProcessBlack.110lpi.1200dpi/110 lpi / 1200 dpi: "45"

*ColorSepScreenAngle CustomColor.110lpi.1200dpi/110 lpi / 1200 dpi: "45"

*ColorSepScreenFreq ProcessCyan.110lpi.1200dpi/110 lpi /1200 dpi: "102.52"

*ColorSepScreenFreq ProcessMagenta.110lpi.1200dpi/110 lpi/1200 dpi: "102"

*ColorSepScreenFreq ProcessYellow.110lpi.1200dpi/110 lpi/1200 dpi: "109.1"

*ColorSepScreenFreq ProcessBlack.110lpi.1200dpi/110 lpi/1200 dpi: "121.22"

*ColorSepScreenFreq CustomColor.110lpi.1200dpi/110 lpi/1200 dpi: "121.218"

*% For 90 lpi / 2400 dpi ===============================

*ColorSepScreenAngle ProcessCyan.90lpi.2400dpi/90 lpi /2400 dpi: "71.5651"

*ColorSepScreenAngle ProcessMagenta.90lpi.2400dpi/90 lpi/2400 dpi: "18.44"

*ColorSepScreenAngle ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "0"

*ColorSepScreenAngle ProcessBlack.90lpi.2400dpi/90 lpi / 2400 dpi: "45"

*ColorSepScreenAngle CustomColor.90lpi.2400dpi/90 lpi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.90lpi.2400dpi/90 lpi / 2400 dpi: "94.8683"

*ColorSepScreenFreq ProcessMagenta.90lpi.2400dpi/90 lpi /2400 dpi: "94.87"

*ColorSepScreenFreq ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "30"

*ColorSepScreenFreq ProcessBlack.90lpi.2400dpi/90 lpi /2400 dpi: "84.8528"

*ColorSepScreenFreq CustomColor.90lpi.2400dpi/90 lpi / 2400 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "

154 PostScript Printer Description File Format Specification (29 Mar 94)

{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat

abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1

sub }{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 115 lpi / 2400 dpi ==============================

*ColorSepScreenAngle ProcessCyan.115lpi.2400dpi/115 lpi /2400 dpi: "71.56"

*ColorSepScreenAngle ProcessMagenta.115lpi.2400dpi/115 lpi/ 2400 dpi: "18"

*ColorSepScreenAngle ProcessYellow.115lpi.2400dpi/115 lpi / 2400 dpi: "0"

*ColorSepScreenAngle ProcessBlack.115lpi.2400dpi/115 lpi / 2400 dpi: "45"

*ColorSepScreenAngle CustomColor.115lpi.2400dpi/115 lpi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.115lpi.2400dpi/115 lpi/2400 dpi: "126.491"

*ColorSepScreenFreq ProcessMagenta.115lpi.2400dpi/115 lpi/ 2400 dpi: "126"

*ColorSepScreenFreq ProcessYellow.115lpi.2400dpi/115 lpi / 2400 dpi: "120"

*ColorSepScreenFreq ProcessBlack.115lpi.2400dpi/115 lpi/2400 dpi: "113.13"

*ColorSepScreenFreq CustomColor.115lpi.2400dpi/115 lpi/2400 dpi: "113.137"

*% For 130 lpi / 2400 dpi ==============================

*ColorSepScreenAngle ProcessCyan.130lpi.2400dpi/130 lpi/2400 dpi: "71.565"

*ColorSepScreenAngle ProcessMagenta.130lpi.2400dpi/130 lpi/ 2400 dpi: "18"

*ColorSepScreenAngle ProcessYellow.130lpi.2400dpi/130 lpi / 2400 dpi: "0"

*ColorSepScreenAngle ProcessBlack.130lpi.2400dpi/130 lpi / 2400 dpi: "45"

*ColorSepScreenAngle CustomColor.130lpi.2400dpi/130 lpi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.130lpi.2400dpi/130 lpi/2400 dpi: "126.491"

*ColorSepScreenFreq ProcessMagenta.130lpi.2400dpi/130 lpi/ 2400 dpi: "126"

*ColorSepScreenFreq ProcessYellow.130lpi.2400dpi/130 lpi/2400 dpi: "133.3"

*ColorSepScreenFreq ProcessBlack.130lpi.2400dpi/130 lpi/2400 dpi: "141.42"

*ColorSepScreenFreq CustomColor.130lpi.2400dpi/130 lpi/2400 dpi: "141.421"

*% end of PPD file for Acme Imagesetter

155

Appendix A: User Interface
Keywords

This appendix provides a list of keywords that are typically bracketed by the
*OpenUI/*CloseUI keywords in PPD files produced by Adobe Systems. Only the
main keywords are listed here; naturally, their associated defaults and queries
would also be included in the*OpenUI/*CloseUI bracketing. Other keywords
may also be bracketed by*OpenUI/*CloseUI; this list provides only thetypical
set.

*AdvanceMedia
*BindColor
*BindEdge
*BindType
*BindWhen
*BitsPerPixel
*BlackSubstitution
*Booklet
*Collate
*ColorModel
*CutMedia
*Duplex
*FoldType
*FoldWhen
*InputSlot
*InsertSheet
*InstalledMemory
*Jog
*ManualFeed
*MediaColor
*MediaType
*MediaWeight
*MirrorPrint
*NegativePrint
*OutputBin
*OutputMode
*OutputOrder
*PageSize
*PageRegion
*Separations

*Signature
*Slipsheet
*Smoothing
*Sorter
*StapleLocation
*StapleOrientation
*StapleWhen
*StapleX
*StapleY
*TraySwitch

156 Appendix A: User Interface Keywords (29 Mar 94)

157

Appendix B: Repeated
Keywords

In the general model, if a main keyword, or specific combination of main and
option keyword, is repeated within a PPD file or in an included PPD file, the
first occurrence has precedence and future occurrences are ignored. For his-
torical reasons, there are certain keywords in a PPD file that do not conform
to the general model; specific main keywords are repeated, but all occur-
rences are relevant and should be recorded by a parser because their values
are unique. For backward compatibility, the form of these keywords cannot
be changed.

To provide assistance to PPD file parsers, the following is a list of main key-
words (excluding structure keywords) which do not have option keywords to
distinguish one instance from another, yet all instances are relevant, so the all
occurrences of this main keyword and its associated unique values should be
recorded by the PPD file parser.

*Emulators
*Extensions
*FaxSupport
*Include
*Message
*PrinterError
*Product
*Protocols
*PSVersion
*Source
*Status
*UIConstraints

158 Appendix B: Repeated Keywords (29 Mar 94]

159

Appendix C: Character
Encodings

The*LanguageEncoding keyword defines the encoding used by translation
strings and certain QuotedValues in a PPD file. This appendix describes three
encodings commonly used in PPD files, and how to convert between them.
The three encoding options compared in this appendix areISOLatin1,
WindowsANSI, andMacStandard. ISOLatin1 encoding is commonly used in
the Unix environment.WindowsANSI is defined by Microsoft for use in the
Windows operating system.MacStandard is the encoding used by Macintosh
computers.

Document managers will need to convert certain strings from the encoding
used in the PPD file to the encoding used on their operating system. For doc-
ument managers operating in the Macintosh, Windows, and Unix environ-
ments, this often means a conversion between two of the three encodings
listed here. These tables are intended to help in that conversion.

Table 7 shows the three encoding vectors in their entirety. It is indexed by
character code and contains the union of all of the characters in all three
encoding vectors.

Tables 8, 9, and 10 contain only the differences between the three encoding
vectors, and could be the basis for conversion tables in a document manager.
Table 8 is indexed by the character code and name of each character in the
WindowsANSI encoding vector. Table 9 is indexed by the character code and
name of each character in theMacStandard encoding vector. Table 10 is
indexed by the character code and name of each character in theISOLatin1
encoding vector.

160 Appendix C: Character Encodings (29 Mar 94)

Table 8: All Encodings Indexed By Byte Code

Code WindowsANSI ISOLatin1 MacStandard
0-31 unused unused unused
32 space space space
33 exclam exclam exclam
34 quotedbl quotedbl quotedbl
35 numbersign numbersign numbersign
36 dollar dollar dollar
37 percent percent percent
38 ampersand ampersand ampersand
39 quotesingle quoteright quotesingle
40 parenleft parenleft parenleft
41 parenright parenright parenright
42 asterisk asterisk asterisk
43 plus plus plus
44 comma comma comma
45 hyphen minus hyphen
46 period period period
47 slash slash slash
48 zero zero zero
49 one one one
50 two two two
51 three three three
52 four four four
53 five five five
54 six six six
55 seven seven seven
56 eight eight eight
57 nine nine nine
58 colon colon colon
59 semicolon semicolon semicolon
60 less less less
61 equal equal equal
62 greater greater greater
63 question question question
64 at at at
65-90 A-Z A-Z A-Z
91 bracketleft bracketleft bracketleft
92 backslash backslash backslash
93 bracketright bracketright bracketright
94 asciicircum asciicircum asciicircum

C.1 All Encodings Indexed By Byte Code

Table 7 shows the three encoding vectors in their entirety. The first column gives
the byte code. The second, third, and fourth columns give the PostScript lan-
guage name of the character encoded at that position in the specified encoding
vector. The word “unused” in a column means there is no printable character at
that byte code position in the specified encoding vector.

95 underscore underscore underscore
96 grave quoteleft grave
97-122 a-z a-z a-z
123 braceleft braceleft braceleft
124 bar bar bar
125 braceright braceright braceright
126 asciitilde asciitilde asciitilde
127 unused unused unused
128 unused unused Adieresis
129 unused unused Aring
130 quotesinglbase unused Ccedilla
131 florin unused Eacute
132 quotedblbase unused Ntilde
133 ellipsis unused Odieresis
134 dagger unused Udieresis
135 daggerdbl unused aacute
136 circumflex unused agrave
137 perthousand unused acircumflex
138 Scaron unused adieresis
139 guilsinglleft unused atilde
140 OE unused aring
141 unused unused ccedilla
142 unused unused eacute
143 unused unused egrave
144 unused dotlessi ecircumflex
145 quoteleft grave edieresis
146 quoteright acute iacute
147 quotedblleft circumflex igrave
148 quotedblright tilde icircumflex
149 bullet macron idieresis
150 endash breve ntilde
151 emdash dotaccent oacute
152 tilde dieresis ograve
153 trademark unused ocircumflex
154 scaron ring odieresis
155 guilsinglright cedilla otilde
156 oe unused uacute
157 unused hungarumlaut ugrave
158 unused ogonek ucircumflex

Table 8: All Encodings Indexed By Byte Code

Code WindowsANSI ISOLatin1 MacStandard

C.1 All Encodings Indexed By Byte Code 161

159 Ydieresis caron udieresis
160 space space dagger
161 exclamdown exclamdown degree
162 cent cent cent
163 sterling sterling sterling
164 currency currency section
165 yen yen bullet
166 brokenbar brokenbar paragraph
167 section section germandbls
168 dieresis dieresis registered
169 copyright copyright copyright
170 ordfeminine ordfeminine trademark
171 guillemotleft guillemotleft acute
172 logicalnot logicalnot dieresis
173 hyphen hyphen notequal
174 registered registered AE
175 macron macron Oslash
176 degree degree infinity
177 plusminus plusminus plusminus
178 twosuperior twosuperior lessequal
179 threesuperior threesuperior greaterequal
180 acute acute yen
181 mu mu mu
182 paragraph paragraph partialdiff
183 periodcentered periodcentered summation
184 cedilla cedilla product
185 onesuperior onesuperior pi
186 ordmasculine ordmasculine integral
187 guillemotright guillemotright ordfeminine
188 onequarter onequarter ordmasculine
189 onehalf onehalf Omega
190 threequarters threequarters ae
191 questiondown questiondown oslash
192 Agrave Agrave questiondown
193 Aacute Aacute exclamdown
194 Acircumflex Acircumflex logicalnot
195 Atilde Atilde radical
196 Adieresis Adieresis florin
197 Aring Aring approxequal
198 AE AE Delta
199 Ccedilla Ccedilla guillemotleft
200 Egrave Egrave guillemotright
201 Eacute Eacute ellipsis
202 Ecircumflex Ecircumflex space
203 Edieresis Edieresis Agrave
204 Igrave Igrave Atilde
205 Iacute Iacute Otilde
206 Icircumflex Icircumflex OE
207 Idieresis Idieresis oe
208 Eth Eth endash
209 Ntilde Ntilde emdash
210 Ograve Ograve quotedblleft

Table 8: All Encodings Indexed By Byte Code

Code WindowsANSI ISOLatin1 MacStandard

.

211 Oacute Oacute quotedblright
212 Ocircumflex Ocircumflex quoteleft
213 Otilde Otilde quoteright
214 Odieresis Odieresis divide
215 multiply multiply lozenge
216 Oslash Oslash ydieresis
217 Ugrave Ugrave Ydieresis
218 Uacute Uacute fraction
219 Ucircumflex Ucircumflex currency
220 Udieresis Udieresis guilsinglleft
221 Yacute Yacute guilsinglright
222 Thorn Thorn fi
223 germandbls germandbls fl
224 agrave agrave daggerdbl
225 aacute aacute periodcentered
226 acircumflex acircumflex quotesinglbase
227 atilde atilde quotedblbase
228 adieresis adieresis perthousand
229 aring aring Acircumflex
230 ae ae Ecircumflex
231 ccedilla ccedilla Aacute
232 egrave egrave Edieresis
233 eacute eacute Egrave
234 ecircumflex ecircumflex Iacute
235 edieresis edieresis Icircumflex
236 igrave igrave Idieresis
237 iacute iacute Igrave
238 icircumflex icircumflex Oacute
239 idieresis idieresis Ocircumflex
240 eth eth apple
241 ntilde ntilde Ograve
242 ograve ograve Uacute
243 oacute oacute Ucircumflex
244 ocircumflex ocircumflex Ugrave
245 otilde otilde dotlessi
246 odieresis odieresis circumflex
247 divide divide tilde
248 oslash oslash macron
249 ugrave ugrave breve
250 uacute uacute dotaccent
251 ucircumflex ucircumflex ring
252 udieresis udieresis cedilla
253 yacute yacute hungarumlaut
254 thorn thorn ogonek
255 ydieresis ydieresis caron

Table 8: All Encodings Indexed By Byte Code

Code WindowsANSI ISOLatin1 MacStandard

162 Appendix C: Character Encodings (29 Mar 94)

Table 9: Conversions from WindowsANSI
Encoding

Character Name ANSI Mac ISOLatin1
quotesingle 39 same n/a
hyphen 45 same 173
grave 96 same 145
quotesinglbase 130 226 n/a
florin 131 196 n/a
quotedblbase 132 227 n/a
ellipsis 133 201 n/a
dagger 134 160 n/a
daggerdbl 135 224 n/a
circumflex 136 246 147
perthousand 137 228 n/a
Scaron 138 n/a n/a
guilsinglleft 139 220 n/a
OE 140 206 n/a
quoteleft 145 212 96
quoteright 146 213 39
quotedblleft 147 210 n/a
quotedblright 148 211 n/a
bullet 149 165 n/a
endash 150 208 n/a
emdash 151 209 n/a
tilde 152 247 148
trademark 153 170 n/a
scaron 154 n/a n/a
guilsinglright 155 221 n/a
oe 156 207 n/a
bullet 157 165 n/a
bullet 158 165 n/a
Ydieresis 159 217 n/a
space 160 32 same
exclamdown 161 193 same
currency 164 219 same
yen 165 180 same
brokenbar 166 n/a same
section 167 164 same
dieresis 168 172 same
ordfeminine 170 187 same

C.2 Conversions from WindowsANSI Encoding

In Table 8, the first two columns give the byte code and name of a character in
the source encoding vector, WindowsANSI (abbreviated for space in the table as
ANSI). The third and fourth columns give the corresponding byte code in the
destination encoding vectors, MacStandard (abbreviated as Mac) and ISOLatin1,
respectively. The word “same” in a column means that the destination byte code
is the same as the source byte code. The string “n/a” in a column means that the
character has no equivalent in the destination encoding vector.

guillemotleft 171 199 same
logicalnot 172 194 same
hyphen 173 45 same
registered 174 168 same
macron 175 248 same
degree 176 161 same
twosuperior 178 n/a same
threesuperior 179 n/a same
acute 180 171 same
paragraph 182 166 same
periodcentered 183 225 same
cedilla 184 252 same
onesuperior 185 n/a same
ordmasculine 186 188 same
guillemotright 187 200 same
onequarter 188 n/a same
onehalf 189 n/a same
threequarters 190 n/a same
questiondown 191 192 same
Agrave 192 203 same
Aacute 193 231 same
Acircumflex 194 229 same
Atilde 195 204 same
Adieresis 196 128 same
Aring 197 129 same
AE 198 174 same
Ccedilla 199 130 same
Egrave 200 233 same
Eacute 201 131 same
Ecircumflex 202 230 same
Edieresis 203 232 same
Igrave 204 237 same
Iacute 205 234 same
Icircumflex 206 235 same
Idieresis 207 236 same
Eth 208 n/a same
Ntilde 209 132 same

Table 9: Conversions from WindowsANSI
Encoding (Continued)

Character Name ANSI Mac ISOLatin1

C.2 Conversions from WindowsANSI Encoding 163

Ograve 210 241 same
Oacute 211 238 same
Ocircumflex 212 239 same
Otilde 213 205 same
Odieresis 214 133 same
multiply 215 n/a same
Oslash 216 175 same
Ugrave 217 244 same
Uacute 218 242 same
Ucircumflex 219 243 same
Udieresis 220 134 same
Yacute 221 n/a same
Thorn 222 n/a same
germandbls 223 167 same
agrave 224 136 same
aacute 225 135 same
acircumflex 226 137 same
atilde 227 139 same
adieresis 228 138 same
aring 229 140 same
ae 230 190 same
ccedilla 231 141 same
egrave 232 143 same
eacute 233 142 same
ecircumflex 234 144 same
edieresis 235 145 same
igrave 236 147 same
iacute 237 146 same
icircumflex 238 148 same
idieresis 239 149 same
eth 240 n/a same
ntilde 241 150 same
ograve 242 152 same
oacute 243 151 same
ocircumflex 244 153 same
otilde 245 155 same
odieresis 246 154 same
divide 247 214 same
oslash 248 191 same
ugrave 249 157 same
uacute 250 156 same
ucircumflex 251 158 same
udieresis 252 159 same
yacute 253 n/a same
thorn 254 n/a same
ydieresis 255 216 same

Table 9: Conversions from WindowsANSI
Encoding (Continued)

Character Name ANSI Mac ISOLatin1

164 Appendix C: Character Encodings (29 Mar 94)

Table 10: Conversions from MacStandard
Encoding

Character Name Mac ANSI ISOLatin1
hyphen 45 same 173
grave 96 same 145
Adieresis 128 196 196
Aring 129 197 197
Ccedilla 130 199 199
Eacute 131 201 201
Ntilde 132 209 209
Odieresis 133 214 214
Udieresis 134 220 220
aacute 135 225 225
agrave 136 224 224
acircumflex 137 226 226
adieresis 138 228 228
atilde 139 227 227
aring 140 229 229
ccedilla 141 231 231
eacute 142 233 233
egrave 143 232 232
ecircumflex 144 234 234
edieresis 145 235 235
iacute 146 237 237
igrave 147 236 236
icircumflex 148 238 238
idieresis 149 239 239
ntilde 150 241 241
oacute 151 243 243
ograve 152 242 242
ocircumflex 153 244 244
odieresis 154 246 246
otilde 155 245 245
uacute 156 250 250
ugrave 157 249 249
ucircumflex 158 251 251
udieresis 159 252 252
dagger 160 134 n/a
degree 161 176 176

section 164 167 167
bullet 165 149 n/a
paragraph 166 182 182
germandbls 167 223 223
registered 168 174 174
trademark 170 153 n/a
acute 171 180 146
dieresis 172 168 152
notequal 173 n/a n/a
AE 174 198 198
Oslash 175 216 216
infinity 176 n/a n/a
lessequal 178 n/a n/a
greaterequal 179 n/a n/a
yen 180 165 165
partialdiff 182 n/a n/a
summation 183 n/a n/a
product 184 n/a n/a
pi 185 n/a n/a
integral 186 n/a n/a
ordfeminine 187 170 170
ordmasculine 188 186 186
Omega 189 n/a n/a
ae 190 230 230
oslash 191 248 248
questiondown 192 191 191
exclamdown 193 161 161
logicalnot 194 172 172
radical 195 n/a n/a
florin 196 131 n/a
approxequal 197 n/a n/a
Delta 198 n/a n/a
guillemotleft 199 171 171
guillemotright 200 187 187
ellipsis 201 133 n/a
space 202 32 32

Table 10: Conversions from MacStandard
Encoding (Continued)

Character Name Mac ANSI ISOLatin1

C.3 Conversions from MacStandard Encoding

In Table 9, the first two columns give the byte code and name of a character in
the source encoding vector,MacStandard (abbreviated for space in the table as
Mac). The third and fourth columns give the corresponding byte code in the des-
tination encoding vectors, WindowsANSI (abbreviated as ANSI) and ISOLatin1,
respectively. The word “same” in a column means that the destination byte code
is the same as the source byte code. The string “n/a” in a column means that the
character has no equivalent in the destination encoding vector.

C.3 Conversions from MacStandard Encoding 165

Agrave 203 192 192
Atilde 204 195 195
Otilde 205 213 213
OE 206 140 n/a
oe 207 156 n/a
endash 208 150 n/a
emdash 209 151 n/a
quotedblleft 210 147 n/a
quotedblright 211 148 n/a
quoteleft 212 145 96
quoteright 213 146 39
divide 214 247 247
lozenge 215 n/a n/a
ydieresis 216 255 255
Ydieresis 217 159 n/a
fraction 218 n/a n/a
currency 219 164 164
guilsinglleft 220 139 n/a
guilsinglright 221 155 n/a
fi 222 n/a n/a
fl 223 n/a n/a
daggerdbl 224 135 n/a
periodcentered 225 183 183
quotesinglbase 226 130 n/a
quotedblbase 227 132 n/a
perthousand 228 137 n/a
Acircumflex 229 194 194
Ecircumflex 230 202 202
Aacute 231 193 193
Edieresis 232 203 203
Egrave 233 200 200
Iacute 234 205 205
Icircumflex 235 206 206
Idieresis 236 207 207
Igrave 237 204 204
Oacute 238 211 211
Ocircumflex 239 212 212
apple 240 n/a n/a
Ograve 241 210 210
Uacute 242 218 218
Ucircumflex 243 219 219
Ugrave 244 217 217
dotlessi 245 n/a 144
circumflex 246 n/a 147
tilde 247 152 148

Table 10: Conversions from MacStandard
Encoding (Continued)

Character Name Mac ANSI ISOLatin1
macron 248 175 149
breve 249 n/a 150
dotaccent 250 n/a 151
ring 251 n/a 154
cedilla 252 184 155
hungarumlaut 253 n/a 157
ogonek 254 n/a 158
caron 255 n/a 159

Table 10: Conversions from MacStandard
Encoding (Continued)

Character Name Mac ANSI ISOLatin1

166 Appendix C: Character Encodings (29 Mar 94)

Table 11: Conversions from ISOLatin1
Encoding

Character Name ISOLatin1 ANSI Mac
quoteright 39 146 213
quoteleft 96 145 212
dotlessi 144 n/a 245
grave 145 96 96
acute 146 180 171
circumflex 147 n/a 246
tilde 148 152 247
macron 149 175 248
breve 150 n/a 249
dotaccent 151 n/a 250
dieresis 152 168 172
ring 154 n/a 251
cedilla 155 n/a 252
hungarumlaut 157 n/a 253
ogonek 158 n/a 254
caron 159 n/a 255
space 160 same 32
exclamdown 161 same 193
currency 164 same 219
yen 165 same 180
brokenbar 166 same n/a
section 167 same 164
dieresis 168 same 172
ordfeminine 170 same 187
guillemotleft 171 same 199
logicalnot 172 same 194
hyphen 173 same 45
registered 174 same 168
macron 175 same 248
degree 176 same 161
twosuperior 178 same n/a
threesuperior 179 same n/a
acute 180 same 171
paragraph 182 same 166
periodcentered 183 same 225

cedilla 184 same 252
onesuperior 185 same n/a
ordmasculine 186 same 188
guillemotright 187 same 200
onequarter 188 same n/a
onehalf 189 same n/a
threequarters 190 same n/a
questiondown 191 same 192
Agrave 192 same 203
Aacute 193 same 231
Acircumflex 194 same 229
Atilde 195 same 204
Adieresis 196 same 128
Aring 197 same 129
AE 198 same 174
Ccedilla 199 same 130
Egrave 200 same 233
Eacute 201 same 131
Ecircumflex 202 same 230
Edieresis 203 same 232
Igrave 204 same 237
Iacute 205 same 234
Icircumflex 206 same 235
Idieresis 207 same 236
Eth 208 same n/a
Ntilde 209 same 132
Ograve 210 same 241
Oacute 211 same 238
Ocircumflex 212 same 239
Otilde 213 same 205
Odieresis 214 same 133
multiply 215 same n/a
Oslash 216 same 175
Ugrave 217 same 244
Uacute 218 same 242

Table 11: Conversions from ISOLatin1
Encoding (Continued)

Character Name ISOLatin1 ANSI Mac

C.4 Conversions from ISOLatin1 Encoding

In Table 10, the first two columns give the byte code and name of a character in
the source encoding vector,ISOLatin1 . The third and fourth columns give the
corresponding byte code in the destination encoding vectors, WindowsANSI
(abbreviated for space in the table as ANSI) and MacStandard (abbreviated as
Mac), respectively. The word “same” in a column means that the destination
byte code is the same as the source byte code. The string “n/a” in a column
means that the character has no equivalent in the destination encoding vector.

C.4 Conversions from ISOLatin1 Encoding 167

Ucircumflex 219 same 243
Udieresis 220 same 134
Yacute 221 same n/a
Thorn 222 same n/a
germandbls 223 same 167
agrave 224 same 136
aacute 225 same 135
acircumflex 226 same 137
atilde 227 same 139
adieresis 228 same 138
aring 229 same 140
ae 230 same 190
ccedilla 231 same 141
egrave 232 same 143
eacute 233 same 142
ecircumflex 234 same 144
edieresis 235 same 145
igrave 236 same 147
iacute 237 same 146
icircumflex 238 same 148
idieresis 239 same 149
eth 240 same n/a
ntilde 241 same 150
ograve 242 same 152
oacute 243 same 151
ocircumflex 244 same 153
otilde 245 same 155
odieresis 246 same 154
divide 247 same 214
oslash 248 same 191
ugrave 249 same 157
uacute 250 same 156
ucircumflex 251 same 158
udieresis 252 same 159
yacute 253 same n/a
thorn 254 same n/a
ydieresis 255 same 216

Table 11: Conversions from ISOLatin1
Encoding (Continued)

Character Name ISOLatin1 ANSI Mac

168 Appendix C: Character Encodings (29 Mar 94)

169

Appendix D: Changes
Since Earlier Versions

D.1 Changes since Version 4.1, April 9, 1993

• Changed spec version number from 4.1 to 4.2 in all appropriate places.

• Added the following new keywords:

*PrintPSErrors *SuggestedJobTimeout *SuggestedWaitTimeout
*ResScreenAngle *ResScreenFreq *InstalledMemory
*DefaultInstalledMemory

• Added a new optionTrueImage to *TTRasterizer.

• Moved description of*VMOption from section 5.7 to section 5.22,System
Management, after the description of*FreeVM. Removed examples of
using*UIConstraints on *VMOption to show how much VM is available
(this method has been replaced by*InstalledMemory). Rewrote description
of *FreeVM for clarity & accuracy with regard to*VMOption.

• Made the following changes to section 5.7,Installable Options: It is now
legal, when necessary, to have named keywords, like*InstalledMemory, in
the InstallableOptions group (instead of the generic*Option1 type of key-
word). It is now legal to have PostScript code in the value of an entry in
theInstallableOptions group. If there is such code, the entry must also have
an*OrderDependency statement. Removed section on Keyword-Value
pairs; they are no longer recommended in*UIConstraints.

• Added paragraph to description of*UIConstraints to say that constraints
should only be used with UI keywords.

• Section 2.1, last paragraph: Removed the following sentence from the end
of the description of defaults, as the PPD specification should not be dic-
tating print manager behavior, only recommending it: “Print managers
should ensure that if the user selects nothing else, the defaults shown in
the user interface are invoked.” Replaced with description of how some
print managers behave regarding defaults. Removed similar statement dic-
tating print manager behavior from last paragraph of section 2.6.

170 Appendix D: Changes Since Earlier Versions (29 Mar 94)

• Section 5.9: UnderFolio page size, changed incorrect reference to
8.5”x13” page to correct metric size of 210mm x 330mm. Changed point
size of page from [595 936] to [595 935] for greater accuracy. Changed
imageable area description to “approximate”. Removed references to
“folio sheet” and “quarto sheet” (under the definition ofQuarto page
size).

• Section 5.14: Fixed typo “F*” at beginning of several keywords.

• Appendix A: Removed*AccurateScreensSupport from the list, as it was
never an*OpenUI keyword. Added*InstalledMemory.

D.2 Changes since Version 4.0, October 14, 1992

• Changed spec version number from 4.0 to 4.1 in all appropriate places.

• Changed this section from Appendix C to Appendix D.

• Inserted new Appendix C, Character Encodings, for use with the new
*LanguageEncoding keyword.

• Added the following new keywords

*TTRasterizer *LanguageEncoding *ShortNickName
*ColorModel *?ColorModel *DefaultColorModel
*JCLOpenUI *JCLCloseUI *JCLToPSInterpreter
*JCLBegin *JCLEnd
*JCLFrameBufferSize *?JCLFrameBufferSize *DefaultJCLFrameBufferSize
*JCLResolution *?JCLResolution *DefaultJCLResolution
*MaxMediaHeight *?CurrentMediaHeight

• Substantially rewrote section 5.12,Custom Page Sizes, to define the mean-
ing of custom page sizes on cut-sheet devices (old version dealt only with
roll-fed devices). Added definitions for cut-sheet devices to the custom
page size parameters and to all relevant keywords. Divided roll-fed and
cut-sheet devices into two subsections, wrote new intro to cover both sec-
tions. Clarified portions of*HWMargins and added info about how to use
it. Added new illustrations and examples. Changed*MaxMediaWidth from
int to real. Added explanation to*CurrentMediaWidth.

• Added new section 5.23, “Features Accessible Only Through Job Control
Language”, to document new*JCL keywords.

• In section 3.6, “Syntax of Values”, under the subheadingsQuotedValues
andParsing Summary For Values, added exception for*JCL keywords to
the first rule, regarding the presence of option keywords.*JCL keywords
are treated like QuotedValues even if they have an option and look like
InvocationValues.

D.3 Changes since February 14, 1992 171

• In section 4.2,Elementary Types, added new elementary type:JCL. Under
*Protocols, added note to subsection onPJL regarding the interaction of the
PJL value and the*JCL keywords. AddedJCLSetup section to*OrderDe-
pendency.

• Added reference to*ShortNickName in *NickName description. Also
under*NickName, clarified use of translation strings and encodings with
*NickName.

• Changed description of*UIConstraints and theInstallable Options section to
include keyword-value pairs as well as keyword-option pairs.

• *ImageableArea: Added description of PPD files for devices that have
pages with an imageable area that can vary depending on resolution and
other factors.

• Added subheadingSyntax and Use in section 5.7,Installable Options.
Added new section of info:Keyword-Value Pairs.

• Various minor wording changes were made for clarification or brevity.
Minor typographical errors were fixed. Updated examples at end to
include some of the new keywords. Pages renumbered, new index and
TOC generated.

D.3 Changes since February 14, 1992

• Minor typographical errors were corrected.

D.4 Changes since Version 3.0, dated March 8, 1989

D.4.1 Changes to Text

Significant rewriting and reorganizing occurred in this version of the spec, so
rather than documenting line-by-line changes, only the major semantic and
syntactical changes are described here.

• The specification version number was increased to 4.0

• International headquarters’ addresses added to front cover; updated copy-
right.

• “PostScript Printer Description files” was changed to “PPD files” in all but
the first few times it is mentioned; “Printer Description files” were like-
wise changed to “PPD files” in all cases. Changed “printer” to “device” in
most cases. Changed “paper” to “media” in text, not in keywords.

172 Appendix D: Changes Since Earlier Versions (29 Mar 94)

• The option keyword section at the end of the document was removed; all
currently registered option keywords are now documented with their
respective main keywords.

• Added section with several sample PPD files.

• Introduction became a section (section 1) and was rewritten to reflect new
focus on building a user interface from a PPD file and to get more basic
information on the first page.

• Using PPD Files: Completely rewritten to show how document composi-
tion application and print manager interact to create PostScript language
code, and how code sample grows as it passes through various phases
(DSC comments added). Added sections on building a user interface,
inserting print-time features, error-handling, post-processing, and order
dependencies within a file.

• Local Customization and*Include: The entire section was rewritten to
explain what kind of information is in the initial PPD file, what kind of
information a user or system administrator might want to change or add,
the drawbacks of editing a PPD file directly, and alternative suggestions to
managing PPD files. Explained local customization files in more detail
and emphasized consistent use of that title for them, since we never had a
title before. Added subsection on changing*Default- values in local cus-
tomization file. Expanded meaning of defaults—in original PPD file,
defaults are the factory defaults, but they can now be changed in a local
customization file. New rule for*Include: filenames must be enclosed in
quotes.

• The Format: Significantly rewritten. Added sentence about how queries
only work if the physical interface to the device allows feedback. Added
ASCII code chart for commonly referenced characters, definition of terms,
and descriptions of canonical forms of keyword entries. A bullet was
added to point out the maximum line length of 255 characters. The maxi-
mum length of 40 characters per keyword was clarified underMain Key-
words. Split apartParsing Details and reintegrated into subsections on
main keywords, option keywords, and values. Divided descriptions of
main keywords, option keywords, and values into subsections for PPD
writers and PPD parsers.

• Details: Section was split apart and integrated into separate sections on
main keywords, option keywords, and values. UnderMain Keywords, it
was clarified that agrep for a complete keyword includes theasterisk in
the keyword name (so “*PageSize” is not a substring of
“ *DefaultPageSize”).

• Semantics of Main Keywords: Section was removed and information
moved to eitherThe Format or Main Keywords.

D.4 Changes since Version 3.0, dated March 8, 1989 173

• The following keywords are nowrequired in a a PPD file, whereas previ-
ously there was no requirement. Some are old keywords, some are new:
*PPD-Adobe, *Product, *PSVersion, *PCFileName, *ModelName, *Nick-
Name, *PageSize, *PageRegion, *ImageableArea, *PaperDimension,
*FileVersion, *FormatVersion, and *LanguageVersion.

• Option Keywords: Significantly rewritten. Added advice for parsers and
emphasized extensibility of option keywords.

• Translation String Syntax: This section was moved and retitled from
Foreign Language Customization: Translation String Syntax, because it
applies to more than foreign languages. Section was expanded to include
examples of translating cryptic keywords “from English to English”. In
the French example, the nonexistent keyword*PaperSize was changed to
*PageSize and syntactically incorrect percent signs and brackets and the
wordPrinterError were all removed. Added section about 7-bit ASCII PPD
files and how to represent 8-bit characters (for foreign languages) as hex
strings. Provided reasons and noted that translation strings, if present,
should always be displayed to the user rather than the original option key-
word. AddedParsing Summary for translation strings.

• Human-Readable Comments: Added paragraph about comments in Post-
Script language code.

• PostScript Language Sequences: The prohibition against leaving anything
on the operand and dictionary stacks was removed, as it is already violated
by the color separation keywords, the halftone screen keywords, the trans-
fer function keywords, and probably others.

• Parsing Details section was removed and integrated into previoussections.

• Syntax of Specification: New section to document syntax of spec itself.
Added syntax and elementary types. Changed the symbols used for “or” in
the meta-syntax from aslash to avertical bar, to be consistent with the
DSC. Inclusive “or” is now defined to be ellipsis, like the DSC. Added
explanations and examples of each type of PPD entry (main keyword with
fixed option list, main keyword with variable option list, and keyword with
no options).

• Paper Handling, was merged with a later section,Introduction to Media
Handling.

• TheColor Extensions section was removed and its material was moved to
the beginning of theColor Keywords section.

• In theKeywords intro, added paragraph about how if a feature is not sup-
ported by a device, it should be omitted from the PPD. MovedStandard
Option Values For Main Keywords from back of document to beginning of

174 Appendix D: Changes Since Earlier Versions (29 Mar 94)

section, to document global options likeTrue, False, None, andUnknown.
Added examples for each of these and added note about not usingNone or
Unknown to indicate absence of a feature on a device.

• Keywords: Rearranged all keywords into more logical sections and order.
Removed all option keywords from end of document and integrated them
into their respective main keyword sections. Added UI symbol (seen to left
of this paragraph) throughout document to mark keywords that should be
bracketed with*OpenUI/*CloseUI.

D.4.2 New Keywords

*AdvanceMedia *?AdvanceMedia *DefaultAdvanceMedia
*BindColor *?BindColor *DefaultBindColor
*BindEdge *?BindEdge *DefaultBindEdge
*BindType *?BindType *DefaultBindType
*BindWhen *?BindWhen *DefaultBindWhen
*BitsPerPixel *?BitsPerPixel *DefaultBitsPerPixel
*BlackSubstitution *?BlackSubstitution *DefaultBlackSubstitution
*Booklet *?Booklet *DefaultBooklet
*Collate *?Collate *DefaultCollate
*CutMedia *?CutMedia *DefaultCutMedia
*Duplex *?Duplex *DefaultDuplex
*FoldType *?FoldType *DefaultFoldType
*FoldWhen *?FoldWhen *DefaultFoldWhen
*InsertSheet *?InsertSheet *DefaultInsertSheet
*Jog *?Jog *DefaultJog
*MediaColor *?MediaColor *DefaultMediaColor
*MediaType *?MediaType *DefaultMediaType
*MediaWeight *?MediaWeight *DefaultMediaWeight
*MirrorPrint *?MirrorPrint *DefaultMirrorPrint
*NegativePrint *?NegativePrint *DefaultNegativePrint
*OutputMode *?OutputMode *DefaultOutputMode
*Separations *?Separations *DefaultSeparations
*Signature *?Signature *DefaultSignature
*Slipsheet *?Slipsheet *DefaultSlipsheet
*Smoothing *?Smoothing *DefaultSmoothing
*Sorter *?Sorter *DefaultSorter
*StapleLocation *?StapleLocation *DefaultStapleLocation
*StapleOrientation *?StapleOrientation *DefaultStapleOrientation
*StapleWhen *?StapleWhen *DefaultStapleWhen
*StapleX *?StapleX *DefaultStapleX
*StapleY *?StapleY *DefaultStapleY
*TraySwitch *?TraySwitch *DefaultTraySwitch

*OpenUI *CloseUI *Extensions
*OpenGroup *CloseGroup *Protocols
*StartEmulator_ *StopEmulator_ *Emulators
*FaxSupport *JobPatchFile *?PatchFile
*CustomPageSize *ParamCustomPageSize *?CurrentMediaWidth

UIU I

D.4 Changes since Version 3.0, dated March 8, 1989 175

*MaxMediaWidth *CenterRegistered *PageStackOrder
*Resolution *HWMargins *LandscapeOrientation
*ColorRenderDict *OrderDependency *PCFileName
*DefaultColorSpace *LanguageLevel *ModelName
*RequiresPageRegion *UIConstraints *AccurateScreensSupport

D.4.3 Changes to Existing Keywords

The changes to the syntax and semantics of actual keywords from version 3.0
are as follows:

• *Include: The filename must now be enclosed in double quotes.

• *ImageableArea, *?ImageableArea: The numbers in the value (and the
numbers returned by the query) are now real numbers; previously, they
were integers.

• *DefaultResolution, *?Resolution, *SetResolution: These can now take an
option of the form300x600dpi. Previously, the only format for an option
was300dpi. This change is necessary to accommodate printers with
anamorphic resolution. See the descriptions of these keywords for full
details.

• *Font: Two more fields were added to the value to describe thecharacter
set of the font and whether the font isremovable or not. The value now has
four fields instead of the previous two fields. The two new fields were
added at the end of the old value, after the version number.

• *PaperTray, *?PaperTray, and*DefaultPaperTray were removed, as their
code had always been redundant with*PageSize and no tools were found
to depend upon their presence.

• *Collator, *?Collator, *DefaultCollator: These were changed to*Collate,
*?Collate, and*DefaultCollate, since they had not previously been used in
PPD files and this brought them more in line with other keyword usage.

D.4.4 Changes to Descriptions of Existing Keywords

• General Information Keywords: This section title was changed from
General Defaults and Information Keywords. In *FileVersion, thestructure
of the version number and how to update it was clarified. In
*FormatVersion, the conformance number of the spec was changed to“4.0.”
In *LanguageVersion, added material about the encoding of foreign trans-
lation strings and how to represent non-English characters in translation
strings. Added new language option keywordsSwedish andDanish.
Added Level 1 and Level 2 code fragments to*Product. The definition and
examples of*Nickname were corrected to be a string within quotation

176 Appendix D: Changes Since Earlier Versions (29 Mar 94)

marks but without parentheses (for example, “Apple LaserWriter® II NTX
v49.3”), since all existing PPD files had been built that way (without
parentheses).

• Basic Device Capabilities: *ColorDevice: clarified that this keyword indi-
cates physical color output. Added reference to*Extensions, for devices
that support color extensions but may or may not physically output color.
Moved*FileSystem keywords here.*FileSystem was clarified as referring
to thecapacity for a file system; example was added for a device that has
thecapacity but does not have a file systeminstalled; reemphasized that
this entry should be omitted if there is no capacity for having a file system.
Clarified meaning of return values of*?FileSystem. Moved*Throughput to
this section.

• Keywords: Added new sectionStructure Keywords. Moved*Include and
*End to this section.

• Introduction to Media Handling: New section created fromPaper
Handling. Significantly rewritten. Addedsetpagedevice to the list of exam-
ple invocations.

• Media Option Keywords: New section, created from several old sections.
Significantly rewritten. Added info about the extensibility of media option
keywords.PaperKeyword becamemediaOption throughout the document.
Refined explanation of how to handle Envelopes. Prose was added about
parsing for*OpenUI/*CloseUI rather than a specific list of options. Clari-
fied meaning ofTransverse (long edge perpendicular to feed direction).

• Media Option Keywords: Rewrote all dimensions in consistent format.
Built tables of ISO and JIS standard paper and envelope sizes and added
most sizes. Moved most U.S. standard definitions to a separate table,
except for the ones that needed extra text to explain them, and included
several new media sizes. Changed imageable area definition ofA4Small
from inches to points (all others were already in points). Changed imagea-
ble area ofLetterSmall from 553x731.5 points to 552x730 points, because
that is what 8 out of 9 PPD files had for that imageable area.

• Paper Size Invocation became Media Selection Under*DefaultPageSize,
Unknown is now an option. Clarified, with examples, how*PageSize is
meant to be used. Explained how*PageRegion should be used. Removed
*PaperTray and associated default and query.

• Information About Media Sizes: Under*DefaultImageableArea and
*DefaultPaperDimension, the sentence “The value should always be
Letter.” was removed. “This value may beUnknown or one of the media
options listed under*ImageableArea/*PaperDimension.” was added. For
*ImageableArea, clarified that imageable area was measured in PostScript

D.4 Changes since Version 3.0, dated March 8, 1989 177

default units. Changed “integers” to “reals” for all imageable area and
paper dimension keywords. Added that x and y axes should correspond in
*ImageableArea and*PaperDimension.

• Media Handling Features: For the*InputSlot keywords, the list of options
was replaced bytrayOption and explanation was added. Current options
were brought forward from the rear of the document. In the definition of
*ManualFeed the valueNone was removed from the list of valid choices
and the explanation changed. The*OutputBin keywords were changed to
accept an extensible list of bin names, the current options were integrated
into this section from the rear of the document, and return values were
specified for the query. AddedRear option for output trays. The explana-
tion of *OutputOrder was modified to address how most devices handle
page stack order today.

• Keywords: Moved information on device resolution to new section
Resolution and Appearance Control

• Resolution and Appearance Control: This new section was created to con-
tain *SetResolution, *DefaultResolution, *?Resolution, and resolution
information. Expanded format of theresolution option keyword to include
“300x300dpi” (as well as the old format of “300dpi”), to accommodate
devices with anamorphic resolution.

• Gray Levels & Halftoning: The description on*ScreenFreq was changed
from “the second argument” to “thefrequency argument”. The description
on *ScreenAngle was changed from “the first argument” to “theangle
argument”. Both*ScreenFreq and*ScreenAngle were changed to be areal
instead of aninteger, since that is what is returned bycurrentscreen .
Throughout this section, “the.Invert qualifier” was changed to “the
.Inverse qualifier”. This was a typo in the spec; the.Invert qualifier never
appeared in a PPD file. Spot options were integrated into this section.

• Gray Levels & Halftoning: Several option keywords were added to
*Transfer to include the ability to define transfer functions for eachprocess
color. Options added toNull andNormalized wereRed, Green, andBlue.
The optionFactory was added to distinguish between transfer functions
that are built-in and transfer functions that are suggested. Entire section
was rewritten for more detail and clarification.

• Color Separation Keywords: Merged earlier color separation section (used
to be 3.0) into the intro of this section. AddedDiamondDot spot function.

• Font Related: In the definition of*DefaultFont, Error was included as a
possible value.

178 Appendix D: Changes Since Earlier Versions (29 Mar 94)

• Font Related: *Font was expanded to include acharset field to describe the
character set supported by the font. A new value field,status, with possi-
ble values ofROM or Disk, was added to describe whether or not fonts are
removable. Built table to show the difference betweenROM andDisk.
Integrated font option keywords forencoding andcharset into this section.

• Printer Messages: General rewording throughout section. Under
*Message, added “Messages that appear under*Status or *PrinterError
should not be repeated here.” Clarified that same messages may appear
both under*Status and*PrinterError. Added examples of PPD file entries
and translation strings to*PrinterError and added Level 2 device names to
the list of options for*Source.

• System Management: Reworded*PatchFile explanation for clarity and
added requirements for behavior of patch file code. Reformatted*FreeVM
to call out code. The description of*Password was changed to refer to the
currentpassword instead of thedefault password.

• System Management: Under*DeviceAdjustMatrix, added that this entry
should be commented out if it is not used, and added reference to
Localization section (for instructions about creating a local customization
file for a device that needs to use*DeviceAdjustMatrix).

• Cleaned up all sample code to eliminate “begin...end” so no dictionaries
are left on the stack if the code fails.

179

Index

Symbols

* (first character of main keywords,
PPD files) 14

*% (comment characters in PPD files)
27

*? (first characters of query keywords,
PPD files) 14

/ (translation string marker in PPD
files) 24

^ (caret, marks a symbol name) 56
| (exclusive OR) 29

A

A paper sizes, table 65
Accept68K , *TTRasterizer option45
*AccurateScreensSupport 110
*?AdvanceMedia 105
*AdvanceMedia 105
anti-aliasing 108
AnySetup , *OrderDependency

parameter 53
ASCII characters used in PPD files

11, 15, 19

B

B paper sizes, table 66, 67
basic device capabilities keywords

42–45
BCP, *Protocols option 46
binary communications protocol,

presence noted in PPD file 46
*?BindColor 100
*BindColor 100
*?BindEdge 99
*BindEdge 99
binding a job 99, 100

*?BindType 99
*BindType 99
*?BindWhen 101
*BindWhen 100
bit smoothing 108
*?BitsPerPixel 109
*BitsPerPixel 109
*?BlackSubstitution 113
*BlackSubstitution 113
*?Booklet 101
*Booklet 101
Boolean , *OpenUI option defined

49
bounding box, imageable area of page

72
building a user interface from a PPD

file 1, 2
byte codes

range in PPD files 13, 14
translating PPD files 25

C

C envelope sizes, table 67
*CenterRegistered 83
clear channel

needed for BCP 46
needed for emulators 48

clipping path, relationship to
*ImageableArea 72

*CloseGroup 52
*CloseUI 49
*?Collate 92
*Collate 92
colon, in PPD files 19
color issues in PPD files 113–115

black substitution 113
color depths, invoking 109
color matching 116

180 Index (29 Mar 94)

color rendering dictionaries 114
color separation keywords in PPD

files 115–119
custom color 118
option keywords defined 116
process color 115

*ColorDevice 42
*?ColorModel 113
*ColorModel 113
*ColorRenderDict 114
colorsepkey (option keyword) 116
*ColorSepScreenAngle 117

example 117
*ColorSepScreenFreq 117

example 117
*ColorSepScreenProc 117

example 117
*ColorSepTransfer 118

example 117
comments in PPD files 27
configuration panel, created from

PPD file 61
*?CurrentMediaHeight 81
*?CurrentMediaWidth 81
custom page sizes 75–84
*CustomCMYK 118

use with *InkName 118
customization of PPD files 8
*CustomPageSize 78

example 79, 80
parameters for cut-sheet devices

77
parameters for roll-fed devices76
relationship to

*ParamCustomPageSize 78
relationship to *VariablePaperSize

84
*?CutMedia 106
*CutMedia 105

D

*Default 23
example of format 15
in InstallableOptions entry 60, 62
prefix 14
translation string allowed 25
use of False 35
use of True 34

default keywords in PPD files10, 12
default state of the device 3

*DefaultAdvanceMedia 105
*DefaultBindColor 100
*DefaultBindEdge 99
*DefaultBindType 99
*DefaultBindWhen 100
*DefaultBitsPerPixel 109
*DefaultBlackSubstitution 113
*DefaultBooklet 101
*DefaultCollate 92
*DefaultColorModel 113
*DefaultColorSep 117
*DefaultColorSpace 43
*DefaultCutMedia 106
*DefaultDuplex 90
*DefaultFoldType 93
*DefaultFoldWhen 93
*DefaultFont 122
*DefaultImageableArea 73
*DefaultInputSlot 84
*DefaultInsertSheet 103
*DefaultInstalledMemory 129
*DefaultJCLFrameBufferSize 133
*DefaultJCLResolution 134
*DefaultJog 103
*DefaultManualFeed 89
*DefaultMediaColor 71
*DefaultMediaType 71
*DefaultMediaWeight 72
*DefaultMirrorPrint 104
*DefaultNegativePrint 104
*DefaultOutputBin 86
*DefaultOutputMode 91
*DefaultOutputOrder 87
*DefaultPageRegion 70
*DefaultPageSize 70
*DefaultPaperDimension 73
*DefaultPaperTray , removed in 4.0

70
*DefaultResolution 106
*DefaultScreenProc 111
*DefaultSeparations 119
*DefaultSignature 89
*DefaultSlipsheet 102
*DefaultSmoothing 108
*DefaultSorter 94
*DefaultStapleLocation 94
*DefaultStapleOrientation 98
*DefaultStapleWhen 97
*DefaultStapleX 95
*DefaultStapleY 96
*DefaultTransfer 112

*DefaultTraySwitch 88
device, definition of 1
*DeviceAdjustMatrix 131
DL, envelope size defined 67
document structuring conventions

relationship to PPD files 2
surrounding PPD file features4, 5

DocumentSetup , *OrderDependency
parameter 53

DSC.See document structuring
conventions

*?Duplex 90
*Duplex 90

list of options for 90

E

editable customization files (PPD
files) 8

elementary types of a PPD file 30
*Emulators 47
emulators and protocols keywords

46–48
encoding option

in *Font entry 120
in *LanguageEncoding entry 37

*End 28, 56
envelopes

list of U.S. standard sizes 69
requesting unnamed sizes 69
table of C sizes 67

error handling, in PPD files 6
exiting the server loop, PPD keywords

marked 30
*ExitServer 130
ExitServer , *OrderDependency

parameter 53
*Extensions 43

F, G

False , defined 35
*FaxSupport 43
filename, elementary type defined30
*?FileSystem 44
*FileSystem 44
filmsetter (imagesetter) features 104
finishing features 92–103
folding a job after printing 93
*?FoldType 93
*FoldType 92

Index 181

*?FoldWhen 94
*FoldWhen 93
*Font 119
font related keywords in PPD files

119–122
character set options 121
font encoding options 120
fonts in ROM 119
fonts on disk 119

*?FontList 122
fontname, elementary type defined

31
*?FontQuery 123
foreign language translation 24
format of PPD files 11–29
*FormatVersion 36
*FreeVM 127

relationship to *VMOption 128
globaldict , assumptions in PPD files

28
gray levels and halftoning in PPD files

110–112
normalized transfer function 112
transfer options 112

H

halftone screen
angle 110
frequency 110
list of spot options 111
order of invocation 7
spot function 110

hard disk, presence noted in PPD files
44

HeadToToe duplex printing 90
Height , custom page size parameter

76, 77
HeightOffset , custom page size

parameter 76, 78
*HWMargins 82

I

*?ImageableArea 73
*ImageableArea 72

use 63
imagesetter features 104–106
*Include 9, 24, 56

use with *SymbolValue 59
*InkName 118

input slot options, list of common84
*?InputSlot 84
*InputSlot 84

use instead of *PaperTray 70
*?InsertSheet 103
*InsertSheet 102
installable options (PPD file group)

59–62
InstallableOptions

option keyword definition 60
*InstalledMemory 128, 129

in InstallableOptions group61, 62
int, elementary type defined 31
invocation, elementary type defined

31
InvocationValue 19, 20

in InstallableOptions entry 62
symbol name in place of 56

ISO Standard “B” Sizes, table 67
ISO Standard “C” Envelope Sizes,

table 67
ISO/JIS Standard “A” Sizes, table65
ISOLatin1

*LanguageEncoding option 37
font character set option 122
font encoding option 120

J, K

JCL keywords
relationship to *Procotols46,131

JCL, elementary type defined 31
*JCLBegin 132
*JCLCloseUI 132
*JCLEnd 132
*?JCLFrameBufferSize 133
*JCLFrameBufferSize 132
*JCLOpenUI 132
*?JCLResolution 134
*JCLResolution 133
JCLSetup , *OrderDependency

parameter 53
*JCLToPSInterpreter 132
JIS

character set options 122
font encoding option 121
use with *LanguageVersion 37

JIS Standard “B” Sizes, table 66
JIS83-RKSJ , *LanguageEncoding

option 37
job control language keywords 131

*JobPatchFile 127
*?Jog 103
*Jog 103
keywords in PPD files 34–131

L

landscape orientation, relationship to
Transverse 64

*LandscapeOrientation 73
language extensions, support in PPD

files 43
*LanguageEncoding 37

byte code conversion tables 159–
167

*LanguageLevel 44
*LanguageVersion 38
Level 1

presence noted in PPD file 4, 44
Level 2

presence noted in PPD file 4, 44
line length in PPD file 13
local customization (PPD) file 8

parsing order 9
local customization of PPD files 2,

8–??

M

MacStandard , *LanguageEncoding
option 37

main keywords in PPD files 14–16
ASCII characters 16
case 16
definition 12
delimiters 16
general format 15
length limit 16
parsing 15
sample entry 33
standard option values 34–35
terminators 16
unrecognized 16

managing a device via PPD files 8
*?ManualFeed 89
*ManualFeed 89
*MaxMediaHeight 81
*MaxMediaWidth 80
media handling features in PPD files

62, 84–91
automatic tray switching 88

182 Index (29 Mar 94)

duplex printing 90
output order options, list of 88
select a media tray 84
selecting letterhead 84
selecting special paper 84
tumbling a duplex print job 90

media option keywords (PPD files)
64–69

media selection (PPD files) 69–72
media size information 72–75

bounding box query 73
margins 72
physical height 73
physical width 73

*?MediaColor 71
*MediaColor 71
mediaOption, defined 64
*?MediaType 71
*MediaType 71
*?MediaWeight 72
*MediaWeight 71
*Message 126
Minus90 , *LandscapeOrientation

option 74
*?MirrorPrint 104
*MirrorPrint 104
*ModelName 38

*NickName same as 39
use of 40

N

*?NegativePrint 104
*NegativePrint 104
*NickName 39

relation to *ShortNickName 42
use of 40, 42

None
defined 35
in PickMany option list 50
in PickOne option list 50

Normal , output order defined 88
NoValue 19, 22

O

one-sided printing 90
*OpenGroup 10, 52
*OpenUI 10, 30, 49

list of user interface keywords
155

*Option, in InstallableOptions entry
60

option keywords in PPD files 16–19
ASCII characters 19
capitalization conventions 64
case 18
control and registration 12
definition 12
forbidden characters 17
length limit 18
parsing 18
qualifier 17
serialization 18

option, elementary type defined 31
optional features, handling in PPD

files 59
order dependency in PPD files 7
*OrderDependency 8, 53
Orientation , custom page size

parameter 76, 78
output bin options, list of common86
output file, definition of 1
*OutputBin 86
?OutputBin 86
*?OutputMode 91
*OutputMode 91
*?OutputOrder 88
*OutputOrder 86

P

*PageRegion 70
can be overridden by *PageSize

70
use with manual feed 63

pages per minute 44
PageSetup , *OrderDependency

parameter 53
*?PageSize 70
*PageSize 69

use 62
use of *PageRegion instead of 70

*PageStackOrder 88
paper and envelope sizes, table 68
*PaperDimension 73

relationship to *ImageableArea
72

use 63
*?PaperTray , removed in 4.0 70
*PaperTray , removed in 4.0 70
*Param, prefix 14

*ParamCustomPageSize 78
relationship to *VariablePaperSize

84
parsing rules for PPD files 14
parsing summary for values 22
*Password 30, 130
*?PatchFile 127
*PatchFile 126
*PCFileName 40
PickMany , *OpenUI option defined

49
PickOne , *OpenUI option defined

49
PJL , *Protocols option 46
Plus90 , *LandscapeOrientation

option 74
PostScript language sequences in PPD

files 28
PostScript printer description files.

See PPD files
PPD file format specification 1–154

changes from earlier versions169
PPD files

local customization (PPD) file
naming 10

post-processing 5
*PPD-Adobe 49
print manager, defined in PPD spec3
printer messages in PPD files 124–

126
*PrinterError 124
*PrintPSErrors 131
*Product 39, 40
Prolog , *OrderDependency

parameter 53
*Protocols 46, 48
*PSVersion 40

Q

query keywords in PPD files 12
query, elementary type defined 31
querying the device via a PPD file11
QuotedValue 19, 20

R

real, elementary type defined 32
repeated keywords 157
required keywords 6, 15, 16, 29, 34
*RequiresPageRegion 85

Index 183

*Reset 129
*?Resolution 107
*Resolution 106
resolution

controlled via JCL keywords 133
enhancement 108

resolution and appearance control
106–109

*ResScreenAngle 110
*ResScreenFreq 110
Reverse , output order defined 88
RKSJ

font encoding option 121

S

sample keyword entries in PPD files
32

sample PPD files 135–154
Level 1 300 DPI Monochrome

Printer 135
Level 1 Imagesetter 148
Level 2 Color Printer 143

*ScreenAngle 110
*ScreenFreq 110
*ScreenProc 110
*?Separations 119
*Separations 118
serialization extension for media size,

defined 65
*SetResolution 107
*ShortNickName 42

relationship to *NIckName 40
*?Signature 90
*Signature 89
simplex (one-sided) printing 90
*?Slipsheet 102
*Slipsheet 102
*?Smoothing 108
*Smoothing 108
*?Sorter 94
*Sorter 94
*Source 125
spooler, using PPD files 5
spot color 115
*?StapleLocation 95
*StapleLocation 94

relationship to *StapleX 95
*?StapleOrientation 98
*StapleOrientation 98
*?StapleWhen 97

*StapleWhen 96
*?StapleX 96
*StapleX 95
*?StapleY 96
*StapleY 96
stapling a job after printing 94
*StartEmulator_emulatorOption 48
startjob , use in *ExitServer code130
*Status 124
*StopEmulator_emulatorOption 48
string, elementary type defined 32
StringValue 19, 21
structure keywords (PPD files) 49–

56
structure of PPD files 28
*SuggestedJobTimeout 130
*SuggestedWaitTimeout 130
*SymbolEnd 59

use with *SymbolLength 57
symbolic references to data in PPD

files 56–59
*SymbolLength 57
symbolNames, use with *Symbol

keywords 59
*SymbolValue 58

use 57
use with *SymbolEnd 59
use with *SymbolLength 57

SymbolValue 19, 21
translation string not allowed 24

syntax of PPD specification 29–34
system administrator, defined in PPD

spec 8
system management in PPD files

126–131
systemdict , assumptions in PPD files

28

T

tagged binary communications
protocol, *Protocols 46

TBCP, *Protocols option 46
*Throughput 44
*Transfer 111
translation strings

defined 24
parsing rules 27
rules 24
syntax in PPD files 24–27

Transverse 17, 64, 65

*?TraySwitch 89
*TraySwitch 88
True , defined 34
TrueImage , *TTRasterizer option45
*?TTRasterizer 45
*TTRasterizer 45
tuples, defined in PPD files 15
two-sided printing 90
Type42 , *TTRasterizer option 45
typesetter (imagesetter) features 104

U

U.S. standard paper and envelope
sizes, table 68

UI graphic symbol, definition 51
*UIConstraints 54

in InstallableOptions entry 60, 62
Unknown , defined 35
unsetting a feature in PPD files 5
user interface, building from a PPD

file 3
user-defined page sizes in PPD files

75
userdict , assumption in PPD files28
using PPD files 2–??

V

*VariablePaperSize 84
*VMOption 128

W, X, Y, Z

Width , custom page size parameter
76, 77

WidthOffset
custom page size parameter76, 77
use with *CenterRegistered 83

WindowsANSI , *LanguageEncoding
option 37

184 Index (29 Mar 94)

