
JavaSoft

1

D E C 1 9 9 7

Java Naming and Directory
InterfaceTM (JNDI) is a new addition
to JavaSoft’s platform APIs. It
provides Java applications a unified
interface to multiple naming and
directory services in the enterprise. As
part of the Java Enterprise API set,
JNDI enables seamless connectivity to
heterogeneous enterprise naming and
directory services. Java developers
can now build powerful and portable
directory-enabled applications using
this industry-standard interface.

TheJNDI specification was developed
by JavaSoft with a number of leading
industry partners, including SunSoft,
Novell, Netscape, IBM and HP.

The beta version of
the specification
and code are now
available for
download at the
JavaSoft web site.

Technical Overview

Directory services play a vital role in
Intranets and Internets by providing
access to a variety of information about
users, machines, networks, services, and
applications. By its very nature, a direc-
tory service incorporates a naming facil-
ity for providing human understandable

namespaces that characterize the
arrangement and identification of the
various entities.

The computing environment of an enter-
prise typically consists of several naming
facilities often representing different
parts of acomposite namespace. For
example, the Internet Domain Name
System (DNS) may be used as the top-
level naming facility for different organi-
zations within an enterprise. The organi-
zations themselves may use a directory
service such as LDAP or NDS or NIS.
From a user’s perspective, there is one
namespace consisting of composite
names. URLs are examples of composite
names because they span namespaces of
multiple naming facilities. Applications
which use directory services must sup-
port this user perspective.

Many Java application developers can
benefit from a directory service API that
is not only independent of the particular
directory or naming service implementa-
tion, but also enables seamless access to
directory objects through multiple nam-
ing facilities. In fact, an application can
attach its own objects to the namespace.
Such a facility enables any Java applica-
tion to discover and retrieve Java objects
of any type.

JNDI is an API specified in JavaTM that
provides directory and naming function-
ality to applications written in Java. It is
defined to be independent of any specific
directory service implementation. Thus,
a variety of directories, new and existing

ones in the installed base, can be
accessed in a common way.

Directory service developers can benefit
from a service-provider capability that
enables them to incorporate their respec-
tive implementations without requiring
changes to the client.

JNDI also defines a service provider’s
interface which allows various directory
and naming service drivers to be plugged
in.

Examples

Here are two examples to briefly illus-
trate some of the more commonly used
features ofJNDI .

An application that wants to access a
printer needs the corresponding printer
object. This is simply done as follows:

prt = (Printer)
building7.lookup(“puffin”);

prt.print(document);

wherebuilding7 is the naming context
representing a physical building that pro-
vides a convenient context for referring
to the printers.

JNDI does all the work of locating the
information needed to construct the
printer object.

As another example, an application that
wants to find a person’s phone numbers,

JavaSoft 2 JNDI

which are stored in the organization’s
directory, can simply do:

String[] attrs = {“workPhone”,
 “cellPhone”, “faxNumber”};
bobsPhones =

directory.getAttributes(
“cn=Bob,o=Widget,c=US”,
attrs);

If there may be several Bobs in the Wid-
get organization, the application can
search the organization’s directory to
find the right Bob as follows:

bob = directory.search(
“o=Widget,c=US”,“cn=Bob”,
controls);

Other application examples include
access to security credentials stored in an
enterprise-wide directory service, access
to electronic mail addresses, and access
to addresses of a variety of existing ser-
vices such as databases, network file sys-
tems, etc.

Overview of Interfaces

TheJNDI API is contained in two pack-
ages: javax.naming for the naming
operations, and
javax.naming.directory for direc-
tory operations. TheJNDI service pro-
vider interface is contained in the
packagejavax.naming.spi .

The Naming Interface —
javax.naming

javax.naming.Context is the core
interface that specifies a naming context.
It defines basic operations such as adding
a name-to-object binding, looking up the
object bound to a specified name, listing
the bindings, removing a name-to-object
binding, creating and destroying subcon-
texts of the same type,etc.

Context.lookup() is the most com-
monly used operation. The context
implementation can return an object of
whatever class is required by the Java cli-
ent. For example, a client might use the
name of a printer to look up the corre-

spondingPrinter object, and then print
to it directly:

Printer printer = (Printer)
 ctx.lookup(“treekiller”);
printer.print(report);

The client is not exposed to any naming
service implementation. In fact, a new
type of naming service can be introduced
without requiring the application to be
modified or even disrupted if it is run-
ning.

The Directory Interface —
javax.naming.directory

Directory Objects and Attributes. The
DirContext interface enables the direc-
tory capability by defining methods for
examining and updating attributes asso-
ciated with a directory object. Each
directory object contains a set of zero or
more objects of classAttribute . Each
attribute is denoted by a string identifier
and can have zero or more values of any
type.

Directory Objects as Naming Context.
TheDirContext interface also behaves
as a naming context by extending the
Context interface. This means that any
directory object can also provide a nam-
ing context. In addition to a directory
object keeping a variety of information
about a person, for example, it is also a
natural naming context for resources
associated with that person: a person’s
printers, file system, calendar,etc.

Searches. The DirContext interface
supports content-based searching of
directories. In the simplest and most
common form of usage, the application
specifies a set of attributes — possibly
with specific values — to match. It then
invokes the DirContext.search()

method on the directory object, which
returns the matching directory objects
along with the requested attributes.

The Service Provider Interface —
javax.naming.spi

The JNDI SPI provides the means by
which different naming/directory service
providers can develop and hook up their
implementations so that the correspond-
ing services are accessible from applica-
tions that useJNDI . In addition, because
JNDI allows specification of names that
span multiple namespaces, if one service
provider implementation needs to inter-
act with another in order to complete an
operation, the SPI provides methods that
allow different provider implementa-
tions to cooperate to complete client
JNDI operations.

For More Information

Seehttp://java.sun.com/products/jndi/.

Java Application

JNDI Implementation Manager

JNDI API

JNDI SPI

JNDI-RMI
JNDI-
COSNaming

LDAP NDS

