
The Java Naming and Directory service provider interface (JNDI SPI).

Please send comments to jndi@java.sun.com

JavaSoft

JNDI SPI: Java Naming and Directory
Service Provider Interface

1.1Beta1

December 1, 1997

Java Naming and Directory SPI

Package
names

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI
packages have been renamed to use the “javax” prefix, following the convention
for Java Standard Extensions.

Java Naming and Directory SPI

JavaSoft ii 12/1/97

Copyright © 1997 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 252.227-
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Sun Micro-
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaSoft iii 12/1/97

Java Naming and Directory SPI

Contents

1 JNDI Service Provider Interface (SPI) . 1

2 Implementing the Context Interface . 2

2.1 Basic Support . 2
2.2 Federation Support . 2

2.2.1 Names . 2
2.2.2 Resolving Through a Context . 2
2.2.3 Resolving Through to Subinterfaces of Context . 3
2.2.4 Continuing an Operation in a Federation. 4

2.3 Referrals . 5
2.4 Schema Support . 6
2.5 Java Object Support . 7
2.6 Context Environment Support . 8

2.6.1 Initializing a Context’s Environment. 8
2.6.2 Inheritance . 9
2.6.3 Updates to the Environment . 9

3 The Initial Context . 10

3.1 Implementing An Initial Context . 10
3.2 Making An Initial Context Implementation Available to JNDI 11

3.2.1 The java.naming.factory.initial Property . 11
3.2.2 URL Context Implementations . 11
3.2.3 Initial Context Factory Builder . 12

3.3 Implementing a Subclass of InitialContext . 12
3.3.1 Using the SPI to get the Initial Context . 13

4 Objects Bound in the Namespace . 15

4.1 Object Factories . 15
4.1.1 Context Factory . 16
4.1.2 URL Context Factory . 16
4.1.3 Making Object Factories Available to JNDI . 16

4.2 References and Referenceable . 17
4.2.1 Storing References in the Namespace . 17
4.2.2 Class information in Reference . 18

4.3 URLs as Reference Information . 19
4.4 Storing Serializable Objects . 19
4.5 The java.naming.factory.object Property . 20
4.6 Object Factory Builder . 21

5 Making Context Implementations Available to JNDI . 22

6 Overview of the Interface . 23

6.1 NamingManager and DirectoryManager . 23
6.2 Federation Support . 23
6.3 Object Factories . 23
6.4 Initial Contexts . 23

 Appendix A: Service Provider Example . 25

JavaSoft iv 12/1/97

Java Naming and Directory SPI

 Appendix B: Legend for Class Diagram . 35

 Appendix C: JNDI Change History . 37

Java Naming and Directory SPI JNDI Service Provider Interface (SPI)

JavaSoft 1 12/1/97

1 JNDI Service Provider Interface (SPI)

The JNDI SPI provides the means by which different naming and directory service providers
can develop and hook up their implementations so that the corresponding services are accessi-
ble from applications that use JNDI. In addition, because JNDI allows the use of names that
span multiple namespaces, one service provider implementation may need to interact with an-
other in order to complete an operation. The SPI provides methods that allow different provider
implementations to cooperate to complete client JNDI operations.

This document describes the components of the SPI and explains how developers can build ser-
vice providers for JNDI. It is assumed that the reader is familiar with the contents of theJNDI
API document.

All service provider developers should read the “Security Considerations” section of theJNDI
API document. It contains important issues that all developers using JNDI, especially those
writing service providers, should consider.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 2 12/1/97

2 Implementing the Context Interface

One of the basic tasks in building a context implementation is to define a class that implements
theContext (or DirContext) interface. The following guidelines should be used for develop-
ing this class.

2.1 Basic Support

The provider defines implementations for each of the methods in theContext interface.

If a method is not supported, it should throwOperationNotSupportedException .

For methods in theContext or DirContext interfaces that accept a name argument (either as
a String or aName), an empty name denotes the current context. For example, if an empty
name is supplied tolookup() , that means to return the current context. If an empty name is
supplied tolist() , that means to enumerate the names in the current context. If an empty name
is supplied togetAttributes() , that means to retrieve the attributes associated with this con-
text.

Appendix A contains an example service provider that implements a flat, in-memory
namespace.

2.2 Federation Support

2.2.1 Names

A context in a federation will be given a composite name with each context operation. This
composite name may span multiple namespaces, or it may have only a single compound name
component (which in turn may be made up of one or several atomic names) that belongs to a
single namespace. The context implementation must determine which part of the name is to be
resolved/processed in its context and pass the rest onto the next context. This may be done by
syntactically examining the name, or dynamically by resolving the name.

2.2.2 Resolving Through a Context

A context participates in a federation by performing the resolution phase of all of the context
operations. Thelookup() method must always be supported. Support for other methods is op-
tional, but if the context is to participate in a federation, then the resolution implicit in all op-
erations must be supported.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 3 12/1/97

Figure 1: Example of Resolving through Intermediate Contexts to Perform a bind().

For example, suppose a context does not support thebind() operation. When that context is
being used as an intermediate context forbind() , it must perform the resolution part of that
operation to enable the operation to continue to the next context. It should only throwOpera-

tionNotSupportedException if it is being asked to create a binding in its own context. Figure
1 shows an example of how thebind() operation is passed through intermediate contexts to
be performed in the target context.

2.2.3 Resolving Through to Subinterfaces of Context

To invoke aDirContext method (such asgetAttributes()), the application first obtains an
initial DirContext , and then perform the operation on theDirContext .

DirContext ctx = new InitialDirContext();
Attributes attrs = ctx.getAttributes(someName);

From the provider’s perspective, in order to retrieve the attributes,getAttributes() might
need to traverse multiple naming systems. Some of these naming systems only support the
Context interface, not theDirContext interface. These naming systems are being used as in-
termediaries for resolving towards the target context. The target context must support theDir-

Context interface. Figure 2 shows an example of this.

Figure 2: Example of Resolving Through Intermediate non-DirContexts

ctx.bind(“c1/c2/c3/a”,)

bind(“c1/c2/c3/a”,)

bind(“c2/c3/a”,)

bind(“c3/a”,)

bind(“a”,)

ctx
ac3c2c1

targetDirContextstartingDirContext

DirContext

Context

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 4 12/1/97

In order for intermediate naming systems to participate in the federation for extensions ofCon-

text , they must implement theResolver interface. TheResolver interface is used by the
JNDI framework to resolve through intermediate contexts that do not support a particular sub-
interface ofContext . It consists of two overloaded forms of the methodresolveToClass() .
This method is used to partially resolve a name, stopping at the first context that is an instance
of the required subinterface. By providing support for this method and the resolution phase of
all methods in theContext interface, a provider can act as an intermediate context for exten-
sions (subinterfaces) ofContext .

public interface Resolver {
public ResolveResult resolveToClass(Name name, Class contextType)

throws NamingException;
public ResolveResult resolveToClass(String name,
 Class contextType)

throws NamingException;
}

2.2.4 Continuing an Operation in a Federation

In performing an operation on a name that spans multiple namespaces, a context that is acting
as an intermediate context in an intermediate naming system needs to pass the operation onto
the next naming system. The context does this by first constructing aCannotProceedExcep-

tion containing information pinpointing how far it has proceeded. In so doing it sets the re-
solved object, resolved name, remaining name, and environment parts of the exception.1 (In
the case of theContext.rename() method, it also sets the “resolved newname” part.)

It then obtains acontinuation context from JNDI by passing theCannotProceedException to
static methodNamingManager .getContinuationContext()

public class NamingManager {
public static Context getContinuationContext(

CannotProceedException e) throws NamingException;
...

}

The information in the exception is used bygetContinuationContext() to create the contin-
uation context instance in which to continue the operation.

To obtain a continuation context for theDirContext operations, useDirectoryMan-

ager.getContinuationDirContext() .

public class DirectoryManager {
public static getContinuationDirContext(

CannotProceedException e) throws NamingException;
...

}

Upon receiving the continuation context, the operation should be continued using the remain-
der of the name that has not been resolved.

1. TheCannotProceedException may well have been thrown by one of the context’s internal methods when it
discovered that the name being processed is beyond the scope of the context. The process by which the exception
is produced is dependent on the implementation of the context.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 5 12/1/97

For example, when attempting to continue abind() operation, the code in the provider might
look as follows:

public void bind(Name name, Object obj) throws NamingException {
...
try {

internal_bind(name, obj);
...

} catch (CannotProceedException e) {
Context cctx = NamingManager.getContinuationContext(e);
cctx.bind(e.getRemainingName(), obj);

}
}

In this example,bind() depends on an internal method,internal_bind(), to carry out the
actual work of the bind and to throw aCannotProceedException when it discovers that it is
going beyond this naming system. The exception is then passed togetContinuationCon-

text() in order to continue the operation. If the operation cannot be continued, the continua-
tion context will throw theCannotProceedException to the caller of the originalbind()

operation.

2.3 Referrals

LDAP-style directory services support the notion ofreferrals for redirecting a client’s request
to another server. A referral differs from the federation continuation mechanism described
above in that a referral may be presented to the JNDI client, who then decides whether to follow
it, whereas aCannotProceedException should be returned to the client only when no further
progress is possible. Another difference is that an individual service provider offers the capa-
bility of continuing the operation (and itself determines the mechanism for doing so). In a fed-
eration, the mechanism of continuation is beyond the scope of individual service providers:
individual providers benefit from the common federation mechanism provided by the JNDI
SPI.

A service provider that supports referrals defines a subclass ofReferralException and pro-
vides implementations for its two abstract methods.getReferralContext() returns a context
at which to carry on the operation, andgetReferralInfo() returns information on where the
referral leads to, in a format appropriate to the service provider.

The environment propertyjava.naming.referral specifies how the service provider should
treat referrals. If the service provider is asked to throw an exception when a referral is encoun-
tered, or if the provider encounters problems following a referral, it throws aReferralExcep-

tion to the application. To continue the operation, the application re-invokes the method on
the referral context using the same arguments it supplied to the original method. The following
code sample shows howReferralException may be used by an application:1

1. Note that this is code in theapplication. In “Continuing an Operation in a Federation”, the code sample presented
is code in theservice provider.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 6 12/1/97

while (true) {
try {

bindings = ctx.listBindings(name);
while (bindings.hasMore()) {

b = (Binding) bindings.next();
...

}
break;

} catch (ReferralException e) {
ctx = e.getReferralContext();

}
}

This convention of re-invoking the method using the original arguments is a simple one for ap-
plications to follow. This places the burden on the implementation of theReferralException

to supply enough information to the implementation of the referral context for the operation to
be continued. Note that this will likely render some of the arguments passed to the re-invoked
operation superfluous. The referral context implementation is free to ignore any redundant or
unneeded information.

It is possible for an operation to return results in addition to a referral. For example, when
searching a context, the server might return several results in addition to a few referrals as to
where to obtain further results. These results and referrals might be interleaved at the protocol
level. If referrals require user interaction (i.e. not followed automatically), the service provider
should return the results through the search enumeration first. When the results have been re-
turned, the referral exception can then be thrown. This allows a simple programming model to
be used when presenting the user with a clear relationship between a referral and its set of re-
sults.

2.4 Schema Support

JNDI defines theAttribute class for representing an attribute in a directory. An attribute con-
sists of an attribute identifier (a string) and a set of attribute values, which can be any Java ob-
jects. There are also methods defined in theAttribute class for obtaining the attribute’s
definition and syntax definition from the directory’s schema.

public class Attribute {
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()

throws NamingException;
...

}

The default implementation ofAttribute does not provide real implementations for these
methods. A directory provider that has support for such schema information should provide
subclasses ofAttribute that implement these two methods based on its schema mechanisms.
The provider should then return instances of these subclasses when asked to return instances
of Attribute . The provider, when it receives an unextendedAttribute instance, should use
reasonable defaults to determine the attribute’s definition and syntax, using information such
as the attribute values’ class names or conventions used for the attribute identifier.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 7 12/1/97

TheDirContext interface contains schema-related methods:

public class DirContext {
...
public DirContext getSchema(Name name) throws NamingException;
public DirContext getSchema(String name) throws NamingException;

public DirContext getSchemaClassDefinition(Name name)
throws NamingException;

public DirContext getSchemaClassDefinition(String name)
throws NamingException;

}

getSchema() returns the schema tree for the named object, whilegetSchemaClassDefini-

tion() returns the schema class definition for the named object. Some systems have just one
global schema and, regardless of the value of thename argument, will return the same schema
tree. Others support finer grained schema definitions, and may return different schema trees de-
pending on which context is being examined.

2.5 Java Object Support

JNDI encourages providers to supply implementations of theContext andDirContext inter-
faces that are natural and intuitive for the Java programmer. For example, when looking up a
printer name in the namespace, it is natural for the Java programmer to expect to get back a
printer object on which to operate.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

However, what is bound in the underlying directory or naming services typically are not Java
objects but merely reference information which can be used to locate or access the actual ob-
ject. This case is quite common, especially for Java applications accessing and sharing services
in an existing installed base. The reference in effect acts as a “pointer” to the real object. In the
printer example, what is actually bound might be information on how to access the printer (e.g.
its protocol type, its server address). To enable this easy-to-use model for the application de-
veloper, the provider must do the transformation of the data stored in the underlying service
into the appropriate Java objects.

There are different ways to achieve this goal. One provider might have access to all the imple-
mentation classes of objects that a directory can return; another provider might have a special
class loader for locating implementation classes for its objects. JNDI supports automatic gen-
eration of objects using information bound in the namespace via the use of theReference class
(see “References and Referenceable” on page 17) and URLs (see “URL Context Factory” on
page 16). By providing theReference class and a common mechanism for converting aRef-

erence into the object identified by theReference , JNDI encourages different applications
and system providers to utilize this mechanism, rather than invent separate mechanisms on
their own. However, this does not preclude providers from using their own mechanisms for
achieving the same goal.

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 8 12/1/97

To enable this feature in their contexts, the service provider can use thegetObjectInstance()

method fromNamingManager to convert information bound in the namespace into objects.

Object NamingManager.getObjectInstance(Object refInfo,
Name name,
Context nameCtx,
Hashtable env);

For example, suppose printers are represented in the namespace usingReference s. To turn a
printerReference into a livePrinter object, the service provider would use thegetObject-

Instance() method. In this way, the underlying service need not know anything specific about
printers.

Object lookup(Name name) {
...
Reference ref = <some printer reference looked up from directory >;
return (NamingManager.getObjectInstance(ref, name, this, env));

}

When constructing objects to be returned for the following JNDI methods, the service provider
should callgetObjectInstance() , or its own mechanism for generating objects from the
bound information, if it wants this feature to be enabled in their contexts.

javax.naming.Context.lookup()
javax.naming.Context.lookupLink()
javax.naming.Binding.getObject()
javax.naming.directory.SearchResult.getObject()

For Binding andSearchResult , the provider should either pass an object that is the result of
calling getObjectInstance() or its equivalent to the constructor, or override the default im-
plementation ofBinding andSearchResult so that theirgetObject() implementations call
getObjectInstance() or its equivalent before returning.

2.6 Context Environment Support

Each instance ofContext (or DirContext) can have associated with it anenvironmentwhich
contains preferences expressed by the application of how it would like to access the services
offered by the context. Examples of information found in an environment are security-related
information that specify the user’s credentials and desired level of security (none, simple,
strong), and configuration information, such as the server to use. Appendix A of theJNDI API
document specifies a preliminary list of environment properties.

Environment properties are defined generically in order to ensure maximum portability. Indi-
vidual service providers should map these generic properties to characteristics appropriate for
their service. Properties that are not relevant to a provider are silently ignored. The environ-
ment may also be used for storing service-specific properties or preferences, in which case their
applicability across different providers is limited.

2.6.1 Initializing a Context’s Environment

When creating an initial context (eitherInitialContext or InitialDirContext), the appli-
cation can supply an environment as a parameter. The parameter is represented as aHashtable

or any of its subclasses (e.g.Properties). The service provider should make a copy of the con-

Java Naming and Directory SPI Implementing the Context Interface

JavaSoft 9 12/1/97

tents of the environment so that changes by the caller to the argument would not affect what
the provider sees and vice versa. Note also that if the environment argument is aProperties

instance, enumeration andHashtable.get() on the argument only examine the top-level
properties (not any nested defaults). This is the expected behavior. The provider is not expected
to retrieve or enumerate values in theProperties instance’s nested defaults.

2.6.2 Inheritance

The environment is inherited from parent to child as the context methods proceed from one
context to the next. The entire environment of a context instance is inherited by the child con-
text instances, regardless of whether certain properties within the environment are ignored by
a particular context.

A service provider must pass on the environment from one context instance to the next in order
to implement this “inheritance” trait of environments. Within one provider it can do so by pass-
ing the environment as an argument to theContext constructor, or to theNamingManager.ge-

tObjectInstance() method for creatingContext instances.

Across providers in a federation, this is supported by passing the environment as part of the
CannotProceedException parameter of theNamingManager.getContinuationContext()

method, which in turn will use this environment when creating an instance of the context in
which to continue the operation.

Inheritance can be implemented in any way as long as it preserves the semantics that each con-
text has its own view of its environment. For example, a copy-on-write implementation could
be used to defer copying of the environment until it is absolutely necessary.

2.6.3 Updates to the Environment

The environment of a context can be updated via the use of theaddToEnvironment() and re-

moveFromEnvironment() methods in theContext interface.

public interface Context {
...
public Object addToEnvironment(String propName, Object propVal)

throws NamingException;

public Object removeFromEnvironment(String propName)
throws NamingException;

}

These methods update the environment of this instance ofContext . An environment property
that is not relevant to the provider is silently ignored but maintained as part of the environment.
The updated environment affects this instance ofContext , and will be inherited by any new
child Context instances, but does not affect anyContext instances already in existence. A
lookup of the empty name on aContext will return a newContext instance with an environ-
ment inherited as with any other child.

Java Naming and Directory SPI The Initial Context

JavaSoft 10 12/1/97

3 The Initial Context

Since all JNDI methods are performed relative to a context, an application needs a starting con-
text in order to invoke JNDI methods. This starting context is referred to as theinitial context.
The bindings in the initial context are determined by policies set forth by the initial context ser-
vice provider, perhaps using standard policies for naming global and enterprise-wide
namespaces. For example, the initial context might contain a binding to the Internet DNS
namespace, a binding to the enterprise-wide namespace, and a binding to a personal directory
belonging to the user who is running the application.

An application obtains an initial context by making the following call:

Context ctx = new InitialContext();

An alternate constructor allows an environment to be passed as an argument. This allows the
application to pass in preferences or security information to be used in the construction of the
initial context.

Hashtable env = new Hashtable(5, 0.75); 1

env.put(“java.naming.security.principal”, “jsmith”);
env.put(“java.naming.security.credentials”, “xxxxxxx”);
Context ctx = new InitialContext(env);

Subsequent to getting an initial context, the application can invokeContext methods.

Object obj = ctx.lookup(“this/is/a/test”);

The InitialContext class selects an actual initial context implementation using a default al-
gorithm that can be overridden by installing aninitial context factory builder (described be-
low).

TheInitialDirContext is an extension ofInitialContext . It is used for performing direc-
tory operations using the initial context. The algorithms and policies described in this section
also apply toInitialDirContext . Places whereDirContext is required instead ofContext

have been noted.

3.1 Implementing An Initial Context

An initial context implements theContext orDirContext interface. Its implementation should
follow the same guidelines outlined in “Implementing the Context Interface” on page 2.

In addition to the implementation classes forContext and/orDirContext , the provider must
also supply an implementation forInitialContextFactory , which is responsible for gener-
ating instances of the initial context.InitialContextFactory contains a single method,ge-

tInitialContext() .

1. You can also use a subclass ofHashtable (e.g.Properties) for this.

Java Naming and Directory SPI The Initial Context

JavaSoft 11 12/1/97

public interface InitialContextFactory {
public Context getInitialContext(Hashtable env)

throws NamingException;
}

This method generates instances ofContext or DirContext that serve as initial contexts. The
implementation class forInitialContextFactory must be public and contain a publicnull

constructor. Appendix A contains an example of anInitialContextFactory .

3.2 Making An Initial Context Implementation Available to JNDI

There are three ways in which an initial context implementation is made available to JNDI:

• The java.naming.factory.initial environment or system property.

• URL Context Implementations.

• An initial context implementation factory.

3.2.1 The java.naming.factory.initial Property

The propertyjava.naming.factory.initial contains the fully-qualified class name of an
initial context factory. The class must implement theInitialContextFactory interface and
have a publicnull constructor. JNDI will load the initial context factory class and then invoke
getInitialContext() on it to obtain aContext orDirContext instance to be used as the ini-
tial context.

An application that wants to use this initial context must supply thejava.naming.facto-

ry.initial property either in the environment passed to theInitialContext or Ini-

tialDirContext constructors, or as one of the program’s system properties. If the property is
supplied as part of the environment, the system property is not consulted.

3.2.2 URL Context Implementations

If a URL string1 is passed to the initial context, it will be resolved using the corresponding URL
context implementation. This is independent of any initial context implementations obtained
using thejava.naming.factory.initial environment or system property.

The URL context implementation is obtained using an object factory for the URL scheme iden-
tified in the URL string. The factory’s class name is of the formurlSchemeURLContextFacto-

ry in the package specified using thejava.naming.factory.url.pkgs environment or
system property.java.naming.factory.url.pkgs contains a colon-separated list of package
prefixes. Each package prefix in this property is tried in the order specified to load the factory
class. If none of the prefixes work, the default package prefixcom.sun.jndi.url is tried. The
factory’s fully qualified class name is constructed using the following rule:

package prefix + “.” + URL scheme + “.” + class name

1. The mention of “URL” in this document refers to a URL string as defined by RFC 1738 and its related RFCs. It is
any string that conforms to the syntax described therein, and may not always have corresponding support in the
java.net.URL class or Web browsers. The URL string is either passed as theString name parameter, or as the first
component of theName parameter.

Java Naming and Directory SPI The Initial Context

JavaSoft 12 12/1/97

For example, if theurlScheme is “ldap” and java.naming.factory.url.pkgs contains
“com.widget:com.wiz.jndi ”, JNDI will attempt to locate the corresponding object factory
class by loading the following classes until one is successfully instantiated:

com.widget.ldap.ldapURLContextFactory
com.wiz.jndi.ldap.ldapURLContextFactory
com.sun.jndi.url.ldap.ldapURLContextFactory

The object factory class implements theObjectFactory interface (see “URL Context Factory”
on page 16) and has a publicnull constructor. It provides agetObjectInstance() method,
which will create instances ofContext or DirContext for the URL scheme. These instances
will then be used to carry out the originally intendedContext or DirContext operation on the
URL supplied to the initial context.

3.2.3 Initial Context Factory Builder

If an initial context factory builder has been installed, the application is effectively defining its
own policy of how to locate and construct initial context implementations. When a factory has
been installed, it is solely responsible for creating the initial context implementation. None of
the default policies (java.naming.factory.initial property or URL context implementa-
tions) normally used by JNDI are employed.

A service provider for an initial context factory builder must define a class that implements
InitialContextFactoryBuilder . This class’screateInitialContextFactory() meth-
od generates instances ofInitialContextFactory .

An application that wants to use this factory must first install it.

NamingManager.setInitialContextFactoryBuilder(factory);

3.3 Implementing a Subclass of InitialContext

When there is a need to provide an initial context that supports an interface that extends from
Context orDirContext , the service provider should supply a subclass ofInitialContext (or
InitialDirContext). To add support for URLs in the same wayInitialContext andIni-

tialDirContext do, the subclass would use the protected methods available inInitialCon-

text as follows.

For example, supposeXXXContext is a subinterface ofDirContext . Its initial context imple-
mentation would definegetURLOrDefaultInitXXXCtx() methods (for bothName andString

parameters) that retrieve the real initial context to use.

Java Naming and Directory SPI The Initial Context

JavaSoft 13 12/1/97

public class InitialXXXContext extends InitialDirContext {
...

protected XXXContext getURLOrDefaultInitXXXCtx(Name name)
throws NamingException {
Context answer = getURLOrDefaultInitCtx(name);
if (!(answer instanceof XXXContext)) {

throw new NoInitialContextException(“Not an XXXContext”);
}
return (XXXContext)answer;

}
// similar code for getURLOrDefaultInitXXXCtx(String name)

}

When providing implementations for the new methods in theXXXContext interface that accept
a name argument,getURLOrDefaultInitXXXCtx() is used in the following way.

public Object XXXMethod1(Name name, ...) throws NamingException {
return getURLOrDefaultInitXXXCtx(name).XXXMethod1(name, ...);

}

When providing implementations for the new methods in theXXXContext interface that do not
have a name argument, useInitialContext.getDefaultInitCtx() .

protected XXXContext getDefaultInitXXXCtx() throws NamingException {
Context answer = getDefaultInitCtx();
if (!(answer instanceof XXXContext)) {

throw new NoInitialContextException(“Not an XXXContext”);
}
return (XXXContext)answer;

}

public Object XXXMethod2(Args args) throws NamingException {
return getDefaultInitXXXCtx().XXXMethod2(args);

}

The implementation would also provide appropriate constructors for the class.

Client programs that use this new initial context would look as follows.

import com.widget.jndi.InitialXXXContext;
...
XXXContext ctx = new InitialXXXContext(env);
Object obj = ctx.lookup(name);
ctx.XXXMethod1(name, ...);

3.3.1 Using the SPI to get the Initial Context

The client application can bypass the use ofInitialContext and InitialDirContext by
calling javax.naming.spi.getInitialContext() directly to return an arbitrary subclass of
Context . This has the disadvantage of losing the URL support provided byInitialContext .
(The service provider can, of course, provide the URL support on its own.) This style of usage
may be suitable for a client application that sets its own initial context factory builder.

Java Naming and Directory SPI The Initial Context

JavaSoft 14 12/1/97

import javax.naming.spi.*;
NamingManager.setInitialContextFactoryBuilder(myBuilder);
Context ctx = NamingManager.getInitialContext(env);
...
Object obj = ctx.lookup(name);
(XXXContext)ctx.XXXMethod1(name,...);

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 15 12/1/97

4 Objects Bound in the Namespace

A natural way for a printer client to use the JNDI namespace is to look up a printer name in the
namespace and get back a printer object on which to perform printing methods.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

This is possible if the printer object is directly bound in the namespace. However, as mentioned
earlier, there are many directories and naming services in which names are not bound directly
to objects, but rather to information used to locate or communicate with the actual object. In
the printer example, perhaps what is bound in the namespace is the address of the printer server.
At the same time, we do not want the a directory or naming service implementation to know
explicitly about printer addresses and printer objects and how to transform one into the other.

JNDI addresses the different ways in which information about objects can be stored and the
desire to turn such information into Java objects applications can use via the use ofobject fac-
tories.

4.1 Object Factories

JNDI provides a generic way for creating objects (including instances ofContext) using infor-
mation stored in the namespace. That information may be of arbitrary type (Object). For ex-
ample it may be aReference , or a URL, or any other data required to create the object. Turning
such information stored in the namespace into an object is supported through the use ofobject
factories. An object factory is a class that implements theObjectFactory interface, which
contains a single method:

public interface ObjectFactory {
public Object getObjectInstance(Object refObj,

 Name name,
 Context nameCtx,

 Hashtable env)
throws Exception;

}

Given some reference information (refObj), optional information about the name of the object
and where it is bound, and optionally some additional environment information (for example,
some identity or authentication information about the user creating the object),getObjectIn-

stance() will create an instance of the object for which this factory is responsible. For exam-
ple, for a printer object factory,getObjectInstance() would return instances of printers. If
an object cannot be created using the arguments supplied,getObjectInstance() should re-
turn null . ThegetObjectInstance() method should only thrown an exception if no other
object factories should subsequently be tried. Consequently,getObjectInstance() should be
careful about runtime exceptions that might be thrown from its implementation.

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 16 12/1/97

4.1.1 Context Factory

A context factory is an object factory that creates instances ofContext . The implementation
of these contexts for a particular naming or directory service is referred to as aservice provider
or context implementation.

4.1.2 URL Context Factory

A URL context factory is a special kind of context factory. It follows these rules when imple-
mentingObjectFactory.getObjectInstance() .

• If refObj is null , create a context for resolving URLs of the scheme associated with
this factory. The resulting context is not tied to a specific URL. For example, invoking

getObjectInstance(null, null, null, env)

on an “ldap” URL context factory returns a context that can resolve LDAP URLs (e.g.
“ ldap://ldap.wiz.com/o=wiz,c=us ” or “ ldap://ldap.umich.edu/
o=umich,c=us ”, ...).

• If refObj is a URL string, create the object identified by the URL. For example,
invoking

getObjectInstance(“ldap://ldap.wiz.com/o=wiz,c=us”, null, null, env);

on an “ldap” URL context factory returns a context for resolving LDAP names (e.g.
“cn=Jane Smith ”) relative to the context “o=wiz,c=us ” on the LDAP server
ldap.wiz.com .

• If refObj is an array of URL strings, the assumption is that the URLs are equivalent in
terms of the context to which they refer. Verification of whether the URLs are, or need
to be, equivalent is up to the context factory. The order of the URLs in the array is not
significant. The object returned bygetObjectInstance() is the same as that for the
single URL case—it is an object (perhaps a context) named by the URLs.

URL context factories are used by the initial context when it is passed a URL to resolve. URL
context factories are also used for creating Java objects from URLs stored in the namespace
(see “URLs as Reference Information” on page 19).

4.1.3 Making Object Factories Available to JNDI

The methodNamingManager.getObjectInstance() is used to turn reference information
into Java objects.NamingManager.getObjectInstance() locates and instantiates an instance
of ObjectFactory and invokes thegetObjectInstance() method on the factory.

In addition to being a public method to be used by service providers to turn reference informa-
tion into Java objects “Java Object Support” on page 7),NamingManager.getObjectIn-

stance() is also used internally (for example, in the implementation ofgetURLContext() and
getContinuationContext()).

There are four ways in which object factories are made available to JNDI:

• Information inReference ,

• URLs as reference,

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 17 12/1/97

• Use of thejava.naming.factory.object system property,

• Installation of anobject factory builder.

4.2 References and Referenceable

JNDI defines aReference class to provide a uniform way of representing reference informa-
tion stored in the namespace. AReference contains a list of addresses and class information
about the object to which this reference refers. An object that has aReference implements the
Referenceable interface. TheReferenceable interface contains a single method for retriev-
ing the reference of the object.

public interface Referenceable {
public Reference getReference() throws NamingException;

}

4.2.1 Storing References in the Namespace

When binding aReferenceable object in the namespace, the information bound is theRef-

erence of the object. When the object is looked up, theReference is used to create an instance
of the corresponding object. Thebind() andlookup() operations are inverses of each other
with regard to how they treat references.

In the printer example, a particular implementation ofPrinter , sayBSDPrinter , might have
the following class declaration:

public class BSDPrinter implements Printer, Referenceable {
String serverName;

BSDPrinter(String srv) {
...

}
public void print(InputStream data) throws PrinterException {
}
public Reference getReference() throws NamingException {

return new Reference(“Printer”,
 new StringRefAddr(“bsd”, serverName));

}
}

When this object is bound in the namespace, the service provider usesgetReference() to re-
trieve the object’s reference, in this case its protocol type (“bsd ”) and server name (the instance
variableserverName), and stores this information in the namespace. When the reference is re-
trieved from the namespace, the object factory mechanism described in “Class information in
Reference” is used to turn the reference into an instance ofBSDPrinter .

It is not a requirement that all service providers useReference . A service provider may bind
other reference-like information in the namespace (such as a URL, or the serialized form of a
serializable object), and use that information to create corresponding objects to be returned to
applications.Reference was introduced so that different providers need not invent different
ways of achieving the same result.

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 18 12/1/97

4.2.2 Class information in Reference

A Reference contains methods for returning the class name and location of the object factory.
The following methods are found inReference .

public class Reference {
...
public String getClassName();
public String getFactoryClassName();
public String getFactoryClassLocation();

}

If the object is an instance ofReference or Referenceable , its corresponding object factory
can be located using information inReference . The getFactoryClassName() method re-
trieves the name of the factory class that implements theObjectFactory interface. This facto-
ry must implement theObjectFactory interface and have a publicnull constructor.
getFactoryClassLocation() retrieves the location of the class implementation for the facto-
ry. This will typically be a URL of the factory’s class file.

The object is created by invoking thegetObjectInstance() method on the object factory in-
stance with theReference and environment as arguments. This creates an instance of a class
identified bygetClassName() .

Note that all the classes necessary to instantiate the object returned to the application are made
available using mechanisms provided by JNDI. The application doesn’t have to install the
classes locally.

Figure 3: Example Using Reference to Get Back An Object From the Namespace

Returning to the printer example,BSDPrinter uses theReference class to store information
regarding how to construct instances ofBSDPrinter and address information for communicat-
ing with the print server. TheReference contains the class name of the object (“Printer”),
the class name of the printer object factory (“PrinterFactory ”) and a URL for loading the
factory’s class implementation. Using the factory class name and implementation location, the
provider first loads the implementation ofPrinterFactory and creates an instance of a

PrinterFactory

PrinterReference

namespace

application

lookup printer name

Printer object

bound in namespace

getObjectInstance()

1

2

3

4

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 19 12/1/97

PrinterFactory . The provider then invokesgetObjectInstance() on the factory to create
an instance ofPrinter using the address information in the reference. For example, one ad-
dress in the reference may have an address of type “bsd ” containing the print server’s host
name (“lobby-printserver ”). ThePrinterFactory uses the address type (“bsd ”) to decide
to create aBSDPrinter instance and passes the address contents (“lobby-printserver ”) to
its constructor. The resultingBSDPrinter object is returned as the result oflookup() .

When the application invokesprint() on theBSDPrinter instance returned bylookup() ,
the data is sent to the print server on the machine “lobby-printserver ” for printing. The ap-
plication need not know the details of theReference stored in the namespace, the protocol
used to perform the job, or whether theBSDPrinter class was defined locally or loaded over
the network. The transformation of the information stored in the underlying service into an ob-
ject that implements thePrinter interface is done transparently through the cooperation of the
service provider (which stores bindings of printer names to printer address information), the
printer service provider (which provides the JavaPrinterFactory andBSDPrinter classes),
and the JNDI SPI framework (which ties the two together to return an object that the applica-
tion can directly use).

4.3 URLs as Reference Information

When an object in the namespace is bound to a URL string, or an array of URL strings. the
object factory is identified using the same mechanism used to identify the factory when a URL
is passed to the initial context (see “URL Context Implementations” on page 11). If this mech-
anism does not successfully locate an object factory, thejava.naming.factory.object

property (described in the next section) is used.

For the printer example, instead of using aReference to represent a printer in the namespace,
a URL may be stored (perhaps something like “printer:bsd://lobby-printserver ”). The
NamingManager.getObjectInstance() method will look for and create the URL context fac-
tory classprinterURLContextFactory . If successful, naming manager passes the URL to the
factory to create aPrinter instance.

Note that this approach differs from theReference approach in that the classes for the URL
context factory (printerURLContextFactory) must be available to the application (perhaps
by appropriate setting of class paths). In theReference approach, the classes for the factory
are located dynamically.

4.4 Storing Serializable Objects

When an object being bound in the namespace isSerializable but notReferenceable , the
service provider should if possible store the serialized form of the object. When the object is
later looked up, the object should be deserialized and returned.

Note that for a service provider to store serialized objects it must be able to store binary data,
and it must not have a data size limit too small for the serialized objects in question. Not all
service providers meet these requirements. Note also that, as with the use of URLs for storing
reference information, the dynamic class-loading facility of the Reference mechanism cannot
be used. The required classes must be made available to the application by some other means
(such as the appropriate setting of class paths).

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 20 12/1/97

4.5 The java.naming.factory.object Property

In addition to extracting factory information fromReference s, or using URLs, factories may
be made available to JNDI with thejava.naming.factory.object property.

The propertyjava.naming.factory.object contains a colon-separated list of fully-qualified
class names of object factories. Each class must implement theObjectFactory interface and
have a publicnull constructor. For each class in the list, JNDI attempts to load and instantiate
the factory class, and to invoke theObjectFactory.getObjectInstance() method on it us-
ing the object and environment arguments supplied. If the creation is successful, the resulting
object is returned, otherwise, JNDI goes on to attempt the same procedure on the next class in
the list.

The java.naming.factory.object property is made available to an application either in the
environment property set passed to theInitialContext or InitialDirContext constructors,
or as one of the program’s system properties. If the property is supplied as part of the environ-
ment, the system property is not consulted.

Figure 4: Example using java.naming.factory.object to Get Back an Object from the Namespace

For the printer example, instead of using aReference to represent a printer in the namespace,
some other information is stored. When that information is later retrieved, the object factories
specifiedjava.naming.factory.object are tried in turn to attempt to turn that information
into aPrinter instance.

A service provider for such an object must do the following:

1. Define the class for the object (e.gBSDPrinter).

2. Define the class for reference information for the object. This is the object that will be
bound in the namespace. This need not beReference . It can be anything that will be
understood by its corresponding object factory (e.g. some string containing the server
name “printer type=bsd; host=lobby-printserver ”).

Object factories

information about printer

namespace

application

lookup printer name

in

Printer object

bound in namespace

getObjectInstance()

1

2

3

4
java.naming.factory.object

Java Naming and Directory SPI Objects Bound in the Namespace

JavaSoft 21 12/1/97

3. Define a factory class that implementsObjectFactory (e.g.PrinterFactory). This
class’sgetObjectInstance() method will create an instance of the class from step 1
(e.g. BSDPrinter) when given an instance of class from step 2 (e.g. “printer

type=bsd; host=lobby-printserver ”).

The service provider should automatically convert between the actual object (e.g.BSDPrinter)
and the reference information (step 2, e.g. “printer type=bsd; host=lobby-printserv-

er ”) when binding or looking up the object.

An application that wants to use a particular factory for generating objects must include the fac-
tory’s class name in itsjava.naming.factory.object environment or system property and
make the factory’s classes and object classes available.

4.6 Object Factory Builder

If an object factory builder has been installed, the application is effectively defining its own
policy of how to locate and construct object factories. When a builder has been installed, it is
solely responsible for creating object factories. None of the default policies (Reference , URL
string, orjava.naming.factory.object property) normally used by JNDI are employed.

Figure 5: Example using an Object Factory Builder to Get Back an Object from the Namespace

A service provider for an object factory builder must do the following:

1. Define object factories that implementObjectFactory .

2. Define a class that implementsObjectFactoryBuilder . This class’s
createObjectFactory() method will use the constructors for theObjectFactory

classes in step 1.

An application that wants to use this factory builder must first install it.

NamingManager.setObjectFactoryBuilder(builder);

PrinterFactory

information about printer

namespace

application

lookup printer name

Printer object

bound in namespace

Installed Object factory builder

4

1

2

3

Java Naming and Directory SPI Making Context Implementations Available to JNDI

JavaSoft 22 12/1/97

5 Making Context Implementations Available to JNDI

In general, the JNDI mechanisms for creating generic objects using object factories described
in “Object Factories” on page 15 also apply to how JNDI createsContext instances using con-
text factories. However, if there is just one provider (that obtained through the initial context),
and there is no need for that provider to use other providers, then the initial context is the sole
controller of how context implementations are located. (See service provider example in Ap-
pendix A). This section is only relevant for serving composite namespaces, in which multiple
providers are involved.

A service provider must define a class that implements theContext interface, and a class that
implements theObjectFactory interface for creating instances of thisContext class. A pro-
vider can use eitherReference s, URLs, or the other alternatives described in “Objects Bound
in the Namespace” on page 15 to create instances ofContext using object factories for their
Context classes. Usually, context implementations act as object factories forContext classes
(i.e. they implement theObjectFactory interface). In these factories,ObjectFactory.getO-

bjectInstance() returns instances ofContext (or DirContext). The provider must ensure
that the object factories are made known to JNDI either via the use ofReference , URLs, the
java.naming.factory.object property, or by installing its own object factory builder.

Java Naming and Directory SPI Overview of the Interface

JavaSoft 23 12/1/97

6 Overview of the Interface1

The JNDI SPI is contained in the packagejavax.naming.spi . The following sections provide
an overview of the SPI. For more details on the SPI, see the correspondingjavadoc.

6.1 NamingManager and DirectoryManager

The NamingManager class contains static methods that perform provider-related operations.
For example, it contains methods to create instances of objects usingReference , to obtain an
instance of the initial context using thejava.naming.factory.initial property, and to in-
stall ObjectFactoryBuilder and InitialContextFactoryBuilder . The DirectoryMan-

ager class provides similar static methods forDirContext related operations.

6.2 Federation Support

TheResolver interface defines a method for providers to implement that allows them to par-
ticipate in a federation for supporting extended interfaces toContext . See “Resolving Through
to Subinterfaces of Context” on page 3 for more details.

ResolveResult is the return value of callingResolver.resolveToClass() . It contains the
object to which resolution succeeded, and the remaining name yet to be resolved.

6.3 Object Factories

ObjectFactory is the interface for supporting creation of objects using information stored in
the namespace. See “Object Factories” on page 15 for more details.

ObjectFactoryBuilder is the interface for creating object factories. See “Object Factory
Builder” on page 21 for more details.

6.4 Initial Contexts

InitialContextFactory is the interface for creating an initial context instance. See “Imple-
menting An Initial Context” on page 10 for more details.

InitialContextFactoryBuilder is the interface for creatingInitialContextFactory in-
stances. See “Initial Context Factory Builder” on page 12 for more details.

1. See Appendix B for legend of class diagram.

java.lang.Object

NamingManager

DirectoryManager

ResolveResult

InitialContextFactory

InitialContextFactoryBuilder

ObjectFactory

ObjectFactoryBuilder

Resolver

Java Naming and Directory SPI Overview of the Interface

JavaSoft 24 12/1/97

Java Naming and Directory Interface

JavaSoft 25 12/1/97

 Appendix A: Service Provider Example

Java Naming and Directory Interface

JavaSoft 26 12/1/97

This appendix contains a simple service provider. It implements a flat namespace (with no
federation support). It shows how to produce a context implementation by providing all the
methods in theContext interface.

An instance of this context is bound directly as the initial context. This example provides the
correspondingInitialContextFactory definition.

Java Naming and Directory Interface

JavaSoft 27 12/1/97

A.1 Simple Flat Context

A.1.1 Context Implementation

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 */
package ctxegs.flat;

import javax.naming.*;
import java.util.*;

/**
 * A sample service provider that implements a flat namespace in memory.
 */

class FlatCtx implements Context {
 Hashtable myEnv;
 private Hashtable bindings = new Hashtable(11);
 static NameParser myParser = new FlatNameParser();

 FlatCtx(Hashtable environment) {
 myEnv = (environment != null)

 ? (Hashtable)(environment.clone())
 : null;

 }

 public Object lookup(String name) throws NamingException {
 if (name.equals(““)) {
 // Asking to look up this context itself. Create and return
 // a new instance with its own independent environment.
 return (new FlatCtx(myEnv));
 }
 Object answer = bindings.get(name);
 if (answer == null) {
 throw new NameNotFoundException(name + “ not found”);
 }
 return answer;
 }

 public Object lookup(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return lookup(name.toString());
 }

 public void bind(String name, Object obj) throws NamingException {
 if (name.equals(““)) {
 throw new InvalidNameException(“Cannot bind empty name”);
 }
 if (bindings.get(name) != null) {
 throw new NameAlreadyBoundException(
 “Use rebind to override”);
 }

Java Naming and Directory Interface

JavaSoft 28 12/1/97

 bindings.put(name, obj);
 }

 public void bind(Name name, Object obj) throws NamingException {
 // Flat namespace; no federation; just call string version
 bind(name.toString(), obj);
 }

 public void rebind(String name, Object obj) throws NamingException {
 if (name.equals(““)) {
 throw new InvalidNameException(“Cannot bind empty name”);
 }
 bindings.put(name, obj);
 }

 public void rebind(Name name, Object obj) throws NamingException {
 // Flat namespace; no federation; just call string version
 rebind(name.toString(), obj);
 }

 public void unbind(String name) throws NamingException {
 if (name.equals(““)) {
 throw new InvalidNameException(“Cannot unbind empty name”);
 }
 bindings.remove(name);
 }

 public void unbind(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 unbind(name.toString());
 }

 public void rename(String oldname, String newname)
 throws NamingException {
 if (oldname.equals(““) || newname.equals(““)) {
 throw new InvalidNameException(“Cannot rename empty name”);
 }

 // Check if new name exists
 if (bindings.get(newname) != null) {
 throw new NameAlreadyBoundException(newname +
 “ is already bound”);
 }

 // Check if old name is bound
 Object oldBinding = bindings.remove(oldname);
 if (oldBinding == null) {
 throw new NameNotFoundException(oldname + “ not bound”);
 }

 bindings.put(newname, oldBinding);
 }

 public void rename(Name oldname, Name newname)

Java Naming and Directory Interface

JavaSoft 29 12/1/97

 throws NamingException {
 // Flat namespace; no federation; just call string version
 rename(oldname.toString(), newname.toString());
 }

 public NamingEnumeration list(String name)
 throws NamingException {
 if (name.equals(““)) {
 // listing this context
 return new FlatNames(bindings.keys());
 }

 // Perhaps ‘name’ names a context
 Object target = lookup(name);
 if (target instanceof Context) {
 return ((Context)target).list(““);
 }
 throw new NotContextException(name + “ cannot be listed”);
 }

 public NamingEnumeration list(Name name)
 throws NamingException {
 // Flat namespace; no federation; just call string version
 return list(name.toString());
 }

 public NamingEnumeration listBindings(String name)
 throws NamingException {
 if (name.equals(““)) {
 // listing this context
 return new FlatBindings(bindings.keys());
 }

 // Perhaps ‘name’ names a context
 Object target = lookup(name);
 if (target instanceof Context) {
 return ((Context)target).listBindings(““);
 }
 throw new NotContextException(name + “ cannot be listed”);
 }

 public NamingEnumeration listBindings(Name name)
 throws NamingException {
 // Flat namespace; no federation; just call string version
 return listBindings(name.toString());
 }

 public void destroySubcontext(String name) throws NamingException {
 throw new OperationNotSupportedException(
 “FlatCtx does not support subcontexts”);
 }

 public void destroySubcontext(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version

Java Naming and Directory Interface

JavaSoft 30 12/1/97

 destroySubcontext(name.toString());
 }

 public Context createSubcontext(String name)
 throws NamingException {
 throw new OperationNotSupportedException(
 “FlatCtx does not support subcontexts”);
 }

 public Context createSubcontext(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return createSubcontext(name.toString());
 }

 public Object lookupLink(String name) throws NamingException {
 // This flat context does not treat links specially
 return lookup(name);
 }

 public Object lookupLink(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return lookupLink(name.toString());
 }

 public NameParser getNameParser(String name)
 throws NamingException {
 return myParser;
 }

 public NameParser getNameParser(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return getNameParser(name.toString());
 }

 public String composeName(String name, String prefix)
 throws NamingException {
 Name result = composeName(new CompositeName(name),
 new CompositeName(prefix));
 return result.toString();
 }

 public Name composeName(Name name, Name prefix)
 throws NamingException {
 Name result = (Name)(prefix.clone());
 result.addAll(name);
 return result;
 }

 public Object addToEnvironment(String propName, Object propVal)
 throws NamingException {
 if (myEnv == null) {
 myEnv = new Hashtable(5, 0.75f);

}
return myEnv.put(propName, propVal);

Java Naming and Directory Interface

JavaSoft 31 12/1/97

 }

 public Object removeFromEnvironment(String propName)
 throws NamingException {
 if (myEnv == null)
 return null;

return myEnv.remove(propName);
 }

 public Hashtable getEnvironment() throws NamingException {
 return myEnv;
 }

 public void close() throws NamingException {
myEnv = null;
bindings = null;

 }

 // Class for enumerating name/class pairs
 class FlatNames implements NamingEnumeration {
 Enumeration names;

 FlatNames (Enumeration names) {
 this.names = names;
 }

 public boolean hasMoreElements() {
 return names.hasMoreElements();
 }

 public boolean hasMore() throws NamingException {
 return hasMoreElements();
 }

 public Object nextElement() {
 String name = (String)names.nextElement();
 String className = bindings.get(name).getClass().getName();
 return new NameClassPair(name, className);
 }

 public Object next() throws NamingException {
 return nextElement();
 }
 }

 // Class for enumerating bindings
 class FlatBindings implements NamingEnumeration {
 Enumeration names;

 FlatBindings (Enumeration names) {
 this.names = names;
 }

Java Naming and Directory Interface

JavaSoft 32 12/1/97

 public boolean hasMoreElements() {
 return names.hasMoreElements();
 }

 public boolean hasMore() throws NamingException {
 return hasMoreElements();
 }

 public Object nextElement() {
 String name = (String)names.nextElement();
 return new Binding(name, bindings.get(name));
 }

 public Object next() throws NamingException {
 return nextElement();
 }
 }
};

Java Naming and Directory Interface

JavaSoft 33 12/1/97

A.1.2 Name Parser

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 */
package ctxegs.flat;

import java.naming.NameParser;
import java.naming.Name;
import java.naming.CompoundName;
import java.naming.NamingException;
import java.util.Properties;

class FlatNameParser implements NameParser {

 static Properties syntax = new Properties();
 static {
 syntax.put(“jndi.syntax.direction”, “flat”);
 syntax.put(“jndi.syntax.ignorecase”, “false”);
 }
 public Name parse(String name) throws NamingException {
 return new CompoundName(name, syntax);
 }
}

A.1.3 Initial Context Factory

/*
 * Copyright (c) 1997. Sun Microsystems. All rights reserved.
 */
package ctxegs.flat;

import java.util.Hashtable;
import java.naming.Context;
import java.naming.spi.InitialContextFactory;

public class FlatInitCtxFactory implements InitialContextFactory {

 public Context getInitialContext(Hashtable env) {
 return new FlatCtx(env);
 }
}

Java Naming and Directory Interface

JavaSoft 34 12/1/97

Java Naming and Directory Interface

JavaSoft 35 12/1/97

 Appendix B: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle
2. The class: A rectangle
3. The abstract class: A rectangle with an empty dot
4. The final class: A rectangle with a black dot
5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded grey (this is
not applicable for package class diagrams). A solid line representsextends, while a dotted line representsimplements.

java.lang.Object

MenuComponent

MenuItem

CheckboxMenuItem

Menu

ItemSelectable

Interface

Abstract class

The current class

Class with subclasses

implements

extends

Class from
another package

Java Naming and Directory Interface

JavaSoft 36 12/1/97

Java Naming and Directory Interface

JavaSoft 37 12/1/97

 Appendix C: JNDI Change History

1.1Beta1: JNDI Changes Since 1.0Licensee Release

Package Name Change

JNDI is being packaged as a Java 1.1-compatible Standard Extension. The JNDI packages have been renamed to use the
“javax” prefix, following the convention for Java Standard Extensions. The new package names are:javax.naming ,
javax.naming.directory , andjavax.naming.spi .

General Changes

• Property names have been renamed following the convention used by the JDK. They have a “java.naming” prefix. See
Appendix A ofJNDI API document for details on the new names.

• Make java.naming.provider.url a system property in addition to being available as an environment property.
• Replaced use ofProperties with Hashtable (Properties ’ superclass) for the environment properties/settings so

that service providers and applications can completely enumerate its contents.Properties can still be passed as argu-
ments and returned as values whenHashtable is called for. But declaring the methods to useHashtable makes clear
the fact that nestedProperties are not examined for the operation at hand.

API-related Changes

As most of these changes are renames, the 1.1Beta1 release of the code includes a Java ClassRenamer1 program that assists
you with the renames. See the instructions for the release for details.
• AddedContext.close() to allow applications to release resources immediately.
• AddedInterruptedNamingException to indicate a naming operation has been interrupted.
• Class renames:DSContext ->DirContext , InitialDSContext ->InitialDirContext ,

AttributeSet ->Attributes , InvalidAttributeSetException ->InvalidAttributesException ,
SearchConstraints ->SearchControls, InvalidSearchConstraintsException->Invalid-
SearchControlsException.

• MakeAttributes ’ methods look likeMap’s2, Attribute ’s methods look likeSet ’s, andName, CompoundName,
CompositeName , andReference ’s methods look likeList ’s.

• Added protectedAttribute.Attribute() constructor so that subclasses can avoid allocatingVector .
• Added constructors toAttributes that accept an attribute.
• Addedthrows NamingException clause toAttribute ’s schema methods.
• RenamedDirContext.DELETE_ATTRIBUTE ->DirContext.REMOVE_ATTRIBUTE .
• ReplacedModificationEnumeration with ModificationItem[] .
• ReplacedRefAddrEnumeration andStringEnumeration with Enumeration .
• ReplacedAttributeEnumeration , NameClassEnumeration , BindingEnumeration , aandSearchEnu-

meration with NamingEnumeration to allow generic means of doing JNDI enumerations.
• Attribute.getAll() returnsNamingEnumeration instead ofEnumeration .
• Link.getLinkName() returnsString instead ofName.
• BinaryRefAddr.buf andStringRefAddr.contents made private. DeletedBinary.getAddressBy-

tes() , StringRefAddr.getAddressString() , BinaryRefAddr.size() .
• RenamedRefAddr.getAddressContents() ->getContent() .
• RemovedDSException , re-parented exceptions to be subclass ofNamingException
• Removed most constructors fromNamingException and its subclasses. Each has two constructors: one that accepts an

explanation and a public constructor that takes no parameters.
• RemovedName.toString() , equals() , hashCode() as these are already defined byObject .
• Constructors for abstract classesRefAddr andReferralException are now protected.

1. Thanks to the Swing team for use and distribution of this program.
2. See http://java.sun.com/products/jdk/preview/docs/guide/collections/ for information onMap, Set andList .

Java Naming and Directory Interface

JavaSoft 38 12/1/97

SPI-related Changes

• NamingManager.getObjectInstance() andObjectFactory.getObjectInstance() allow the caller
to supply two optional parameters: a name and a context. The name is the name of the object resolved relative to the con-
text supplied. An object factory can make use of this information to gather further information about the object to create.
See the corresponding javadoc for these methods for details. Corresponding fields and accessor methods were added to
CannotProceedException so that this information, if supplied, can be propagated.

• Constants used inNamingManager for property names removed:ObjectFactoryProperty, InitialCon-
textFactoryProperty , PkgPathProperty . These were used for internal development. Programs should use the
appropriate strings instead.

• NamingManager.getObjectInstance() returns original input if it cannot create a factory using the reference of
the object (it used to returnnull).

• InitialContext constructor that takes no parameters callsNamingManager.getInitialContext() with a
null environment instead of empty environment.

1.0Licensee Release: JNDI Changes Since 1.0Beta1

Package Name Change

To allow this release to work in all Java 1.1 systems, the JNDI classes have been temporarily renamed from thejava.nam-
ing hierarchy tocom.sun.java.naming .

API-related Changes

• SearchConstraints now implementsjava.io.Serializable .
• AddedReferralException.skipReferrals() to allow application to skip individual referrals.
• Added constructor toNoInitialContextException that accepts an explanation string.
• AddedSchemaViolationException for reporting schema-related problems.
• Renamedjava.naming.directory.SearchTimeLimitExceededException to java.naming.Time-

LimitExceededException so that it can be used by thejava.naming package. Addedjava.naming.Limi-
tExceededException , which is the super class ofTimeLimitExceededException and
SizeLimitExceededException (new as well).

• To assist in debugging and displaying classes, addedAttributeSet.toString() , Binding.toString() ,
SearchResult.toString() .

• Clarified semantics of the overloaded form ofsearch() that accepts a matching attribute set (AttributeSet). If the
matching attribute set isnull or empty, return all the objects in the target context.

• AttributeSet now implementsCloneable , and has aclone() method.

SPI-related Changes

• Added “set” methods toNameClassPair , Binding , andSearchResult classes and made the protected fields pri-
vate. This enables service providers to update the fields in these classes without subclassing.

• Added a constructor toNameClassPair , Binding , and SearchResult that accepts a “relative” parameter, and
isRelative() andsetRelative() methods. This allows service providers to return names that are not relative to
the target context of the search. Non-relative names are named using URL strings.

• Contract betweenNamingManager.getObjectInstance() andObjectFactory is clarified. An object factory
returnsnull if it cannot create the object; it only throws an exception (which is passed up to the caller ofNamingMan-
ager.getObjectInstance()) if no other object factories should be tried.

• ReplacedResolver.resolvePenultimate() with Resolver.resolveToClass() . This allows more effi-
cient implementation of service providers by allowing the resolution to stop at the first context that exports a target class,
rather than requiring resolution to proceed to the penultimate context. The final service provider in a chain of federated
naming systems no longer needs to implementResolver ; only the intermediate providers.must do so.

• RemovedNotDSContextException . Service providers should useNotContextException with the target class
name in the explanation to indicate that a particular subclass ofContext is required but not found.

• The default package prefix for loading URL context factories has changed from “sun.jndi.url” to “com.sun.jndi.url”
because of package renaming.

Java Naming and Directory Interface

JavaSoft 39 12/1/97

Document Version Numbers Reset

The earlier versions of the JNDI documents were labeled as versions 1.0, 1.1. and 1.2. They should have been “Early Access”,
“Beta1” and so on, to match the code releases.

1.0Beta1: JNDI Changes Since 1.0Early Access

API-related Changes

• Addedjava.naming.ReferralException to support client-side referrals. This abstract class is used to represent
a referral exception, such as that available in LDAP v3. A service provider defines a subclass ofReferralException
to handle its own style of referrals.

• AddedcompareTo() to Name (and related classesCompositeName , CompoundName).

public int compareTo(Object obj);

This method compares thisName with the specifiedObject for order. It returns a negative integer, zero, or a positive
integer as thisName is less than, equal to, or greater than the givenObject . This method is useful for sorting a list of
names.

• Added ‘throws NamingException ’ to Referenceable.getReference() so that the implementor of
getReference() can throw an exception if it encounters one.

public Reference getReference() throws NamingException;

• AttributeSet was originally case-sensitive. That is, the case of an attribute identifier was considered when retrieving
or adding an attribute to the set. To better support service providers that support case-insensitive attribute identifiers, an
AttributeSet may now be made case-insensitive. This change involved adding a new constructor toAttribute-
Set and a new method for interrogating an attribute set about its handling of case.

public AttributeSet(boolean caseIgnore);

public boolean isCaseIgnored();

• Context.setEnvironment() was insufficient to allow both addition and removal of environment properties. The
change is to replacesetEnvironment() with addToEnvironment() andremoveFromEnvironment() .

public Properties addToEnvironment(Properties additions) throws NamingException;

public Properties removeFromEnvironment(Properties deletions) throws
NamingException;

• AddedhasMore() to BindingEnumeration , NameClassEnumeration andSearchEnumeration so that a
service provider can throw an exception when this query fails for some unexpected reason.Enumeration.has-
MoreElements() cannot throw exceptions. The workaround is forhasMoreElements() to returntrue and save
the exception until the program callsnext() . hasMore() allows a provider to indicate to the caller that it has encoun-
tered an exception while determining whether there are more elements. The caller that wants to be notified of exceptions
can usehasMore() instead ofhasMoreElements() .

public boolean hasMore() throws NamingException;

• Added a new constructor toOperationNotSupportedException that accepts an explanation message as argu-
ment. This avoids the provider having to use the two steps of creating an emptyOperationNotSupportedExcep-
tion and then setting the explanation.

• AddedcomposeName() methods toContext class. These may be used to keep track of the full name of an object as
name resolution proceeds from context to context.

Java Naming and Directory Interface

JavaSoft 40 12/1/97

• Removed extraneous parameter inNamingException.getRootCause() .

SPI-related Changes

• Clarified how URL context factories and contexts are located and created. Eliminated the ‘String url ’ argument from
NamingManager.getURLContext() and clarified its semantics.
getURLContext(String scheme, Properties env) now returns a context for resolving URLs with scheme
id scheme . It is not tied to any specific URLs, only the scheme id. SeeJNDI SPI document andNamingMan-
ager.getURLContext() for details.

• Clarified howNamingManager.getObjectInstance() treats URLs. Formerly, it only treatedReferences and
Referenceables specially. It now treats URLs specially as well. You can now callgetObjectInstance() with a
URL string or an array of URL strings and get back an object identified by the URL. SeeJNDI SPI document and
NamingManager.getObjectInstance() for details.

• Placed additional requirements on URL context factories on how to treat its arguments so that all URL context factories
behave consistently. SeeJNDI SPI document andObjectFactory.getObjectInstance() for details.

• NamingManager.getContinuationContext() andDirectoryManager.getContinuationDSCon-
text() accept as an argumentCannotProceedException instead of a resolved object. This allows information
required to create a continuation context to be passed using one argument and accommodates a common programming
scenario of service providers usingCannotProceedException to indicate the state of the operation.

• Added a ‘remaining newname’ part toCannotProceedException so that information required to continue a
rename() can be represented, and an environment part for storing and retrieving the environment to use when resolution
continues..

System Properties

• Two new system properties are introduced.

• jndi.urlfactory.pkgs : Specifies package prefixes to use when loading URL context
factories. SeeNamingManager.getURLContext() .

• jndi.dns.url : Specifies DNS service location when using DNS names in “jndi”
URLs (e.g “jndi://dnsname/... ”).

These can also be passed as environment properties to theInitialContext constructor.

Environment Properties

• jndi.service.host andjndi.service.port have been replaced by the more generaljndi.service.url .
jndi.service.url specifies the location information for configuring a context.
Context service provider are encouraged to use this new environment property. They are still free to use additional envi-
ronment properties as needed for their provider.

• Addedjndi.service.followReferrals : Specifies that referrals encountered by the service provider are to be
followed automatically.

1.0Early Access: JNDI Changes Since Initial Documentation Release

General Changes

• Renamed packages
jndi.ns -> java.naming

jndi.ds -> java.naming.directory

jndi.spi -> java.naming.spi

Java Naming and Directory Interface

JavaSoft 41 12/1/97

• Added implementsjava.io.Serializable to the following classes and interfaces:
Name
NameClassPair
RefAddr
Reference
Attribute
AttributeSet
ModificationItem
ModificationEnumeration
SearchConstraints

• Renamed the “count” methods to be more descriptive.
Reference.count() -> Reference.getAddressCount()
Name.count() -> Name.getComponentCount()

[same for CompoundName and CompositeName]
Attribute.count() -> Attribute.getValueCount()
AttributeSet.count() -> AttributeSet.getAttributeCount()
ModificationEnumeration.count() ->

ModificationEnumeration.getModificationItemCount()
• Renamed methods with ‘SubContext ’ to ‘Subcontext ’. The new method names are nowContext.createSub-

context() , Context.destroySubcontext() , andDSContext.createSubcontext() .

Name-related Changes

• NameParser is now an interface instead of abstract class. None of its methods contain any implementation so it is more
flexible for it to be an interface. Removed thegetNamingConvention() method fromNameParser .

• Added class hierarchy toNamingException for security-related exceptions.
NamingException

NamingSecurityException

NoPermissionException

AuthenticationException

AuthenticationNotSupportedException

• Addedthrows IllegalNameException to name-manipulation methods so that they have a way of indicating
error. This applies to theName interface, theCompositeName andCompoundName classes.

prependName()
appendName()
insertName()
prependComponent()
appendComponent()
insertComponent()
deleteComponent()

• The following constructors throwIllegalNameException instead ofNamingException
CompositeName()
CompoundName()

DSContext-related Changes:

• Dropped ‘WithAttributes ’ suffix from bindWithAttributes(), rebindWithAttributes(), and
createSubContextWithAttributes() . They are now simplyDSContext.bind(), DSCon-
text.rebind(), andDSContext.createSubcontext(), respectively.

• RemovedDSContext.SearchFilter class and replaced two existingDSContext.Search() methods:
public SearchEnumeration search(String name, String filterExpr,

Object[] filterArgs, SearchConstraints constraints);

Java Naming and Directory Interface

JavaSoft 42 12/1/97

public SearchEnumeration search(Name name, String filterExpr,

Object[] filterArgs, SearchConstraints constraints);

wherefilterExpr contains ‘{n} ’, n is an integer and denotes the n’th element infilterArgs

to substitute in the expression. The reason for this change is thatSearchFilter had limited
capabilities and a full class for it was not justified. These changes make the syntax for substi-
tution of variables within an expression consistent with the formatting methods injava.text .

• RenamedAttributeSet.modify() to AttributeSet.replace() for consistent usage of ‘replace’ with
Attribute.replaceValue() andDSContext.REPLACE_ATTRIBUTE .

• Changes toAttribute class:

• AddedAttribute.contains() for testing whether an attribute contains a specified
value.

• Attribute.add() throws AttributeInUseException instead of the more general
NamingException .

• Schema methods returnnull by default. Removed protected variablessyntax and
attr_defn .

• AddedInvalidAttributeSetException to deal with the case of incorrectly or insufficiently specified attribute
sets.

SPI-related Changes

• Renamed some class and interface names injava.naming.spi for consistency
InitialContextImpl -> InitialContextFactory

InitialContextImplFactory -> InitialContextFactoryBuilder

setInitialContextImplFactory() -> setInitialContextFactoryBuilder()

hasInitialContextImplFactory() -> hasInitialContextFactoryBuilder()

InitialContextImplFactory.createInitialContextImpl() ->

InitialContextFactoryBuilder.createInitialContextFactory()

JNDIManager -> NamingManager

JNDIDSManager -> DirectoryManager

• RenamedcreateObject() to getObjectInstance() so that it is consistent with similar usage in other Java
packages.

JNDIManager.createObject() -> NamingManager.getObjectInstance()

ObjectFactory.createObject() -> ObjectFactory.getObjectInstance().

• Renamed property jndi.initialContext to jndi.initialContextFactory for consistency with method
names.

• The jndi.initialContextFactory property now contains a single class name instead of a colon-separated list
because it does not make sense to have more than one class.

• To provide more flexibility and to avoidSecurityManager -related problems in some configurations, the system prop-
ertiesjndi.initialContextFactory andjndi.objectFactories can be passed as part of the environment
properties passed to the constructors forInitialContext andInitialDSContext , andObjectFac-
tory.getObjectInstance() .

• Some protected methods inNamingManager andDirectoryManager are now private. This provides more flexibil-
ity in subsequent changes to these classes without exposing details of the implementation

Java Naming and Directory Interface

JavaSoft 43 12/1/97

