
Java™SecurityArchitecture (JDK1.2)
Author: Li Gong (li.gong@sun.com)

Date: October 2, 1998

Version 1.0

This document gives an overview of the motivation of the major security

features that are being implemented for JDK 1.2, introduces the new classes

and their usage, discusses the impact of this new architecture on existing code,

and gives thoughts on writing security-sensitive code in the future.

© 1997-1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto,

California 94303, U.S.A. All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United

States Government is subject to the restrictions set forth in DFARS 252.227-7013

(c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S.

patents, foreign patents, or pending applications. Sun Microsystems, Inc.

(SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable,

perpetual, worldwide limited license (without the right to sublicense) under

SUN’s intellectual property rights that are essential to practice this

specification. This license allows and is limited to the creation and distribution

of clean room implementations of this specification that: (i) include a complete

implementation of the current version of this specification without subsetting

or supersetting; (ii) implement all the interfaces and functionality of the

standard java.* packages as defined by SUN, without subsetting or

supersetting; (iii) do not add any additional packages, classes or methods to

the java.* packages; (iv) pass all test suites relating to the most recent published

version of this specification that are available from SUN six (6) months prior to

any beta release of the clean room implementation or upgrade thereto; (v) do

not derive from SUN source code or binary materials; and (vi) do not include

any SUN binary materials without an appropriate and separate license from

SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun

logo, the Sun Microsystems Computer Corporation logo, Java, JavaSoft,

JavaScript, and HotJava are trademarks or registered trademarks of Sun

Microsystems, Inc. UNIX® is a registered trademark in the United States and

other countries, exclusively licensed through X/Open Company, Ltd. All other

product names mentioned herein are the trademarks of their respective

owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION

COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION

HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS

OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE

IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE

PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
ii October 29, 1998

8

Table of Contents

1 Introduction . 1
1.1 The Original Sandbox Model .1

1.2 Evolving the Sandbox Model .3

2 New Protection Mechanisms -- Overview of Basic Concepts5

3 Permissions and Security Policy . 8
3.1 The Permission Classes .

3.1.1 java.security.Permission . 9
3.1.2 java.security.PermissionCollection . 9
3.1.3 java.security.Permissions. 9
3.1.4 java.security.UnresolvedPermission . 9
3.1.5 java.io.FilePermission . 10
3.1.6 java.net.SocketPermission . 11
3.1.7 java.security.BasicPermission . 13
3.1.8 java.util.PropertyPermission . 13
3.1.9 java.lang.RuntimePermission . 14
3.1.10 java.awt.AWTPermission . 14
3.1.11 java.net.NetPermission . 15
3.1.12 java.lang.reflect.ReflectPermission . 15
3.1.13 java.io.SerializablePermission . 15
3.1.14 java.security.SecurityPermission . 15
3.1.15 java.security.AllPermission . 16
3.1.16 Discussion of Permission Implications . 16
Java Security Architecture (JDK1.2) iii

3.1.17 How To Create New Types of Permissions. 17

3.2 java.security.CodeSource .19

3.3 java.security.Policy .19
3.3.1 Policy File Format . 20
3.3.2 Property Expansion in Policy Files . 24
3.3.3 Assigning Permissions. 27
3.3.4 Default System and User Policy Files . 28
3.3.5 Customizing Policy Evaluation . 30

3.4 java.security.GeneralSecurityException .31

4 Access Control Mechanisms and Algorithms 32
4.1 java.security.ProtectionDomain .32

4.2 java.security.AccessController. .33
4.2.1 Algorithm for Checking Permissions. 34
4.2.2 Handling Privileges . 36

4.3 Inheritence of Access Control Context .38

4.4 java.security.AccessControlContext .39

5 Secure Class Loading. 41
5.1 Class Loader Class Hierarchies .42

5.2 The Primordial Class Loader .42

5.3 Class Loader Delegation .43

5.4 Class Resolution Algorithm .43

6 Security Management . 44
iv October 29, 1998

6.1 Managing Applets and Applications .44

6.2 SecurityManager versus AccessController .46

6.3 Auxiliary Tools .47
6.3.1 The Key and Certificate Management Tool. 47
6.3.2 Policy Tool. 50
6.3.3 The JAR Signing and Verification Tool . 52

7 GuardedObject and SignedObject 52
7.1 java.security.GuardedObject and java.security.Guard52

7.2 java.security.SignedObject. .54

8 Discussion and Future Directions. 57
8.1 Users, Authentication, and Credentials .57

8.2 Resource Consumption Management. .57

8.3 Arbitrary Grouping of Permissions .57

8.4 Object-Level Protection .58

8.5 Subdividing Protection Domains .58

8.6 Running Applets with Signed Content. .59

9 Summary. 60

10 Acknowledgments . 60
Java Security Architecture (JDK1.2) v

11 References. 61

12 Revision History . 62
vi October 29, 1998

1 Introduction
Since the inception of Java technology, there has been strong and growing

interest around the security of the Java platform as well as new security issues

raised by the deployment of Java technology.

From a technology provider’s point of view, Java security includes two aspects:

• Provide the Java platform (primarily through JDK) as a secure, ready-built

platform on which to run Java-enabled applications in a secure fashion.

• Provide security tools and services implemented in the Java programming
languagethat enable a wider range of security-sensitive applications, for

example, in the enterprise world.

This document discusses issues related to the first aspect, where the customers

for such technologies include vendors that bundle or embed Java technology in

their products (such as browsers and operating systems).

1.1 The Original Sandbox Model

The original security model provided by the Java platform is known as the

sandbox model, which existed in order to provide a very restricted

environment in which to run untrusted code obtained from the open network.

The essence of the sandbox model is that local code is trusted to have full

access to vital system resources (such as the file system) while downloaded

remote code (an applet) is not trusted and can access only the limited resources

provided inside the sandbox. This sandbox model is illustrated in the figure

below.
Java Security Architecture (JDK1.2) 1

The sandbox model was deployed through the Java Development Kit (JDK),

and was generally adopted by applications built with JDK 1.0, including Java-

enabled web browsers.

Overall security is enforced through a number of mechanisms. First of all, the

language is designed to be type-safe and easy to use. The hope is that the

burden on the programmer is such that the likelihood of making subtle

mistakes is lessened compared with using other programming languages such

as C or C++. Language features such as automatic memory management,

garbage collection, and range checking on strings and arrays are examples of

how the language helps the programmer to write safe code.

Second, compilers and a bytecode verifier ensure that only legitimate Java

bytecodes are executed. The bytecode verifier, together with the Java Virtual

Machine, guarantees language safety at run time.

Moreover, a classloader defines a local name space, which can be used to

ensure that an untrusted applet cannot interfere with the running of other

programs.

Finally, access to crucial system resources is mediated by the Java Virtual

Machine and is checked in advance by a SecurityManager class that restricts

the actions of a piece of untrusted code to the bare minimum.

JDK 1.1 introduced the concept of a “signed applet”, as illustrated by the figure

below. In that release, a correctly digitally signed applet is treated as if it is

trusted local code if the signature key is recognized as trusted by the end

system that receives the applet. Signed applets, together with their signatures,

valuable resources (files, etc.)

JDK 1.0 Security Model remote code

sandbox

local code

JVM
2 October 29, 1998

are delivered in the JAR (Java Archive) format. In JDK 1.1, unsigned applets

still run in the sandbox.

1.2 Evolving the Sandbox Model

The new security architecture in JDK 1.2, illustrated in the figure below, is

introduced primarily for the following purposes.

valuable resources (files, etc.)

JDK 1.1 Security Model remote code

sandbox

local code

JVM

trusted

JDK 1.2 Security Model

sandbox

local or remote code (signed or not)

security policy class loader

codes run
with different
permissions,
no built-in
notion of
trusted code

valuable resources (files, etc.)

JVM
Java Security Architecture (JDK1.2) 3

• Fine-grained access control.

This capability existed in the JDK from the beginning, but to use it, the

application writer had to do substantial programming (e.g., by subclassing and

customizing the SecurityManager and ClassLoader classes). The HotJava

browser 1.0 is such an application, as it allows the browser user to choose from

a small number of different security levels.

However, such programming is extremely security-sensitive and requires

sophisticated skills and in-depth knowledge of computer security. The new

architecture will make this exercise simpler and safer.

• Easily configurable security policy.

Once again, this capability existed previously in the JDK but was not easy to

use. Moreover, writing security code is not straightforward, so it is desirable to

allow application builders and users to configure security policies without

having to program.

• Easily extensible access control structure.

Up to JDK 1.1, in order to create a new access permission, you had to add a

new check method to the SecurityManager class. The new architecture allows

typed permissions (each representing an access to a system resource) and

automatic handling of all permissions (including yet-to-be-defined

permissions) of the correct type. No new method in the SecurityManager class

needs to be created in most cases. (In fact, we have so far not encountered a

situation where a new method must be created.)

• Extension of security checks to all Java programs, including applications as

well as applets.

There is no longer a built-in concept that all local code is trusted. Instead, local

code (e.g., non-system code, application packages installed on the local file

system) is subjected to the same security control as applets, although it is

possible, if desired, to declare that the policy on local code (or remote code) be

the most liberal, thus enabling such code to effectively run as totally trusted.

The same principle applies to signed applets and any Java application.

Finally, an implicit goal is to make internal adjustment to the design of security

classes (including the SecurityManager and ClassLoader classes) to reduce the

risks of creating subtle security holes in future programming.
4 October 29, 1998

2 New Protection Mechanisms -- Overview of Basic Concepts
We now go over, in some detail, the new protection architecture and give a

brief explanation of its functionality. We start with an overview of the basic

concepts behind the new architecture. We then introduce the major new classes

in a natural order, starting with permission specifications, going on to the

policy and related features, followed by access control and its usage, and then

covering secure class loading and resolution.

A fundamental concept and important building block of system security is the

protection domain [Saltzer and Schroeder 75]. A domain can be scoped by the

set of objects that are currently directly accessible by a principal, where a

principal is an entity in the computer system to which permissions (and as a

result, accountability) are granted. The sandbox utilized in JDK 1.0 is one

example of a protection domain with a fixed boundary.

The protection domain concept serves as a convenient mechanism for grouping

and isolation between units of protection. For example, it is possible (but not

yet provided as a built-in feature) to separate protection domains from

interacting with each other so that any permitted interaction must be either

through trusted system code or explicitly allowed by the domains concerned.

Note that existing object accessibility rules remain valid under the new security

architecture.

Protection domains generally fall into two distinct categories: system domain

and application domain. It is important that all protected external resources,

such as the file system, the networking facility, and the screen and keyboard,

be accessible only via system domains. The figure below illustrates the domain

composition of a Java application environment.

App-1 App-2 App-n

system domain

net I/O file I/O AWT printer
Java Security Architecture (JDK1.2) 5

A domain conceptually encloses a set of classes whose instances are granted

the same set of permissions. Protection domains are determined by the policy

currently in effect. The Java application environment maintains a mapping

from code (classes and instances) to their protection domains and then to their

permissions, as illustrated by the figure below.

A thread of execution (which is often, but not necessarily tied to, a single Java

thread, which in turn is not necessarily tied to the thread concept of the

underlying operation system) may occur completely within a single protection

domain or may involve an application domain and also the system domain.

For example, an application that prints a message out will have to interact with

the system domain that is the only access point to an output stream. In this

case, it is crucial that at any time the application domain does not gain

additional permissions by calling the system domain. Otherwise, there can be

serious security implications.

In the reverse situation where a system domain invokes a method from an

application domain, such as when the AWT system domain calls an applet’s

paint method to display the applet, it is again crucial that at any time the

effective access rights are the same as current rights enabled in the application

domain.

In other words, a less “powerful” domain cannot gain additional permissions

as a result of calling or being called by a more powerful domain.

domain A

domain B

permissions

permissions

e.class
d.class
c.class
b.class
a.class

Class --> Domain --> Permissions

classes in
Java runtime

security policy
6 October 29, 1998

This discussion of one thread involving two protection domains naturally

generalizes to a thread that traverses multiple protection domains. A simple

and prudent rule of thumb for calculating permissions is the following:

• The permission set of an execution thread is considered to be the

intersection of the permissions of all protection domains traversed by the

execution thread.

• When a piece of code calls the doPrivileged method (see below), the

permission set of the execution thread is considered to include a permission

if it is allowed by the said code’s protection domain and by all protection

domains that are called or entered directly or indirectly subsequently.

As you can see, the doPrivileged method enables a piece of trusted code to

temporarily enable access to more resources than are available directly to the

application that called it. This is necessary in some situations. For example, an

application may not be allowed direct access to files that contain fonts, but the

system utility to display a document must obtain those fonts, on behalf of the

user. We provide the doPrivileged method for the system domain to deal

with this situation, and the method is in fact available to all domains.

During execution, when access to a critical system resource (such as file I/O

and network I/O) is requested, the resource-handling code directly or

indirectly invokes a special AccessController class method that evaluates the

request and decides if the request should be granted or denied.

Such an evaluation follows and generalizes the “rule of thumb” given above.

The actual way in which the evaluation is conducted can vary between

implementations. The basic principle is to examine the call history and the

permissions granted to the relevant protection domains, and to return silently

if the request is granted or throw a security exception if the request is denied.

Finally, each domain (system or application) may also implement additional

protection of its internal resources within its own domain boundary. For

example, a banking application may need to support and protect internal

concepts such as checking accounts, deposits and withdrawals. Because the

semantics of such protection is unlikely to be predictable or enforceable by the

JDK, the protection system at this level is best left to the system or application

developers. Nevertheless, whenever appropriate, we provide helpful

primitives to simplify developers’ tasks. One such primitive is the

SignedObject class, whose detail we will describe later.
Java Security Architecture (JDK1.2) 7

3 Permissions and Security Policy

3.1 The Permission Classes

The permission classes represent access to system resources. The

java.security.Permission class is an abstract class and is subclassed, as

appropriate, to represent specific accesses.

As an example of a permission, the following code can be used to produce a

permission to read the file named “abc” in the /tmp directory:

 perm = new java.io.FilePermission("/tmp/abc", "read");

New permissions are subclassed either from the Permission class or one of its

subclasses, such as java.security.BasicPermission. Subclassed permissions

(other than BasicPermission) generally belong to their own packages. Thus,

FilePermission is found in the java.io package.

A crucial abstract method that needs to be implemented for each new class of

permission is the implies method. Basically, “a implies b” means that if one is

granted permission “a”, one is naturally granted permission “b”. This is

important when making access control decisions.

Associated with the abstract class java.security.Permission are the abstract class

named java.security.PermissionCollection and the final class

java.security.Permissions.

Class java.security.PermissionCollection represents a collection (i.e., a set that

allows duplicates) of Permission objects for a single category (such as file

permissions), for ease of grouping. In cases where permissions can be added to

the PermissionCollection object in any order, such as for file permissions, it is

crucial that the PermissionCollection object ensure that the correct semantics

are followed when the implies function is called.

Class java.security.Permissions represents a collection of collections of

Permission objects, or in other words, a super collection of heterogeneous

permissions.

Applications are free to add new categories of permissions that the system

supports. How to add such application-specific permissions is discussed later

in this document.

Now we describe the syntax and semantics of all built-in permissions.
8 October 29, 1998

3.1.1 java.security.Permission

This abstract class is the ancestor of all permissions. It defines the essential

functionalities required for all permissions.

Each permission instance is typically generated by passing one or more string

parameters to the constructor. In a common case with two parameters, the first

parameter is usually “the name of the target” (such as the name of a file for

which the permission is aimed), and the second parameter is the action (such

as “read” action on a file). Generally, a set of actions can be specified together

as a comma-separated composite string.

3.1.2 java.security.PermissionCollection

This class holds a homogeneous collection of permissions. In other words,

each instance of the class holds only permissions of the same type.

3.1.3 java.security.Permissions

This class is designed to hold a heterogeneous collection of permissions.

Basically, it is a collection of java.security.PermissionCollection objects.

3.1.4 java.security.UnresolvedPermission

Recall that the internal state of a security policy is normally expressed by the

permission objects that are associated with each code source. Given the

dynamic nature of Java technology, however, it is possible that when the policy

is initialized the actual code that implements a particular permission class has

not yet been loaded and defined in the Java application environment. For

example, a referenced permission class may be in a JAR file that will later be

loaded.

The UnresolvedPermission class is used to hold such “unresolved”

permissions. Similarly, the class java.security.UnresolvedPermissionCollection

stores a collection of UnresolvedPermission permissions.

During access control checking on a permission of a type that was previously

unresolved, but whose class has since been loaded, the unresolved permission

is “resolved” and the appropriate access control decision is made. That is, a

new object of the appropriate class type is instantiated, if possible, based on the

information in the UnresolvedPermission. This new object replaces the

UnresolvedPermission, which is removed.
Java Security Architecture (JDK1.2) 9

If the permission is still unresolvable at this time, the permission is considered

invalid, as if it is never granted in a security policy.

3.1.5 java.io.FilePermission

The targets for this class can be specified in the following ways, where

directory and file names are strings that cannot contain white spaces.

file
directory (same as directory/)
directory/file
directory/* (all files in this directory)
* (all files in the current directory)
directory/- (all files in the file system under this directory)
- (all files in the file system under the current directory)
"<<ALL FILES>>" (all files in the file system)

Note that “<<ALL FILES>>” is a special string denoting all files in the system.

On a Unix system, this includes all files under the root directory. On an MS-

DOS system, this includes all files on all drives.

The actions are: read, write, delete, and execute. Therefore, the following are

valid code samples for creating file permissions:

import java.io.FilePermission;

FilePermission p = new FilePermission("myfile", "read,write");
FilePermission p = new FilePermission("/home/gong/", "read");
FilePermissio n p = new FilePermission("/tmp/mytmp", "read,delete");
FilePermission p = new FilePermission("/bin/*", "execute");
FilePermission p = new FilePermission("*", "read");
FilePermission p = new FilePermission("/-", "read,execute");
FilePermission p = new FilePermission("-", "read,execute");
FilePermission p = new FilePermission("<<ALL FILES>>", "read");

The implies method in this class correctly interprets the file system. For

example, FilePermission(“/-”, “read,execute”) implies

FilePermission(“/home/gong/public_html/index.html”, “read”), and

FilePermission(“bin/*”, “execute”) implies FilePermission(“bin/emacs19.31”,

“execute”).

Note: Most of these strings are given in platform-dependent format. For

example, to represent read access to the file named "foo" in the "temp"

directory on the C drive of a Windows system, you would use
10 October 29, 1998

f
an
FilePermission p = new FilePermission("c:\\temp\\foo", "read");

The double backslashes are necessary to represent a single backslash because

the strings are processed by a tokenizer (java.io.StreamTokenizer), which allows

“\” to be used as an escape string (e.g., “\n” to indicate a new line) and which

thus requires two backslashes to indicate a single backslash. After the tokenizer

has processed the above FilePermission target string, converting double

backslashes to single backslashes, the end result is the actual path

"c:\temp\foo"

It is necessary that the strings be given in platform-dependent format until

there is a universal file description language. Note also that the use of meta

symbols such as “*” and “-” prevents the use of specific file names. We think

this is a small limitation that can be tolerated for the moment. Finally, note that

“/-” and “<<ALL FILES>>” are the same target on Unix systems in that they

both refer to the entire file system. (They can refer to multiple file systems if

they are all available). The two targets are potentially different on other

operating systems, such as MS Windows and MacOS.

Also note that a target name that specifies just a directory, with a “read” action,

as in

FilePermission p = new FilePermission("/home/gong/", "read");

means you are only giving permission to list the files in that directory, not read any o
them. To allow read access to files, you must specify either an explicit file name, or
“*” or “-”, as in

FilePermissio n p = new FilePermission("/home/gong/myfile", "read");
FilePermission p = new FilePermission("/home/gong/*", "read");
FilePermission p = new FilePermission("/home/gong/-", "read");

And finally, note that code always automatically has permission to read files

from its same (URL) location, and subdirectories of that location; it does not

need explicit permission to do so.

3.1.6 java.net.SocketPermission

This class represents access to a network via sockets. The target for this class

can be given as “hostname:port_range”, where hostname can be given in the

following ways:
Java Security Architecture (JDK1.2) 11

hostname (a single host)
IP address (a single host)
localhost (the local machine)
"" (equivalent to "localhost")
hostname.domain (a single host within the domain)
hostname.subdomain.domain
*.domain (all hosts in the domain)
*.subdomain.domain
* (all hosts)

That is, the host is expressed as a DNS name, as a numerical IP address, as

“localhost” (for the local machine) or as “” (which is equivalent to specifying

“localhost”).

The wildcard "*" may be included once in a DNS name host specification. If it

is included, it must be in the leftmost position, as in "*.sun.com".

The port_range can be given as follows:

N (a single port)
N- (all ports numbered N and above)
-N (all ports numbered N and below)
N1-N2 (all ports between N1 and N2, inclusive)

Here N, N1, and N2 are non-negative integers ranging from 0 to 65535 (2^16-

1).

The actions on sockets are accept, connect, listen, and resolve (which is

basically DNS lookup). Note that implicitly, the action “resolve” is implied by

“accept”, “connect”, and “listen” -- i.e., those who can listen or accept

incoming connections from or initiate out-going connections to a host should

be able to look up the name of the remote host.

Below are some examples of socket permissions.

import java.net.SocketPermission;

SocketPermissio n p = new SocketPermission("java.sun.com","accept");
p = new SocketPermission("204.160.241.99","accept");
p = new SocketPermission("*.com","connect");
p = new SocketPermission("*.sun.com:80","accept");
p = new SocketPermission("*.sun.com:-1023","accept");
p = new SocketPermission("*.sun.com:1024-","connect");
p = new SocketPermission("java.sun.com:8000-9000",
12 October 29, 1998

 "connect,accept");
p = new SocketPermission("localhost:1024-",
 "accept,connect,listen");

Note that SocketPermission(“java.sun.com:80,8080”,”accept”) and

SocketPermission(“java.sun.com,javasun.sun.com”,”accept”) are not valid

socket permissions.

Moreover, because listen is an action that applies only to ports on the local

host, whereas accept is an action that applies to ports on both the local and

remote host, both actions are necessary.

3.1.7 java.security.BasicPermission

The BasicPermission class extends the Permission class. It can be used as the

base class for permissions that want to follow the same naming convention as

BasicPermission (see below).

The name for a BasicPermission is the name of the given permission (for

example, “exitVM”, “setFactory”, “queuePrintJob”, etc). The naming

convention follows the hierarchical property naming convention. An asterisk

may appear at the end of the name, following a “.”, or by itself, to signify a

wildcard match. For example: “java.*” or “*” is valid, “*java” or “a*b” is not

valid.

The action string (inherited from Permission) is unused.Thus, BasicPermission

is commonly used as the base class for "named" permissions (ones that contain

a name but no actions list; you either have the named permission or you don't.)

Subclasses may implement actions on top of BasicPermission, if desired.

Some of the BasicPermission subclasses are java.lang.RuntimePermission,

java.security.SecurityPermission, java.util.PropertyPermission, and

java.net.NetPermission.

3.1.8 java.util.PropertyPermission

The targets for this class are basically the names of Java properties as set in

various property files. Examples are the “java.home” and “os.name”

properties. Targets can be specified as “*” (any property), “a.*” (any property

whose name has a prefix “a.”), “a.b.*”, and so on. Note that the wildcard can

occur only once and can only be at the rightmost position.
Java Security Architecture (JDK1.2) 13

This is one of the BasicPermission subclasses that implements actions on top of

BasicPermission. The actions are read and write. Their meaning is defined as

follows: “read” permission allows the getProperty method in

java.lang.System to be called to get the property value, and “write” permission

allows the setProperty method to be called to set the property value.

3.1.9 java.lang.RuntimePermission

The target for a RuntimePermission can be represented by any string, and there

is no action associated with the targets. For example,

RuntimePermission(“exitVM”) denotes the permission to exit the Java Virtual

Machine.

The target names are:

createClassLoader
getClassLoader
setContextClassLoader
setSecurityManager
createSecurityManager
exitVM
setFactory
setIO
modifyThread
stopThread
modifyThreadGroup
getProtectionDomain
readFileDescriptor
writeFileDescriptor
loadLibrary.{library name}
accessClassInPackage.{package name}
defineClassInPackage.{package name}
accessDeclaredMembers.{class name}
queuePrintJob

3.1.10 java.awt.AWTPermission

This is in the same spirit as the RuntimePermission; it’s a permission without

actions. The targets for this class are:

accessClipboard
accessEventQueue
listenToAllAWTEvents
showWindowWithoutWarningBanner
14 October 29, 1998

3.1.11 java.net.NetPermission

This class contains the following targets and no actions:

requestPasswordAuthentication
setDefaultAuthenticator
specifyStreamHandler

3.1.12 java.lang.reflect.ReflectPermission

This is the Permission class for reflective operations. A ReflectPermission is a

named permission (like RuntimePermission) and has no actions. The only

name currently defined is

suppressAccessChecks

which allows suppressing the standard Java programming language access

checks -- for public, default (package) access, protected, and private members -

- performed by reflected objects at their point of use.

3.1.13 java.io.SerializablePermission

This class contains the following targets and no actions:

enableSubclassImplementation
enableSubstitution

3.1.14 java.security.SecurityPermission

SecurityPermissions control access to security-related objects, such as Security,

Policy, Provider, Signer, and Identity objects. This class contains the following

targets and no actions:

getPolicy
setPolicy
getProperty.{key}
setProperty.{key}
insertProvider.{provider name}
removeProvider.{provider name}
setSystemScope
setIdentityPublicKey
setIdentityInfo
printIdentity
addIdentityCertificate
Java Security Architecture (JDK1.2) 15

removeIdentityCertificate
clearProviderProperties.{provider name}
putProviderProperty.{provider name}
removeProviderProperty.{provider name}
getSignerPrivateKey
setSignerKeyPair

3.1.15 java.security.AllPermission

This permission implies all permissions. It is introduced to simplify the work

of system administrators who might need to perform multiple tasks that

require all (or numerous) permissions. It would be inconvenient to require the

security policy to iterate through all permissions. Note that AllPermission also

implies new permissions that are defined in the future.

Clearly much caution is necessary when considering granting this permission.

3.1.16 Discussion of Permission Implications

Recall that permissions are often compared against each other, and to facilitate

such comparisons, we require that each permission class defines an implies

method that represents how the particular permission class relates to other

permission classes. For example, java.io.FilePermission(“/tmp/*”, “read”)

implies java.io.FilePermission(“/tmp/a.txt”, “read”) but does not imply any

java.net.NetPermission.

There is another layer of implication that may not be immediately obvious to

some readers. Suppose that one applet has been granted the permission to

write to the entire file system. This presumbly allows the applet to replace the

system binary, including the JVM runtime environment. This effectively means

that the applet has been granted all permissions.

Another example is that if an applet is granted the runtime permission to

create class loaders, it is effectively granted many more permissions, as a class

loader can perform sensitive operations.

Other permissions that are “dangerous” to give out include those that allow

the setting of system properties, runtime permissions for defining packages

and for loading native code libraries (because the Java security architecture is

not designed to and does not prevent malicious behavior at the level of native

code), and of course the AllPermission.
16 October 29, 1998

For more information about permissions, including tables enumerating the

risks of assigning specific permissions as well as a table of all the JDK built-in

methods that require permissions, see

http://java.sun.com/products/jdk/1.2/docs/guide/security/permissi

ons.html .

3.1.17 How To Create New Types of Permissions

It is essential that no one except Sun Microsystems should extend the

permissions that are built into the JDK, either by adding new functionality or

by introducing additional target keywords into a class such as

java.lang.RuntimePermission. This maintains consistency.

To create a new permission, the following steps are recommended, as shown by

an example. Suppose an application developer from company ABC wants to

create a customized permission to “watch TV”.

First, create a new class com.abc.Permission that extends the abstract class

java.security.Permission (or one of its subclasses), and another new class

com.abc.TVPermission that extends the com.abc.Permission. Make sure that

the implies method, among others, is correctly implemented. (Of course,

com.abc.TVPermission can directly extend java.security.Permission; the

intermediate com.abc.Permission is not required.)

public class com.abc.Permission extends java.security.Permission

public class com.abc.TVPermission extends com.abc.Permission

The following figure shows the subclass relationship.
Java Security Architecture (JDK1.2) 17

Second, include these new classes with the application package.

Each user that wants to allow this new type of permission for specific code

does so by adding an entry in a policy file. (Details of the policy file syntax are

given in a later section.) An example of a policy file entry granting code from

http://java.sun.com/ permission to watch channel 5 would be:

grant codeBase "http://java.sun.com/" {
 permission com.abc.TVPermission "channel-5", "watch";
 }

In the application’s resource management code, when checking to see if a

permission should be granted, call AccessController’s checkPermission

method using a com.abc.TVPermission object as the parameter.

 com.abc.TVPermission tvperm = new
 com.abc.TVPermission("channel-5", "watch");
 AccessController.checkPermission(tvperm);

Note that, when adding a new permission, one should create a new

(permission) class and not add a new method to the security manager. (In the

past, in order to enable checking of a new type of access, you had to add a new

method to the SecurityManager class.)

Permission
abstract

subclass

File

Permission

Net
Permission

com.abc.
Permission

com.abc.TV

Permission
18 October 29, 1998

If more elaborate TVPermissions such as “channel-1:13” or “channel-*” are

allowed, then it may be necessary to implement a TVPermissionCollection

object that knows how to deal with the semantics of these pseudo names.

New code should always invoke a permission check by calling the

checkPermission method of the AccessController class in order to exercise the

built-in access control algorithm. There is no essential need to examine whether

there is a ClassLoader or a SecurityManager. On the other hand, if the

algorithm should be left to the installed security manager class, then the

method SecurityManager.checkPermission should be invoked instead.

3.2 java.security.CodeSource

This class extends the concept of a codebase within HTML to encapsulate not

only the code location (URL) but also the certificate(s) containing public keys

that should be used to verify signed code originating from that location. Note

that this is not the equivalent of the CodeBase tag in HTML files. Each

certificate is represented as a java.security.cert.Certificate, and each URL as a

java.net.URL.

3.3 java.security.Policy

The system security policy for a Java application environment, specifying

which permissions are available for code from various sources, is represented

by a Policy object. More specifically, it is represented by a Policy subclass

providing an implementation of the abstract methods in the Policy class.

In order for an applet (or an application running under a SecurityManager) to

be allowed to perform secured actions, such as reading or writing a file, the

applet (or application) must be granted permission for that particular action.

The only exception is that code always automatically has permission to read

files from its same CodeSource, and subdirectories of that CodeSource; it does

not need explicit permission to do so.

There could be multiple instances of the Policy object, although only one is “in

effect” at any time. The currently-installed Policy object can be obtained by

calling the getPolicy method, and it can be changed by a call to the

setPolicy method (by code with permission to reset the Policy).

The current policy is consulted by a ProtectionDomain when the protection

domain initializes its set of permissions. The protection domain passes in a

CodeSource object, which encapsulates its codebase (URL) and certificate
Java Security Architecture (JDK1.2) 19

attributes. The Policy object evaluates the global policy and returns an

appropriate Permissions object specifying the permissions allowed for code

from the specified code source.

The source location for the policy information utilized by the Policy object is

up to the Policy implementation. The policy configuration may be stored, for

example, as a flat ASCII file, as a serialized binary file of the Policy class, or as

a database. There is a default Policy implementation that obtains its

information from static policy configuration files.

The Policy object is agnostic in that it is not involved in making policy

decisions. It is merely the Java runtime representation of the persistent policy

configuration.

3.3.1 Policy File Format

In the default Policy implementation, the policy can be specified within one or

more policy configuration files. The configuration files indicate what

permissions are allowed for code from specified code sources.

A policy configuration file essentially contains a list of entries. It may contain a

“keystore” entry, and contains zero or more “grant” entries.

A keystore is a database of private keys and their associated digital certificates

such as X.509 certificate chains authenticating the corresponding public keys.

The keytool utility is used to create and administer keystores. The keystore

specified in a policy configuration file is used to look up the public keys of the

signers specified in the grant entries of the file. A keystore entry must appear

in a policy configuration file if any grant entries specify signer aliases (see

below).

At this time, there can be only one keystore entry in the policy file (others after

the first one are ignored), and it can appear anywhere outside the file’s grant

entries . It has the following syntax:

keystore "some_keystore_url", "keystore_type";

Here, “some_keystore_url” specifies the URL location of the keystore, and

“keystore_type” specifies the keystore type. The latter is optional. If not

specified, the type is assumed to be that specified by the “keystore.type”

property in the security properties file.

The URL is relative to the policy file location. Thus if the policy file is specified

in the security properties file as:
20 October 29, 1998

policy.url.1=http://foo.bar.com/blah/some.policy

and that policy file has an entry:

keystore ".keystore";

then the keystore will be loaded from:

http://foo.bar.com/blah/.keystore

The URL can also be absolute.

A keystore type defines the storage and data format of the keystore

information, and the algorithms used to protect private keys in the keystore

and the integrity of the keystore itself. The default type supported by Sun

Microsystems is a proprietary keystore type named "JKS".

Each grant entry in a policy file essentially consists of a CodeSource and its

permissions. Actually, a CodeSource consists of a URL and a set of certificates,

while a policy file entry includes a URL and a list of signer names. The system

creates the corresponding CodeSource after consulting the keystore to

determine the certificate(s) of the specified signers.

Each grant entry in the policy file is of the following format, where the leading

“grant” is a reserved word that signifies the beginning of a new entry and

optional items appear in brackets. Within each entry, a leading “permission”

is another reserved word that marks the beginning of a new permission in the

entry. Each grant entry grants a specified code source a set of permissions.

grant [SignedBy "signer_names"] [, CodeBase "URL"] {
 permission permission_class_name ["target_name"]
 [, "action"] [, SignedBy "signer_names"];
 permission ...
};

White spaces are allowed immediately before or after any comma. The name

of the permission class must be a fully qualified class name, such as

java.io.FilePermission, and cannot be abbreviated (for example, to

FilePermission).

Note that the action field is optional in that it can be omitted if the permission

class does not require it. If it is present, then it must come immediately after

the target field.

The exact meaning of a CodeBase URL value depends on the characters at the

end. A CodeBase with a trailing "/" matches all class files (not JAR files) in the
Java Security Architecture (JDK1.2) 21

specified directory. A CodeBase with a trailing "/*" matches all files (both class

and JAR files) contained in that directory. A CodeBase with a trailing "/-"

matches all files (both class and JAR files) in the directory and recursively all

files in subdirectories contained in that directory.

The CodeBase field (URL) is optional in that, if it is omitted, it signifies “any

code base”.

The first signer name field is a string alias that is mapped, via a separate

mechanism, to a set of public keys (within certificates in the keystore) that are

associated with the signers. These keys are used to verify that certain signed

classes are really signed by these signers.

This signer field can be a comma-separated string containing names of

multiple signers, an example of which is “Adam,Eve,Charles”, which means

signed by Adam and Eve and Charles (i.e., the relationship is AND, not OR).

This field is optional in that, if it is omitted, it signifies “any signer”, or in other

words, “It doesn’t matter whether the code is signed or not”.

The second signer field, inside a Permission entry, represents the alias to the

keystore entry containing the public key corresponding to the private key used

to sign the bytecodes that implemented the said permission class. This

permission entry is effective (i.e., access control permission will be granted

based on this entry) only if the bytecode implementation is verified to be

correctly signed by the said alias.

The order between the CodeBase and SignedBy fields does not matter.

An informal BNF grammer for the Policy file format is given below, where

non-capitalized terms are terminals:

PolicyFile -> PolicyEntry | PolicyEntry; PolicyFile
PolicyEntry -> grant {PermissionEntry}; |
 grant SignerEntry {PermissionEntry} |
 grant CodebaseEntry {PermissionEntry} |

grant SignerEntry, CodebaseEntry {PermissionEntry} |
grant CodebaseEntry, SignerEntry {PermissionEntry} |

 keystore "url"
SignerEntry -> signedby (a comma-separated list of strings)
CodebaseEntry -> codebase (a string representation of a URL)
PermissionEntry -> OnePermission | OnePermission PermissionEntry
OnePermission -> permission permission_class_name
 ["target_name"] [, "action_list"]
 [, SignerEntry];
22 October 29, 1998

Now we give some examples. The following policy grants permission a.b.Foo

to code signed by Roland:

grant signedBy "Roland" {
 permission a.b.Foo;
};

The following grants a FilePermission to all code (regardless of the signer

and/or codeBase):

grant {
 permission java.io.FilePermission ".tmp", "read";
};

The following grants two permissions to code that is signed by both Li and

Roland:

grant signedBy "Roland,Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission java.util.PropertyPermission "user.*";
};

The following grants two permissions to code that is signed by Li and that

comes from http://java.sun.com:

grant codeBase "http://java.sun.com/*", signedBy "Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission java.io.SocketPermission "*", "connect";
};

The following grants two permissions to code that is signed by both Li and

Roland, and only if the bytecodes implementing com.abc.TVPermission are

genuinely signed by Li.

grant signedBy "Roland,Li" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission com.abc.TVPermission "channel-5", "watch",
 signedBy "Li";
};

The reason for including the second signer field is to prevent spoofing when a

permission class does not reside with the Java runtime installation. For

example, a copy of the com.abc.TVPermission class can be downloaded as part

of a remote JAR archive, and the user policy might include an entry that refers

to it. Because the archive is not long-lived, the second time the

com.abc.TVPermission class is downloaded, posssibly from a different web

site, it is crucial that the second copy is authentic, as the presence of the
Java Security Architecture (JDK1.2) 23

permission entry in the user policy might reflect the user’s confidence or belief

in the first copy of the class bytecode.

The reason we chose to use digital signatures to ensure authenticity, rather

than storing (a hash value of) the first copy of the bytecodes and using it to

compare with the second copy, is because the author of the permission class

can legitimately update the class file to reflect a new design or implementation.

Please note: The strings for a file path must be specified in a platform-

dependent format; this is necessary until there is a universal file description

language. The above examples have shown strings appropriate on Solaris

systems. On Windows systems, when you directly specify a file path in a

string, you need to include two backslashes for each actual single backslash in

the path, as in

grant signedBy "Roland" {
 permission java.io.FilePermission "C:\\users\\Cathy*", "read";
};

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer),

which allows “\” to be used as an escape string (e.g., “\n” to indicate a new

line) and which thus requires two backslashes to indicate a single backslash.

After the tokenizer has processed the above FilePermission target string,

converting double backslashes to single backslashes, the end result is the actual

path

"C:\users\Cathy*"

3.3.2 Property Expansion in Policy Files

Property expansion is possible in policy files and in the security properties file.

Property expansion is similar to expanding variables in a shell. That is, when a

string like

"${some.property}"

appears in a policy file, or in the security properties file, it will be expanded to

the value of the specified system property. For example,

permission java.io.FilePermission "${user.home}", "read";

will expand “${user.home}” to use the value of the “user.home” system

property. If that property’s value is “/home/cathy”, then the above is

equivalent to
24 October 29, 1998

permission java.io.FilePermission "/home/cathy", "read";

In order to assist in platform-independent policy files, you can also use the

special notation of "${/}", which is a shortcut for "${file.separator}". This allows

permission designations such as

permission java.io.FilePermission "${user.home}${/}*", "read";

If user.home is /home/cathy, and you are on Solaris, the above gets converted

to:

permission java.io.FilePermission "/home/cathy/*", "read";

If on the other hand user.home is C:\users\cathy and you are on a Windows

system, the above gets converted to:

permission java.io.FilePermission "C:\users\cathy*", "read";

Also, as a special case, if you expand a property in a codebase, such as

grant codeBase "file:/${java.home}/lib/ext/"

then any file.separator characters will be automatically converted to /'s, which

is desirable since codebases are URLs. Thus on a Windows system, even if

java.home is set to C:\jdk1.2, the above would get converted to

grant codeBase "file:/C:/jdk1.2/lib/ext/"

Thus you don't need to use ${/} in codebase strings (and you shouldn't).

Property expansion takes place anywhere a double quoted string is allowed in

the policy file. This includes the signedby, codebase, target names, and actions

fields.

Whether or not property expansion is allowed is controlled by the value of the

“policy.expandProperties” property in the security properties file. If the value

of this property is true (the default), expansion is allowed.

Please note: You can’t use nested properties; they will not work. For example,

"${user.${foo}}"

doesn’t work, even if the “foo” property is set to “home”. The reason is the

property parser doesn’t recognize nested properties; it simply looks for the first

“${“, and then keeps looking until it finds the first “}” and tries to interpret the

result “${user.$foo}” as a property, but fails if there is no such property.
Java Security Architecture (JDK1.2) 25

Also note: If a property can't be expanded in a grant entry, permission entry, or

keystore entry, that entry is ignored. For example, if the system property "foo"

is not defined and you have:

grant codeBase "${foo}" {
 permission ...;
 permission ...;
};

then all the permissions in this grant entry are ignored. If you have

grant {
 permission Foo "${foo}";
 permission Bar;
};

then only the “permission Foo...” entry is ignored. And finally, if you have

keystore "${foo}";

then the keystore entry is ignored.

One final note: On Windows systems, when you directly specify a file path in a

string, you need to include two backslashes for each actual single backslash in

the path, as in

"C:\\users\\cathy\\foo.bat"

This is because the strings are processed by a tokenizer (java.io.StreamTokenizer),

which allows “\” to be used as an escape string (e.g., “\n” to indicate a new

line) and which thus requires two backslashes to indicate a single backslash.

After the tokenizer has processed the above string, converting double

backslashes to single backslashes, the end result is

"C:\users\cathy\foo.bat"

Expansion of a property in a string takes place after the tokenizer has processed

the string. Thus if you have the string

"${user.home}\\foo.bat"

then first the tokenizer processes the string, converting the double backslashes

to a single backslash, and the result is

"${user.home}\foo.bat"

Then the ${user.home} property is expanded and the end result is
26 October 29, 1998

"C:\users\cathy\foo.bat"

assuming the user.home value is “C:\users\cathy”. Of course, for platform

independence, it would be better if the string was initially specified without

any explicit slashes, i.e., using the ${/} property instead, as in

"${user.home}${/}foo.bat"

3.3.3 Assigning Permissions

When loading a new class that originated from a particular CodeSource, the

security mechanism consults the policy object to determine what permissions

to grant. This is done by invoking the getPermissions method on the Policy

object that is installed in the VM.

Clearly, a given code source can match the code source given in multiple

entries in the policy, for example because the wildcard “*” is allowed.

The following algorithm is used to locate the appropriate set of permissions in

the policy.

1. match the public keys, if code is signed.
2. if a key is not recognized in the policy, ignore the key
 if every key is ignored, treat the code as unsigned.
3. if the keys are matched, or no signer was specified {
 try to match all URLs in the policy for the keys
 }
4. if either key or URL is not matched, use built-in default
 permission, which is the original sandbox permission.

The exact meaning of a policy entry codeBase URL value depends on the

characters at the end. A codeBase with a trailing "/" matches all class files (not

JAR files) in the specified directory. A codeBase with a trailing "/*" matches all

files (both class and JAR files) contained in that directory. A codeBase with a

trailing "/-" matches all files (both class and JAR files) in the directory and

recursively all files in subdirectories contained in that directory.

As an example, given “http://java.sun.com/-” in the policy, then any code

base that is on this web site matches the policy entry. Matching code bases

include “http://java.sun.com/jdk/” and

“http://java.sun.com/people/gong/appl.jar”.

If multiple entries are matched, then all the permissions given in those entries

are granted. In other words, permission assignment is additive. For example,

if code signed with key A gets permission X and code signed by key B gets
Java Security Architecture (JDK1.2) 27

permission Y and no particular codebase is specified, then code signed by both

A and B gets permissions X and Y. Similarly, if code with codeBase

“http://java.sun.com/-” is given permission X, and

“http://java.sun.com/people/*” is given permission Y, and no particular

signers are specified, then an applet from

“http://java.sun.com/people/applet.jar” gets both X and Y.

Note that URL matching here is purely syntactic. For example, a policy can

give an entry that specifies a URL “ftp://ftp.sun.com”. Such an entry is

useful only when one can obtain Java code directly from ftp for execution.

To specify URLs for the local file system, a file URL can be used. For example,

to specify files in the /home/cathy/temp directory in a Solaris sytem, you'd

use

"file:/home/ cathy/temp/*"

To specify files in the "temp" directory on the C drive in a Windows system,

use

"file:/c:/temp/*"

Note: code base URLs always use slashes (no backlashes), regardless of the

platform they apply to.

You can also use an absolute path name such as

"/home/gong/bin/MyWonderfulJava"

3.3.4 Default System and User Policy Files

In the default Policy implementation, the policy can be specified within one or

more policy configuration files. The configuration files specify what

permissions are allowed for code from specified code sources.

A policy file can be composed via a simple text editor, or via a graphical Policy

Tool utility that is described later.

There is by default a single system-wide policy file, and a single user policy

file.

The system policy file is by default located at

{java.home}/lib/security/java.policy (Solaris)
{java.home}\lib\security\java.policy (Windows)
28 October 29, 1998

Here, java.home is a system property specifying the directory into which the

JDK was installed.

The user policy file is by default located at

{user.home}/.java.policy (Solaris)
{user.home}\.java.policy (Windows)

Here, user.home is a system property specifying the user's home directory.

When the Policy is initialized, the system policy is loaded in first, and then the

user policy is added to it. If neither policy is present, a built-in policy is used.

This built-in policy is the same as the original sandbox policy.

Policy file locations are specified in the security properties file, which is located

at

{java.home}/lib/security/java.security (Solaris)
{java.home}\lib/security\java.security (Windows)

The policy file locations are specified as the values of properties whose names

are of the form

policy.url. n

Here, n is a number. You specify each such property value in a line of the

following form:

policy.url.n= URL

Here, URL is a URL specification. For example, the default system and user

policy files are defined in the security properties file as

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

You can actually specify a number of URLs, including ones of the form

"http://", and all the designated policy files will get loaded. You can also

comment out or change the second one to disable reading the default user

policy file.

The algorithm starts at policy.url.1, and keeps incrementing until it does not

find a URL. Thus if you have policy.url.1 and policy.url.3, policy.url.3 will

never be read.

It is also possible to specify an additional or a different policy file when

invoking execution of an application. This can be done via the
Java Security Architecture (JDK1.2) 29

"-Djava.security.policy" command-line argument, which sets the value of the

java.security.policy property. For example, if you use

java -Djava.security.manager -Djava.security.policy= pURL SomeApp

Here, pURL is a URL specifying the location of a policy file, then the specified

policy file will be loaded in addition to all the policy files that are specified in

the security properties file. (The “-Djava.security.manager” argument ensures

that the default security manager is installed, and thus the application is

subject to policy checks, as described in "Security Management for Applets and

Applications". It is not required if the application SomeApp installs a security

manager.)

If you use the following, with a double equals, then just the specified policy

file will be used; all others will be ignored.

java -Djava.security.manager -Djava.security.policy== pURL SomeApp

If you want to pass a policy file to the appletviewer, again use a

“-Djava.security.policy” argument as follows:

appletviewer -J-Djava.security.policy=pURL myApplet

Please note: The “-Djava.security.policy” policy file value will be ignored (for

both java and appletviewer commands) if the

"policy.allowSystemProperty" property in the security properties file is set to

false. The default is true.

3.3.5 Customizing Policy Evaluation

The current design of the Policy class is not as comprehensive as it could be.

We have given the issues much thought and are progressing cautiously, partly

to ensure that we define method calls that are appropriate for the most

common cases. For the meantime, an alternative policy class can be given to

replace the default policy class, as long as the former is a subclass of the

abstract Policy class and implements the getPermissions method (and other

methods as necessary).

The default Policy implementation can be changed by resetting the value of the

“policy.provider” security property (in the security properties file) to the fully

qualified name of the desired Policy implementation class. The security

properties file is located in the file named

{java.home}/lib/security/java.security (Solaris)
{java.home}\lib\security\java.security (Windows)
30 October 29, 1998

Here, {java.home} refers to the directory where the JDK was installed.

The property policy.provider specifies the name of the policy class, and the

default is the following:

policy.provider=sun.security.provider.PolicyFile

To customize, you can change the property value to specify another class, as in

policy.provider=com.mycom.MyPolicy

Note that the MyPolicy class must be a subclass of java.security.Policy. It is

perhaps worth emphasizing that such an override of the policy class is a

temporary solution and a more comprehensive policy API will probably make

this unnecessary.

3.4 java.security.GeneralSecurityException

This is a new exception class that is a subclass of java.lang.Exception. The

intention is that there should be two types of exceptions associated with

security and the security packages.

• java.lang.SecurityException and its subclasses should be runtime exceptions

(unchecked, not declared) that are likely to cause the execution of a program

to stop.

Such an exception is thrown only when some sort of security violation is

detected. For example, such an exception is thrown when some code attempts

to access a file, but it does not have permission for the access. Application

developers may catch these exceptions, if they want.

• java.security.GeneralSecurityException, which is a subclass of

java.lang.Exception (must be declared or caught) that is thrown in all other

cases from within the security packages.

Such an exception is security related but non-vital. For example, passing in an

invalid key is probably not a security violation and should be caught and dealt

with by a developer.

There are currently still two exceptions within the java.security package that

are subclasses from RuntimeException. We at this moment cannot change

these due to backward compatibility requirements. We will revisit this issue in

the future.
Java Security Architecture (JDK1.2) 31

4 Access Control Mechanisms and Algorithms

4.1 java.security.ProtectionDomain

This class represents a unit of protection within the Java application

environment, and is typically associated with a concept of “principal,” where a

principal is an entity in the computer system to which permissions (and as a

result, accountability) are granted.

A domain conceptually encloses a set of classes whose instances are granted

the same set of permissions. Currently, a domain is uniquely identified by a

CodeSource, which encapsulates two characteristics of the code running inside

the domain: the codebase (java.net.URL), and a set of certificates (of type

java.security.cert.Certificate) for public keys that correspond to the private keys

that signed all code in this domain. Thus, classes signed by the same keys and

from the same URL are placed in the same domain.

A domain also encompasses the permissions granted to code in the domain, as

determined by the security policy currently in effect.

Classes that have the same permissions but are from different code sources

belong to different domains.

A class belongs to one and only one ProtectionDomain.

Note that currently in JDK 1.2, protection domains are created “on demand” as

a result of class loading. The getProtectionDomain method in java.lang.Class

can be used to look up the protection domain that is associated with a given

class. Note that one must have the appropriate permission (the

RuntimePermission "getProtectionDomain") to successfully invoke this

method.

Today all code shipped as part of the JDK is considered system code and run

inside the unique system domain. Each applet or application runs in its

appropriate domain, determined by its code source.

It is possible to ensure that objects in any non-system domain cannot

automatically discover objects in another non-system domain. This partition

can be achieved by careful class resolution and loading, for example, using

different classloaders for different domains. However, SecureClassLoader (or

its subclasses) can, at its choice, load classes from different domains, thus

allowing these classes to co-exist within the same name space (as partitioned

by a classloader).
32 October 29, 1998

s
hes
it
4.2 java.security.AccessController

The AccessController class is used for three purposes, each of which is

described in further detail in sections below:

• to decide whether an access to a critical system resource is to be allowed or

denied, based on the security policy currently in effect,

• to mark code as being "privileged", thus affecting subsequent access

determinations, and

• to obtain a "snapshot" of the current calling context so access-control

decisions from a different context can be made with respect to the saved

context.

Any code that controls access to system resources should invoke

AccessController methods if it wishes to use the specific security model and acces
control algorithm utilized by these methods. If, on the other hand, the application wis
to defer the security model to that of the SecurityManager installed at runtime, then
should instead invoke corresponding methods in the SecurityManager class.

For example, the typical way to invoke access control has been the following

code (taken from an earlier version of JDK):

 ClassLoader loader = this.getClass().getClassLoader();
 if (loader != null) {

SecurityManager security = System.getSecurityManager();
 if (security != null) {
 security.checkRead("path/file");
 }
 }

Under the new architecture, the check typically should be invoked whether or

not there is a classloader associated with a calling class. It could be simply, for

example:

FilePermission perm = new FilePermission("path/file", "read");
AccessController.checkPermission(perm);

The AccessController checkPermission method examines the current

execution context and makes the right decision as to whether or not the

requested access is allowed. If it is, this check returns quietly. Otherwise, an

AccessControlException (a subclass of java.lang.SecurityException) is thrown.

Note that there are (legacy) cases, for example, in some browsers, where

whether there is a SecurityManager installed signifies one or the other security
Java Security Architecture (JDK1.2) 33

state that may result in different actions being taken. For backward

compatibility, the checkPermission method on SecurityManager can be used.

SecurityManager security = System.getSecurityManager();
if (security != null) {
 FilePermission perm = new FilePermission("path/file", "read");
 security.checkPermission(perm);
}

We currently do not change this aspect of the SecurityManager usage, but

would encourage application developers to use new techniques introduced in

this new version of the JDK in their future programming when the built-in

access control algorithm is appropriate.

The default behavior of the SecurityManager checkPermission method is

actually to call the AccessController checkPermission method. A different

SecurityManager implementation may implement its own security

management approach, possibly including the addition of further constraints

used in determining whether or not an access is permitted.

4.2.1 Algorithm for Checking Permissions

Suppose access control checking occurs in a thread of computation that has a

chain of multiple callers (think of this as multiple method calls that cross the

protection domain boundaries), as illustrated in the next figure.

domain A

domain B

permissions

permissions

security policy

a.class

c.class

File.class

AC.class

AccessController.checkPermission(Permission p)
34 October 29, 1998

When the checkPermission method of the AccessController is invoked by the

most recent caller (e.g., a method in the File class), the basic algorithm for

deciding whether to allow or deny the requested access is as follows.

If any caller in the call chain does not have the requested

permission, AccessControlException is thrown, unless the

following is true -- a caller whose domain is granted the said

permission has been marked as “privileged” (see the next section)

and all parties subsequently called by this caller (directly or

indirectly) all have the said permission.

There are obviously two implementation strategies:

• In an “eager evaluation” implementation, whenever a thread enters a new

protection domain or exits from one, the set of effective permissions is

updated dynamically.

The benefit is that checking whether a permission is allowed is simplified and

can be faster in many cases. The disadvantage is that, because permission

checking occurs much less frequently than cross-domain calls, a large

percentage of permission updates are likely to be useless effort.

• In a “lazy evaluation” implementation, whenever permission checking is

requested, the thread state (as reflected by the current state, including the

current thread’s call stack or its equivalent) is examined and a decision is

reached to either deny or grant the particular access requested.

One potential downside of this approach is performance penalty at permission

checking time, although this penalty would have been incurred anyway in the

“eager evaluation” approach (albeit at earlier times and spread out among each

cross-domain call). Our implementation so far has yielded acceptable

performance, so we feel that lazy evaluation is the most economical approach

overall.

Therefore, the algorithm for checking permissions is currently implemented as

“lazy evaluation”. Suppose the current thread traversed m callers, in the order

of caller 1 to caller 2 to caller m. Then caller m invoked the checkPermission

method. The basic algorithm checkPermission uses to determine whether

access is granted or denied is the following (see subsequent sections for

refinements):

 i = m;
 while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException
Java Security Architecture (JDK1.2) 35

 else if (caller i is marked as privileged)
 return;
 i = i - 1;
 };

4.2.2 Handling Privileges

A new, static method in the AccessController class allows code in a class

instance to inform the AccessController that a body of its code is “privileged”

in that it is solely responsible for requesting access to its available resources, no

matter what code caused it to do so.

That is, a caller can be marked as being "privileged" when it calls the

doPrivileged method. When making access control decisions, the

checkPermission method stops checking if it reaches a caller that was marked

as "privileged" via a doPrivileged call without a context argument (see a

subsequent section for information about a context argument). If that caller's

domain has the specified permission, no further checking is done and

checkPermission returns quietly, indicating that the requested access is

allowed. If that domain does not have the specified permission, an exception is

thrown, as usual.

The normal use of the "privileged" feature is as follows:

If you don't need to return a value from within the "privileged" block, do the

following:

 somemethod() {
 ...normal code here...
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 // privileged code goes here, for example:
 System.loadLibrary("awt");
 return null; // nothing to return
 }
 });
 ...normal code here...
 }

PrivilegedAction is an interface with a single method, named run , that returns

an Object. The above example shows creation of an anonymous inner class

implementing that interface; a concrete implementation of the run method is

supplied. When the call to doPrivileged is made, an instance of the

PrivilegedAction implementation is passed to it. The doPrivileged method
36 October 29, 1998

calls the run method from the PrivilegedAction implementation after enabling

privileges, and returns the run method's return value as the doPrivileged

return value, which is ignored in this example.

(For more information about inner classes, see the Inner Classes Specification
at

http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec

/innerclasses.doc.html or pages of the More Features of the Java
Language trail of the Java Tutorial, including

http://java.sun.com/docs/books/tutorial/java/more/nested.html and

http://java.sun.com/docs/books/tutorial/java/more/innerclasses.ht

ml .)

If you need to return a value, you can do something like the following:

 somemethod() {
 ...normal code here...
 String user = (String) AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 return System.getProperty("user.name");
 }
 }
);
 ...normal code here...
 }

If the action performed in your run method could throw a "checked" exception

(one listed in the throws clause of a method), then you need to use the

PrivilegedExceptionAction interface instead of the PrivilegedAction interface:

 somemethod() throws FileNotFoundException {
 ...normal code here...
 try {
 FileInputStream fis = (FileInputStream)
 AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws FileNotFoundException {
 return new FileInputStream("someFile");
 }
 }
);
 } catch (PrivilegedActionException e) {
 // e.getException() should be an instance of
 // FileNotFoundException,
 // as only "checked" exceptions will be "wrapped" in a
Java Security Architecture (JDK1.2) 37

 // <code>PrivilegedActionException</code>.
 throw (FileNotFoundException) e.getException();
 }
 ...normal code here...
 }

Some important points about being privileged: Firstly, this concept only exists

within a single thread. As soon as the privileged code completes, the privilege

is guaranteed to be erased or revoked.

Secondly, in this example, the body of code in the run method is privileged.

However, if it calls less trustworthy code that is less privileged, that code will

not gain any privileges as a result; a permission is only granted if the

privileged code has the permission and so do all the subsequent callers in the

call chain up to the checkPermission call.

For more information about marking code as “privileged,” see

http://java.sun.com/products/jdk/1.2/docs/guide/security/doprivil

eged.html .

4.3 Inheritence of Access Control Context

When a thread creates a new thread, a new stack is created. If the current

security context was not retained when this new thread was created, then

when AccessController.checkPermission was called inside the new thread,

a security decision would be made based solely upon the new thread’s context,

not taking into consideration that of the parent thread.

This clean stack issue would not be a security problem per se, but it would

make the writing of secure code, and especially system code, more prone to

subtle errors. For example, a non-expert developer might assume, quite

reasonably, that a child thread (e.g., one that does not involve untrusted code)

inherits the same security context from the parent thread (e.g., one that

involves untrusted code). This would cause unintended security holes when

accessing controlled resources from inside the new thread (and then passing

the resources along to less trusted code), if the parent context was not in fact

saved.

Thus, when a new thread is created, we actually ensure (via thread creation

and other code) that it automatically inherits the parent thread’s security

context at the time of creation of the child thread, in such a way that

subsequent checkPermission calls in the child thread will take into

consideration the inherited parent context.
38 October 29, 1998

In other words, the logical thread context is expanded to include both the

parent context (in the form of an AccessControlContext, described in the next

section) and the current context, and the algorithm for checking permissions is

expanded to the following. (Recall there are m callers up to the call to

checkPermission , and see the next section for information about the

AccessControlContext checkPermission method.)

 i = m;
 while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException
 else if (caller i is marked as privileged)
 return;
 i = i - 1;
 };

 // Next, check the context inherited when
 // the thread was created. Whenever a new thread is created, the
 // AccessControlContext at that time is
 // stored and associated with the new thread, as the "inherited"
 // context.

 inheritedContext.checkPermission(permission);

Note that this inheritance is transitive so that, for example, a grandchild

inherits both from the parent and the grandparent. Also note that the inherited

context snapshot is taken when the new child is created, and not when the

child is first run. There is no public API change for the inheritance feature.

4.4 java.security.AccessControlContext

Recall that the AccessController checkPermission method performs security

checks within the context of the current execution thread (including the

inherited context). A difficulty arises when such a security check can only be

done in a different context. That is, sometimes a security check that should be

made within a given context will actually need to be done from within a

different context. For example, when one thread posts an event to another

thread, the second thread serving the requesting event would not have the

proper context to complete access control, if the service requests access to

controller resources.

To address this issue, we provide the AccessController getContext method

and AccessControlContext class. The getContext method takes a "snapshot" of
Java Security Architecture (JDK1.2) 39

the current calling context, and places it in an AccessControlContext object,

which it returns. A sample call is the following:

AccessControlContext acc = AccessController.getContext();

This context captures relevant information so that an access control decision

can be made by checking, from within a different context, against this context

information. For example, one thread can post a request event to a second

thread, while also supplying this context information. AccessControlContext

itself has a checkPermission method that makes access decisions based on the

context it encapsulates, rather than that of the current execution thread. Thus,

the second thread can perform an appropriate security check if necessary by

invoking the following:

acc.checkPermission(permission);

The above method call is equivalent to performing the same security check in

the context of the first thread, even though it is done in the second thread.

There are also times where one or more permissions must be checked against

an access control context, but it is unclear a priori which permissions are to be

checked. In these cases you can use the doPrivileged method that takes a

context:

 somemethod() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 // Code goes here. Any permission checks from
 // this point forward require both the current
 // context and the snapshot's context to have
 // the desired permission.
 }
 }, acc);
 ...normal code here...

Now the complete algorithm utilized by the AccessController

checkPermission method can be given. Suppose the current thread traversed

m callers, in the order of caller 1 to caller 2 to caller m. Then caller m invoked

the checkPermission method. The algorithm checkPermission uses to

determine whether access is granted or denied is the following

 i = m;
 while (i > 0) {
 if (caller i’s domain does not have the permission)
 throw AccessControlException
 else if (caller i is marked as privileged) {
40 October 29, 1998

 if (a context was specified in the call to doPrivileged)
 context.checkPermission(permission);
 return;
 }
 i = i - 1;
 };

 // Next, check the context inherited when
 // the thread was created. Whenever a new thread is created, the
 // AccessControlContext at that time is
 // stored and associated with the new thread, as the "inherited"
 // context.

 inheritedContext.checkPermission(permission);

5 Secure Class Loading
Dynamic class loading is an important feature of the Java Virtual Machine

because it provides the Java platform with the ability to install software

components at run-time. It has a number of unique characteristics. First of all,

lazy loading means that classes are loaded on demand and at the last moment

possible. Second, dynamic class loading maintains the type safety of the Java

Virtual Machine by adding link-time checks, which replace certain run-time

checks and are performed only once. Moreover, programmers can define their

own class loaders that, for example, specify the remote location from which

certain classes are loaded, or assign appropriate security attributes to them.

Finally, class loaders can be used to provide separate name spaces for various

software components. For example, a browser can load applets from different

web pages using separate class loaders, thus maintaining a degree of isolation

between those applet classes. In fact, these applets can contain classes of the

same name -- these classes are treated as distinct types by the Java Virtual

Machine.

The class loading mechanism is not only central to the dynamic nature of the

Java programming language. It also plays a critical role in providing security

because the class loader is responsible for locating and fetching the class file,

consulting the security policy, and defining the class object with the

appropriate permissions.
Java Security Architecture (JDK1.2) 41

5.1 Class Loader Class Hierarchies

When loading a class, because there can be multiple instances of class loader

objects in one Java Virtual Machine, an important question is how do we

determine which class loader to use. JDK 1.2 has introduced multiple class

loader classes are introduced that have distinct properties, so another

important question is what type of class loader we should use.

The root of the class loader class hierarchy is an abstract class called

java.lang.ClassLoader, originally defined in JDK 1.0 and since expanded. Class

java.security.SecureClassLoader, introduced in JDK 1.2, is a subclass and a

concrete implementation of the abstract ClassLoader class. Class

java.net.URLClassLoader is a subclass of SecureClassLoader.

A utility program called Appletviewer uses a private class

sun.applet.AppletClassLoader to load applets. In JDK 1.0, AppletClassLoader

is a subclass and concrete implementation of ClassLoader. In JDK 1.2, it is a

subclass of URLClassLoader.

When creating a custom class loader class, one can subclass from any of the

above class loader classes, depending on the particular needs of the custom

class loader. Because AppletClassLoader is a private class defined in the sun.*

package, it is not supported and is subject to change, so one should not

subclass from it.

5.2 The Primordial Class Loader

Because each class is loaded by its class loader, and each class loader itself is a

class and must be loaded by another class loader, we seem to have the obvious

chicken-and-egg problem, i.e., where does the first class loader come from?

There is a “primordial’’ class loader that bootstraps the class loading process.

The primordial class loader is generally written in a native language, such as

C, and does not manifest itself within the Java context. The primordial class

loader often loads classes from the local file system in a platform-dependent

manner.

Some classes, such as those defined in the java.* package, are essential for the

correct functioning of the Java Virtual Machine and runtime system. They are

often referred to as base classes. Due to historical reasons, all such classes have

a class loader that is a null. This null class loader is perhaps the only sign of

the existence of a primordial class loader. In fact, it is easier to simply view the

null class loader as the primordial class loader.
42 October 29, 1998

Given all classes in one Java application environment, we can easily form a

class loading tree to reflect the class loading relationship. Each class that is not

a class loader is a leaf node. Each class’s parent node is its class loader, with

the null class loader being the root class. Such a structure is a tree because

there cannot be cycles -- a class loader cannot have loaded its own ancestor

class loader.

5.3 Class Loader Delegation

When one class loader is asked to load a class, this class loader either loads the

class itself or it can ask another class loader to do so. In other words, the first

class loader can delegate to the second class loader. The delegation

relationship is virtual in the sense that it has nothing to do with which class

loader loads which other class loader. Instead, the delegation relationship is

formed when class loader objects are created, and in the form of a parent-child

relationship. Nevertheless, the system class loader is the delegation root

ancestor of all class loaders. Care must be taken to ensure that the delegation

relationship does not contain cycles. Otherwise, the delegation process may

enter into an infinite loop.

5.4 Class Resolution Algorithm

The default implementation of the JDK 1.2 ClassLoader method for loading a

class searches for classes in the following order:

• Check if the class has already been loaded.

• If the current class loader has a specified delegation parent, delegate to the

parent to try to load this class. If there is no parent, delegate to the

primordial class loader.

• Call a customizable method to find the class elsewhere.

Here, the first step looks into the class loader’s local cache (or its functional

equivalent, such as a global cache) to see if a loaded class matches the target

class. The last step provides a way to customize the mechanism for looking for

classes; thus a custom class loader can override this method to specify how a

class should be looked up. For example, an applet class loader can override

this method to go back to the applet host and try to locate the class file and

load it over the network.

If at any step a class is located, it is returned. If the class is not found using the

above steps, a ClassNotFound exception is thrown.
Java Security Architecture (JDK1.2) 43

Observe that it is critical for type safety that the same class not be loaded more

than once by the same class loader. If the class is not among those already

loaded, the current class loader attempts to delegate the task to the parent class

loader. This can occur recursively. This ensures that the appropriate class

loader is used. For example, when locating a system class, the delegation

process continues until the system class loader is reached.

We have seen the delegation algorithm earlier. But, given the name of any

class, which class loader do we start with in trying to load the class? The rules

for determining the class loader are the following:

• When loading the first class of an application, a new instance of the

URLClassLoader is used.

• When loading the first class of an applet, a new instance of the

AppletClassLoader is used.

• When java.lang.Class.ForName is directly called, the primordial class loader

is used.

• If the request to load a class is triggered by a reference to it from an existing

class, the class loader for the existing class is asked to load the class.

Note that rules about the use of URLClassLoader and AppletClassLoader

instances have exceptions and can vary depending on the particular system

environment. For example, a web browser may choose to reuse an existing

AppletClassLoader to load applet classes from the same web page.

Due to the power of class loaders, we severely restrict who can create class

loader instances. On the other hand, it is desirable to provide a convenient

mechanism for applications or applets to specify URL locations and load

classes from them. We provide static methods to allow any program to create

instances of the URLClassLoader class, although not other types of class

loaders.

6 Security Management

6.1 Managing Applets and Applications

Currently, all JDK system code invokes SecurityManager methods to check the

policy currently in effect and perform access control checks. There is typically a

security manager (SecurityManager implementation) installed whenever an
44 October 29, 1998

applet is running; the appletviewer and most browsers, including those from

Netscape and Microsoft, install a security manager.

A security manager is not automatically installed when an application is

running. To apply the same security policy to an application found on the local

file system as to downloaded applets, either the user running the application

must invoke the Java Virtual Machine with the new “-Djava.security.manager”

command-line argument (which sets the value of the java.security.manager
property), as in

 java -Djava.security.manager SomeApp

or the application itself must call the setSecurityManager method in the

java.lang.System class to install a security manager.

It is possible to specify on the command line a particular security manager to

be utilized, by following “-Djava.security.manager” with an equals and the

name of the class to be used as the security manager, as in

 java -Djava.security.manager=COM.abc.MySecMgr SomeApp

If no security manager is specified, the built-in default security manager is

utilized (unless the application installs a different security manager). All of the

following are equivalent and result in usage of the default security manager:

 java -Djava.security.manager SomeApp
 java -Djava.security.manager="" SomeApp
 java -Djava.security.manager=default SomeApp

JDK 1.2 includes a property named java.class.path. Classes that are stored on the

local file system but should not be treated as base classes (e.g., classes built into

the JDK) should be on this path. Classes on this path are loaded with a secure

class loader and are thus subjected to the security policy being enforced.

There is also a “-Djava.security.policy” command-line argument whose usage

determines what policy files are utilized. This command-line argument is

described in detail in the "Default System and User Policy Files" section.

Basically, if you don't include “-Djava.security.policy” on the command line,

then the policy files specified in the security properties file will be used.

You can use a “-Djava.security.policy” command-line argument to specify an

additional or a different policy file when invoking execution of an application.

For example, if you type the following, where pURL is a URL specifying the

location of a policy file, then the specified policy file will be loaded in addition

to all the policy files specified in the security properties file:
Java Security Architecture (JDK1.2) 45

java -Djava.security.manager -Djava.security.policy= pURL SomeApp

If you instead type the following command, using a double equals, then just

the specified policy file will be used; all others will be ignored:

java -Djava.security.manager -Djava.security.policy==pURL SomeApp

6.2 SecurityManager versus AccessController

The new access control mechanism is fully backward compatible. For example,

all check methods in SecurityManager are still supported, although most of

their implementations are changed to call the new SecurityManager

checkPermission method, whose default implementation calls the

AccessController checkPermission method. Note that certain internal security

checks may stay in the SecurityManager class, unless it can be parameterized.

We have not at this time revised any JDK system code to call AccessController

instead of calling SecurityManager (and checking for the existence of a

classloader), because of the potential of existing third-party applications that

subclass the SecurityManager and customize the check methods. In fact, we

added a new method SecurityManager.checkPermission that by default

simply invokes AccessController.checkPermission .

To understand the relationship between SecurityManager and

AccessController, it is sufficient to note that SecurityManager represents the

concept of a central point of access control, while AccessController implements

a particular access control algorithm, with special features such as the

doPrivileged method. By keeping SecurityManager up to date, we maintain

backward compatibility (e.g., for those applications that have written their own

security manager classes based on earlier versions of the JDK) and flexibility

(e.g., for someone wanting to customize the security model to implement

mandatory access control or multilevel security). By providing

AccessController, we build in the algorithm that we believe is the most

restrictive and that relieves the typical programmer from the burden of having

to write extensive security code in most scenarios.

We encourage the use of AccessController in application code, while

customization of a security manager (via subclassing) should be the last resort

and should be done with extreme care. Moreover, a customized security

manager, such as one that always checks the time of the day before invoking

standard security checks, could and should utilize the algorithm provided by

AccessController whenever appropriate.
46 October 29, 1998

6.3 Auxiliary Tools

This section briefly describes the usage of three tools that assist in the

deployment of the new security features. These tools may be packaged

together in the future.

More extensive documentation for the tools can be found in the

/docs/tooldocs/solaris

and

/docs/tooldocs/win32

subdirectories of the JDK release directory (where the directory separators are

actually “\” on Windows systems).

For example, if the JDK is installed in a directory named “/jdk1.2” on a Solaris

system, then the keytool documentation for Solaris and Windows users,

respectively, can be found in

/jdk1.2/docs/tooldocs/solaris/keytool.html
/jdk1.2/docs/tooldocs/win32/keytool.html

If the JDK is installed in a directory named “C:\jdk1.2” on a Windows system,

then the keytool documentation for Solaris and Windows users, respectively,

can be found in

C:\jdk1.2\docs\tooldocs\solaris\keytool.html
C:\jdk1.2\docs\tooldocs\win32\keytool.html

6.3.1 The Key and Certificate Management Tool

keytool is a key and certificate management utility. It enables users to

administer their own public/private key pairs and associated certificates for

use in self-authentication (where the user authenticates himself/herself to

other users/services) or data integrity and authentication services, using

digital signatures. The authentication information includes both a sequence

(chain) of X.509 certificates, and an associated private key, which can be

referenced by a so-called “alias”. This tool also manages certificates (that are

“trusted” by the user), which are stored in the same database as the

authentication information, and can be referenced by an “alias”.
Java Security Architecture (JDK1.2) 47

keytool stores the keys and certificates in a so-called keystore. The default

keystore implementation implements the keystore as a file. It protects private

keys with a password.

The chains of X.509 certificates are provided by organizations called

Certification Authorities, or CAs. Identities (including CAs) use their private

keys to authenticate their association with objects (such as with channels which

are secured using SSL), with archives of code they signed, or (for CAs) with

X.509 certificates they have issued. As a bootstrapping tool, certificates

generated using the -genkey command may be used until a Certification

Authority returns a certificate chain.

The private keys in this database are always stored in encrypted form, to make

it difficult to disclose these private keys inappropriately. A password is

required to access or modify the database. These private keys are encrypted

using the “password”, which should be several words long. If the password is

lost, those authentication keys cannot be recovered.

In fact, each private key in the keystore can be protected using its own

individual password, which may or may not be the same as the password that

protects the keystore’s overall integrity.

This tool is (currently) intended to be used from the command line, where one

simply types “keytool” as a shell prompt. keytool is a script that executes the

appropriate Java classes and is built together with the JDK.

The command line options for each command may be provided in any order.

Typing an incorrect option or typing “keytool -help” will cause the tool’s usage

to be summarized on the output device (such as a shell window), as given

below.

% keytool -help
KeyTool usage:

-certreq [-v] [-alias <alias>] [-sigalg <sigalg>]
 [-file <certreq_file>] [-keypass <keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-delete [-v] -alias <alias>
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-export [-v] [rfc] [-alias <alias>] [-file <cert_file>]
 [-keystore <keystore>] [-storepass <storepass>]
48 October 29, 1998

 [-storetype <i>storetype</i>]

-genkey [-v] [-alias <alias>] [-keyalg <keyalg>]
 [-keysize <keysize>] [-sigalg <sigalg>]
 [-dname <distinguished_name>] [-validity <valDays>]
 [-keypass <keypass>] [-keystore <keystore>]
 [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-help

-identitydb [-v] [-file <idb_file>] [-keystore <keystore>]
 [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-import [-v] [-noprompt] [-alias <alias>]
 [-file <cert_file>] [-keypass <keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-keyclone [-v] [-alias <alias>] -dest <dest_alias>
 [-keypass <keypass>] [-new <new_keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-keypasswd [-v] [-alias <alias>]
 [-keypass <old_keypass>] [-new <new_keypass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-list [-v | -rfc] [-alias <alias>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-printcert [-v] [-file <cert_file>]

-selfcert [-v] [-alias <alias>] [-sigalg <sigalg>]
 [-dname <distinguished_name>] [-validity <valDays>]
 [-keypass <keypass>] [-keystore <keystore>]
 [-storepass <storepass>]
 [-storetype <i>storetype</i>]

-storepasswd [-v] [-new <new_storepass>]
 [-keystore <keystore>] [-storepass <storepass>]
 [-storetype <i>storetype</i>]
Java Security Architecture (JDK1.2) 49

6.3.2 Policy Tool

The Policy Tool is a graphical user interface (illustrated below with a screen

shot) that assists a user (such as a system administrator) in specifying,

generating, editing, exporting, or importing a security policy. The tool is

invoked from the command line as policytool . This again is a script built

with the JDK that invokes the appropriate (non-public) implementation classes.

See the Policy Tool documentation for usage information and examples with

up-to-date screen shots. The documentation can be found in the

policytool.html file in the

/docs/tooldocs/solaris/

or

/docs/tooldocs/win32/

directory in the directory in which the JDK was installed (where the file

separators are actually backslashes on Windows systems).
50 October 29, 1998

Java Security Architecture (JDK1.2) 51

6.3.3 The JAR Signing and Verification Tool

The jarsigner tool can be used to digitally sign Java archives (JAR files), and to

verify such signatures. This tool, like the Policy Tool, depends on the keystore

that is managed by the keytool. Its usage is quickly summarized below.

% jarsigner
Usage: jarsigner [options] jar-file alias
 jarsigner -verify [options] jar-file
 [-keystore <url>] keystore file location
 [-storepass <password>] password for keystore integrity

[-keypass <password>] password for private key (if different)
 [-sigfile <file>] name of .SF/.DSA file
 [-signedjar <file>] name of signed JAR file
 [-verify] verify a signed JAR file
 [-verbose] verbose output when signing/verifying

[-certs] display certificates when verbose and verifying
[-internalsf] include .SF file inside signature block

 [-sectionsonly] don’t compute hash of entire manifest

Again, this tool is a script built with the JDK. Note that it is expected that this

tool and the existing jar tool script may be merged in the near future to form a

single command-line primitive to create JARs, either signed or unsigned.

7 GuardedObject and SignedObject

7.1 java.security.GuardedObject and java.security.Guard

Recall that the class AccessControlContext is useful when an access control

decision has to be made in a different context. There is another such scenario,

where the supplier of a resource is not in the same thread as the comsumer of

that resource, and the consumer thread cannot provide the supplier thread the

access control context information (because the context is security-sensitive, or

the context is too large to pass, or for other reasons). For this case, we provide

a class called GuardedObject to protect access to the resource, illustrated in the

figure below.
52 October 29, 1998

The basic idea is that the supplier of the resource can create an object

representing the resource, create a GuardedObject that embeds the resource

object inside, and then provide the GuardedObject to the consumer. In creating

the GuardedObject, the supplier also specifies a Guard object such that anyone

(including the consumer) can only obtain the resource object if certain

(security) checks inside the Guard are satisfied.

Guard is an interface, so any object can choose to become a Guard. The only

method in this interface is called checkGuard . It takes an Object argument and

it performs certain (security) checks. The Permission class in java.security

implements the Guard interface.

For example, suppose a system thread is asked to open a file /a/b/c.txt for

read access, but the system thread does not know who the requestor is or

under what circumstances the request is made. Therefore, the correct access

control decision cannot be made at the server side. The system thread can use

GuardedObject to delay the access control checking, as follows.

FileInputStream f = new FileInputStream("/a/b/c.txt");
FilePermission p = new FilePermission("/a/b/c.txt", "read");
GuardedObject g = new GuardedObject(f, p);

Now the system thread can pass g to the consumer thread. For that thread to

obtain the file input stream, it has to call

request access

check guard

return refer.

requestor

protected object
Guard object

Guarded Object

1.

2. 3.
Java Security Architecture (JDK1.2) 53

FileInputStream fis = (FileInputStream) g.getObject();

This method in turn invokes the checkGuard method on the Guard object p,

and because p is a Permission, its checkGuard method is in fact:

SecurityManager sm = System.getSecurityManager();
if (sm != null) sm.checkPermission(this);

This ensures that a proper access control check takes place within the

consumer context. In fact, one can replace often-used hash tables and access

control lists in many cases and simply store a hash table of GuardedObjects.

This basic pattern of GuardedObject and Guard is very general, and we expect

that by extending the basic Guard and GuardedObject classes, developers can

easily obtain quite powerful access control tools. For example, per-method

invocation can be achieved with an appropriate Guard for each method, and a

Guard can check the time of the day, the signer or other identification of the

caller, or any other relevant information.

Note that certain typing information is lost because GuardedObject returns an

Object. GuardedObject is intended to be used between cooperating parties so

that the receiving party should know what type of object to expect (and to cast

for). In fact, we envision that most usage of GuardedObject involves

subclassing it (say to form a GuardedFileInputStream class), thus

encapsulating typing information, and casting can happen suitably in the

subclass.

7.2 java.security.SignedObject

This class is an essential building block for other security primitives.

SignedObject contains another Serializable object, the (to-be-)signed object and

its signature. If the signature is not null, it contains a valid digital signature of

the signed object. This is illustrated in the figure below.
54 October 29, 1998

The underlying signing algorithm is set through a Signature object as a

parameter to the sign method call, and the algorithm can be, among others,

the NIST standard DSA, using DSA and SHA-1. The algorithm is specified

using the same convention for signatures, such as “SHA/DSA”.

The signed object is a “deep copy” (in serialized form) of an original object.

Once the copy is made, further manipulation of the original object has no side

effect on the copy. A signed object is immutable.

A typical example of creating a signed object is the following:

Signature signingEngine =
 Signature.getInstance(algorithm,provider);
SignedObject so =
 new SignedObject(myobject, signingKey, signingEngine);

A typical example of verification is the following (having received

SignedObject so), where the first line is not needed if the name of the

algorithm is known:

String algorithm = so.getAlgorithm();
Signature verificationEngine =
 Signature.getInstance(algorithm, provider);
so.verify(verificationEngine);

original
object

signature

snapshot

Signed Object
Java Security Architecture (JDK1.2) 55

Potential applications of SignedObject include:

• It can be used internally to any Java application environment as an

unforgeable authorization token -- one that can be passed around without

the fear that the token can be maliciously modified without being detected.

• It can be used to sign and serialize data/object for storage outside the Java

runtime (e.g., storing critical access control data on disk).

• Nested SignedObjects can be used to construct a logical sequence of

signatures, resembling a chain of authorization and delegation.

It is intended that this class can be subclassed in the future to allow multiple

signatures on the same signed object. In that case, existing method calls in this

base class will be fully compatible in semantics. In particular, any get method

will return the unique value if there is only one signature, and will return an

arbitrary one from the set of signatures if there is more than one signature.
56 October 29, 1998

8 Discussion and Future Directions

8.1 Users, Authentication, and Credentials

Today the notion of a principal (e.g., user) is implicit because each JVM is

owned by one user. In the future, there will be a need to extend the existing

concept of ProtectionDomain to include the notion of “running-on-behalf of” a

principal.

Therefore, we are actively looking to provide the following features in the near

future:

• explicit principal concept and classes

• user authentication primitives (both password-based and otherwise)

• cross-protection-domain principal authentication protocols

• general mechanisms for authorization and delegation

8.2 Resource Consumption Management

Resource consumption management is relatively easy to implement in some

cases (e.g., to limit the number of windows any application can pop up at any

one time), while it can be quite hard to implement efficiently in other cases

(e.g., to limit memory or file system usage). We plan to coherently address such

issues in the future.

8.3 Arbitrary Grouping of Permissions

Sometimes it is convenient to group a number of permissions together and use

a short-hand name to refer to them. For example, if we would like to have a

permission called “SuperPermission” to include (and imply) both

FilePermission(“-”, ”read,write”) and SocketPermission(“*”, “connect,accept”),

technically we can use the class Permissions or a similar class to implement

this super permission by using the add methods to add the required

permissions. And such grouping can be arbitrarily complicated.

The more difficult issues are the following. First, to understand what actual

permissions one is granting when giving out such a super permission, either a

fixed and named permission class is created to denote a statically specified

group of permissions, or the member permissions need to be spelled out in the
Java Security Architecture (JDK1.2) 57

policy file. Second, processing the policy (file) can become more complicated

because the grouped permissions may need to be expanded. Moreover, nesting

of grouped permission increases complexity even more.

8.4 Object-Level Protection

Given the object-oriented nature of the Java programming language, it is

conceivable that developers will benefit from a set of appropriate object-level

protection mechanisms that (1) goes beyond the natural protection provided by

the Java programming language and that (2) supplements the thread-based

access control mechanism.

One such mechanism is SignedObject. Parallel to this primitive, we will

provide SealedObject that uses encryption to hide the content of an object.

(Due to current U.S. export control regulations on the use of encryption, the

SealedObject class will likely be provided separate from JDK.)

GuardedObject is a general way to enforce access control at a per class/object

per method level. This method, however, should be used only selectively,

partly because this type of control can be difficult to administer at a high level.

8.5 Subdividing Protection Domains

A potentially useful concept not currently implemented is that of “subdomains.” A
subdomain is one that is enclosed in another. A subdomain would not have more
permissions or privileges than the domain of which it is a subpart.A domain could be

created, for example, to selectively further limit what a program can do.

Often a domain is thought of as supporting inheritance: a subdomain would

automatically inherit the parent domain’s security attributes, except in certain

cases where the parent further restricts the subdomain explicitly. Relaxing a

subdomain by right amplification is a possibility with the notion of trusted

code.

For convenience, we can think of the system domain as a single, big collection

of all system code. For better protection, though, system code should be run in

multiple system domains, where each domain protects a particular type of

resource and is given a special set of rights. For example, if file system code

and network system code run in separate domains, where the former has no

rights to the networking resources and the latter has no rights to the file system

resources, the risks and consequence of an error or security flaw in one system

domain is more likely to be confined within its boundary.
58 October 29, 1998

8.6 Running Applets with Signed Content

The JAR and Manifest specifications on code signing allow a very flexible

format. Classes within the same archive can be signed with different keys, and

a class can be unsigned, signed with one key, or signed with multiple keys.

Other resources within the archive, such as audio clips and graphic images, can

also be signed or unsigned, just like classes can.

This flexibility brings about the issue of interpretation. The following

questions need to be answered, especially when keys are treated differently:

1. Should images and audios be required to be signed with the
 same key if any class in the archive is signed?
2. If images and audios are signed with different keys, can
 they be placed in the same appletviewer (or browser page),
 or should they be sent to different viewers for processing?

These questions are not easy to answer, and require consistency across

platforms and products to be the most effective. Our intermediate approach is

to provide a simple answer -- all images and audio clips are forwarded to be

processed within the same applet classloader, whether they are signed or not.

This temporary solution will be improved once a consensus is reached.

Moreover, if a digital signature cannot be verified because the bytecode content

of a class file does not match the signed hash value in the JAR, a security

exception is thrown, as the original intention of the JAR author is clearly

altered. Previously, there was a suggestion to run such code as untrusted. This

idea is undesirable because the applet classloader allows the loading of code

signed by multiple parties. This means that accepting a partially modified JAR

file would allow an untrusted piece of code to run together with and access

other code through the same classloader.
Java Security Architecture (JDK1.2) 59

9 Summary
This document gives an overview of the motivation and the new security

architecture of the major security features that are implemented for JDK 1.2.

Please send comments and feedback to java-security@java.sun.com (which is

archived on the web at http://java.sun.com/security/hypermail/java-

security-archive/index.html). Messages of a more confidential nature should

be sent to the author directly (li.gong@sun.com).

10 Acknowledgments
The design and implementation of new security features in JDK 1.2 is the work

of primarily members of the JavaSoft security group. Other (past and present)
members of the JavaSoft community provided invaluable insight, detailed

reviews, and much needed technical assistance. Significant contributors, in

alphabetical order, include but are not limited to: Gigi Ankeny, Josh Bloch,

Satya Dodda, Charlie Lai, Sheng Liang, Jan Luehe, Marianne Mueller, Jeff

Nisewanger, Hemma Prafullchandra, Roger Riggs, Nakul Saraiya, Bill

Shannon, Roland Schemers, and Vijay Srinivasan.

This work is not possible without strong support from JavaSoft management

(our thanks go to Dick Neiss, Jon Kannegaard, and Alan Baratz), and the

testing and documentation groups (especially Mary Dageforde). We are

grateful for technical guidance from James Gosling, Graham Hamilton, and Jim

Mitchell.

We received numerous suggestions from our corporate partners and licensees,

whom we could not fully list here.
60 October 29, 1998

11 References
M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co.,

New York, 1988.

L. Gong, “Java Security: Present and Near Future”. IEEE Micro, 17(3):14--19,

May/June 1997.

L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer, “Protecting Poorly

Chosen Secrets from Guessing Attacks”. IEEE Journal on Selected Areas in

Communications, 11(5):648--656, June, 1993.

J. Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-

Wesley, Menlo Park, California, August 1996.

A.K. Jones. Protection in Programmed Systems. Ph.D. dissertation, Carnegie-

Mellon University, Pittsburgh, PA 15213, June 1973.

B.W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on

Information Sciences and Systems, Princeton University, March 1971.

Reprinted in ACM Operating Systems Review, 8(1):18--24, January, 1974.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, Menlo Park, California, 1997.

P.G. Neumann. Computer-Related Risks. Addison-Wesley, Menlo Park,

California, 1995.

U.S. General Accounting Office. Information Security: Computer Attacks at

Department of Defense Pose Increasing Risks. Technical Report GAO/AIMD-

96-84, Washington, D.C. 20548, May 1996.

J.H. Saltzer. Protection and the Control of Information Sharing in Multics.

Communications of the ACM, 17(7):388--402, July 1974.

J.H. Saltzer and M.D. Schroeder. The Protection of Information in Computer

Systems}. Proceedings of the IEEE, 63(9):1278--1308, September 1975.

M.D. Schroeder. Cooperation of Mutually Suspicious Subsystems in a

Computer Utility. Ph.D. dissertation, Massachusetts Institute of Technology,

Cambridge, MA 02139, September 1972.

W.A. Wulf, R. Levin, and S.P. Harbison. HYDRA/C.mmp -- An Experimental

Computer System. McGraw-Hill, 1981.
Java Security Architecture (JDK1.2) 61

12 Revision History
Various drafts on JDK 1.2 Security Architecture, under different disguises,

existed since August of 1996.

JDK 1.2 Security Architecture Specification v0.1 was drafted on March 12, 1997.

Revision 0.2 on March 27, 1997

Revision 0.3 on March 31, 1997

Revision 0.4 on June 3, 1997. Reflected changes in design and implementation

based on comments and feedbacks of revision 0.3. Introduced SignedObject.

Revision 0.5 on July 10, 1997. Major reorganization. It now includes a detailed

syntax and semantics for policy and permissions. The class

java.lang.SecurityManager is changed from abstract to concrete, with a default

implementation.

Revision 0.6 on September 3, 1997. Reorganized sections under clearer

headings. Syntactical changes to policy file format, including adding an

optional signer field to each permission entry. Introduced GuardedObject class

and Guard interface. The Permission class is now Serializable and implements

the Guard interface. Added a new AccessControlContext class that helps cross-

thread access control decision making. Gave descriptions of keytool,

policytool, and jarsigner. Revised Acknowledgements.

Revision 0.7 on October 1, 1997. Added description of a feature that

automatically makes a new thread, at its creation time, inherit the parent

thread’s security context so that access control checking in the new child thread

considers both the first current context and also the inherited context.

Revision 0.8 on March 9, 1998. The previously package private class

java.security.ProtectionDomain is now made public, and suitable get , set , and

define methods to use this class are added in java.lang.Class and

java.security.SecureClassLoader. The class java.security.SignedObject is now

immutable. Introduced a new class java.security.UnresolvedPermission.

Added new method SecurityManager.checkPermission that, by default,

invokes AccessController.checkPermission . Syntax change for

FilePermission in the case of “*”, “-”, and introduced “<<ALL FILES>>”. Other

minor additions and changes, including two new options for jarsigner. Revised

Acknowledgements.

Revision 0.9 on June 10, 1998. Some permission names have been modified to

make permission naming clearer and more consistent. Added sections for
62 October 29, 1998

Permission classes not previously documented herein. The evaluate method

in Policy has been renamed getPermissions . Class.setProtectionDomain

no longer exists. Corrected “file:” URL examples. The “-usepolicy” command-

line argument for the “java” command has been replaced by

“-Djava.security.manager” and “-Djava.security.policy”. Updated command

lists for the keytool and jarsigner tools. The AccessController

beginPrivileged and endPrivileged methods have been replaced by the

doPrivileged method.

Revision 1.0 (the current version) on October 2, 1998. Updated description of

the class loading mechanism with a new chapter. Rearranged some chapters

and sections.
Java Security Architecture (JDK1.2) 63

64 October 29, 1998

	Java™ Security Architecture (JDK1.2)
	1 Introduction
	1.1 The Original Sandbox Model
	1.2 Evolving the Sandbox Model

	2 New Protection Mechanisms -- Overview of Basic Concepts
	3 Permissions and Security Policy
	3.1 The Permission Classes
	3.1.1 java.security.Permission
	3.1.2 java.security.PermissionCollection
	3.1.3 java.security.Permissions
	3.1.4 java.security.UnresolvedPermission
	3.1.5 java.io.FilePermission
	3.1.6 java.net.SocketPermission
	3.1.7 java.security.BasicPermission
	3.1.8 java.util.PropertyPermission
	3.1.9 java.lang.RuntimePermission
	3.1.10 java.awt.AWTPermission
	3.1.11 java.net.NetPermission
	3.1.12 java.lang.reflect.ReflectPermission
	3.1.13 java.io.SerializablePermission
	3.1.14 java.security.SecurityPermission
	3.1.15 java.security.AllPermission
	3.1.16 Discussion of Permission Implications
	3.1.17 How To Create New Types of Permissions

	3.2 java.security.CodeSource
	3.3 java.security.Policy
	3.3.1 Policy File Format
	3.3.2 Property Expansion in Policy Files
	3.3.3 Assigning Permissions
	3.3.4 Default System and User Policy Files
	3.3.5 Customizing Policy Evaluation

	3.4 java.security.GeneralSecurityException

	4 Access Control Mechanisms and Algorithms
	4.1 java.security.ProtectionDomain
	4.2 java.security.AccessController
	4.2.1 Algorithm for Checking Permissions
	4.2.2 Handling Privileges

	4.3 Inheritence of Access Control Context
	4.4 java.security.AccessControlContext

	5 Secure Class Loading
	5.1 Class Loader Class Hierarchies
	5.2 The Primordial Class Loader
	5.3 Class Loader Delegation
	5.4 Class Resolution Algorithm

	6 Security Management
	6.1 Managing Applets and Applications
	6.2 SecurityManager versus AccessController
	6.3 Auxiliary Tools
	6.3.1 The Key and Certificate Management Tool
	6.3.2 Policy Tool
	6.3.3 The JAR Signing and Verification Tool

	7 GuardedObject and SignedObject
	7.1 java.security.GuardedObject and java.security.Guard
	7.2 java.security.SignedObject

	8 Discussion and Future Directions
	8.1 Users, Authentication, and Credentials
	8.2 Resource Consumption Management
	8.3 Arbitrary Grouping of Permissions
	8.4 Object-Level Protection
	8.5 Subdividing Protection Domains
	8.6 Running Applets with Signed Content

	9 Summary
	10 Acknowledgments
	11 References
	12 Revision History

