
Please send technical comments to jndi@java.sun.com.

Please send product and business questions to jndi-business@java.sun.com.

Sun Microsystems, Inc.

Java Naming and Directory Interface
Service Provider Interface

(JNDI SPI)

 JNDI 1.2

July 14, 1999

Java Naming and Directory SPI

t forth
2.227-

n Micro-
Copyright © 1999 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject to the restrictions as se
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause as DFARS 25
7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and JavaSoft, are trademarks or registered trademarks of Su
systems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABIL-
ITY, FITNESS FOR A PARTICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.,
MAY MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Sun Microsystems, Inc. ii 7/14/99

Java Naming and Directory SPI
Contents

1 Introduction . 1

1.1 Document Overview . 1
1.2 Interface Overview . 2

1.2.1 NamingManager and DirectoryManager. 2
1.2.2 Initial Contexts. 2
1.2.3 Object Factories . 2
1.2.4 State Factories . 2
1.2.5 Federation Support. 3

2 Building a Context Implementation. 4

2.1 Ownership of Parameters . 4
2.2 Reentrancy . 4
2.3 Basic Support—Implementing the Context Interface(s) 4
2.4 Object Support . 5

2.4.1 Reading an Object . 5
2.4.2 Storing an Object . 7

2.5 Federation Support . 9
2.5.1 Names . 9
2.5.2 Resolving Through a Context . 9
2.5.3 Resolving Through to Subinterfaces of Context . 10
2.5.4 Naming System Boundaries . 10
2.5.5 Continuing an Operation in a Federation. 11
2.5.6 “Dynamic” Location of Next Naming System . 12
2.5.7 More about CannotProceedException . 13
2.5.8 Contextual Information . 13

2.6 Referral Support . 14
2.7 Schema Support . 15
2.8 Event Support . 16
2.9 Context Environment Support . 17

2.9.1 Property Naming Convention . 17
2.9.2 Initializing a Context’s Environment. 17
2.9.3 Inheritance . 17
2.9.4 Updates to the Environment . 18
2.9.5 Provider Resource Files. 18

2.10 Connection Management . 19

3 The Initial Context . 20

3.1 The Initial Context Factory . 20
3.1.1 Exceptions . 21

3.2 URL Support . 21
3.2.1 URL Context . 21
3.2.2 URL Context Factory . 22
3.2.3 Service Provider’s Responsibility . 22

3.3 Overriding the Default Behavior . 23
3.3.1 Removing URL Support . 23
3.3.2 Removing All Policy . 23

3.4 Implementing a Subclass of InitialContext . 23
Sun Microsystems, Inc. iii 7/14/99

Java Naming and Directory SPI
3.4.1 URL Support . 24
3.4.2 New Method Support. 24
3.4.3 Constructors. 24

4 Customizing A Context Implementation . 26

4.1 Reading Objects: Object Factories . 26
4.1.1 Handling Structured References . 27
4.1.2 Handling URL References. 28
4.1.3 Handling Arbitrary References: The java.naming.factory.object Property. 29
4.1.4 Overriding the Default Behavior . 30
4.1.5 Context Factory . 30
4.1.6 URL Context Factory . 31

4.2 Storing Objects: State Factories . 31
4.2.1 Input/Output Options . 32
4.2.2 Locating State Factories: The java.naming.factory.state Property 32

4.3 Narrowing LDAP v3 Controls: Response Control Factories 33
4.3.1 LocatingResponseControlFactories:Thejava.naming.factory.controlProperty

34
4.4 Ownership of Parameters . 35
4.5 Reentrancy . 35

 Appendix A: Service Provider Example . 37

 Appendix B: Legend for Class Diagram . 47

 Appendix C: JNDI Change History . 49
Sun Microsystems, Inc. iv 7/14/99

Java Naming and Directory SPI Introduction

irec-
essi-

ether
multi-
r in or-
vider

ild ser-

those

vider
e

the
tation

to ac-
n can
tory.

ent the
e im-

ibed in
1 Introduction

The JNDI SPI provides the means by which developers can write different naming and d
tory service providersand make them available so that the corresponding services are acc
ble from applications that use the JNDI API. A service provider is a set of modules that tog
satisfy JNDI API requests. In addition, because JNDI allows the use of names that span
ple namespaces, one service provider implementation may need to interact with anothe
der to complete an operation. The SPI provides methods that allow different pro
implementations to cooperate to complete client JNDI operations.

This document describes the components of the SPI and explains how developers can bu
vice providers for JNDI. It is assumed that the reader is familiar with the contents of theJNDI
API document.

All service provider developers should read the “Security Considerations” section of theJNDI
API document. It contains important issues that all developers using JNDI, especially
writing service providers, should consider.

1.1 Document Overview

There are several types of implementations that sit beneath the JNDI API. A service pro
contains at a minimum a context implementation. A context implementation implements th
Context interface or any of its subinterfaces, such asDirContext , EventContext , or Ldap-

Context . The complexity of the implementation depends primarily on the complexity of
underlying service, and secondarily on the number of JNDI features that the implemen
supports. Chapter 2 describes the details of building a context implementation.

A context implementation can be accessed in different ways. The most common way is
cess it from the initial context. Chapter 3 describes two ways that a context implementatio
be accessed from the initial context: via an initial context factory and a URL context fac

The JNDI architecture defines components/implementations that can be used to augm
behavior of context implementations. This allows users and applications to customize th
plementation. These components are supported throughfactories. JNDI defines three types of
factories and provides SPI methods that make use of them. These factories are descr
Chapter 4.

• Object factories—For transforming data stored in naming/directory services into Java
types more natural to the Java application.

• State factories—For transforming objects of Java types natural to the program into
formats suitable for storage into naming/directory services.

• Response control factories—For narrowing LDAP v3 response controls received from
LDAP servers into more user-friendly types.
Sun Microsystems, Inc. 1 7/14/99

Java Naming and Directory SPI Introduction

ions.

tion

d in

for

ort-
1.2 Interface1 Overview

The JNDI SPI is contained in the packagejavax.naming.spi . The following sections provide
an overview of the SPI. For more details on the SPI, see the correspondingjavadoc.

1.2.1 NamingManager and DirectoryManager

The NamingManager class contains static methods that perform provider-related operat
For example, it contains methods to create instances of objects usingReference , to obtain an
instance of the initial context using thejava.naming.factory.initial property, and to in-
stall ObjectFactoryBuilder and InitialContextFactoryBuilder . The DirectoryMan-

ager class provides similar static methods forDirContext related operations.

1.2.2 Initial Contexts

InitialContextFactory is the interface for creating an initial context instance. See Sec
3.1 for more details.

InitialContextFactoryBuilder is the interface for creatingInitialContextFactory in-
stances. See Section 3.3 for more details.

1.2.3 Object Factories

ObjectFactory is the interface for supporting creation of objects using information store
the namespace.DirObjectFactory is a subinterface ofObjectFactory for use by context im-
plementations that implement theDirContext interface. See Section 4.1 for more details.

ObjectFactoryBuilder is the interface for creating object factories. See Section 4.1.4
more details.

1.2.4 State Factories

StateFactory is the interface for supporting converting objects into storable formats supp
ed by the naming/directory service.DirStateFactory is a subinterface ofStateFactory for
use by context implementations that implement theDirContext interface.DirStateFacto-

1. See Appendix B for legend of class diagram.

java.lang.Object

NamingManager

DirectoryManager

ResolveResult

ObjectFactoryBuilder

InitialContextFactoryBuilder

ObjectFactory

java.io.Serializable

Resolver

InitialContextFactory

StateFactory

DirStateFactory

DirObjectFactory
Sun Microsystems, Inc. 2 7/14/99

Java Naming and Directory SPI Introduction

par-
ry.Result is a class for holding a pair ofjava.lang.Object andAttributes that is returned
by DirStateFactory.getStateToBind() . See Section 4.2 for more details.

1.2.5 Federation Support

TheResolver interface defines a method for providers to implement that allows them to
ticipate in a federation for supporting extended interfaces toContext . See “Resolving Through
to Subinterfaces of Context” on page 10 for more details.

ResolveResult is the return value of callingResolver.resolveToClass() . It contains the
object to which resolution succeeded, and the remaining name yet to be resolved.
Sun Microsystems, Inc. 3 7/14/99

Java Naming and Directory SPI Building a Context Implementation

ts the

e caller
her-
du-

e the
intain

ered to
or if

text in-
ry lock-

hat is,
t need
me re-
threads
oniza-

red to
or if

er as
pty

f an
text.
2 Building a Context Implementation

One of the basic tasks in building a service provider is to define a class that implemen
Context interface or any of its subinterfaces. This class is called acontext implementation. The
following guidelines should be used for developing a context implementation.

2.1 Ownership of Parameters

In general, any object passed as a parameter to methods in theContext interface (or subinter-
faces) andNamingManager /DirectoryManager utility methods is owned by the caller. In
many cases, the parameter eventually reaches a context implementation. Because th
owns the object, the context implementation is prohibited from modifying the object. Furt
more, the context implementation is allowed to maintain a pointer to the object only for the
ration of the operation and not beyond. If a context implementation needs to sav
information contained in a parameter beyond the duration of the operation, it should ma
its own copy.

For purposes of parameter ownership, an operation on a context instance is not consid
have completed while any referrals generated by that operation are still being followed,
the operation returns aNamingEnumeration , while the enumeration is still in use.

2.2 Reentrancy

A context instance need not be reentrant. Two threads that need to access the same con
stance concurrently should synchronize amongst themselves and provide the necessa
ing.

However, different context instances must be safe for concurrent multithreaded access. T
two threads each operating concurrently on their respective context instance should no
to synchronize their access. For example, even though two contexts might share the sa
sources (such as the same connection), it must be possible (and safe) for two separate
to operate on each of those contexts without the threads having to do any explicit synchr
tion.

For purposes of concurrency control, an operation on a context instance is not conside
have completed while any referrals generated by that operation are still being followed,
the operation returns aNamingEnumeration , while the enumeration is still in use.

2.3 Basic Support—Implementing the Context Interface(s)

The context implementation defines implementations for each of the methods in theContext

interface or subinterfaces that the implementation supports.

If a method is not supported, it should throwOperationNotSupportedException .

For methods in theContext interface or subinterfaces that accept a name argument (eith
a String or aName), an empty name denotes the current context. For example, if an em
name is supplied tolookup() , that means to return a new instance of the current context. I
empty name is supplied tolist() , that means to enumerate the names in the current con
Sun Microsystems, Inc. 4 7/14/99

Java Naming and Directory SPI Building a Context Implementation

o-

ory

oking
ack a

able
senta-

jects
to lo-

ons ac-
ts as a
tion
asy-to-
orma-
ram-

ccess
mple-
jects.
ions
e mech-
their

n the
s sec-

form
If an empty name is supplied togetAttributes() , that means to retrieve the attributes ass
ciated with this context.

Appendix A contains an example context implementation that implements a flat, in-mem
namespace.

2.4 Object Support

JNDI encourages providers to supply implementations of theContext and its subinterfaces
that are natural and intuitive for the Java application programmer. For example, when lo
up a printer name in the namespace, it is natural for the programmer to expect to get b
printer object on which to operate.

Context ctx = new InitialContext();
Printer prt = (Printer)ctx.lookup(somePrinterName);
prt.print(someStreamOfData);

Similarly, when storing an application’s object into the underlying service, it is most port
and convenient if the application does not have to know about the underlying data repre
tion.

However, what is bound in the underlying directory or naming services typically are not ob
in the Java programming language but merely reference information which can be used
cate or access the actual object. This case is quite common, especially for Java applicati
cessing and sharing services in an existing installed base. The reference in effect ac
“pointer” to the real object. In the printer example, what is actually bound might be informa
on how to access the printer (e.g., its protocol type, its server address). To enable this e
use model for the application developer, the context implementation must do the transf
tion of the data to/from the underlying service into the appropriate objects in the Java prog
ming language.

There are different ways to achieve this goal. One context implementation might have a
to all the implementation classes of objects that a directory can return; another context i
mentation might have a special class loader for locating implementation classes for its ob
JNDI provides theReference class as a standard way of representing references. Applicat
and context implementations are encouraged to use this class, rather than invent separat
anisms on their own. However, this does not preclude context implementations from using
own mechanisms for achieving the same goal.

JNDI provides utilities for context implementations to use when reading/storing objects i
Java programming language in a format-independent way to the underlying service. Thi
tion describes these utilities. These utilities interact with components calledobjectandstate
factories that do the actual transformations. These factories are described in Chapter 4.

2.4.1 Reading an Object

JNDI provides the following methods that context implementations should use to trans
data read from the underlying service into objects in the Java programming language:
Sun Microsystems, Inc. 5 7/14/99

Java Naming and Directory SPI Building a Context Implementation

e re-
h

im-

enta-
he
s not

that
e

e
ot

of at-
Object NamingManager.getObjectInstance(Object refInfo,
Name name,
Context nameCtx,
Hashtable env)

throws Exception;
Object DirectoryManager.getObjectInstance(Object refInfo,

Name name,
Context nameCtx,
Hashtable env,
Attributes attrs)

throws Exception;

refInfo is the data (representing the object) read from the underlying service.name is the name
of the object whilenameCtx is the context in which to resolvename. Thename/nameCtx pair
can be used to obtain more information about the object than is available fromrefInfo . env

is the environment of the context from whichgetObjectInstance() is being invoked.attrs

is the collection of attributes read from the directory about the object, usually in the sam
quest that was used to getrefInfo . It might not be the complete collection of attributes if suc
was not requested.

The method in theNamingManager class should be used by context implementations that
plement theContext interface, while the method in theDirectoryManager class should be
used by context implementations that implement theDirContext interface.

When constructing objects to be returned for the following methods, the context implem
tion should callgetObjectInstance() , or its own mechanism for generating objects from t
bound information, if it wants this feature to be enabled in their contexts. (String overload
shown.)

javax.naming.Context.lookup(Name name)
javax.naming.Context.lookupLink(Name name)
javax.naming.Binding.getObject()
javax.naming.directory.SearchResult.getObject()

For Binding andSearchResult , the context implementation should either pass an object
is the result of callinggetObjectInstance() or its equivalent to the constructor, or overrid
the default implementation ofBinding andSearchResult so that theirgetObject() imple-
mentations callgetObjectInstance() or its equivalent before returning.

Here is an example. Suppose printers are represented in the namespace usingReference s. To
turn a printerReference into a livePrinter object, the context implementation would use th
NamingManager.getObjectInstance() method. In this way, the underlying service need n
know anything specific about printers.

Object lookup(Name name) {
...
Reference ref = <some printer reference looked up from naming service >;
return NamingManager.getObjectInstance(ref, name, this, env);

}

In another example, suppose printers are represented in the directory as a collection
tributes. To turn a printer’s directory entry into a livePrinter object, the context implemen-
tation would useDirectoryManager.getObjectInstance() .
Sun Microsystems, Inc. 6 7/14/99

Java Naming and Directory SPI Building a Context Implementation

m an

t

im-

call
nts
Object lookup(Name name) {
...
Attributes attrs = <read attributes from directory >;

Reference ref = <construct reference from attributes >;
return DirectoryManager.getObjectInstance(ref, name, this,

env, attrs);
}

2.4.2 Storing an Object

JNDI provides the following methods that context implementations should use to transfor
object before storing it in the underlying service:

Object NamingManager.getStateToBind(
Object obj,
Name name,
Context nameCtx,
Hashtable env)

throws NamingException;
DirStateFactory.Result DirectoryManager.getStateToBind(

Object obj,
Name name,
Context nameCtx,
Hashtable env,
Attributes attrs)

throws NamingException;

obj is the object to be stored in the underlying service.name is the name of the object while
nameCtx is the context in which to resolvename. Thename/nameCtx pair can be used to obtain
more information about the object than is available fromobj . env is the environment of the
context from whichgetStateToBind() is being invoked.attrs is the collection of attributes
that is to be bound with the object.DirStateFactory.Result is a class that contains an objec
and a collection of attributes.

The method in theNamingManager class should be used by context implementations that
plement theContext interface, while the method in theDirectoryManager class should be
used by context implementations that implement theDirContext interface.

Before storing an object supplied by the application, the context implementation should
getStateToBind() , or its own mechanism for generating information to be bound, if it wa
this feature to be enabled in their contexts. (String overloads not shown.)

javax.naming.Context.bind(Name name, Object o)
javax.naming.Context.rebind(Name name, Object o)
javax.naming.DirContext.bind(Name name, Object o, Attributes attrs)
javax.naming.DirContext.rebind(Name name, Object o, Attributes attrs)

Here’s an example of how aContext implementation supportsContext.bind :
Sun Microsystems, Inc. 7 7/14/99

Java Naming and Directory SPI Building a Context Implementation

types
-

r for

f the
// First do transformation
obj = NamingManager.getStateToBind(obj, name, ctx, env);

// Check for Referenceable
if (obj instanceof Referenceable) {
 obj = ((Referenceable)obj).getReference();
}

if (obj instanceof Reference) {
// store as ref

} else if (obj instanceof Serializable) {
// serialize

} else {
...

}

Here’s an example of how aDirContext implementation supportsDirContext.bind :

// First do transformation
DirStateFactory.Result res = DirectoryManager.getStateToBind(

obj, name, ctx, env, inAttrs);

obj = res.getObject();
Attributes outAttrs = res.getAttributes();

// Check for Referenceable
if (obj instanceof Referenceable) {

obj = ((Referenceable)obj).getReference();
}
if (obj instanceof Reference) {

// store as ref and add outAttrs
} else if (obj instanceof Serializable) {

// serialize and add outAttrs
} else if (obj instanceof DirContext) {

// grab attributes and merge with outAttrs
} else {

...
}

As shown in these examples, a context implementation might be able to store different
of objects (Reference , Serializable , andDirContext). If the context implementation can
not storeReferenceable objects directly andgetStateToBind() returns such an object, the
context implementation should subsequently callReferenceable.getReference() and store
the resultingReference instead.

If a context implementation can store different types of objects, it should follow this orde
the following common types:

• Reference

• Serializable

• DirContext

This order is recommended because it is most likely to capture the intent of the caller o
bind() /rebind() method. For example, aReference is Serializable , so if you performed
Sun Microsystems, Inc. 8 7/14/99

Java Naming and Directory SPI Building a Context Implementation

r-

me that
onent

name-
olved/
ctically

imple-

ntext
op-

op-

t

re
to
theSerializable check first, noReference objects would ever be stored in the reference fo
mat (that is, they would all be serialized).

2.5 Federation Support

2.5.1 Names

When a context is given a string name argument, the name represents a composite na
may span multiple namespaces, or it may have only a single compound name comp
(which in turn may be made up of one or several atomic names) that belongs to a single
space. The context implementation must determine which part of the name is to be res
processed in its context and pass the rest onto the next context. This may be done synta
by examining the name, or dynamically by resolving the name.

When a context is given aNameargument, if it is an instance ofCompositeName , then it will be
treated as a composite name. Otherwise, it will be treated as a compound name that is
mented by theCompoundName class or some other compound name implementation.

2.5.2 Resolving Through a Context

A context participates in a federation by performing the resolution phase of all of the co
operations. Thelookup() method must always be supported. Support for other methods is
tional, but if the context is to participate in a federation, then the resolution implicit in all
erations must be supported.

Figure 1: Example of Resolving through Intermediate Contexts to Perform a bind().

For example, suppose a context does not support thebind() operation. When that context is
being used as an intermediate context forbind() , it must perform the resolution part of tha
operation to enable the operation to continue to the next context. It should only throwOpera-

tionNotSupportedException if it is being asked to create a binding in its own context. Figu
1 shows an example of how thebind() operation is passed through intermediate contexts
be performed in the target context.

ctx.bind(“c1/c2/c3/a”,)

bind(“c1/c2/c3/a”,)

bind(“c2/c3/a”,)

bind(“c3/a”,)

bind(“a”,)

ctx
ac3c2c1
Sun Microsystems, Inc. 9 7/14/99

Java Naming and Directory SPI Building a Context Implementation

tems
re
t must

sub-

tance
se of

con-

em to
ndled
w, it
f the)
2.5.3 Resolving Through to Subinterfaces of Context

To invoke aDirContext method (such asgetAttributes()), the application first obtains an
initial DirContext , and then perform the operation on theDirContext .

DirContext ctx = new InitialDirContext();
Attributes attrs = ctx.getAttributes(someName);

From the context implementation’s perspective, in order to retrieve the attributes,getAt-

tributes() might need to traverse multiple naming systems. Some of these naming sys
only support theContext interface, not theDirContext interface. These naming systems a
being used as intermediaries for resolving towards the target context. The target contex
support theDirContext interface. Figure 2 shows an example of this.

Figure 2: Example of Resolving Through Intermediate non-DirContexts

In order for intermediate naming systems to participate in the federation for extensions ofCon-

text , they must implement theResolver interface. TheResolver interface is used by the
JNDI framework to resolve through intermediate contexts that do not support a particular
interface ofContext . It consists of two overloaded forms of the methodresolveToClass() .
This method is used to partially resolve a name, stopping at the first context that is an ins
of the required subinterface. By providing support for this method and the resolution pha
all methods in theContext interface, a context implementation can act as an intermediate
text for extensions (subinterfaces) ofContext .

public interface Resolver {
public ResolveResult resolveToClass(Name name, Class contextType)

throws NamingException;
public ResolveResult resolveToClass(String name,
 Class contextType)

throws NamingException;
}

2.5.4 Naming System Boundaries

The resolution of a (multicomponent) composite name proceeds from one naming syst
the next, with the resolution of the components that span each naming system typically ha
by a corresponding context implementation. From a context implementation’s point of vie
passes the components for which it is not responsible to the (context implementation o
next naming system.

targetDirContextstartingDirContext

DirContext

Context
Sun Microsystems, Inc. 10 7/14/99

Java Naming and Directory SPI Building a Context Implementation

may

x-
ng”
ed.

of the
om/
-
sing
con-

arator
as the

next

terme-
xt does

name,

e

There are several ways in which the context implementation for the next naming system
be located. It may be doneexplicitly through the use of ajunction, where a name in one naming
system is bound to a context (or aReference to a context) in the next naming system. For e
ample, with the composite name “cn=fs,ou=eng/lib/xyz.zip”, the LDAP name “cn=fs,ou=e
might resolve to a file system context in which the name “lib/xyz.zip” could then be resolv

Alternately, the next naming system may be locatedimplicitly. For example, a context imple-
mentation may choose the next naming system based upon service-specific knowledge
object that it has resolved. For example, with the composite name “ldap.wiz.c
cn=fs,ou=eng”, the DNS nameldap.wiz.com might name a DNS entry. To get the next nam
ing system beyond DNS, the DNS context implementation might construct a context u
SRV resource records found in that entry, which in this case, happens to name an LDAP
text. When the next naming system is located in this fashion, JNDI composite name sep
is used to denote the boundary from one naming system to the next, and is referred to
implicit next naming system pointer.

However the next naming system is located, the context implementation must hand the
naming system the remaining portion of the composite name to resolve.

2.5.5 Continuing an Operation in a Federation

In performing an operation on a name that spans multiple namespaces, a context in an in
diate naming system needs to pass the operation onto the next naming system. The conte
this by first constructing aCannotProceedException containing information pinpointing how
far it has proceeded. In so doing it sets the resolved object, resolved name, remaining

and environment parts of the exception.1 (In the case of theContext.rename() method, it also
sets the “resolved newname” part.)

It then obtains acontinuation contextfrom JNDI by passing theCannotProceedException to
static methodNamingManager .getContinuationContext()

public class NamingManager {
public static Context getContinuationContext(

CannotProceedException e) throws NamingException;
...

}

The information in the exception is used bygetContinuationContext() to create the context
instance in which to continue the operation.

To obtain a continuation context for theDirContext operations, useDirectory-

Manager.getContinuationDirContext() .

1. TheCannotProceedException may well have been thrown by one of the context’s internal methods when it
discovered that the name being processed is beyond the scope of its naming system. The process by which th
exception is produced is dependent on the implementation of the context.
Sun Microsystems, Inc. 11 7/14/99

Java Naming and Directory SPI Building a Context Implementation

main-

-

inua-

t indi-
n can
to the

: “lib/
the
s a
ould
file

ending
r the
spac-
riting
ome
public class DirectoryManager {
public static getContinuationDirContext(

CannotProceedException e) throws NamingException;
...

}

Upon receiving the continuation context, the operation should be continued using the re
der of the name that has not been resolved.

For example, when attempting to continue abind() operation, the code in the context imple
mentation might look as follows:

public void bind(Name name, Object obj) throws NamingException {
...
try {

internal_bind(name, obj);
...

} catch (CannotProceedException e) {
Context cctx = NamingManager.getContinuationContext(e);
cctx.bind(e.getRemainingName(), obj);

}
}

In this example,bind() depends on an internal method,internal_bind(), to carry out the
actual work of the bind and to throw aCannotProceedException when it discovers that it is
going beyond this naming system. The exception is then passed togetContinuationCon-

text() in order to continue the operation. If the operation cannot be continued, the cont
tion context will throw theCannotProceedException to the caller of the originalbind()

operation.

2.5.6 “Dynamic” Location of Next Naming System

In some federation configurations, the result of resolution in one naming system does no
cate which is the next naming system. The only conclusion that the context implementatio
draw is that resolution has terminated in the current naming system and should proceed
next naming system.

For example, suppose the composite name “lib/xyz.zip/part1/abc” consists of two parts
xyz.zip”, which names a file in ZIP format, and “part1/abc”, which names an entry within
ZIP file. Although the resolution of “lib/xyz.zip” results in a file object, the desired result i
context in which to resolve names of ZIP entries. Similarly, another composite name c
name an entry within a file in “tar” format, and the desired result of the resolution of the
component of the composite name would be a context in which to resolve tar entries.

In effect, any type of context might be federated beneath the file system namespace dep
on the format of the files. Such relationships should be symmetric: it should be possible fo
ZIP file context and other similar contexts to federate beneath other, non-file system name
es. Furthermore, developers writing the file system context implementation and those w
the context implementations for the ZIP file context, the tar file context, or a context for s
yet-to-be defined format, should be able to work independently.

To support this type of federation, JNDI defines a special form ofReference called annns ref-
erence(“nns” stands for “next naming system”). ThisReference has an address with typenns .
Sun Microsystems, Inc. 12 7/14/99

Java Naming and Directory SPI Building a Context Implementation

nuing
s ref-

g of the
mplicit
t of re-
olved

xt im-
, such
ines

file.

ain-

ved
he
name
re used

bject
es are

the
e res-
nta-
eans
ing

-

e that
The address contents is the resolved object (in the above example, the ZIP file). Conti
with the file system example, the file system context implementation might create the nn
erence as follows:

 RefAddr addr = new RefAddr("nns") {
public Object getContent() {

return theFile;
}

};
Reference ref = new Reference("java.io.File", addr);

Next, the context implementation constructs aCannotProceedException (as with the junction
case) by using the nns reference as the resolved object, and a resolved name consistin
resolved file name and an empty component. The empty component is being used as an i
next naming system pointer and indicates that the resolution has succeeded to the poin
solving the next naming system. (Notice how the values of the resolved object and res
name are matched.) The context implementation then passes theCannotProceedException to
getContinuationContext() .

As with any resolved object in aCannotProceedException , getContinuationContext()

searches for a context implementation that accepts this nns reference. The ZIP file conte
plementation, for instance, might accept an nns reference and other information provided
as the name of the file (relative to a given context). If the context implementation determ
that the file is a ZIP file, it would then construct a context for resolving names within that

2.5.7 More about CannotProceedException

Central to the JNDI SPI’s framework for federation is theCannotProceedException . A
CannotProceedException contains information such as the resolved name/object and rem
ing name, inherited from theNamingException superclass. In addition, aCannotProceedEx-

ception also contains fields for the “alt” name and “alt” name context. While the resol
name fromNamingException is the full composite name (relative to the starting context of t
operation), alt name is the resolved name relative to the alt name context. That is, alt
might not necessarily be the same as the resolved name. Alt name and alt name context a
as arguments toNamingManager /DirectoryManager.getObjectInstance() . They allow the
factories that are called by this method to obtain more information about the resolved o
(for example, it could be used to get a special attribute about the object). These factori
described in Chapter 4.

2.5.8 Contextual Information

While the emphasis of the JNDI SPI framework is on “looking forward” and trying to find
next naming system, some context implementations, once located, need to “look back” th
olution chain to obtain contextual information. For example, a particular context impleme
tion that is federated off of a host naming system might be designed such that the only m
by which it can find out host information is to ask its (possibly not immediate) superior nam
system. To do that, it needscontextual information—information about how the resolution pro
ceeded to its current point.

Summarizing earlier discussions on federation, when performing an operation on a nam
spans multiple namespaces, the context implementation first constructs aCannotProceed-
Sun Microsystems, Inc. 13 7/14/99

Java Naming and Directory SPI Building a Context Implementation

on-

t

in-
on to

d ear-
llow

er
s the
nism
idual
der-

n
a re-

efer-
e
pplied
Exception containing information pinpointing how far it has proceeded. It then obtains a c
tinuation context from JNDI by callinggetContinuationContext() . To support the retrieval
of contextual information,getContinuationContext() automatically adds the environmen
property java.naming.spi.CannotProceedException , with the value of theCannot-

ProceedException argument, to the continuation context’s environment. This property is
herited by the continuation context and may be used by that context’s implementati
inspect the fields of the exception.

2.6 Referral Support

LDAP-style directory services support the notion ofreferralsfor redirecting a client’s request
to another server. A referral differs from the federation continuation mechanism describe
lier in that a referral may be presented to the JNDI client, who then decides whether to fo
it, whereas aCannotProceedException should be returned to the client only when no furth
progress is possible. Another difference is that an individual context implementation offer
capability of continuing the operation using the referral (and itself determines the mecha
for doing so). In a federation, the mechanism of continuation is beyond the scope of indiv
context implementations: individual context implementations benefit from the common fe
ation mechanism provided by the JNDI SPI framework.

A context implementation that supports referrals defines a subclass ofReferralException

and provides implementations for its abstract methods.getReferralContext() returns a con-
text at which to carry on the operation, andgetReferralInfo() returns information on where
the referral leads to, in a format appropriate to the context implementation.

The environment propertyjava.naming.referral specifies how the context implementatio
should treat referrals. If the context implementation is asked to throw an exception when
ferral is encountered, or if the context implementation encounters problems following a r
ral, it throws a ReferralException to the application. To continue the operation, th
application re-invokes the method on the referral context using the same arguments it su
to the original method. The following code sample shows howReferralException may be

used by an application:1

1. Note that this is code in theapplication. In “Continuing an Operation in a Federation”, the code sample presented
is code in thecontext implementation.
Sun Microsystems, Inc. 14 7/14/99

Java Naming and Directory SPI Building a Context Implementation

r ap-

n to
oked

ant or

hen
as to

otocol
ple-
s have
ming

and its

te
bject

th-
hould
ma
e
return

ble de-
while (true) {
try {

bindings = ctx.listBindings(name);
while (bindings.hasMore()) {

b = (Binding) bindings.next();
...

}
break;

} catch (ReferralException e) {
ctx = e.getReferralContext();

}
}

This convention of re-invoking the method using the original arguments is a simple one fo
plications to follow. This places the burden on the implementation of theReferralException

to supply enough information to the implementation of the referral context for the operatio
be continued. Note that this will likely render some of the arguments passed to the re-inv
operation superfluous. The referral context implementation is free to ignore any redund
unneeded information.

It is possible for an operation to return results in addition to a referral. For example, w
searching a context, the server might return several results in addition to a few referrals
where to obtain further results. These results and referrals might be interleaved at the pr
level. If referrals require user interaction (i.e., not followed automatically), the context im
mentation should return the results through the search enumeration first. When the result
been returned, the referral exception can then be thrown. This allows a simple program
model to be used when presenting the user with a clear relationship between a referral
set of results.

2.7 Schema Support

JNDI defines theAttribute interface for representing an attribute in a directory. An attribu
consists of an attribute identifier (a string) and a set of attribute values, which can be any o
in the Java programming language. There are also methods defined inAttribute for obtaining
the attribute’s definition and syntax definition from the directory’s schema.

public class Attribute {
public DirContext getAttributeDefinition() throws NamingException;
public DirContext getAttributeSyntaxDefinition()

throws NamingException;
...

}

The utility class,BasicAttribute , does not provide useful implementations for these me
ods. A directory context implementation that has support for such schema information s
provide implementations ofAttribute that implement these two methods based on its sche
mechanisms, perhaps by subclassingBasicAttribute and overriding these two methods. Th
context implementation should then return instances of these subclasses when asked to
instances ofAttribute . The context implementation, when it receives anAttribute instance
that do not have meaningful implementations of these two methods, should use reasona
Sun Microsystems, Inc. 15 7/14/99

Java Naming and Directory SPI Building a Context Implementation

ibute

e sys-

differ-

the
y

ication
re-
ontext

r. The
. The
he lis-
tation
ntly in

es re-
a sin-

ener.
he lis-
faults to determine the attribute’s definition and syntax, using information such as the attr
values’ class names or conventions used for the attribute identifier.

TheDirContext interface contains schema-related methods:

public class DirContext {
...
public DirContext getSchema(Name name) throws NamingException;
public DirContext getSchema(String name) throws NamingException;

public DirContext getSchemaClassDefinition(Name name)
throws NamingException;

public DirContext getSchemaClassDefinition(String name)
throws NamingException;

}

getSchema() returns the schema tree for the named object, whilegetSchemaClassDefini-

tion() returns a context containing schema class definitions for the named object. Som
tems have just one global schema and, regardless of the value of thenameargument, will return
the same schema tree. Others support finer grained schema definitions, and may return
ent schema trees depending on which context is being examined.

2.8 Event Support

A context implementation supports event notification by providing implementation for
methods in theEventContext /EventDirContext interfaces. The event model advocated b
these interfaces can be readily supported using a multithreaded model. When an appl
usesaddNamingListener() to register a listener with a context, the context records the
quests and takes action to collect information required to generate the events. When the c
eventually receives information to generate the events, it fires the events to the listene
thread that does the registration is typically different from the thread that runs the listener
context implementation typically uses a thread that it has created and manages to run t
tener method. When one event is dispatched to multiple listeners, the context implemen
may choose to (and is generally encouraged) to execute the listener methods concurre
separate threads.

The addNamingListener() methods accept an instance ofNamingListener . The instance
might implement one or more subinterfaces ofNamingListener . If the listener implements
more than one subinterface, the context implementation should try to conserve resourc
quired to satisfy the registration. For example, an implementation might be able to submit
gle request to the server that captures all of the requests of the subinterfaces.

Where possible, the context implementation should fire aNamingExceptionEvent to a listener
if the context will be unable to fire further events and then automatically deregister the list
For example, if the connection to the server is broken subsequent to the registration of t
tener and no information will be available to fire events, the context should fire aNaming-

ExceptionEvent to the listener.
Sun Microsystems, Inc. 16 7/14/99

Java Naming and Directory SPI Building a Context Implementation

e ser-
rity-

d Ap-

Indi-
ate for
tly ig-
ies or

es
ique-

ider as
age
jn-

s repre-

tion is
t pa-

ameter
e en-

ected
in the

e en-
prop-
ntext
was
.

one
con-
2.9 Context Environment Support

Each instance ofContext (or its subinterfaces) can have associated with it anenvironment
which contains preferences expressed by the application of how it would like to access th
vices offered by the context. Examples of information found in an environment are secu
related information that specify the user’s credentials and desired level of security (none , sim-

ple , strong), and configuration information, such as the server to use. See Chapter 6 an
pendix A of theJNDI API document for more details about environment properties.

Environment properties are defined generically in order to ensure maximum portability.
vidual service providers should map these generic properties to characteristics appropri
their service. Properties that are not relevant to a provider should be recorded and silen
nored. The environment may also be used for storing service provider-specific propert
preferences, in which case their applicability across different providers is limited.

2.9.1 Property Naming Convention

See Section 6.1 in theJNDI API document for a description of how environment properti
are named. Service provider-specific properties should have a prefix that reflects their un
ness to the provider. A common practice is to use the package name of the service prov
the prefix. For example, since Sun’s LDAP provider is primarily contained in the pack
com.sun.jndi.ldap , properties specific to Sun’s LDAP provider have the prefix “com.sun.
di.ldap.”.

2.9.2 Initializing a Context’s Environment

When creating an initial context (either using the constructors fromInitialContext or its
subclasses), the application can supply an environment as a parameter. The parameter i
sented as aHashtable or any of its subclasses (e.g.,Properties). The JNDI class library aug-
ments the data from this parameter with data from other sources (see Chapter 6 in theJNDI
API document) and passes this to the context implementation.

Like all other parameters, the environment parameter received by a context implementa
owned by the caller. The context implementation should make a copy of the environmen
rameter it gets or otherwise take steps to ensure that changes by the caller to the par
would not affect what the context implementation sees and vice versa. Note also that if th
vironment parameter is aProperties instance, enumeration andHashtable.get() on the pa-
rameter only examine the top-level properties (not any nested defaults). This is the exp
behavior. The context implementation is not expected to retrieve or enumerate values
Properties instance’s nested defaults.

The JNDI library is responsible for merging properties from different sources, such as th
vironment parameter to the initial context, resource files, and, where appropriate, system
erties and applet parameters (see the JNDI API document, Chapter 6). The co
implementation typically just reads the property it needs from the environment which it
supplied. There is seldom a need for a context implementation to consult other sources

2.9.3 Inheritance

The environment is inherited from parent to child as the context methods proceed from
context to the next. The entire environment of a context instance is inherited by the child
Sun Microsystems, Inc. 17 7/14/99

Java Naming and Directory SPI Building a Context Implementation

red by

e next
en-

ment

ation.

ch con-
ould

art of

t pro-

riod
t im-
text instances, regardless of whether certain properties within the environment are igno
a particular context.

A context implementation must pass on the environment from one context instance to th
in order to implement this “inheritance” trait of environments. Within one context implem
tation it can do so by passing the environment as an argument to theContext constructor, or
to the NamingManager/DirectoryManager.getObjectInstance() method for creating
Context instances.

Across context implementations in a federation, this is supported by passing the environ
as part of theCannotProceedException parameter ofNamingManager.getContinuation-

Context()/DirectoryManager.getContinuationDirContext() , which in turn will use
this environment when creating an instance of the context in which to continue the oper

Inheritance can be implemented in any way as long as it preserves the semantics that ea
text has its own view of its environment. For example, a copy-on-write implementation c
be used to defer copying of the environment until it is absolutely necessary.

2.9.4 Updates to the Environment

The environment of a context can be updated via the use of theaddToEnvironment() and re-

moveFromEnvironment() methods in theContext interface.

public interface Context {
...
public Object addToEnvironment(String propName, Object propVal)

throws NamingException;

public Object removeFromEnvironment(String propName)
throws NamingException;

}

These methods update the environment of this instance ofContext . An environment property
that is not relevant to the context implementation is silently ignored but maintained as p
the environment. The updated environment affects this instance ofContext , and will be inher-
ited by any new childContext instances, but does not affect anyContext instances already in
existence. A lookup of the empty name on aContext will return a newContext instance with
an environment inherited as with any other child.

See Section 6.6 in theJNDI API document for details.

2.9.5 Provider Resource Files

Each service provider has an optional resource file that contains properties specific to tha
vider. The name of this resource is:

[prefix /]jndiprovider.properties

whereprefix is the package name of the provider’s context implementation(s), with each pe
(“.”) converted to a slash (“/”). For example, suppose a service provider defines a contex
plementation with class namecom.sun.jndi.ldap.LdapCtx . The provider resource for this
provider is namedcom/sun/jndi/ldap/jndiprovider.properties .
Sun Microsystems, Inc. 18 7/14/99

Java Naming and Directory SPI Building a Context Implementation

erty,

e that
rop-
m its
Sec-

a one-
NDI is
ple-
may be
algo-
e con-
ent in

-
d re-
other

ation
ify or

ared by
whose
The JNDI class library will consult this file when it needs to determine the value of a prop
as described in Section 6.5.2 in theJNDI API document.

When the service provider needs to determine the value of a property, it will generally tak
value directly from the environment. The service provider may define provider-specific p
erties to be placed in its own provider resource file. In that case it needs to read them fro
property resource file and merge them in a way consistent with the algorithm described in
tion 6.5.2 in theJNDI API document.

2.10 Connection Management

For a context implementation that uses a client/server protocol, there is not necessarily
to-one mapping between a context and a connection between the client and the server. J
a high-level API that does not deal directly with connections. It is the job of the context im
mentation to do any necessary connection management. Hence, a single connection
shared by multiple context instances, and a context implementation is free to use its own
rithms to conserve connection and network usage. Thus, when a method is invoked on th
text instance, the context implementation might need to do some connection managem
addition to performing the requested operation.

The Context.close() andNamingEnumeration.close() methods can be used by applica
tions to provide hints to the context implementation as to when to free connection-relate
sources. A context implementation may choose to (and is generally encouraged to) take
measures to garbage-collect and conserve its connection-related resources.

Some environment properties affect a context’s connection. For example, if the applic
changes the security-related properties, the context implementation might need to mod
create a new connection using those updated properties. If the connection was being sh
other contexts prior to the change, the connection change should not affect contexts
properties have not been updated.
Sun Microsystems, Inc. 19 7/14/99

Java Naming and Directory SPI The Initial Context

tarting

ple-
paces.
bind-
to the

ws the
of the

algo-

ial

ple-
3 The Initial Context

Since all naming methods are performed relative to a context, an application needs a s
context in order to invoke them. This starting context is referred to as theinitial context. The
bindings in the initial context are determined by policies set forth by the initial context im
mentation, perhaps using standard policies for naming global and enterprise-wide names
For example, the initial context might contain a binding to the Internet DNS namespace, a
ing to the enterprise-wide namespace, and a binding to a personal directory belonging
user who is running the application.

An application obtains an initial context by making the following call:

Context ctx = new InitialContext();

An alternate constructor allows an environment to be passed as an argument. This allo
application to pass in preferences or security information to be used in the construction
initial context.

Hashtable env = new Hashtable(); 1

env.put(Context.SECURITY_PRINCIPAL, "jsmith");
env.put(Context.SECURITY_CREDENTIALS, "xxxxxxx");
Context ctx = new InitialContext(env);

Subsequent to getting an initial context, the application can invokeContext methods.

Object obj = ctx.lookup("this/is/a/test");

The InitialContext class (and subclasses) selects an implementation using a default
rithm that can be overridden by installing aninitial context factory builder (described below).

TheInitialDirContext is an extension ofInitialContext . It is used for performing direc-
tory operations using the initial context. TheInitialLdapContext class is an extension of
InitialDirContext . It is used for performing special LDAP v3 operations using the init
context. The algorithms and policies described in this section also apply toInitialDirCon-

text andInitialLdapContext . Places whereDirContext/LdapContext is required instead
of Context have been noted.

3.1 The Initial Context Factory

An initial context factoryis a class that creates an instance of a context that has been im
mented following the guidelines outlined in Chapter 2. The factory is used by theInitialCon-

text class (or subclass) constructor.

Given an environment, the factory returns an instance ofContext (or its subinterfaces).

public interface InitialContextFactory {
public Context getInitialContext(Hashtable env)

throws NamingException;
}

Appendix A contains an example of anInitialContextFactory .

1. You can also use a subclass ofHashtable (e.g.Properties) for this.
Sun Microsystems, Inc. 20 7/14/99

Java Naming and Directory SPI The Initial Context

xt in-

n-

tory

ory,
xam-
ption

- re-
xt, or

te
for

-

ich a
lists

e

Once the context instance has been created, when a method is invoked onInitialContext by
using a non-URL name (see below), the method is forwarded and invoked on that conte
stance.

JNDI selects the initial context implementation to use by using the propertyjava.nam-

ing.factory.initial . This property contains the fully-qualified class name of an initial co
text factory. The class must implement theInitialContextFactory interface and have a
public constructor that does not take any arguments. JNDI will load the initial context fac
class and then invokegetInitialContext() on it to obtain aContext instance to be used as
the initial context.

An application that wants to use a particular initial context must supply thejava.naming.fac-

tory.initial property in the environment passed to theInitialContext (or subclass) con-
structors, or via resource files, system properties, or applet parameters.

3.1.1 Exceptions

When the propertyjava.naming.factory.initial is set to a non-null value, theInitial-

Context (and subclass) constructors will try to load and instantiate an initial context fact
which will then create a context instance. If the factory or context cannot be created, for e
ple as a result of an authentication problem, the initial context factory can throw an exce
to indicate this problem. Note however that it is up to the context implementationwhenit ver-
ifies and indicates to users of the initial context any environment property- or connection
lated problems. It can do so lazily—delaying until an operation is performed on the conte
eagerly, at the time the context is created.

If the propertyjava.naming.factory.initial is not set, no attempt will be made to crea
an underlying context for the initial context. The initial context is still useful, for instance,
processing URL names, as described next.

3.2 URL Support

If a URL1 string is passed to the initial context, it will be resolved using the correspondingURL
context implementation. This feature is supported by theInitialContext class (and subclass
es) and is independent of the setting of thejava.naming.factory.initial environment
property.

This feature allows applications to use the initial context to reach any namespace for wh
URL context implementation has been made available. For example, the following code
an LDAP namespace from the initial context:

new InitialContext().list("ldap://lserver/ou=eng,o=wiz,c=us");

3.2.1 URL Context

A URL string has the following format:

1. The mention of “URL” in this document refers to a URL string as defined by RFC 1738 and its related RFCs. It is
any string that conforms to the syntax described therein, and may not always have corresponding support in th
java.net.URL class or Web browsers. The URL string is either passed as theString name parameter, or as
the first component of theName parameter.
Sun Microsystems, Inc. 21 7/14/99

Java Naming and Directory SPI The Initial Context

e id

t it sup-

nent
com-

me id

r a

ry’s

tanti-

sed

ntext
e to
scheme_id:opaque_string

For example, an LDAP URL string has the scheme id “ldap”; a file URL has the schem
“file”.

A URL context implementation is a class that implements theContext interface (and possibly
some subinterfaces) and accepts name arguments that are URL strings of the scheme tha
ports. For example, an LDAP URL context accepts “ldap” URL strings.

When a URL string name is passed to a URL context, the context methods that acceptString

treat the name as a URL with the syntax defined by the URL scheme. When aNameobject in
which the first component is a URL string name is passed to a URL context, the first compo
is treated as a URL string, and the rest is used for federation (that is, resolution of the first
ponent will indicate which naming system to use to resolve the rest). TheNameinstance should
be aCompositeName ; otherwise, anInvalidNameException should be thrown.

Name arguments that are not URL strings, and URL strings with an inappropriate sche
should be rejected with anInvalidNameException .

3.2.2 URL Context Factory

A URL context factoryis a class (actually a special typeobject factory(see Section 4.1)) that
creates an instance of a URL context for URLs of one or more schemes.

When theInitialContext class receives a URL string as a name argument, it will look fo
URL context factory by using the following algorithm. The environment propertyjava.nam-

ing.factory.url.pkgs contains a colon-separated list of package prefixes. The facto
class name is constructed by using the following rule:

package_prefix + “.” + scheme_id + “.” + scheme_idURLContextFactory

for each package prefix listed in the property. The default package prefixcom.sun.jndi.url

is appended to the end of the list.

For example, if the URL is “ldap://somehost:389 ” and java.naming.factory.url.pkgs

contains “com.widget:com.wiz.jndi ”, the InitialContext class will attempt to locate the
corresponding factory class by loading the following classes until one is successfully ins
ated:

com.widget.ldap.ldapURLContextFactory
com.wiz.jndi.ldap.ldapURLContextFactory
com.sun.jndi.url.ldap.ldapURLContextFactory

The factory class implements theObjectFactory interface (see “URL Context Factory” on
page 31) and has a public constructor that takes no arguments. TheInitialContext class
passes the scheme id as the resolved object to the factory’sgetObjectInstance() method,
which in turn creates a URL context for the URL scheme. The URL context will then be u
to carry out the originally intendedContext or DirContext operation on the URL supplied to
InitialContext .

3.2.3 Service Provider’s Responsibility

There is no requirement that a service provider supply a URL context factory and URL co
implementation. It only does so if it wants to allow URL string names with its URL schem
Sun Microsystems, Inc. 22 7/14/99

Java Naming and Directory SPI The Initial Context

e
tory.

thod
ry

e con-

lt of

s.

to
, it is
(
-

s

g the

ba-

from
be accepted by theInitialContext class. A service provider, for instance, might just provid
an initial context factory and a context implementation that is accessed through that fac

3.3 Overriding the Default Behavior

The policy of creating an initial context factory using thejava.naming.factory.initial en-
vironment property and URL support is built into theInitialContext class. There are two
ways an application can override some or all of this policy.

3.3.1 Removing URL Support

If an application does not want URL strings to be treated specially, it can use the me
NamingManager.getInitialContext() , which creates a context instance using the facto
named in thejava.naming.factory.initial environment property.

This method is also useful if the application needs to access interfaces implemented by th
text created by the initial context factory, but which are not one ofContext , DirContext , or
LdapContext . Here is a code fragment that gets a context usingNamingManager.getIni-

tialContext() and then casts it to a subclass:

FooContext ctx = (FooContext) NamingManager.getInitialContext(env);
...
Object obj = ctx.lookup(name);
ctx.fooMethod1(...);

Note that installing an initial context factory builder (discussed next) affects the resu
NamingManager.getInitialContext() .

3.3.2 Removing All Policy

An initial context factorybuilder is a class that creates instances of initial context factorie

An application can install an initial context factory builder to define its own policy of how
locate and construct initial context implementations. When a builder has been installed
solely responsible for creating the initial context factories. None of the default policiesja-

va.naming.factory.initial property or URL support) normally used by JNDI are em
ployed.

An implementation of an initial context factory builder must implement theInitialContext-

FactoryBuilder interface. ItscreateInitialContextFactory() method creates instance
of InitialContextFactory .

After a builder has been installed. the application can get the initial context by either usin
InitialContext /InitialDirContext /InitialLdapContext constructors, or by using
NamingManager.getInitialContext() . When one of the constructors is used, its class is
sically a wrapper around the underlying context implementation returned byNamingMan-

ager.getInitialContext() .

3.4 Implementing a Subclass of InitialContext

When there is a need to provide an initial context that supports an interface that extends
Context , DirContext , orLdapContext , the service provider should supply a subclass ofIni-

tialContext (or InitialDirContext/InitialLdapContext).
Sun Microsystems, Inc. 23 7/14/99

Java Naming and Directory SPI The Initial Context

ructor
modi-

tected
3.4.1 URL Support

To add support for URLs in the same wayInitialContext andInitialDirContext do, the
subclass should use the protected methods available inInitialContext as follows. This only
makes sense for interfaces that have methods that accept name argument.

For example, supposeFooContext is a subinterface ofDirContext . Its initial context imple-
mentation would definegetURLOrDefaultInitFooCtx() methods (for bothNameandString

parameters) that retrieve the real initial context to use.

public class InitialFooContext extends InitialDirContext {
...
protected FooContext getURLOrDefaultInitFooCtx(Name name)

throws NamingException {
Context answer = getURLOrDefaultInitCtx(name);
if (!(answer instanceof FooContext)) {

throw new NoInitialContextException(“Not a FooContext”);
}
return (FooContext)answer;

}
// similar code for getURLOrDefaultInitFooCtx(String name)

}

When providing implementations for the new methods in theFooContext interface that accept
a name argument,getURLOrDefaultInitFooCtx() is used in the following way.

public Object FooMethod1(Name name, ...) throws NamingException {
return getURLOrDefaultInitFooCtx(name).FooMethod1(name, ...);

}

3.4.2 New Method Support

When providing implementations for the new methods in theFooContext interface that do not
have a name argument, or for which URL support is not required, useInitialContext.get-

DefaultInitCtx() .

protected FooContext getDefaultInitFooCtx() throws NamingException {
Context answer = getDefaultInitCtx();
if (!(answer instanceof FooContext)) {

throw new NoInitialContextException(“Not an FooContext”);
}
return (FooContext)answer;

}
public Object FooMethod2(Args args) throws NamingException {

return getDefaultInitFooCtx().FooMethod2(args);
}

3.4.3 Constructors

The implementation should provide appropriate constructors for the class. The const
should call the appropriate constructor of the superclass. If the environment needs to be
fied or examined prior to the superclass’s constructor being called, it should use the pro
Sun Microsystems, Inc. 24 7/14/99

Java Naming and Directory SPI The Initial Context

and
constructor that accepts a boolean flag to control the initialization of the initial context,
then use theinit() method to initialize the context. Here is an example:

public InitialFooContext(Hashtable environment, Object otherArg)
 throws NamingException {
super(true); // don’t initialize yet

// Clone environment and adjust
Hashtable env = (environment == null) ? new Hashtable(11) :

(Hashtable)environment.clone();
...
init(env);

}

Client programs that use this new initial context would look as follows.

import com.widget.jndi.InitialFooContext;
...
FooContext ctx = new InitialFooContext(env);
Object obj = ctx.lookup(name);
ctx.FooMethod1(name, ...);
Sun Microsystems, Inc. 25 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

ion’s
ng/di-
.

he
rough

e
nfor-
g the
n. For

rn an

uires
vice

ere-
im-
data
4 Customizing A Context Implementation

JNDI allows a context implementation to be customized—by the application, the applicat
deployer or user, or the service provider—in how it reads and stores objects in the nami
rectory service. A similar facility is also available for narrowing LDAP v3 control classes

You can think of these facilities as modules that plug into a context implementation.

4.1 Reading Objects: Object Factories

JNDI provides a generic way of creating objects (including instances ofContext) using infor-
mation stored in the namespace. That information may be of arbitrary type (java.lang.Ob-

ject). For example, it may be aReference , or a URL, or any other data required to create t
object. Turning such information stored in the namespace into an object is supported th
the use ofobject factories. An object factory is a class that implements theObjectFactory in-
terface (or theDirObjectFactory subinterface):

public interface ObjectFactory {
public Object getObjectInstance(Object refObj,

 Name name,
 Context nameCtx,
 Hashtable env)

throws Exception;
}
public interface DirObjectFactory extends ObjectFactory {

public Object getObjectInstance(Object refObj,
 Name name,
 Context nameCtx,
 Hashtable env,
 Attributes attrs)

throws Exception;
}

Given some reference information (refObj) about an object, optional information about th
name of the object and where it is bound, and optionally some additional environment i
mation (for example, some identity or authentication information about the user creatin
object), the factory attempts to create an object represented by the reference informatio
example, given reference information about a printer, a printer object factory might retu
instance ofPrinter . In the case of an object factory that is to be used with aDirContext im-
plementation, the factory is also given some attributes about the object. If the factory req
more attributes or information, it can obtain them directly from the naming/directory ser
by using thename/nameCtx arguments.

If the factory cannot created an object using the arguments supplied, it should returnnull . For
example, when a printer object factory is given data about a disk drive, it should returnnull .
The factory should only thrown an exception if no other object factories should be tried. Th
fore, the factory should be careful about runtime exceptions that might be thrown from its
plementation. For example, if a printer object factory is given data about a printer but the
is malformed in some way, it should throw an exception.
Sun Microsystems, Inc. 26 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

ation
illus-

tory.

nts

 URLs.

lass

e made
ll the

d

ct
he
-

Object factories are used in several places in JNDI, basically to turn any reference inform
into an object. They are used in federation, URL processing in the initial context, and, as
trated by the printer example, turning data into a form expected by the application.

4.1.1 Handling Structured References

A Reference contains methods for returning the class name and location of the object fac
The following methods are found inReference .

public class Reference {
...
public String getClassName();
public String getFactoryClassName();
public String getFactoryClassLocation();

}

If the object read from the directory/naming service is an instance ofReference or Refer-

enceable , its corresponding object factory can be located using information inReference .
ThegetFactoryClassName() method retrieves the name of the factory class that impleme
theObjectFactory interface. This factory must implement theObjectFactory interface and
have a public constructor that takes no arguments.getFactoryClassLocation() retrieves the
codebase of the class implementation for the factory, which is a list of space-separated

JNDI creates the object by invokinggetObjectInstance() on theObjectFactory instance,
by using theReference and environment as arguments. The result is an instance of a c
identified bygetClassName() .

Note that all the classes necessary to instantiate the object returned to the application ar
available using mechanisms provided by JNDI. The application doesn’t have to insta
classes locally.

Figure 3: Example Using Reference to Get Back An Object From the Namespace

Returning to the printer example, supposePrinter is an interface for representing a printer an
theBSDPrinter class is an implementation of that interface.BSDPrinter implements theRef-

erenceable interface and uses theReference class to store information on how to constru
instances ofBSDPrinter and address information for communicating with the print server. T
Reference contains the class name of the object (“Printer”), the class name of the printer ob

PrinterFactory

PrinterReference

namespace

application

lookup printer name

Printer object

bound in namespace

getObjectInstance()

1

2

3

4

Sun Microsystems, Inc. 27 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

n.
ation

,

e

f

vo-

ed
t-
that

vice
inter

I
se di-

1

tion,
fac-
in the
of

.g.,
ject factory (“PrinterFactory ”) and a URL for loading the factory’s class implementatio
Using the factory class name and implementation location, JNDI first loads the implement
of PrinterFactory and creates an instance ofPrinterFactory . It then invokesgetObject-

Instance() on the factory to create an instance ofPrinter using the reference. For example
one address in the reference may have an address of type “bsd ”, and contains the print server’s
host name (“lobby-printserver ”). The PrinterFactory instance uses the address typ
(“bsd ”) to decide to create aBSDPrinter instance and passes the address contents (“lobby-

printserver ”) to its constructor. The resultingBSDPrinter object is returned as the result o
lookup() .

From the context implementation’s point of view, all of this is done automatically by its in
cation ofNamingManager /DirectoryManager.getObjectInstance() .

When the application invokesprint() on theBSDPrinter instance returned bylookup() , the
data is sent to the print server on the machine “lobby-printserver ” for printing. The appli-
cation need not know the details of theReference stored in the namespace, the protocol us
to perform the job, or whether theBSDPrinter class was defined locally or loaded over the ne
work. The transformation of the information stored in the underlying service into an object
implements thePrinter interface is done transparently through the cooperation of the ser
provider (which stores bindings of printer names to printer address information), the pr
service provider (which provides thePrinterFactory andBSDPrinter classes), and the JND
SPI framework (which ties the two together to return an object that the application can u
rectly).

A service provider for such an object must do the following:

1. Define the class for the object (e.g.,BSDPrinter) that implementsReferenceable or
is a subclass ofReference .

2. Define theReference and its reference addresses for the object.

3. Define a factory class that implementsObjectFactory (e.g.,PrinterFactory). This
class’sgetObjectInstance() method will create an instance of the class from step
(e.g.,BSDPrinter) when given theReference from step 2.

4.1.2 Handling URL References

If a Reference contains an address of type “URL” but not the factory class name and loca
or if the reference is an array of strings containing URLs, JNDI will use the URL context
tory support described in Section 3.2 to locate the factory, and then pass the URL string
address to the factory’sgetObjectInstance() method. See Section 4.1.6 for a description
how JNDI expects a URL context factory implementation to behave.

A service provider for such an object must do the following:

1. Define the class for the object (e.g.,BSDPrinter).

2. Define the URL scheme for the object.

3. Define a URL context factory class that implementsObjectFactory . This class’s
getObjectInstance() method will create an instance of the class from step 1 (e
BSDPrinter) when given the URL from step 2.
Sun Microsystems, Inc. 28 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

ains a
ple-

. For
ke the

is re-
list is

e,
ories
n

ll be

erver

1

4.1.3 Handling Arbitrary References: The java.naming.factory.object Property

In addition to extracting factory information fromReference s, or using URLs, JNDI also
looks for object factories specified in thejava.naming.factory.object property, which can
be in the environment or the provider resource file (see Section 2.9.5). The property cont
colon-separated list of fully-qualified class names of object factories. Each class must im
ment theObjectFactory interface and have a public constructor that takes no arguments
each class in the list, JNDI attempts to load and instantiate the factory class, and to invo
ObjectFactory/DirObjectFactory.getObjectInstance() method on it using the object
and environment arguments supplied. If the creation is successful, the resulting object
turned; otherwise, JNDI uses the same procedure on the next class in the list until the
exhausted or a factory returns a non-null result.

Figure 4: Example using java.naming.factory.object to Get Back an Object from the Namespace

For the printer example, instead of using aReference to represent a printer in the namespac
some other information is stored. When that information is later retrieved, the object fact
specifiedjava.naming.factory.object are tried in turn to attempt to turn that informatio
into aPrinter instance.

A service provider for such an object must do the following:

1. Define the class for the object (e.g.,BSDPrinter).

2. Define the class for reference information for the object. This is the object that wi
bound in the namespace. This need not beReference . It can be anything that will be
understood by its corresponding object factory (e.g., some string containing the s
name “printer type=bsd; host=lobby-printserver ”).

3. Define a factory class that implementsObjectFactory (e.g.,PrinterFactory). This
class’sgetObjectInstance() method will create an instance of the class from step
(e.g.,BSDPrinter) when given an instance of the class from step 2 (e.g., “printer

type=bsd; host=lobby-printserver ”).

Object factories

information about printer

namespace

application

lookup printer name

in

Printer object

bound in namespace

getObjectInstance()

1

2

3

4
java.naming.factory.object
Sun Microsystems, Inc. 29 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

e fac-
e

ate
olely

ry, a
from a
The service provider should automatically convert between the actual object (e.g.,BSDPrint-

er) and the reference information (step 2, e.g., “printer type=bsd; host=lobby-print-

server ”) when binding or looking up the object.

An application that wants to use a particular factory for generating objects must include th
tory’s class name in itsjava.naming.factory.object environment property and make th
factory’s classes and object classes available.

4.1.4 Overriding the Default Behavior

An object factorybuilder is a class that creates instances of object factories.

An application can install an object factory builder to defining its own policy of how to loc
and construct object factory implementations. When a builder has been installed, it is s
responsible for creating the object factories. None of the default policies (Reference , URL
string, orjava.naming.factory.object property) normally used by JNDI are employed.

Figure 5: Example using an Object Factory Builder to Get Back an Object from the Namespace

A service provider for an object factory builder must do the following:

1. Define object factories that implementObjectFactory .

2. Define a class that implementsObjectFactoryBuilder . This class’s
createObjectFactory() method will use the constructors for theObjectFactory

classes in step 1.

An application that wants to use this factory builder must first install it.

NamingManager.setObjectFactoryBuilder(builder);

4.1.5 Context Factory

A context factoryis an object factory that creates instances ofContext . The implementation of
these contexts for a particular naming or directory service is referred to as acontext implemen-
tation. Context implementations are described in Chapter 2. Like any other object facto
context factory can be obtained by using any of the three mechanisms described above:
Reference , a URL scheme id, or listed in thejava.naming.factory.object property.

PrinterFactory

information about printer

namespace

application

lookup printer name

Printer object

bound in namespace

Installed object factory builder

4

1

2

3

Sun Microsystems, Inc. 30 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

le-

t

-
g lan-

con-
ntext

rning
the use
4.1.6 URL Context Factory

A URL context factory is a special kind of context factory. It follows these rules when imp
mentingObjectFactory.getObjectInstance() .

• If refObj is null , create a context for resolving URLs of the scheme associated with
this factory. The resulting context is not tied to a specific URL. For example, invoking

getObjectInstance(null, null, null, env)

on an “ldap” URL context factory returns a context that can resolve LDAP URLs (e.g.,
“ ldap://ldap.wiz.com/o=wiz,c=us ” or “ l dap://ldap.umich.edu/ ”, ...).

• If refObj is a URL string, create the object identified by the URL. For example,
invoking

getObjectInstance(“ldap://ldap.wiz.com/o=wiz,c=us”, null, null, env);

on an “ldap” URL context factory would return the object named by “o=wiz,c=us ” on
the LDAP serverldap.wiz.com . If this happens to name a context, it can then be used
for resolving (relative) LDAP names (e.g., “cn=Jane Smith ”).

• If refObj is an array of URL strings, the assumption is that the URLs are equivalent in
terms of the context to which they refer. Verification of whether the URLs are, or need
to be, equivalent is up to the context factory. The order of the URLs in the array is no
significant. The object returned bygetObjectInstance() is the same as that for the
single URL case—it is an object (perhaps a context) named by the URLs.

• If refObj is any other type, the behavior ofgetObjectInstance() is determined by
the implementation.

URL context factories are used by theInitialContext class when it is passed a URL to re
solve. URL context factories are also used for creating objects in the Java programmin
guage from URLs stored in the namespace (see Section 4.1.2).

4.2 Storing Objects: State Factories

JNDI provides a mechanism to transform an object into a form storable by the underlying
text implementation. That form may be any arbitrary type acceptable to the underlying co
implementation. For example, it may be aReference , a URL, aSerializable object, or a set
of attributes, or any other data acceptable by the underlying context implementation. Tu
an arbitrary object into data that can be stored in the namespace is supported through
of state factories. A state factory is a class that implements theStateFactory interface (or the
DirStateFactory subinterface):
Sun Microsystems, Inc. 31 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

nd,
au-
create

arget
re ac-

ry re-
tory
an

e fac-
r ex-
es, it

ser-
r ex-
on for

a-

cts,
ervice
d In-
tate
.

con-
public interface StateFactory {
public Object getStateToBind(Object obj,

Name name,
Context nameCtx,
Hashtable env)

throws NamingException;
}
public interface DirStateFactory {

public DirStateFactory.Result getStateToBind(Object obj,
Name name,
Context nameCtx,
Hashtable env,
Attributes attrs)

throws NamingException;
}

Given an object (obj), optional information about the name of the object and where it is bou
and optionally some additional environment information (for example, some identity or
thentication information about the user accessing the namespace), the factory attempts to
an object suitable for binding. Typically, the state factory is knowledgeable about the t
naming/directory service and/or context implementation, and knows which data formats a
ceptable. In the case of a state factory that is to be used with aDirContext implementation,
the factory is also given some attributes that are to be stored with the object. If the facto
quire more information about the object, it can obtain them directly from the naming/direc
service by using thename/nameCtx arguments. For example, a printer state factory for
LDAP directory might return a set of attributes that represent the printer.

If the factory cannot return any data using the arguments supplied, it should returnnull . For
example, when a printer state factory is given a disk object, it should returnnull . The factory
should only thrown an exception if no other state factories should be tried. Therefore, th
tory should be careful about exceptions that might be thrown from its implementation. Fo
ample, if a printer state factory is given a printer object but perhaps contradictory attribut
might throw an exception.

4.2.1 Input/Output Options

Ultimately, a factory’s output formats are determined by the underlying naming/directory
vice. A context implementation for the CORBA Object Services (COS) naming service, fo
ample, can only store CORBA object references into the service; a context implementati
LDAP can only store attributes, although there is a lot of flexibility in how to encode inform
tion within those attributes.

A service provider typically supplies a factory for each (common) type of input that it expe
and the application can augment that set with state factories of its own. For example, a s
provider for COS naming might have a state factory for converting a Java Remote Metho
vocation (RMI) object into a CORBA object reference. A user of that provider might add a s
factory for converting a Microsoft COM object reference into a CORBA object reference

4.2.2 Locating State Factories: The java.naming.factory.state Property

JNDI looks for state factories specified in thejava.naming.factory.state property, which
can be in the environment or the provider resource file (see Section 2.9.5). The property
Sun Microsystems, Inc. 32 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

st im-
nts.
nvoke
,
a non-
t class

erver.
ytes.

n only

ore
bytes

actory
etical
tains a colon-separated list of fully-qualified class names of state factories. Each class mu
plement theStateFactory interface and have a public constructor that takes no argume
For each class in the list, JNDI attempts to load and instantiate the factory class, and to i
the StateFactory/DirStateFactory.getStateToBind() method on it using the object
name, context, environment, and attributes arguments supplied. If the factory produces
null result, the result is returned; otherwise, JNDI uses the same procedure on the nex
in the list until the list is exhausted or a factory returns a non-null result.

4.3 Narrowing LDAP v3 Controls: Response Control Factories

The LDAP v3 protocol allows response controls to accompany any response sent by the s
The control consists of an OID string identifier and a sequence of ASN.1 BER encoded b
In the absence of any external information or assistance, the context implementation ca
return a plain implementation of theControl interface that returns the OID and bytes.

JNDI provides the following abstract class for dealing with response controls:

public abstract javax.naming.ldap.ControlFactory {
...
public static Control getControlInstance(Control ctl,

Context ctx,
Hashtable env)

throws NamingException;
public abstract Control getControlInstance(Control ctl)

throws NamingException;
}

When a context implementation receives a response control, it invokes the staticgetControl-

Instance() method to find a control factory that can narrow the control to one that has m
user-friendly access methods. Such a control, for instance, can decode the ASN.1 BER
and provide access methods that return the information as Java types. If no such control f
can be found, the original response control is returned. Here is an example of a hypoth
TimeResponseControl which decodes the time of day.
Sun Microsystems, Inc. 33 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

rn a

only
ould
, if a
cod-

). The
Each
es
public class TimeResponseControl implements Control {
long time;
// Constructor used by ControlFactory
public TimeResponseControl(String OID, byte[] berVal)

throws NamingException {
// check validity of OID
time = // extract time from berVal

};

// Type-safe and User-friendly method
public long getTime() {

return time;
}
// Low-level methods
public String getID() {

return TIME_OID;
}
public byte[] getEncodedValue() {

return // original berVal
}
 ...

}

A control factory may be responsible for one or more controls. If the factory cannot retu
control using the arguments supplied, it should returnnull . Typically, this involves just match-
ing the control’s OID against the list of OIDs supported by the factory. The factory should
thrown an exception if no other control factories should be tried. Therefore, the factory sh
be careful about exceptions that might be thrown from its implementation. For example
control factory is given a control with an OID that it supports, but the byte array has an en
ing error, it should throw an exception.

Here is an example of a control factory:

public class VendorXControlFactory extends ControlFactory {
public VendorXControlFactory () {
}
public Control getControlInstance(Control orig)

throws NamingException {
if (isOneOfMyControls(orig.getID())) {

 ...
// determine which of ours it is and call its constructor
return new TimeResponseControl(orig.getID(),

orig.getEncodedValue());
}
return null; // not one of ours

}
}

4.3.1 Locating Response Control Factories: The java.naming.factory.control Property

JNDI looks for response control factories specified in thejava.naming.factory.control

property, which can be in the environment or the provider resource file (see Section 2.9.5
property contains a colon-separated list of fully-qualified class names of control factories.
class must implement theControlFactory interface and have a public constructor that tak
Sun Microsystems, Inc. 34 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation

class,

the list

refore,
f the

in a

to in-
no arguments. For each class in the list, JNDI attempts to load and instantiate the factory
and to invoke theControlFactory.getControlInstance() instance method on it using the
control, context, and environment arguments supplied. If the factory produces a non-null re-
sult, the result is returned; otherwise, JNDI uses the same procedure on the next class in
until the list is exhausted or a factory returns a non-null result.

4.4 Ownership of Parameters

Any object passed as a parameter to a method in a factory is owned by the caller. The
the factory is prohibited from maintaining a pointer to the object beyond the duration o
operation or modifying the object. If the factory needs to save the information contained
parameter beyond the duration of the operation, it should maintain its own copy.

4.5 Reentrancy

A factory instance should be reentrant. That is, it should be possible for multiple threads
voke methods on a single instance of a factory concurrently.
Sun Microsystems, Inc. 35 7/14/99

Java Naming and Directory SPI Customizing A Context Implementation
Sun Microsystems, Inc. 36 7/14/99

Java Naming and Directory Interface Service Provider Example
 Appendix A: Service Provider Example
Sun Microsystems, Inc. 37 7/14/99

Java Naming and Directory Interface Service Provider Example

th no
l the

s the
This appendix contains a simple service provider. It implements a flat namespace (wi
federation support). It shows how to produce a context implementation by providing al
methods in theContext interface.

An instance of this context is bound directly as the initial context. This example provide
correspondingInitialContextFactory definition.
Sun Microsystems, Inc. 38 7/14/99

Java Naming and Directory Interface Service Provider Example
A.1 Simple Flat Context

A.1.1 Context Implementation

/*
 * Copyright (c) 1998. Sun Microsystems. All rights reserved.
 */
package examples.spi.flat;

import javax.naming.*;
import java.util.*;

/**
* A sample service provider that implements a flat namespace in memory.

 */

class FlatCtx implements Context {
 Hashtable myEnv;
 private Hashtable bindings = new Hashtable(11);
 static NameParser myParser = new FlatNameParser();

 FlatCtx(Hashtable environment) {
 myEnv = (environment != null)
 ? (Hashtable)(environment.clone())
 : null;
 }

 public Object lookup(String name) throws NamingException {
 if (name.equals(““)) {

// Asking to look up this context itself. Create and return
 // a new instance with its own independent environment.
 return (new FlatCtx(myEnv));
 }
 Object answer = bindings.get(name);
 if (answer == null) {
 throw new NameNotFoundException(name + “ not found”);
 }
 return answer;
 }

 public Object lookup(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return lookup(name.toString());
 }

public void bind(String name, Object obj) throws NamingException {
 if (name.equals(““)) {
 throw new InvalidNameException(“Cannot bind empty name”);
 }
 if (bindings.get(name) != null) {
 throw new NameAlreadyBoundException(
 “Use rebind to override”);
 }
Sun Microsystems, Inc. 39 7/14/99

Java Naming and Directory Interface Service Provider Example
 bindings.put(name, obj);
 }

 public void bind(Name name, Object obj) throws NamingException {
 // Flat namespace; no federation; just call string version
 bind(name.toString(), obj);
 }

public void rebind(String name, Object obj) throws NamingException {
 if (name.equals(““)) {
 throw new InvalidNameException(“Cannot bind empty name”);
 }
 bindings.put(name, obj);
 }

public void rebind(Name name, Object obj) throws NamingException {
 // Flat namespace; no federation; just call string version
 rebind(name.toString(), obj);
 }

 public void unbind(String name) throws NamingException {
 if (name.equals(““)) {

throw new InvalidNameException(“Cannot unbind empty name”);
 }
 bindings.remove(name);
 }

 public void unbind(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 unbind(name.toString());
 }

 public void rename(String oldname, String newname)
 throws NamingException {
 if (oldname.equals(““) || newname.equals(““)) {

throw new InvalidNameException(“Cannot rename empty name”);
 }

 // Check if new name exists
 if (bindings.get(newname) != null) {
 throw new NameAlreadyBoundException(newname +
 “ is already bound”);
 }

 // Check if old name is bound
 Object oldBinding = bindings.remove(oldname);
 if (oldBinding == null) {
 throw new NameNotFoundException(oldname + “ not bound”);
 }

 bindings.put(newname, oldBinding);
 }

 public void rename(Name oldname, Name newname)
Sun Microsystems, Inc. 40 7/14/99

Java Naming and Directory Interface Service Provider Example
 throws NamingException {
 // Flat namespace; no federation; just call string version
 rename(oldname.toString(), newname.toString());
 }

 public NamingEnumeration list(String name)
 throws NamingException {
 if (name.equals(““)) {
 // listing this context
 return new FlatNames(bindings.keys());
 }

 // Perhaps ‘name’ names a context
 Object target = lookup(name);
 if (target instanceof Context) {
 return ((Context)target).list(““);
 }
 throw new NotContextException(name + “ cannot be listed”);
 }

 public NamingEnumeration list(Name name)
 throws NamingException {
 // Flat namespace; no federation; just call string version
 return list(name.toString());
 }

 public NamingEnumeration listBindings(String name)
 throws NamingException {
 if (name.equals(““)) {
 // listing this context
 return new FlatBindings(bindings.keys());
 }

 // Perhaps ‘name’ names a context
 Object target = lookup(name);
 if (target instanceof Context) {
 return ((Context)target).listBindings(““);
 }
 throw new NotContextException(name + “ cannot be listed”);
 }

 public NamingEnumeration listBindings(Name name)
 throws NamingException {
 // Flat namespace; no federation; just call string version
 return listBindings(name.toString());
 }

public void destroySubcontext(String name) throws NamingException {
 throw new OperationNotSupportedException(
 “FlatCtx does not support subcontexts”);
 }

 public void destroySubcontext(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
Sun Microsystems, Inc. 41 7/14/99

Java Naming and Directory Interface Service Provider Example
 destroySubcontext(name.toString());
 }

 public Context createSubcontext(String name)
 throws NamingException {
 throw new OperationNotSupportedException(
 “FlatCtx does not support subcontexts”);
 }

public Context createSubcontext(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return createSubcontext(name.toString());
 }

 public Object lookupLink(String name) throws NamingException {
 // This flat context does not treat links specially
 return lookup(name);
 }

 public Object lookupLink(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return lookupLink(name.toString());
 }

 public NameParser getNameParser(String name)
 throws NamingException {
 return myParser;
 }

public NameParser getNameParser(Name name) throws NamingException {
 // Flat namespace; no federation; just call string version
 return getNameParser(name.toString());
 }

 public String composeName(String name, String prefix)
 throws NamingException {
 Name result = composeName(new CompositeName(name),
 new CompositeName(prefix));
 return result.toString();
 }

 public Name composeName(Name name, Name prefix)
 throws NamingException {
 Name result = (Name)(prefix.clone());
 result.addAll(name);
 return result;
 }

 public Object addToEnvironment(String propName, Object propVal)
 throws NamingException {
 if (myEnv == null) {
 myEnv = new Hashtable(5, 0.75f);
 }
 return myEnv.put(propName, propVal);
Sun Microsystems, Inc. 42 7/14/99

Java Naming and Directory Interface Service Provider Example
 }

 public Object removeFromEnvironment(String propName)
 throws NamingException {
 if (myEnv == null)
 return null;

 return myEnv.remove(propName);
 }

 public Hashtable getEnvironment() throws NamingException {
 if (myEnv == null) {
 // Must return non-null
 myEnv = new Hashtable(3, 0.75f);
 }
 return myEnv;
 }

 public String getNameInNamespace() throws NamingException {
 return ““;
 }

 public void close() throws NamingException {
 myEnv = null;
 bindings = null;
 }

 // Class for enumerating name/class pairs
 class FlatNames implements NamingEnumeration {
 Enumeration names;

 FlatNames (Enumeration names) {
 this.names = names;
 }

 public boolean hasMoreElements() {
 return names.hasMoreElements();
 }

 public boolean hasMore() throws NamingException {
 return hasMoreElements();
 }

 public Object nextElement() {
 String name = (String)names.nextElement();

String className = bindings.get(name).getClass().getName();
 return new NameClassPair(name, className);
 }

 public Object next() throws NamingException {
 return nextElement();
 }
 public void close() {
 }
Sun Microsystems, Inc. 43 7/14/99

Java Naming and Directory Interface Service Provider Example
 }

 // Class for enumerating bindings
 class FlatBindings implements NamingEnumeration {
 Enumeration names;

 FlatBindings (Enumeration names) {
 this.names = names;
 }

 public boolean hasMoreElements() {
 return names.hasMoreElements();
 }

 public boolean hasMore() throws NamingException {
 return hasMoreElements();
 }

 public Object nextElement() {
 String name = (String)names.nextElement();
 return new Binding(name, bindings.get(name));
 }

 public Object next() throws NamingException {
 return nextElement();
 }
 public void close() {
 }
 }
};
Sun Microsystems, Inc. 44 7/14/99

Java Naming and Directory Interface Service Provider Example
A.1.2 Name Parser

/*
 * Copyright (c) 1998. Sun Microsystems. All rights reserved.
 */
package examples.spi.flat;

import javax.naming.NameParser;
import javax.naming.Name;
import javax.naming.CompoundName;
import javax.naming.NamingException;
import java.util.Properties;

class FlatNameParser implements NameParser {

 static Properties syntax = new Properties();
 static {
 syntax.put(“jndi.syntax.direction”, “flat”);
 syntax.put(“jndi.syntax.ignorecase”, “false”);
 }
 public Name parse(String name) throws NamingException {
 return new CompoundName(name, syntax);
 }
}

A.1.3 Initial Context Factory

/*
 * Copyright (c) 1998. Sun Microsystems. All rights reserved.
 */
package examples.spi.flat;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.spi.InitialContextFactory;

public class FlatInitCtxFactory implements InitialContextFactory {

 public Context getInitialContext(Hashtable env) {
 return new FlatCtx(env);
 }
}

Sun Microsystems, Inc. 45 7/14/99

Java Naming and Directory Interface Service Provider Example
Sun Microsystems, Inc. 46 7/14/99

Java Naming and Directory Interface Legend for Class Diagram

y (this is
 Appendix B: Legend for Class Diagram

In a class diagram, we visually distinguish the different kinds of Java entities, as follows:

1. The interface: A rounded rectangle
2. The class: A rectangle
3. The abstract class: A rectangle with an empty dot
4. The final class: A rectangle with a black dot
5. Classes with subclasses: A rectangle with a small black triangle on the lower right corner

Most of these elements are shown below. The class or interface being described in the current chapter is shaded gre
not applicable for package class diagrams). A solid line representsextends, while a dotted line representsimplements.

java.lang.Object

MenuComponent

MenuItem

CheckboxMenuItem

Menu

ItemSelectable

Interface

Abstract class

The current class

Class with subclasses

implements

extends

Class from
another package
Sun Microsystems, Inc. 47 7/14/99

Java Naming and Directory Interface Legend for Class Diagram
Sun Microsystems, Inc. 48 7/14/99

Java Naming and Directory Interface JNDI Change History

ted

tory

t

n”.

the
 Appendix C: JNDI Change History

1.2: JNDI Changes Since 1.1

• Addedjavax.naming.event package.
• Addedjavax.naming.ldap package.
• Added support for configuration using resource files. See Chapter 6 of theJNDI API document.

API-related Changes

• AddedNamingEnumeration.close() for cancelling or terminating enumerations.
• AddedReferralException.getReferralContext(Hashtable env) andReferralExcep-

tion.retryReferral() to allow creation and retry of referral context with different environment properties.
• Clarified how context methods that acceptName argument should deal withCompositeName and nonComposite-

Namearguments. Specifically, instances ofCompositeName are treated as composite name, while all others are trea
as compound name.

• AddedContext.getNameInNamespace() for retrieving the full name of a context within its own namespace.
• Clarified definition of the class factory location of aReference object. Specifically, the location is a codebase, which

consists of a list space-separated URLs.
• Added support for ordered multivalued attributes toAttribute andBasicAttribute .
• AddedBasicAttributes.equals() andBasicAttributes.hashCode() .
• Redefined semantics ofDirContext.getSchemaClassDefinition() so that it returns a context that contains

theDirContext objects of class definitions, rather than returning one (arbitrary) class definition.
• Added protectedInitialContext /InitialDirContext constructors to allow lazy initialization. Useful for sub-

class implementations.

SPI-related Changes

• AddedStateFactory /NamingManager.getStateToBind() , analogous toObjectFactory /NamingMan-
ager.getObjectInstance() , for transforming an object’s state before the object is bound in the naming/direc
service.

• Added interfacesDirObjectFactory andDirStateFactory to better support service providers that implemen
theDirContext interface. AddedDirectoryManager.getObjectInstance() andDirectoryMan-
ager.getStateToStore() to use these interfaces.

• Refined definition ofNamingManager.getObjectInstance() to not treat URL strings specially. Instead, the
URL should be wrapped inside aReference whoseRefAddr type is “URL”.

• MadeResolveResult implementSerializable .
• Defined a special form ofReference called a next naming system (nns) reference for supporting “dynamic federatio

This reference has aRefAddr type of “nns” and a content consisting of the resolved object.
• Added the string constantNamingManager.CPE which names a property set byNamingManager.getContinu-

ationContext() /DirectoryManager.getContinuationContext() . The value of this property is an
instance ofCannotProceedException . This is useful to service providers that implement federation by chaining
CPEs.

• Defined a convention for service providers to use when naming environment properties. See Section 6.1.
Sun Microsystems, Inc. 49 7/14/99

Java Naming and Directory Interface JNDI Change History
Sun Microsystems, Inc. 50 7/14/99

	1 Introduction
	1.1 Document Overview
	1.2 Interface Overview
	1.2.1 NamingManager and DirectoryManager
	1.2.2 Initial Contexts
	1.2.3 Object Factories
	1.2.4 State Factories
	1.2.5 Federation Support

	2 Building a Context Implementation
	2.1 Ownership of Parameters
	2.2 Reentrancy
	2.3 Basic Support—Implementing the Context Interface(s)
	2.4 Object Support
	2.4.1 Reading an Object
	2.4.2 Storing an Object

	2.5 Federation Support
	2.5.1 Names
	2.5.2 Resolving Through a Context
	2.5.3 Resolving Through to Subinterfaces of Context
	2.5.4 Naming System Boundaries
	2.5.5 Continuing an Operation in a Federation
	2.5.6 “Dynamic” Location of Next Naming System
	2.5.7 More about CannotProceedException
	2.5.8 Contextual Information

	2.6 Referral Support
	2.7 Schema Support
	2.8 Event Support
	2.9 Context Environment Support
	2.9.1 Property Naming Convention
	2.9.2 Initializing a Context’s Environment
	2.9.3 Inheritance
	2.9.4 Updates to the Environment
	2.9.5 Provider Resource Files

	2.10 Connection Management

	3 The Initial Context
	3.1 The Initial Context Factory
	3.1.1 Exceptions

	3.2 URL Support
	3.2.1 URL Context
	3.2.2 URL Context Factory
	3.2.3 Service Provider’s Responsibility

	3.3 Overriding the Default Behavior
	3.3.1 Removing URL Support
	3.3.2 Removing All Policy

	3.4 Implementing a Subclass of InitialContext
	3.4.1 URL Support
	3.4.2 New Method Support
	3.4.3 Constructors

	4 Customizing A Context Implementation
	4.1 Reading Objects: Object Factories
	4.1.1 Handling Structured References
	4.1.2 Handling URL References
	4.1.3 Handling Arbitrary References: The java.naming.factory.object Property
	4.1.4 Overriding the Default Behavior
	4.1.5 Context Factory
	4.1.6 URL Context Factory

	4.2 Storing Objects: State Factories
	4.2.1 Input/Output Options
	4.2.2 Locating State Factories: The java.naming.factory.state Property

	4.3 Narrowing LDAP v3 Controls: Response Control Factories
	4.3.1 Locating Response Control Factories: The java.naming.factory.control Property

	4.4 Ownership of Parameters
	4.5 Reentrancy

	Appendix A: Service Provider Example
	A.1 Simple Flat Context
	A.1.1 Context Implementation
	A.1.2 Name Parser
	A.1.3 Initial Context Factory

	Appendix B: Legend for Class Diagram
	Appendix C: JNDI Change History
	1.2: JNDI Changes Since 1.1
	API-related Changes
	SPI-related Changes

