
Java™RemoteMethod Invocation
Specification
Java™ Remote Method Invocation (RMI) is a distributed object model for the Java
language that retains the semantics of the Java object model, making distributed
objects easy to implement and to use. The system combines aspects of the Modula-
3 Network Objects system and Spring’s subcontract and includes some novel
features made possible by Java..

Revision 1.50, JDK 1.2, October 1998

etual,
t are
clean

ion of
f the
itional
ublished
clean

nd (vi)

(6/87)

a Work-
t Man-
Is The

hop,
arks of

Interna-
upon an
Copyright 1996, 1997, 1998Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, perp
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights tha
essential to practice this specification. This license allows and is limited to the creation and distribution of
room implementations of this specification that (i) include a complete implementation of the current vers
this specification without subsetting or supersetting, (ii) implement all the interfaces and functionality o
standard java.* packages as defined by SUN, without subsetting or supersetting, (iii) do not add any add
packages, classes or methods to the java.* packages (iv) pass all test suites relating to the most recent p
version of this specification that are available from SUN six (6) months prior to any beta release of the
room implementation or upgrade thereto, (v) do not derive from SUN source code or binary materials, a
do not include any SUN binary materials without an appropriate and separate license from SUN.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaBeans, JDK, Java, HotJava, the Java Coffee Cup logo, Jav
Shop, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNe
ager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network
Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkS
XView, Java WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or registered tradem
Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. OPEN LOOK® is a registered trademark of Novell, Inc.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
tional, Inc. in the United States and other countries. Products bearing SPARC trademarks are based
architecture developed by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYS-
TEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

For further information on Intellectual Property matters contact Sun Legal Department:

 Trademarks, Jan O'Dell at 415-786-8191
 Patents at 415-336-0069

Table ofContents
1 Introduction . 1

1.1 Background . 1

1.2 System Goals . 2

2 Java Distributed Object Model. 3

2.1 Distributed Object Applications . 3

2.2 Definition of Terms. 5

2.3 The Distributed and Nondistributed Models Contrasted 5

2.4 Overview of RMI Interfaces and Classes. 6

2.5 Implementing a Remote Interface 9

2.6 Parameter Passing in Remote Method Invocation 10

2.7 Locating Remote Objects . 12

3 RMI System Overview. 13

3.1 Stubs and Skeletons . 13

3.2 Thread Usage in Remote Method Invocations 14

3.3 Garbage Collection of Remote Objects. 14
Page iii

3.4 Dynamic Class Loading. 16

3.5 RMI Through Firewalls Via Proxies 17

4 Client Interfaces . 21

4.1 The Remote Interface . 21

4.2 The RemoteException Class . 22

4.3 The Naming Class . 22

5 Server Interfaces . 25

5.1 The RemoteObject Class . 26

5.2 The RemoteServer Class . 29

5.3 The UnicastRemoteObject Class . 29

5.4 The Unreferenced Interface . 33

5.5 The RMISecurityManager Class . 33

5.6 The RMIClassLoader Class . 34

5.7 The LoaderHandler Interface . 36

5.8 RMI Socket Factories . 37

5.9 The RMIFailureHandler Interface 41

5.10 The LogStream Class . 41

5.11 Stub and Skeleton Compiler . 43

6 Registry Interfaces . 45

6.1 The Registry Interface . 45

6.2 The LocateRegistry Class. 47

6.3 The RegistryHandler Interface . 48

7 Remote Object Activation . 51

7.1 Overview . 51
Page iv Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7.2 Activation Protocol. 53

7.3 Implementation Model for an “Activatable” Remote Object 54

7.4 Activation Interfaces . 67

8 Stub/Skeleton Interfaces . 85

8.1 The RemoteStub Class . 85

8.2 The RemoteCall Interface . 87

8.3 The RemoteRef Interface . 88

8.4 The ServerRef Interface . 90

8.5 The Skeleton Interface . 91

8.6 The Operation Class . 91

9 Garbage Collector Interfaces. 93

9.1 The Interface DGC . 93

9.2 The Lease Class. 95

9.3 The ObjID Class . 95

9.4 The UID Class . 97

9.5 The VMID Class . 98

10 RMI Wire Protocol . 99

10.1 Overview . 99

10.2 RMI Transport Protocol . 100

10.3 RMI’s Use of Object Serialization Protocol 103

10.4 RMI’s Use of HTTP POST Protocol 104

10.5 Application Specific Values for RMI 105

10.6 RMI’s Multiplexing Protocol . 106

A Exceptions In RMI . 113
Table of Contents Page v

A.1 Exceptions During Remote Object Export 114

A.2 Exceptions During RMI Call . 115

A.3 Exceptions or Errors During Return 115

A.4 Naming Exceptions . 117

A.5 Activation Exceptions . 117

A.6 Other Exceptions . 118

B Properties In RMI . 119

B.1 Server Properties . 120

B.2 Activation Properties . 122

B.3 Other Properties . 123
Page vi Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Introduction 1
Topics:
• Background

• System Goals

1.1 Background
Distributed systems require that computations running in different address

spaces, potentially on different hosts, be able to communicate. For a basic

communication mechanism, the Java™ language supports sockets, which are

flexible and sufficient for general communication. However, sockets require the

client and server to engage in applications-level protocols to encode and

decode messages for exchange, and the design of such protocols is

cumbersome and can be error-prone.

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the

communication interface to the level of a procedure call. Instead of working

directly with sockets, the programmer has the illusion of calling a local

procedure, when in fact the arguments of the call are packaged up and shipped

off to the remote target of the call. RPC systems encode arguments and return

values using an external data representation, such as XDR.

RPC, however, does not translate well into distributed object systems, where

communication between program-level objects residing in different address

spaces is needed. In order to match the semantics of object invocation,
Page 1

1

distributed object systems require remote method invocation or RMI. In such

systems, a local surrogate (stub) object manages the invocation on a remote

object.

The Java remote method invocation system described in this specification has

been specifically designed to operate in the Java environment. The Java

language’s RMI system assumes the homogeneous environment of the Java

Virtual Machine, and the system can therefore take advantage of the Java object

model whenever possible.

1.2 System Goals
The goals for supporting distributed objects in the Java language are:

• Support seamless remote invocation on objects in different virtual machines.

• Support callbacks from servers to applets.

• Integrate the distributed object model into the Java language in a natural

way while retaining most of the Java language’s object semantics.

• Make differences between the distributed object model and local Java object

model apparent.

• Make writing reliable distributed applications as simple as possible.

• Preserve the type-safety provided by the Java runtime environment.

• Various reference semantics for remote objects; for example live

(nonpersistent) references, persistent references, and lazy activation.

• The safe Java environment provided by security managers and class loaders.

Underlying all these goals is a general requirement that the RMI model be both

simple (easy to use) and natural (fits well in the language).

The first two chapters in this specification describe the distributed object model

for the Java language and the system overview. The remaining chapters

describe the RMI client and server visible APIs which are part of JDK 1.2.
Page 2 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

JavaDistributedObjectModel 2
Topics:
• Distributed Object Applications

• Definition of Terms

• The Distributed and Nondistributed Models Contrasted

• Overview of RMI Interfaces and Classes

• Implementing a Remote Interface

• Parameter Passing in Remote Method Invocation

• Locating Remote Objects

2.1 Distributed Object Applications
RMI applications are often comprised of two separate programs: a server and a

client. A typical server application creates a number of remote objects, makes

references to those remote objects accessible, and waits for clients to invoke

methods on those remote objects. A typical client applications gets a remote

reference to one or more remote objects in the server and then invokes methods

on them. RMI provides the mecahnism by which the server and the client

communicate and pass information back and forth. Such an applications is

sometimes referred to as a distributed object application.

Distributed object applications need to:
Page 3

2

• Locate remote objects

Applications can use one of two mechanisms to obtain references to

remote objects. An application can register its remote objects with

RMI’s simple naming facility, the rmiregistry , or the application

can pass and return remote object references as part of its normal

operation.

• Communicate with remote objects

Details of communication between remote objects are handled by

RMI; to the programmer, remote communication looks like a

standard Java method invocation.

• Load class bytecodes for objects that are passed as parameters or return

values

Because RMI allows a caller to pass pure Java objects to remote

objects, RMI provides the necessary mechanisms for loading an

object’s code as well as transmitting its data.

The illustration below depicts an RMI distributed application that uses the

registry to obtain references to a remote object. The server calls the registry to

associate a name with a remote object. The client looks up the remote object by

its name in the server’s registry and then invokes a method on it. The

illustration also shows that the RMI system uses an existing web server to load

Java class bytecodes, from server to client and from client to server, for objects

when needed. RMI can load class bytecodes using any URL protocol (e.g.,

HTTP, FTP, file, etc.) that is supported by the Java system.

registry

client

web server

serverRMI

URL
RMI

RMI

web server

protocol

URL
protocol
Page 4 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

2

2.2 Definition of Terms
In the Java distributed object model, a remote object is one whose methods can

be invoked from another Java virtual machine, potentially on a different host.

An object of this type is described by one or more remote interfaces, which are

Java interfaces that declare the methods of the remote object.

Remote method invocation (RMI) is the action of invoking a method of a remote

interface on a remote object. Most importantly, a method invocation on a

remote object has the same syntax as a method invocation on a local object.

2.3 The Distributed and Nondistributed Models Contrasted
The Java distributed object model is similar to the Java object model in the

following ways:

• A reference to a remote object can be passed as an argument or returned as

a result in any method invocation (local or remote).

• A remote object can be cast to any of the set of remote interfaces supported

by the implementation using the built-in Java syntax for casting.

• The built-in Java instanceof operator can be used to test the remote

interfaces supported by a remote object.

The Java distributed object model differs from the Java object model in these

ways:

• Clients of remote objects interact with remote interfaces, never with the

implementation classes of those interfaces.

• Non-remote arguments to, and results from, a remote method invocation are

passed by copy rather than by reference. This is because references to objects

are only useful within a single virtual machine.

• A remote object is passed by reference, not by copying the actual remote

implementation.

• The semantics of some of the methods defined by class java.lang.Object
are specialized for remote objects.

• Since the failure modes of invoking remote objects are inherently more

complicated than the failure modes of invoking local objects, clients must

deal with additional exceptions that can occur during a remote method

invocation.
Chapter 2: Java Distributed Object Model Page 5

2

2.4 Overview of RMI Interfaces and Classes
The interfaces and classes that are responsible for specifying the remote

behavior of the RMI system are defined in the java.rmi package hierarchy.

The following figure shows the relationship between several of these interfaces

and classes:

2.4.1 The java.rmi.Remote Interface

In RMI, a remote interface is an interface that declares a set of methods that

may be invoked from a remote Java virtual machine. A remote interface must

satisfy the following requirements:

• A remote interface must at least extend, either directly or indirectly, the

interface java.rmi.Remote .

• Each method declaration in a remote interface must satisfy the requirements

of a remote method declaration as follows:

• A remote method declaration must include the exception

java.rmi.RemoteException (or one of its superclasses such as

java.io.IOException or java.lang.Exception) in its throws

clause, in addition to any application-specific exceptions (note that

application specific exceptions do not have to extend

java.rmi.RemoteException).

IOException

RemoteException

Remote

RemoteServer

RemoteObject

Interfaces Classes

extension
implementation

UnicastRemoteObject

...

Activatable
Page 6 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

2

• In a remote method declaration, a remote object declared as a parameter

or return value (either declared directly in the parameter list or embedded

within a non-remote object in a parameter) must be declared as the remote

interface, not the implementation class of that interface.

The interface java.rmi.Remote is a marker interface that defines no

methods:

public interface Remote {}

A remote interface must at least extend the interface java.rmi.Remote (or

another remote interface that extends java.rmi.Remote). However, a remote

interface may extend a non-remote interface under the following condition:

• A remote interface may also extend another non-remote interface, as long as

all of the methods (if any) of the extended interface satisfy the requirements

of a remote method declaration.

For example, the following interface BankAccount defines a remote interface

for accessing a bank account. It contains remote methods to deposit to the

account, to get the account balance, and to withdraw from the account:

public interface BankAccount extends java.rmi.Remote {
public void deposit(float amount)

throws java.rmi.RemoteException;
public void withdraw(float amount)

throws OverdrawnException, java.rmi.RemoteException;
public float getBalance()

throws java.rmi.RemoteException;
}

The next example shows a valid remote interface Beta that extends a non-

remote interface Alpha , which has remote methods, and the interface

java.rmi.Remote :

public interface Alpha {
public final String okay = “constants are okay too”;
public Object foo(Object obj)

throws java.rmi.RemoteException;
public void bar() throws java.io.IOException;
public int baz() throws java.lang.Exception;

}

public interface Beta extends Alpha, java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;

}

Chapter 2: Java Distributed Object Model Page 7

2

2.4.2 The RemoteException Class

The java.rmi.RemoteException class is the superclass of exceptions

thrown by the RMI runtime during a remote method invocation. To ensure the

robustness of applications using the RMI system, each remote method declared

in a remote interface must specify java.rmi.RemoteException (or one of its

superclasses such as java.io.IOException or java.lang.Exception) in

its throws clause.

The exception java.rmi.RemoteException is thrown when a remote

method invocation fails for some reason. Some reasons for remote method

invocation failure include:

• communication failure (the remote server is unreachable or is refusing

connections; the connection is closed by the server, etc.)

• failure during parameter or return value marshalling or unmarshalling

• protocol errors

The class RemoteException is a checked exception (one that must be handled

by the caller of a remote method and is checked by the compiler), not a

RuntimeException .

2.4.3 The RemoteObject Class and its Subclasses

RMI server functions are provided by java.rmi.server.RemoteObject
and its subclasses, java.rmi.server.RemoteServer and

java.rmi.server.UnicastRemoteObject and

java.rmi.activation.Activatable .

• The class java.rmi.server.RemoteObject provides implementations

for the java.lang.Object methods, hashCode , equals , and toString
that are sensible for remote objects.

• The methods needed to create remote objects and export them (make them

available to remote clients) are provided by the classes

UnicastRemoteObject and Activatable . The subclass identifies the

semantics of the remote reference, for example whether the server is a

simple remote object or is an activatable remote object (one that executes

when invoked).

• The java.rmi.server.UnicastRemoteObject class defines a singleton

(unicast) remote object whose references are valid only while the server

process is alive.
Page 8 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

2

• The class java.rmi.activation.Activatable is an abstract class that

defines an activatable remote object that starts executing when its remote

methods are invoked and can shut itself down when necessary.

2.5 Implementing a Remote Interface
The general rules for a class that implements a remote interface are as follows:

• The class usually extends java.rmi.server.UnicastRemoteObject ,

thereby inheriting the remote behavior provided by the classes

java.rmi.server.RemoteObject and

java.rmi.server.RemoteServer .

• The class can implement any number of remote interfaces.

• The class can extend another remote implementation class.

• The class can define methods that do not appear in the remote interface, but

those methods can only be used locally and are not available remotely.

For example, the following class BankAcctImpl implements the

BankAccount remote interface and extends the

java.rmi.server.UnicastRemoteObject class:

package mypackage;

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class BankAccountImpl
extends UnicastRemoteObject
implements BankAccount

{
private float balance = 0.0;

public BankAccountImpl(float initialBalance)
throws RemoteException

{
balance = initialBalance;

}
public void deposit(float amount) throws RemoteException {

...
}
public void withdraw(float amount) throws OverdrawnException,

RemoteException {
...

}

Chapter 2: Java Distributed Object Model Page 9

2

public float getBalance() throws RemoteException {
...

}
}

Note that if necessary, a class that implements a remote interface can extend

some other class besides java.rmi.server.UnicastRemoteObject .

However, the implementation class must then assume the responsibility for

exporting the object (taken care of by the UnicastRemoteObject constructor)

and for implementing (if needed) the correct remote semantics of the

hashCode , equals , and toString methods inherited from the

java.lang.Object class.

2.6 Parameter Passing in Remote Method Invocation
An argument to, or a return value from, a remote object can be any Java object

that is serializable. This includes Java primitive types, remote Java objects, and

non-remote Java objects that implement the java.io.Serializable
interface. For more details on how to make classes serializable, see the Java

“Object Serialization Specification.” Classes, for parameters or return values,

that are not available locally are downloaded dynamically by the RMI system.

See the section on “Dynamic Class Loading” for more information on how RMI

downloads parameter and return value classes when reading parameters,

return values and exceptions.

2.6.1 Passing Non-remote Objects

A non-remote object, that is passed as a parameter of a remote method

invocation or returned as a result of a remote method invocation, is passed by

copy; that is, the object is serialized using the Java Object Serialization

mechanism.

So, when a non-remote object is passed as an argument or return value in a

remote method invocation, the content of the non-remote object is copied

before invoking the call on the remote object.

When a non-remote object is returned from a remote method invocation, a new

object is created in the calling virtual machine.
Page 10 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

2

2.6.2 Passing Remote Objects

When passing a remote object as a parameter or return value in a remote

method call, the stub for the remote object is passed. A remote object passed as

a parameter can only implement remote interfaces.

2.6.3 Referential Integrity

If two references to an object are passed from one VM to another VM in

parameters (or in the return value) in a single remote method call and those

references refer to the same object in the sending VM, those references will

refer to a single copy of the object in the receiving VM. More generally stated:

within a single remote method call, the RMI system maintains referential

integrity among the objects passed as parameters or as a return value in the

call.

2.6.4 Class Annotation

When an object is sent from one VM to another in a remote method call, the

RMI system annotates the class descriptor in the call stream with information

(the URL) of the class so that the class can be loaded at the receiver. It is a

requirement that classes be downloaded on demand during remote method

invocation.

2.6.5 Parameter Transmission

Parameters in an RMI call are written to a stream that is a subclass of the class

java.io.ObjectOutputStream in order to serialize the parameters to the

destination of the remote call. The ObjectOutputStream subclass overrides

the replaceObject method to replace each remote object with its

corresponding stub class. Parameters that are objects are written to the stream

using the ObjectOutputStream ’s writeObject method. The

ObjectOutputStream calls the replaceObject method for each object

written to the stream via the writeObject method (that includes objects

referenced by those objects that are written). The replaceObject method of

RMI’s subclass of ObjectOutputStream returns the following:
Chapter 2: Java Distributed Object Model Page 11

2

• if the object passed to replaceObject is an instance of

java.rmi.Remote , then it returns the stub for the remote object. A stub for

a remote object is obtained via a call to the method

java.rmi.server.RemoteObject.toStub .

• if the object passed to replaceObject is not an instance of

java.rmi.Remote , then the object is simply returned.

RMI’s subclass of ObjectOutputStream also implements the

annotateClass method that annotates the call stream with the location of the

class so that it can be downloaded at the receiver. See the section “Dynamic

Class Loading” for more information on how annotateClass is used.

Since parameters are written to a single ObjectOutputStream , references

that refer to the same object at the caller will refer to the same copy of the

object at the receiver. At the receiver, parameters are read by a single

ObjectInputStream .

Any other default behavior of ObjectOutputStream for writing objects (and

similarly ObjectInputStream for reading objects) is maintained in

parameter passing. For example, the calling of writeReplace when writing

objects and readResolve when reading objects is honored by RMI’s

parameter marshal and unmarshal streams.

In a similar manner to parameter passing in RMI as described above, a return

value (or exception) is written to a subclass of ObjectOutputStream and has

the same replacement behavior as parameter transmission.

2.7 Locating Remote Objects
A simple bootstrap name server is provided for storing named references to

remote objects. A remote object reference can be stored using the URL-based

methods of the class java.rmi.Naming .

For a client to invoke a method on a remote object, that client must first obtain

a reference to the object. A reference to a remote object is usually obtained as a

parameter or return value in a method call. The RMI system provides a simple

bootstrap name server from which to obtain remote objects on given hosts. The

java.rmi.Naming class provides Uniform Resource Locator (URL) based

methods to look up, bind, rebind, unbind, and list the name-object pairings

maintained on a particular host and port.
Page 12 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

RMISystemOverview 3
Topics:
• Stubs and Skeletons

• Thread Usage in Remote Method Invocations

• Garbage Collection of Remote Objects

• Dynamic Class Loading

• RMI Through Firewalls Via Proxies

3.1 Stubs and Skeletons
RMI uses a standard mechanism (employed in RPC systems) for

communicating with remote objects: stubs and skeletons. A stub for a remote

object acts as a client’s local representative or proxy for the remote object. The

caller invokes a method on the local stub which is reponsible for carrying out

the method call on the remote object. In RMI, a stub for a remote object

implements the same set of remote interfaces that a remote object implements.

When a stub’s method is invoked, it does the following:

• initiates a connection with the remote VM containing the remote object.

• marshals (writes and transmits) the parameters to the remote VM

• waits for the result of the method invocation

• unmarshals (reads) the return value or exception returned
Page 13

3

• returns the value to the caller

The stub hides the serialization of parameters and the network-level

communication in order to present a simple invocation mechanism to the

caller.

In the remote VM, each remote object may have a corresponding skeleton (in

JDK1.2-only environments, skeletons are not required). The skeleton is

responsible for dispatching the call to the actual remote object implementation.

When a skeleton receives an incoming method invocation it does the following:

• unmarshals (reads) the parameters for the remote method

• invokes the method on the actual remote object implementation

• marshals (writes and transmits) the result (return value or exception) to the

caller

In JDK1.2 and additional stub protocol was introduced that eliminates the need

for skeletons in JDK1.2-only environments. Instead, generic code is used to

carry out the duties performed by skeletons in JDK1.1. Stubs and skeletons are

generated by the rmic compiler.

3.2 Thread Usage in Remote Method Invocations
A method dispatched by the RMI runtime to a remote object implementation

may or may not execute in a separate thread. The RMI runtime makes no

guarantees with respect to mapping remote object invocations to threads. Since

remote method invocation on the same remote object may execute

concurrently, a remote object implementation needs to make sure its

implementation is thread-safe.

3.3 Garbage Collection of Remote Objects
In a distributed system, just as in the local system, it is desirable to

automatically delete those remote objects that are no longer referenced by any

client. This frees the programmer from needing to keep track of the remote

objects clients so that it can terminate appropriately. RMI uses a reference-

counting garbage collection algorithm similar to Modula-3’s Network Objects.

(See “Network Objects” by Birrell, Nelson, and Owicki, Digital Equipment
Corporation Systems Research Center Technical Report 115, 1994.)
Page 14 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

3

To accomplish reference-counting garbage collection, the RMI runtime keeps

track of all live references within each Java virtual machine. When a live

reference enters a Java virtual machine, its reference count is incremented. The

first reference to an object sends a “referenced” message to the server for the

object. As live references are found to be unreferenced in the local virtual

machine, the count is decremented. When the last reference has been

discarded, an unreferenced message is sent to the server. Many subtleties exist

in the protocol; most of these are related to maintaining the ordering of

referenced and unreferenced messages in order to ensure that the object is not

prematurely collected.

When a remote object is not referenced by any client, the RMI runtime refers to

it using a weak reference. The weak reference allows the Java virtual machine’s

garbage collector to discard the object if no other local references to the object

exist. The distributed garbage collection algorithm interacts with the local Java

virtual machine’s garbage collector in the usual ways by holding normal or

weak references to objects.

As long as a local reference to a remote object exists, it cannot be garbage-

collected and it can be passed in remote calls or returned to clients. Passing a

remote object adds the identifier for the virtual machine to which it was passed

to the referenced set. A remote object needing unreferenced notification must

implement the java.rmi.server.Unreferenced interface. When those

references no longer exist, the unreferenced method will be invoked.

unreferenced is called when the set of references is found to be empty so it

might be called more than once. Remote objects are only collected when no

more references, either local or remote, still exist.

Note that if a network partition exists between a client and a remote server

object, it is possible that premature collection of the remote object will occur

(since the transport might believe that the client crashed). Because of the

possibility of premature collection, remote references cannot guarantee

referential integrity; in other words, it is always possible that a remote

reference may in fact not refer to an existing object. An attempt to use such a

reference will generate a RemoteException which must be handled by the

application.
Chapter 3: RMI System Overview Page 15

3

3.4 Dynamic Class Loading
RMI allows parameters, return values and exceptions passed in RMI calls to be

any object that is serializable. RMI uses the object serialization mechanism to

transmit data from one virtual machine to another and also annotates the call

stream with the appropriate location information so that the class definition

files can be loaded at the receiver.

When parameters and return values for a remote method invocation are

unmarshalled to become live objects in the receiving VM, class definitions are

required for all of the types of objects in the stream. The unmarshalling

process first attempts to resolve classes by name in its local class loading

context (the context class loader of the current thread).] RMI also provides a

facility for dynamically loading the class definitions for the actual types of

objects passed as parameters and return values for remote method invocations

from network locations specified by the transmitting endpoint. This includes

the dynamic downloading of remote stub classes corresponding to particular

remote object implementation classes (and used to contain remote references)

as well as any other type that is passed by value in RMI calls, such as the

subclass of a declared parameter type, that is not already available in the class

loading context of the unmarshalling side.

To support dynamic class loading, the RMI runtime uses special subclasses of

java.io.ObjectOutputStream and java.io.ObjectInputStream for

the marshal streams that it uses for marshalling and unmarshalling RMI

parameters and return values. These subclasses override the annotateClass
method of ObjectOutputStream and the resolveClass method of

ObjectInputStream to communicate information about where to locate class

files containing the definitions for classes corresponding to the class

descriptors in the stream.

For every class descriptor written to an RMI marshal stream, the

annotateClass method adds to the stream the result of calling

java.rmi.server.RMIClassLoader.getClassAnnotation for the class

object, which may be null or may be a String object representing the

codebase URL path (a space-separated list of URLs) from which the remote

endpoint should download the class definition file for the given class.

For every class descriptor read from an RMI marshal stream, the

resolveClass method reads a single object from the stream. If the object is a

String (and the value of the java.rmi.server.useCodebaseOnly property

is not “true”), then resolveClass returns the result of calling
Page 16 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

3

RMIClassLoader.loadClass with the annotated String object as the first

parameter and the name of the desired class in the class descriptor as the

second parameter. Otherwise, resolveClass returns the result of calling

RMIClassLoader.loadClass with the name of the desired class as the only

parameter.

See the section “The RMIClassLoader Class” for more details about

classloading in RMI.

3.5 RMI Through Firewalls Via Proxies
The RMI transport layer normally attempts to open direct sockets to hosts on

the Internet. Many intranets, however, have firewalls which do not allow this.

The default RMI transport, therefore, provides two alternate HTTP-based

mechanisms which enable a client behind a firewall to invoke a method on a

remote object which resides outside the firewall.

3.5.1 How an RMI Call is Packaged within the HTTP Protocol

To get outside a firewall, the transport layer embeds an RMI call within the

firewall-trusted HTTP protocol. The RMI call data is sent outside as the body

of an HTTP POST request, and the return information is sent back in the body

of the HTTP response. The transport layer will formulate the POST request in

one of two ways:

1. If the firewall proxy will forward an HTTP request directed to an arbitrary

port on the host machine, then it is forwarded directly to the port on which

the RMI server is listening. The default RMI transport layer on the target

machine is listening with a server socket that is capable of understanding

and decoding RMI calls inside POST requests.

2. If the firewall proxy will only forward HTTP requests directed to certain

well-known HTTP ports, then the call will be forwarded to the HTTP server

listening on port 80 of the host machine, and a CGI script will be executed to

forward the call to the target RMI server port on the same machine.
Chapter 3: RMI System Overview Page 17

3

3.5.2 The Default Socket Factory

The RMI transport extends the java.rmi.server.RMISocketFactory class

to provide a default implementation of a socket factory which is the resource-

provider for client and server sockets. This default socket factory creates

sockets that transparently provide the firewall tunnelling mechanism as

follows:

• Client sockets automatically attempt HTTP connections to hosts that cannot

be contacted with a direct socket.

• Server sockets automatically detect if a newly-accepted connection is an

HTTP POST request, and if so, return a socket that will expose only the

body of the request to the transport and format its output as an HTTP

response.

Client-side sockets, with this default behavior, are provided by the factory’s

java.rmi.server.RMISocketFactory.createSocket method. Server-

side sockets with this default behavior are provided by the factory’s

java.rmi.server.RMISocketFactory.createServerSocket method.

3.5.3 Configuring the Client

There is no special configuration necessary to enable the client to send RMI

calls through a firewall.

The client can, however, disable the packaging of RMI calls as HTTP requests

by setting the java.rmi.server.disableHttp property to equal the

boolean value true.

3.5.4 Configuring the Server

Note – The host name should not be specified as the host’s IP address, because

some firewall proxies will not forward to such a host name.
Page 18 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

3

1. In order for a client outside the server host’s domain to be able to invoke

methods on a server’s remote objects, the client must be able to find the

server. To do this, the remote references that the server exports must contain

the fully-qualified name of the server host.

Depending on the server’s platform and network environment, this

information may or may not be available to the Java virtual machine on

which the server is running. If it is not available, the host’s fully qualified

name must be specified with the property java.rmi.server.hostname
when starting the server.

For example, use this command to start the RMI server class ServerImpl
on the machine chatsubo.javasoft.com:

java -Djava.rmi.server.hostname=chatsubo.javasoft.com ServerImpl

2. If the server will not support RMI clients behind firewalls that can forward

to arbitrary ports, use this configuration:

a. An HTTP server is listening on port 80.

b. A CGI script is located at the aliased URL path

/cgi-bin/java-rmi.cgi

This script:

• Invokes the local Java interpreter to execute a class internal to the

transport layer which forwards the request to the appropriate RMI

server port.

• Defines properties in the Java virtual machine with the same names

and values as the CGI 1.0 defined environment variables.

An example script is supplied in the RMI distribution for the Solaris and

Windows 32 operating systems. Note that the script must specify the

complete path to the java interpreter on the server machine.

3.5.5 Performance Issues and Limitations

Calls transmitted via HTTP requests are at least an order of magnitude slower

that those sent through direct sockets, without taking proxy forwarding delays

into consideration.
Chapter 3: RMI System Overview Page 19

3

Because HTTP requests can only be initiated in one direction through a

firewall, a client cannot export its own remote objects outside the firewall,

because a host outside the firewall cannot initiate a method invocation back on

the client.
Page 20 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Client Interfaces 4
When writing an applet or an application that uses remote objects, the

programmer needs to be aware of the RMI system’s client visible interfaces

that are available in the java.rmi package.

Topics:
• The Remote Interface

• The RemoteException Class

• The Naming Class

4.1 The Remote Interface
package java.rmi;
public interface Remote {}

The java.rmi.Remote interface serves to identify all remote interfaces; all

remote objects must directly or indirectly implement this interface.

Implementation classes can implement any number of remote interfaces and

can extend other remote implementation classes. RMI provides some

convenience classes that remote object implementations can extend which

facilitate remote object creation. These classes are

java.rmi.server.UnicastRemoteObject and

java.rmi.activation.Activatable .
Page 21

4

For more details on how to define a remote interface see the section “The

java.rmi.Remote Interface”.

4.2 The RemoteException Class
The class java.rmi.RemoteException is the common superclass of a

number of communication-related exceptions that may occur during the

execution of a remote method call. Each method of a remote interface, an

interface, must list RemoteException (or one of its superclasses such as

java.io.IOException or java.lang.Exception) in its throws clause.

package java.rmi;
public class RemoteException extends java.io.IOException
{

public Throwable detail;
public RemoteException();
public RemoteException(String s);
public RemoteException(String s, Throwable ex);
public String getMessage();
public void printStackTrace();
public void printStackTrace(java.io.PrintStream ps);
public void printStackTrace(java.io.PrintWriter pw);

}

A RemoteException can be constructed with a detail message, s, and a

nested exception, ex (a Throwable). Typically, the nested exception, ex,

specified as a parameter in the third form of the constructor, is the underlying

I/O exception that occurred during an RMI call.

The getMessage method returns the detail message of the exception,

including the message from the nested exception (if any).

The printStackTrace methods are overridden from the class

java.lang.Throwable to print out the stack trace of the nested exception.

4.3 The Naming Class
The java.rmi.Naming class provides methods for storing and obtaining

references to remote objects in the remote object registry. The Naming class’s

methods take, as one of their arguments, a name that is URL formatted

java.lang.String of the form:

 //host:port/name
Page 22 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

4

where host is the host (remote or local) where the registry is located, port is the

port number on which the registry accepts calls, and where name is a simple

string uninterpreted by the registry. Both host and port are optional. If host is

omitted, the host defaults to the local host. If port is omitted, then the port

defaults to 1099, the “well-known” port that RMI’s registry, rmiregistry ,

uses.

Binding a name for a remote object is associating or registering a name for a

remote object that can be used at a later time to look up that remote object. A

remote object can be associated with a name using the Naming class’s bind or

rebind methods.

Once a remote object is registered (bound) with the RMI registry on the local

host, callers on a remote (or local) host can lookup the remote object by name,

obtain its reference, and then invoke remote methods on the object. A registry

may be shared by all servers running on a host or an individual server process

may create and use its own registry if desired (see

java.rmi.registry.LocateRegistry.createRegistry method for

details).

package java.rmi;
public final class Naming {

public static Remote lookup(String url)
throws NotBoundException, java.net.MalformedURLException,
RemoteException;

public static void bind(String url, Remote obj)
throws AlreadyBoundException,
java.net.MalformedURLException, RemoteException;

public static void rebind(String url, Remote obj)
throws RemoteException, java.net.MalformedURLException;

public static void unbind(String url)
throws RemoteException, NotBoundException,
java.net.MalformedURLException;

public static String[] list(String url)
throws RemoteException, java.net.MalformedURLException;

}

The lookup method returns the remote object associated with the file portion

of the name. The NotBoundException is thrown if the name has not been

bound to an object.

The bind method binds the specified name to the remote object. It throws the

AlreadyBoundException if the name is already bound to an object.
Chapter 4: Client Interfaces Page 23

4

The rebind method always binds the name to the object even if the name is

already bound. The old binding is lost.

The unbind method removes the binding between the name and the remote

object. It will throw the NotBoundException if there was no binding.

The list method returns an array of String objects containing a snapshot of

the URLs bound in the registry. Only the host and port information of the URL

is needed to contact a registry for the list of its contents; thus, the “file” part of

the URL is ignored.

Note – The java.rmi.AccessException may also be thrown as a result of

any of these methods. The AccessException indicates that the caller does

not have permission to execute the specific operation. For example, only clients

that are local to the host on which the registry runs are permitted to execute

the operations, bind , rebind , and unbind . A lookup operation, however can

be invoked from any non-local client.
Page 24 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Server Interfaces 5
The java.rmi.server package contains interfaces and classes typically used

to implement remote objects.

Topics:
• The RemoteObject Class

• The RemoteServer Class

• The UnicastRemoteObject Class

• The Unreferenced Interface

• The RMISecurityManager Class

• The RMIClassLoader Class

• The LoaderHandler Interface

• RMI Socket Factories

• The RMIFailureHandler Interface

• The LogStream Class

• Stub and Skeleton Compiler
Page 25

5

5.1 The RemoteObject Class
The java.rmi.server.RemoteObject class implements the

java.lang.Object behavior for remote objects. The hashCode and equals
methods are implemented to allow remote object references to be stored in

hashtables and compared. The equals method returns true if two Remote
objects refer to the same remote object. It compares the remote object references

of the remote objects.

The toString method returns a string describing the remote object. The

contents and syntax of this string is implementation-specific and can vary.

All of the other methods of java.lang.Object retain their original

implementations.

package java.rmi.server;
public abstract class RemoteObject

implements java.rmi.Remote, java.io.Serializable
{

protected transient RemoteRef ref;
protected RemoteObject();
protected RemoteObject(RemoteRef ref);
public RemoteRef getRef();
public static Remote toStub(java.rmi.Remote obj)

throws java.rmi.NoSuchObjectException;
public int hashCode();
public boolean equals(Object obj);
public String toString();

}

Since the RemoteObject class is abstract, it cannot be instantiated. Therefore,

one of RemoteObject’s constructors must be called from a subclass

implementation. The first RemoteObject constructor creates a

RemoteObject with a null remote reference. The second RemoteObject
constructor creates a RemoteObject with the given remote reference, ref.

The getRef method returns the remote reference for the remote object.

The toStub method returns a stub for the remote object, obj, passes as a

parameter. This operation is only valid after the remote object implementation

has been exported. If the stub for the remote object could not be found, then

the method throws NoSuchObjectException .
Page 26 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

5.1.1 Object Methods Overridden by the RemoteObject Class

The default implementations in the java.lang.Object class for the equals ,

hashCode , and toString methods are not appropriate for remote objects.

Therefore, the RemoteObject class provides implementations for these

methods that have semantics more appropriate for remote objects.

equals and hashCode methods

In order for a remote object to be used as a key in a hash table, the methods

equals and hashCode need to be overridden in the remote object

implementation. These methods are overridden by the class

java.rmi.server.RemoteObject :

• The java.rmi.server.RemoteObject class’s implementation of the

equals method determines whether two object references are equal, not

whether the contents of the two objects are equal. This is because

determining equality based on content requires a remote method invocation,

and the signature of equals does not allow a remote exception to be

thrown.

• The java.rmi.server.RemoteObject class’s implementation of the

hashCode method returns the same value for all remote references that

refer to the same underlying remote object (because references to the same

object are considered equal).

toString method

The toString method is defined to return a string which represents the

remote reference of the object. The contents of the string is specific to the

remote reference type. The current implementation for singleton (unicast)

objects includes an object identifier and other information about the object that

is specific to the transport layer (such as host name and port number).

clone method

Objects are only clonable using the Java language’s default mechanism if they

support the java.lang.Cloneable interface. Stubs for remote objects

generated by the rmic compiler are declared final and do not implement the

Cloneable interface. Therefore, cloning a stub is not possible.
Chapter 5: Server Interfaces Page 27

5

5.1.2 Serialized Form

The RemoteObject class implements the special (private) writeObject and

readObject methods called by the object serialization mechanism to handle

serializing data to a java.io.ObjectOutputStream . RemoteObject ’s

serialized form is written using the method:

private void writeObject(java.io.ObjectOutputStream out)
throws java.io.IOException, java.lang.ClassNotFoundException;

• If RemoteObject ’s remote reference field, ref, is null, then the method

throws java.rmi.MarshalException .

• If the remote reference, ref, is non-null:

• ref’s class is obtained via a call to its getRefClass method, which

typically returns the unpackage qualified name of the remote reference’s

class. If the class name returned is non-null:

• ref’s class name is written to the stream, out, in UTF.

• ref’s writeExternal method is called passing it the stream, out, so

that ref can write its external representation to the stream.

• If the class name returned by ref.getRefClass is null:

• an empty string in UTF is written to the stream out.
• ref is serialized to the stream out (i.e., using writeObject).

A RemoteObject ’s state is reconstructed from its serialized form using this

method called by the ObjectInputStream during deserialization:

private void readObject(java.io.ObjectInputStream in)
throws java.io.IOException, java.lang.ClassNotFoundException;

• First, the ref’s class name, a UTF string, is read from the stream in. If the

class name is an empty string:

• an object is read from the stream, and ref is initialized to that object (i.e.,

by a call to in.readObject)

• If the class name is a non-empty string:

• The ref’s full class name is constructed by conatenating the value of the

string java.rmi.server.RemoteRef.packagePrefix and “.” with

the class name read from the stream.

• An instance of the ref’s class is created (from the full class name).

• The new instance (which becomes the ref field) reads its external form

from the stream, in.
Page 28 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

5.2 The RemoteServer Class
The java.rmi.server.RemoteServer class is the common superclass to the

server implementation classes java.rmi.server.UnicastRemoteObject
and java.rmi.activation.Activatable .

package java.rmi.server;
public abstract class RemoteServer extends RemoteObject {

protected RemoteServer();
protected RemoteServer(RemoteRef ref);

public static String getClientHost()
throws ServerNotActiveException;

public static void setLog(java.io.OutputStream out);
public static java.io.PrintStream getLog();

}

Since the RemoteServer class is abstract, it cannot be instantiated. Therefore,

one of RemoteServer’s constructors must be called from a subclass

implementation. The first RemoteServer constructor creates a

RemoteServer with a null remote reference. The second RemoteServer
constructor creates a RemoteServer with the given remote reference, ref.

The getClientHost method allows an active method to determine the host

that initiated the remote method active in the current thread. The exception

ServerNotActiveException is thrown if no remote method is active in the

current thread. The setLog method logs RMI calls to the specified output

stream. If the output stream is null, call logging is turned off. The getLog
method returns the stream for the RMI call log, so that application-specific

information can be written to the call log in a synchronized manner.

5.3 The UnicastRemoteObject Class
The class java.rmi.server.UnicastRemoteObject provides support for

creating and exporting remote objects. The class implements a remote server

object with the following characteristics:

• References to such objects are valid only for, at most, the life of the process

that creates the remote object.

• Communication with the remote object uses a TCP transport.

• Invocations, parameters, and results use a stream protocol for

communicating between client and server.
Chapter 5: Server Interfaces Page 29

5

package java.rmi.server;
public class UnicastRemoteObject extends RemoteServer {

protected UnicastRemoteObject()
throws java.rmi.RemoteException;

protected UnicastRemoteObject(int port)
throws java.rmi.RemoteException;

protected UnicastRemoteObject(int port,
 RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf)

throws java.rmi.RemoteException;
public Object clone()

throws java.lang.CloneNotSupportedException;
public static RemoteStub exportObject(java.rmi.Remote obj)

throws java.rmi.RemoteException;
public static Remote exportObject(java.rmi.Remote obj, int port)

throws java.rmi.RemoteException;
public static Remote exportObject(Remote obj, int port,

 RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf)

throws java.rmi.RemoteException;
public static boolean unexportObject(java.rmi.Remote obj,

 boolean force)
throws java.rmi.NoSuchObjectException;

}

5.3.1 Constructing a New Remote Object

A remote object implementation (one that implements one or more remote

interfaces) must be created and exported. Exporting a remote object makes that

object available to accept incoming calls from clients. For a remote object

implementation that is exported as a UnicastRemoteObject , the exporting

involves listening on a TCP port (note that more than one remote object can

accept incoming calls on the same port, so listening on a new port is not

always necessary). A remote object implemention can extend the class

UnicastRemoteObject to make use of its constructors that export the object,

or it can extend some other class (or none at all) and export the object via

UnicastRemoteObject ’s exportObject methods.

The no argument constructor creates and exports a remote object on an

anonymous (or arbitrary) port, chosen at runtime. The second form of the

constructor takes a single argument, port, that specifies the port number on

which the remote object accepts incoming calls. The third constructor creates
Page 30 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

and exports a remote object that accepts incoming calls on the specified port via

a ServerSocket created from the RMIServerSocketFactory ; clients will

make connections to the remote object via Socket s supplied from the

RMIClientSocketFactory .

5.3.2 Exporting an Implementation Not Extended From RemoteObject

An exportObject method (any of the forms) is used to export a simple peer-

to-peer remote object that is not implemented by extending the

UnicastRemoteObject class. The first form of the exportObject method

takes a single parameter, obj, which is the remote object that will accept

incoming RMI calls; this exportObject method exports the object on an

anonymous (or arbitrary) port, chosen at runtime. The second exportObject
method takes two parameters, both the remote object, obj, and port, the port

number on which the remote object accepts incoming calls. The third

exportObject method exports the object, obj, with the specified

RMIClientSocketFactory , csf, and RMIServerSocketFactory , ssf, on the

specified port.

The object must be exported prior to the first time it is passed in an RMI call as

either a parameter or return value, otherwise, a

java.rmi.server.StubNotFoundException is thrown when a remote call

is attempted in which an “unexported” remote object is passed as an argument

or return value.

Once exported, the object can be passed as an argument in an RMI call or

returned as the result of an RMI call.

The exportObject method returns a Remote stub which is the stub object for

the remote object, obj , that is passed in place of the remote object in an RMI

call.

5.3.3 Passing a UnicastRemoteObject in an RMI Call

As stated above, when an object of type UnicastRemoteObject is passed as

a parameter or return value in an RMI call, the object is replaced by the remote

object’s stub. A remote object implementation remains in the virtual machine

in which it was created and does not move (even by value) from that virtual

machine. In other words, a remote object is passed by reference in an RMI call;

remote object implementations cannot be passed by value.
Chapter 5: Server Interfaces Page 31

5

5.3.4 Serializing a UnicastRemoteObject

Information contained in UnicastRemoteObject is transient and is not saved

if an object of that type is written to a user-defined ObjectOutputStream (for

example, if the object is written to a file using serialization). An object that is

an instance of a user-defined subclass of UnicastRemoteObject , however,

may have non-transient data that can be saved when the object is serialized.

When a UnicastRemoteObject is read from an ObjectInputStream , it is

automatically exported to the RMI runtime so that it may receive RMI calls. If

exporting the object fails for some reason, deserializing the object will

terminate with an exception.

5.3.5 Unexporting a UnicastRemoteObject

The unexportObject method makes the remote object, obj, unavailable for

incoming calls. If the force parameter is true, the object is forcibly unexported

even if there are pending calls to the remote object or the remote object still has

calls in progress. If the force parameter is false, the object is only unexported if

there are no pending or in-progress calls to the object. If the object is

successfully unexported, the RMI runtime removes the object from its internal

tables. Unexporting the object in this forcible manner may leave clients holding

stale remote references to the remote object. This method throws

java.rmi.NoSuchObjectException if the object was not previously

exported to the RMI runtime.

5.3.6 The clone method

Objects are only clonable using the Java language’s default mechanism if they

support the java.lang.Cloneable interface. The class

java.rmi.server.UnicastRemoteObject does not implement this

interface, but does implement the clone method so that if subclasses need to

implement Cloneable , the remote object will be capable of being cloned

properly. The clone method can be used by a subclass to create a cloned

remote object with initially the same contents, but is exported to accept remote

calls and is distinct from the original object.
Page 32 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

5.4 The Unreferenced Interface
package java.rmi.server;
public interface Unreferenced {

public void unreferenced();
}

The java.rmi.server.Unreferenced interface allows a server object to

receive notification that there are no clients holding remote references to it. The

distributed garbage collection mechanism maintains for each remote object, the

set of client virtual machines that hold references that remote object. As long as

some client holds a remote reference to the remote object, the RMI runtime

keeps a local reference to the remote object. When the “reference” set becomes

empty, the Unreferenced.unreferenced method is invoked (if the server

implements the Unreferenced interface). A remote object is not required to

support the Unreferenced interface.

As long as some local reference to the remote object exists it may be passed in

remote calls or returned to clients. The process that receives the reference is

added to the reference set for the remote object. When the reference set

becomes empty, the remote object’s unreferenced method will be invoked.

As such, the Unreferenced method can be called more than once (each time

the set is newly emptied). Remote objects are only collected when no more

references, either local references or those held by clients, still exist.

5.5 The RMISecurityManager Class
package java.rmi;

public class RMISecurityManager extends java.lang.SecurityManager {

public RMISecurityManager();
public synchronized void checkPackageAccess(String pkg)

throws RMISecurityException;
}

The RMISecurityManager provides the same security features as the

java.lang.SecurityManager, but overrides the checkPackageAcess method.

In RMI applications, if no security manager has been set, stubs and classes can

only be loaded from the local classpath. This ensures that the application is

protected from code that is downloaded as a result of remote method

invocations.
Chapter 5: Server Interfaces Page 33

5

5.6 The RMIClassLoader Class
The java.rmi.server.RMIClassLoader class provides a set of public static utility

methods for supporting network-based class loading in RMI. These methods

are called by RMI’s internal marshal streams to implement the dynamic class

loading of types for RMI parameters and return values, but they also may be

called directly by applications in order to mimic RMI’s class loading behavior.

The RMIClassLoader class has no publicly-accessible constructors and thus

cannot be instantiated.

package java.rmi.server;

public class RMIClassLoader {
public static String getClassAnnotation(Class cl);
public static Object getSecurityContext(ClassLoader loader);

 public static Class loadClass(String name)
 throws java.net.MalformedURLException,

 ClassNotFoundException;
public static Class loadClass(String codebase, String name)
 throws java.net.MalformedURLException,

 ClassNotFoundException;
public static Class loadClass(URL codebase, String name)

throws java.net.MalformedURLException,
 ClassNotFoundException;

}

The getClassAnnotation method returns a String representing the

network codebase path that a remote endpoint should use for downloading the

definition of the indicated class. The RMI runtime uses String objects

returned by this method as the annotations for class descriptors in its marshal

streams. The format of this codebase string is a path of codebase URL strings

delimited by spaces.

The codebase string returned depends on the class loader of the supplied class:

• If the class loader is one of the following:

• the “system class loader” (the class loader used to load classes in the

application’s “class path” and returned by the method

ClassLoader.getSystemClassLoader),

• a parent of the “system class loader” such as the class loader used for

installed extensions,

• or null (the “boot class loader” used to load VM classes),
Page 34 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

then the value of the java.rmi.server.codebase property is returned,

or null is returned if that property is not set.

• Otherwise, if the class loader is an instance of the class

java.net.URLClassLoader , then the codebase string returned is a space-

separated list of the external forms of the URLs returned by invoking the

getURLs methods on the class loader. If the URLClassLoader was created

by the RMI runtime to service an invocation of one of the

RMIClassLoader.loadClass methods, then no permissions are necessary

to get the associated codebase string. If it is an arbitrary URLClassLoader
instance, the caller must have permission to connect to all of the URLs in the

codebase path, as determined by calling

openConnection().getPermission() on each URLinstance returned by

the getURLs method.

• Finally, if the class loader is not an instance of URLClassLoader , then the

value of the java.rmi.server.codebase property is returned, or null is

returned if that property is not set.

The getSecurityContext method is deprecated because it is no longer

applicable to the security model of JDK1.2; it was used internally in JDK1.1 to

implement class loader-based security checks. If the indicated class loader was

created by the RMI runtime to service an invocation of one of the

RMIClassLoader.loadClass methods, the the first URL in the class loader’s

codebase path is returned; otherwise, null is returned.

The three loadClass methods all attempt to load the class with the specified

name using the current thread’s context class loader and, if there is a security

manager set, an internal URLClassLoader for a particular codebase path

(depending on the method):

• The loadClass method that only takes one parameter (the class name)

implicitly uses the value of the java.rmi.server.codebase property as

the codebase path to use. This version of the loadClass method has been

deprecated because this use of the java.rmi.server.codebase property

is discouraged; use the following, more general version instead.

• The loadClass method with the String codebase parameter uses it as the

codebase path; the codebase string must be a space-separated list of URLs,

as would be returned by the getClassAnnotation method.

• The loadClass method with the java.net.URL codebase parameter uses

that single URLas the codebase.
Chapter 5: Server Interfaces Page 35

5

For all of the loadClass methods, the codebase path is used in conjunction

with the current thread’s context class loader (determined by invoking

getContextClassLoader on the current thread) to determine the internal

class loader instance to attempt to load the class from. The RMI runtime

maintains a table of internal class loader instances, keyed by the pair consisting

of the parent class loader and the loader’s codebase path (an ordered list of

URLs). A loadClass method looks in the table for a URLClassLoader
instance with the desired codebase path and the current thread’s context class

loader as its parent. If no such loader exists, then one is created and added to

the table. Finally, the loadClass method is called on the chosen class loader

with the specified class name.

If there is a security manager set (System.getSecurityManager does not

return null), the caller of loadClass must have permission to connect to all of

the URLs in the codebase path, or a ClassNotFoundException will be

thrown. In order to prevent arbitrary untrusted code from being loaded into a

Java VM with no security manager, if there is no security manager set, all of

the loadClass methods will ignore the particular codebase path and only

attempt to load the class with the specified name from the current thread’s

context class loader.

5.7 The LoaderHandler Interface
package java.rmi.server;

public interface LoaderHandler {

 Class loadClass(String name)
 throws MalformedURLException, ClassNotFoundException;

 Class loadClass(URL codebase,String name)
throws MalformedURLException, ClassNotFoundException;

Object getSecurityContext(ClassLoader loader);
}

Note – The LoaderHandler interface is deprecated in JDK1.2.

The LoaderHandler interface was only used by the JDK1.1 internal RMI

implementation.
Page 36 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

5.8 RMI Socket Factories
When the RMI runtime implementation needs instances of java.net.Socket
and java.net.ServerSocket for its connections, instead of instantiating

objects of those classes directly, it calls the createSocket and

createServerSocket methods on the current RMISocketFactory object,

returned by the static method RMISocketFactory.getSocketFactory . This

allows the application to have a hook to customize the type of sockets used by

the RMI transport, such as alternate subclasses of the java.net.Socket and

java.net.ServerSocket classes. The instance of RMISocketFactory to be

used can be set once by trusted system code. In JDK 1.1, this customization

was limited to relatively global decisions about socket type, because the only

parameters supplied to the factory's methods were host and port (for

createSocket) and just port number (for createServerSocket).

In JDK 1.2, the new interfaces RMIServerSocketFactory and

RMIClientSocketFactory have been introduced to provide more flexible

customization of what protocols are used to communicate with remote objects.

To allow applications using RMI to take advantage of these new socket factory

interfaces, several new constructors and exportObject methods, that take the

client and server socket factory as additional parameters, have been added to

both UnicastRemoteObject and java.rmi.activation.Activatable.

Remote objects exported with either of the new constructors or exportObject
methods (with RMIClientSocketFactory and RMIServerSocketFactory
parameters) will be treated differently by the RMI runtime. For the lifetime of

such a remote object, the runtime will use the custom

RMIServerSocketFactory to create a ServerSocket to accept incoming

calls to the remote object and use the custom RMIClientSocketFactory to

create a Socket to connect clients to the remote object.

The implementation of RemoteRef and ServerRef used in the stubs and

skeletons for remote objects exported with custom socket factories is

UnicastRef2 and UnicastServerRef2 , respectively. The wire

representation of the UnicastRef2 type contains a different representation of

the “endpoint” to contact than the UnicastRef type has (which used just a

host name string in UTF format, following by an integer port number). For

UnicastRef2 , the endpoint's wire representation consists of a format byte

specifying the contents of the rest of the endpoint's representation (to allow for

future expansion of the endpoint representation) followed by data in the

indicated format. Currently, the data may consist of a hostname in UTF format,
Chapter 5: Server Interfaces Page 37

5

a port number, and optionally (as specified by the endpoint format byte) the

serialized representation of an RMIClientSocketFactory object that is used

by clients to generate socket connections to remote object at this endpoint. The

endpoint representation does not contain the RMIServerSocketFactory
object that was specified when the remote object was exported.

When calls are made through references of the UnicastRef2 type, the runtime

uses the createSocket method of the RMIClientSocketFactory object in

the endpoint when creating sockets for connections to the referent remote

object. Also, when the runtime makes DGC “dirty” and “clean” calls for a

particular remote object, it must call the DGC on the remote VM using a

connection generated from the same RMIClientSocketFactory object as

specified in the remote reference, and the DGC implementation on the server

side should verify that this was done correctly.

Remote objects exported with the older constructor or method on

UnicastRemoteObject that do not take custom socket factories as arguments

will have RemoteRef and ServerRef of type UnicastRef and

UnicastServerRef as before and use the old wire representation for their

endpoints, i.e. a host string in UTF format followed by integer specifying the

port number. This is so that RMI servers that do not use new JDK 1.2 features

will interoperate with older RMI clients.

5.8.1 The RMISocketFactory Class

The java.rmi.server.RMISocketFactory abstract class provides an

interface for specifying how the transport should obtain sockets. Note that the

class below uses Socket and ServerSocket from the java.net package.

package java.rmi.server;
public abstract class RMISocketFactory

implements RMIClientSocketFactory, RMIServerSocketFactory
{

public abstract Socket createSocket(String host, int port)
throws IOException;

public abstract ServerSocket createServerSocket(int port)
throws IOException;

public static void setSocketFactory(RMISocketFactory fac)
throws IOException;

public static RMISocketFactory getSocketFactory();
Page 38 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

public static void setFailureHandler(RMIFailureHandler fh);
public static RMIFailureHandler getFailureHandler();

}

The static method setSocketFactory is used to set the socket factory from

which RMI obtains sockets. The application may invoke this method with its

own RMISocketFactory instance only once. An application-defined

implementation of RMISocketFactory could, for example, do preliminary

filtering on the requested connection and throw exceptions, or return its own

extension of the java.net.Socket or java.net.ServerSocket classes,

such as ones that provide a secure communication channel. Note that the

RMISocketFactory may only be set if the current security manager allows

setting a socket factory; if setting the socket factory is disallowed, a

SecurityException will be thrown.

The static method getSocketFactory returns the socket factory used by

RMI. The method returns null if the socket factory is not set.

The transport layer invokes the createSocket and createServerSocket
methods on the RMISocketFactory returned by the getSocketFactory
method when the transport needs to create sockets. For example:

RMISocketFactory.getSocketFactory().createSocket(myhost, myport)

The method createSocket should create a client socket connected to the

specified host and port. The method createServerSocket should create a

server socket on the specified port.

The default transport’s implementation of RMISocketFactory provides for

transparent RMI through firewalls using HTTP as follows:

• On createSocket , the factory automatically attempts HTTP connections to

hosts that cannot be contacted with a direct socket.

• On createServerSocket , the factory returns a server socket that

automatically detects if a newly accepted connection is an HTTP POST

request. If so, it returns a socket that will transparently expose only the body

of the request to the transport and format its output as an HTTP response.

The method setFailureHandler sets the failure handler to be called by the

RMI runtime if the creation of a server socket fails. The failure handler returns

a boolean to indicate if retry should occur. The default failure handler returns

false, meaning that by default recreation of sockets is not attempted by the

runtime.
Chapter 5: Server Interfaces Page 39

5

The method getFailureHandler returns the current handler for socket

creation failure, or null if the failure handler is not set.

5.8.2 The RMIServerSocketFactory Interface

To support custom communication with remote objects, an

RMIServerSocketFactory instance can be specified for a remote object

when it is exported, either via the appropriate UnicastRemoteObject
constructor or exportObject method or the appropriate

java.rmi.activation.Activatable constructor or exportObject
method. If such a server socket factory is associated with a remote object when

it is exported, the RMI runtime will use the remote object’s server socket

factory to create a ServerSocket (using the

RMIServerSocketFactory.createServerSocket method) to accept

connections from remote clients.

package java.rmi.server;
public interface RMIServerSocketFactory {

public java.net.ServerSocket createServerSocket(int port)
throws IOException;

}

5.8.3 The RMIClientSocketFactory Interface

For custom communication with remote objects, an

RMIClientSocketFactory instance can be specified for a remote object

when it is exported, either via the appropriate UnicastRemoteObject
constructor or exportObject method or the appropriate

java.rmi.activation.Activatable constructor or exportObject
method. If such a client socket factory is associated with a remote object when

it is exported, the client socket factory will be downloaded to remote virtual

machines along with the remote reference for the remote object and the RMI

runtime will use the RMIClientSocketFactory.createSocket method to

make connections from the client to the remote object .
Page 40 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

package java.rmi.server;
public interface RMIClientSocketFactory {

public java.net.Socket createSocket(String host, int port)
throws IOException;

}

5.9 The RMIFailureHandler Interface
The java.rmi.server.RMIFailureHandler interface provides a method

for specifying how the RMI runtime should respond when server socket

creation fails (except during object export).

package java.rmi.server;

public interface RMIFailureHandler {
public boolean failure(Exception ex);

}

The failure method is invoked with the exception that prevented the RMI

runtime from creating a java.net.ServerSocket . The method returns true

if the runtime should attempt to retry and false otherwise.

Before this method can be invoked, a failure handler needs to be registered via

the RMISocketFactory.setFailureHandler call. If the failure handler is

not set, the RMI runtime attempts to re-create the ServerSocket after waiting

for a short period of time.

Note that the RMIFailureHandler is not called when ServerSocket
creation fails upon initial export of the object. The RMIFailureHandler will

be called when a ServerSocket creation after a failed accept on that

ServerSocket .

5.10 The LogStream Class
The class LogStream presents a mechanism for logging errors that are of

possible interest to those monitoring the system. This class is used internally

for server call logging.

package java.rmi.server;

public class LogStream extends java.io.PrintStream {
Chapter 5: Server Interfaces Page 41

5

public static LogStream log(String name);
public static synchronized PrintStream getDefaultStream();
public static synchronized void setDefaultStream(

PrintStream newDefault);
public synchronized OutputStream getOutputStream();
public synchronized void setOutputStream(OutputStream out);
public void write(int b);
public void write(byte b[], int off, int len);
public String toString();
public static int parseLevel(String s);
// constants for logging levels
public static final int SILENT = 0;
public static final int BRIEF = 10;
public static final int VERBOSE = 20;

}

Note – The LogStream class is deprecated in JDK1.2

The method log returns the LogStream identified by the given name. If a log

corresponding to name does not exist, a log using the default stream is created.

The method getDefaultStream returns the current default stream for new

logs.

The method setDefaultStream sets the default stream for new logs.

The method getOutputStream returns current stream to which output from

this log is sent.

The method setOutputStream sets the stream to which output from this log

is sent.

The first form of the method write writes a byte of data to the stream. If it is

not a new line, then the byte is appended to the internal buffer. If it is a new

line, then the currently buffered line is sent to the log's output stream with the

appropriate logging prefix. The second form of the method write writes a

subarray of bytes.

The method toString returns log name as string representation.

The method parseLevel converts a string name of a logging level to its

internal integer representation.
Page 42 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

5

5.11 Stub and Skeleton Compiler
The rmic stub and skeleton compiler is used to compile the appropriate stubs

and skeletons for a specific remote object implementation. The compiler is

invoked with the package qualified class name of the remote object class. The

class must previously have been compiled successfully.

• The location of the imported classes may be specified either with the

CLASSPATH environment variable or with the -classpath argument.

• The compiled class files are placed in the current directory unless the -d

argument is specified.

• The -keepgenerated (or - keep) argument retains the generated java

source files for the stubs and skeletons.

• The stub protocol version can also be specified:

• -v1.1 creates stubs/skeletons for the JDK 1.1 stub protocol version

• -vcompat (the default in JDK 1.2) creates stubs/skeletons compatible

with both JDK 1.1 and 1.2 stub protocol versions

• -v1.2 creates stubs for JDK 1.2 stub protocol version only (note that

skeletons are not needed for the JDK 1.2 stub protocol)

• The -show option displays a graphical user interface for the program.

• Most javac command line arguments are applicable (except -O) and can be

used with rmic :

• -g generates debugging info

• -depend recompiles out-of-date files recursively

• -nowarn generates no warnings

• -verbose outputs messgaes about what the compiler is doing

• -classpath <path> specifies where to find input source and class files

• -d <directory> specifies where to place generated class files

• -J<runtime flag> passes the argument to the java interpreter
Chapter 5: Server Interfaces Page 43

5

Page 44 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Registry Interfaces 6
The RMI system uses the java.rmi.registry.Registry interface and the

java.rmi.registry.LocateRegistry class to provide a well-known

bootstrap service for retrieving and registering objects by simple names.

A registry is a remote object that maps names to remote objects. Any server

process can support its own registry or a single registry can be used for a host.

The methods of LocateRegistry are used to get a registry operating on a

particular host or host and port. The methods of the java.rmi.Naming class

makes calls to a remote object that implements the Registry interface using

the appropriate LocateRegistry.getRegistry method.

Topics:
• The Registry Interface

• The LocateRegistry Class

• The RegistryHandler Interface

6.1 The Registry Interface
The java.rmi.registry.Registry remote interface provides methods for

lookup, binding, rebinding, unbinding, and listing the contents of a registry.

The java.rmi.Naming class uses the registry remote interface to provide

URL-based naming.
Page 45

6

package java.rmi.registry;

public interface Registry extends java.rmi.Remote {
public static final int REGISTRY_PORT = 1099;
public java.rmi.Remote lookup(String name)

throws java.rmi.RemoteException,
java.rmi.NotBoundException, java.rmi.AccessException;

public void bind(String name, java.rmi.Remote obj)
throws java.rmi.RemoteException,
java.rmi.AlreadyBoundException, java.rmi.AccessException;

public void rebind(String name, java.rmi.Remote obj)
throws java.rmi.RemoteException, java.rmi.AccessException;

public void unbind(String name)
throws java.rmi.RemoteException,
java.rmi.NotBoundException, java.rmi.AccessException;

public String[] list()
throws java.rmi.RemoteException, java.rmi.AccessException;

}

The REGISTRY_PORTis the default port of the registry.

The lookup method returns the remote object bound to the specified name. The

remote object implements a set of remote interfaces. Clients can cast the remote

object to the expected remote interface. (This cast can fail in the usual ways

that casts can fail in the Java language.)

The bind method associates the name with the remote object, obj. If the name is

already bound to an object the AlreadyBoundExcepton is thrown.

The rebind method associates the name with the remote object, obj. Any

previous binding of the name is discarded.

The unbind method removes the binding between the name and the remote

object, obj. If the name is not already bound to an object the

NotBoundException is thrown.

The list method returns an array of Strings containing a snapshot of the

names bound in the registry. The return value contains a snapshot of the

contents of the registry.

Clients can access the registry either by using the LocateRegistry and

Registry interfaces or by using the methods of the URL-based

java.rmi.Naming class. The registry supports bind , unbind , and rebind
only from clients on the same host as the server; a lookup can be done from

any host.
Page 46 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

6

6.2 The LocateRegistry Class
The class java.rmi.registry.LocateRegistry is used to obtain a

reference (construct a stub) to a bootstrap remote object registry on a particular

host (including the local host), or to create a remote object regsitry that accepts

calls on a specific port.

The registry implements a simple flat naming syntax that associates the name

of a remote object (a string) with a remote object reference. The name and

remote object bindings are not remembered across server restarts.

Note that a getRegistry call does not actually make a connection to the

remote host. It simply creates a local reference to the remote registry and will

succeed even if no registry is running on the remote host. Therefore, a

subsequent method invocation to a remote registry return as a result of this

method may fail.

package java.rmi.registry;
public final class LocateRegistry {

public static Registry getRegistry()
throws java.rmi.RemoteException;

public static Registry getRegistry(int port)
throws java.rmi.RemoteException;

public static Registry getRegistry(String host)
throws java.rmi.RemoteException;

public static Registry getRegistry(String host, int port)
throws java.rmi.RemoteException;

public static Registry getRegistry(String host, int port,
 RMIClientSocketFactory csf)

throws RemoteException;
public static Registry createRegistry(int port)

throws java.rmi.RemoteException;
public static Registry createRegistry(int port,

RMIClientSocketFactory csf,
RMIServerSocketFactory ssf)

throws RemoteException;
}

The first four getRegistry methods return a reference to a registry on the

current host, current host at a specified port, a specified host, or at a particular

port on a specified host. What is returned is the remote stub for the registry

with the specified host and port information.
Chapter 6: Registry Interfaces Page 47

6

The fifth getRegistry method (that takes an RMIClientSocketFactory as

one of its arguments), returns a locally created remote stub to the remote object

Registry on the specified host and port. Communication with the remote

registry whose stub is constructed with this method will use the supplied

RMIClientSocketFactory , csf, to create Socket connections to the registry

on the remote host and port.

Note – A registry returned from the getRegistry methods is a specially

constructed stub that contains a well-known object identifier. Passing a registry

stub from one VM to another is not supported (it may or may not work

depending on the implementation). Use the LocateRegistry.getRegistry
methods to obtain the appropriate registry for a host.

The createRegistry methods creates and exports a registry on the local host

on the specified port.

The second createRegistry method allows more flexiblity in

communicating with the registry. This call creates and exports a Registry on

the local host that uses custom socket factories for communication with that

registry. The registry that is created listens for incoming requests on the given

port using a ServerSocket created from the supplied

RMIServerSocketFactory . A client that receives a reference to this registry

will use a Socket created from the supplied RMIClientSocketFactory .

Note – Starting a registry with the createRegistry method does not keep

the server process alive.

6.3 The RegistryHandler Interface

Note – The RegistryHandler interface is deprecated in JDK1.2. In JDK1.1, it

was only used internally by the RMI implementation and was not for

application use.

package java.rmi.registry;

public interface RegistryHandler {
Registry registryStub(String host, int port)

throws java.rmi.RemoteException,
java.rmi.UnknownHostException;
Page 48 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

6

Registry registryImpl(int port)
throws java.rmi.RemoteException;

}

The method registryStub returns a stub for contacting a remote registry on

the specified host and port.

The method registryImpl constructs and exports a registry on the specified

port. The port must be nonzero.
Chapter 6: Registry Interfaces Page 49

6

Page 50 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

RemoteObjectActivation 7
Topics:
• Overview

• Activation Protocol

• Implementation Model for an “Activatable” Remote Object

• Activation Interfaces

7.1 Overview
Distributed object systems are designed to support long-lived persistent

objects. Given that these systems will be made up of many thousands (perhaps

millions) of such objects, it would be unreasonable for object implementations

to become active and remain active, taking up valuable system resources, for

indefinite periods of time. In addition, clients need the ability to store

persistent references to objects so that communication among objects can be re-

established after a system crash, since typically a reference to a distributed

object is valid only while the object is active.

Object activation is a mechanism for providing persistent references to objects

and managing the execution of object implementations. In RMI, activation

allows objects to begin execution on an as-needed basis. When an “activatable”

remote object is accessed (via a method invocation) if that remote object is not

currently executing, the system initiates the object's execution inside an

appropriate Java VM.
Page 51

7

7.1.1 Terminology

An active object is a remote object that is instantiated and exported in a Java

VM on some system. A passive object is one that is not yet instantiated (or

exported) in a VM, but which can be brought into an active state. Transforming

a passive object into an active object is a process known as activation.

Activation requires that an object be associated with a VM, which may entail

loading the class for that object into a VM and the object restoring its persistent

state (if any).

In the RMI system, we use lazy activation. Lazy activation defers activating an

object until a client's first use (i.e., the first method invocation).

7.1.2 Lazy Activation

Lazy activation of remote objects is implemented using a faulting remote
reference (sometimes referred to as a fault block). A faulting remote reference to

a remote object “faults in” the active object’s reference upon the first method

invocation to the object. Each faulting reference maintains both a persistent

handle (an activation identifier) and a transient remote reference to the target

remote object. The remote object’s activation identifier contains enough

information to engage a third party in activating the object. The transient

reference is the actual “live” reference to the active remote object that can be

used to contact the executing object.

In a faulting reference, if the live reference to a remote object is null, the target

object is not known to be active. Upon method invocation, the faulting

reference (for that object) engages in the activation protocol to obtain a “live”

reference, which is a remote reference (such as a unicast remote reference) for

the newly-activated object. Once the faulting reference obtains the live

reference, the faulting reference forwards method invocations to the

underlying remote reference which, in turn, forwards the method invocation to

the remote object.

In more concrete terms, a remote object’s stub contains a “faulting” remote

reference type that contains both:

• an activation identifier for a remote object, and

• a “live” reference (possibly null) containing the “active” remote reference

type of the remote object (for example, a remote reference type with unicast

semantics).
Page 52 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

Note – The RMI system preserves “at most once” semantics for remote calls. In

other words, a call to an activatable or unicast remote object is sent at most once.

Thus, if a call to a remote object fails (indicated by a RemoteException being

thrown), the client can be guaranteed that the remote method executed no

more than once (and perhaps not at all).

7.2 Activation Protocol
During a remote method invocation, if the “live” reference for a target object is

unknown, the faulting reference engages in the activation protocol. The

activation protocol involves several entities: the faulting reference, the activator,
an activation group in a Java VM, and the remote object being activated.

The activator (usually one per host) is the entity which supervises activation by

being both:

• a database of information that maps activation identifiers to the information

necessary to activate an object (the object's class, the location--a URL path--

from where the class can be loaded, specific data the object may need to

bootstrap, etc.), and

• a manager of Java Virtual Machines, that starts up VMs (when necessary)

and forwards requests for object activation (along with the necessary

information) to the correct activation group inside a remote VM.

Note that the activator keeps the current mapping of activation identifiers to

active objects as a cache, so that the group does not need to be consulted on

each activation request.

An activation group (one per Java VM) is the entity which receives a request to

activate an object in the Java VM and returns the activated object back to the

activator.

The activation protocols is as follows. A faulting reference uses an activation

identifier and calls the activator (an internal RMI interface) to activate the

object associated with the identifier. The activator looks up the object’s

activation descriptor (registered previously). The object’s descriptor contains:

• the object’s group identifier (specifies the VM in which it is activated),

• the object’s class name,

• a URL path from where to load the object’s class code,
Chapter 7: Remote Object Activation Page 53

7

• object-specific initialization data in marshalled form (initialization data

might be the name of a file containing the object’s persistent state, for

example).

If the activation group in which this object should reside exists, the activator

forwards the activation request to that group. If the activation group does not

exist, the activator initiates a VM executing an activation group and then

forwards the activation request to that group.

The activation group loads the class for the object and instantiates the object

using a special constructor that takes several arguments, including the

activation descriptor registered previously.

When the object is finished activating, the activation group passes back a

marshalled object reference to the activator that then records the activation

identifier and active reference pairing and returns the active (live) reference to

the faulting reference. The faulting reference (inside the stub) then forwards

method invocations via the live reference directly to the remote object.

Note – In the JDK, RMI provides an implementation of the activation system

interfaces. In order to use activation, you must first run the activation system

daemon rmid .

7.3 Implementation Model for an “Activatable” Remote Object
In order to make a remote object that can be accessed via an activation

identifier over time, a developer needs to:

• register an activation descriptor for the remote object, and

• include a special constructor in the object’s class that the RMI system calls

when it activates the activatable object.

An activation descriptor (ActivationDesc) can be registered in one of

several ways:

• via a call to the static register method of the class Activatable , or

• by creating an “activatable” object via the first or second constructor of the

Activatable class, or

• by exporting an “activatable” object explicitly via Activatable ’s first or

second exportObject method that takes an ActivationDesc , the

Remote object implementation and a port number as arguments.
Page 54 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

For a specific object, only one of the above methods should be used to register

the object for activation. See the section below on “Constructing an Activatable

Remote Object” for examples on how to implement activatable objects.

7.3.1 The ActivationDesc Class

An ActivationDesc contains the information necessary to activate an object.

It contains the object’s activation group identifier, the class name for the object,

a codebase path (or URLs) from where the object’s code can be loaded, and a

MarshalledObject that may contain object-specific initialization data used

during each activation.

A descriptor registered with the activation system is consulted (during the

activation process) to obtain information in order to re-create or activate an

object. The MarshalledObject in the object’s descriptor is passed as the

second argument to the remote object’s constructor for the object to use during

activation.

package java.rmi.activation;
public final class ActivationDesc implements java.io.Serializable
{

public ActivationDesc (String className,
 String codebase,

java.rmi.MarshalledObject data)
throws ActivationException;

public ActivationDesc (String className,
 String codebase,

java.rmi.MarshalledObject data,
boolean restart)

throws ActivationException;

public ActivationDesc (ActivationGroupID groupID,
String className,
String codebase,
java.rmi.MarshalledObject data,
boolean restart);

public ActivationDesc (ActivationGroupID groupID,
String className,
String codebase,
Chapter 7: Remote Object Activation Page 55

7

java.rmi.MarshalledObject data);

public ActivationGroupID getGroupID ();

public String getClassName ();

public String getLocation ();

public java.rmi.MarshalledObject getData ()

public boolean getRestartMode ();
}

The first constructor for ActivationDesc constructs an object descriptor for

an object whose class is className, that can be loaded from codebase path, and

whose initialization information, in marshalled form, is data. If this form of the

constructor is used, the object’s group identifier defaults to the current

identifier for ActivationGroup for this VM. All objects with the same

ActivationGroupID are activated in the same VM. If the current group is

inactive or a default group cannot be created an ActivationException is

thrown. If the groupID is null, an IllegalArgumentException is thrown.

Note – As a side-effect of creating an ActivationDesc , if an

ActivationGroup for this VM is not currently active, a default one is created.

The default activation group uses the java.rmi.RMISecurityManager as a

security manager and upon reactivation will set the properties in the activated

group's VM to be the current set of properties in the VM. If your application

needs to use a different security manager, it must set the group for the VM

before creating a default ActivationDesc . See the method

ActivationGroup.createGroup for details on how to create an

ActivationGroup for the VM.

The second constructor for ActivationDesc constructs an object descriptor in

the same manner as the first constructor except an additional parameter, restart,
must be supplied. If the object requires restart service, meaning that the object

will be restarted automatically when the activator is restarted (as opposed to

being activated lazily upon demand), restart should be true. If restart is false,

the object is simply activated upon demand (via a remote method call).

The third constructor for ActivationDesc constructs an object descriptor for

an object whose group identifier is groupID, whose class name is className that

can be loaded from the codebase path, and whose initialization information is

data. All objects with the same groupID are activated in the same Java VM.
Page 56 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

The fourth constructor for ActivationDesc constructs an object descriptor in

the same manner as the third constructor, but allows a restart mode to be

specified. An object requires restart service (as defined above), restart should be

true.

The getGroupID method returns the group identifier for the object specified

by the descriptor. A group provides a way to aggregate objects into a single

Java virtual machine.

The getClassName method returns the class name for the object specified by

the activation descriptor.

The getLocation method returns the codebase path from where the object’s

class can be downloaded.

The getData method returns a “marshalled object” containing initialization

(activation) data for the object specified by the descriptor.

The getRestartMode method returns true if the restart mode is enabled for

this object, otherwise it returns false.

7.3.2 The ActivationID Class

The activation protocol makes use of activation identifiers to denote remote

objects that can be activated over time. An activation identifier (an instance of

the class ActivationID) contains several pieces of information needed for

activating an object:

• a remote reference to the object’s activator, and

• a unique identifier for the object.

An activation identifier for an object can be obtained by registering an object

with the activation system. Registration is accomplished in a few ways (also

noted above):

• via the Activatable.register method, or

• via the first or second Activatable constructor (that takes three arguments

and both registers and exports the object), or

• via the first or second Activatable.exportObject method that takes the

activation descriptor, object implementation, and port as arguments; this

method both registers and exports the object.
Chapter 7: Remote Object Activation Page 57

7

package java.rmi.activation;
public class ActivationID implements java.io.Serializable
{

public ActivationID (Activator activator);

public Remote activate (boolean force)
throws ActivationException, UnknownObjectException,

java.rmi.RemoteException;

public boolean equals (Object obj);

public int hashCode ();
}

The constructor for ActivationID takes a single argument, activator, that

specifies a remote reference to the activator responsible for activating the object

associated with this activation identifier. An instance of ActivationID is

globally unique.

The activate method activates the object associated with the activation

identifier. If the force parameter is true, the activator considers any cached

reference for the remote object as stale, thus forcing the activator to contact the

group when activating the object. If force is false, then returning the cached

value is acceptable. If activation fails, ActivationException is thrown. If

the object identifier is not known to the activator, then the method throws

UnknownObjectException . If the remote call to the activator fails, then

RemoteException is thrown.

The equals method implements content equality. It returns true if all fields are

equivalent (either identical or equivalent according to each field’s

Object.equals semantics). If p1 and p2 are instances of the class

ActivationID , the hashCode method will return the same value if

p1.equals(p2) returns true.

7.3.3 The Activatable Class

The Activatable class provides support for remote objects that require

persistent access over time and that can be activated by the system. The class

Activatable is the main API that developers need to use to implement and

manage activatable objects. Note that you must first run the activation system

daemon, rmid , before objects can be registered and/or activated.
Page 58 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

package java.rmi.activation;
public abstract class Activatable

extends java.rmi.server.RemoteServer
{

protected Activatable (String codebase,
java.rmi.MarshalledObject data,
boolean restart,
int port)

throws ActivationException, java.rmi.RemoteException;

protected Activatable (String codebase,
 java.rmi.MarshalledObject data,

boolean restart,
 int port,

RMIClientSocketFactory csf,
RMIServerSocketFactory ssf)

throws ActivationException, java.rmi.RemoteException;

protected Activatable (ActivationID id, int port)
throws java.rmi.RemoteException;

protected Activatable (ActivationID id, int port,
RMIClientSocketFactory csf,
RMIServerSocketFactory ssf)

throws java.rmi.RemoteException;

protected ActivationID getID ();

public static Remote register (ActivationDesc desc)
throws UnknownGroupException, ActivationException,

java.rmi.RemoteException;

public static boolean inactive (ActivationID id)
throws UnknownObjectException, ActivationException,

java.rmi.RemoteException;

public static void unregister (ActivationID id)
throws UnknownObjectException, ActivationException,

java.rmi.RemoteException;

public static ActivationID exportObject (Remote obj,
 String codebase,
 MarshalledObject data,
 boolean restart,
 int port)

throws ActivationException, java.rmi.RemoteException;
Chapter 7: Remote Object Activation Page 59

7

public static ActivationID exportObject (Remote obj,
 String codebase,
 MarshalledObject data,
 boolean restart,
 int port,
 RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf)

throws ActivationException, java.rmi.RemoteException;

public static Remote exportObject (Remote obj,
 ActivationID id,
 int port)

throws java.rmi.RemoteException;

public static Remote exportObject (Remote obj,
 ActivationID id,
 int port,
 RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf)

throws java.rmi.RemoteException;

public static boolean unexportObject (Remote obj, boolean force)
throws java.rmi.NoSuchObjectException;

}

An implementation for an activatable remote object may or may not extend the

class Activatable . A remote object implementation that does extend the

Activatable class inherits the appropriate definitions of the hashCode and

equals methods from the superclass java.rmi.server.RemoteObject . So,

two remote object references that refer to the same Activatable remote object

will be equivalent (the equals method will return true). Also, an instance of

the class Activatable will be “equals” to the appropriate stub object for the

instance (i.e., the Object.equals method will return true if called with the

matching stub object for the implementation as an argument, and vice versa).

Activatable Class Methods

The first constructor for the Activatable class is used to register and export

the object on a specified port (an anonymous port is chosen if port is zero). The

object’s URL path for downloading its class code is codbase, and its

initialization data is data. If restart is true, the object will be restarted
Page 60 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

automatically when the activator is restarted and if the group crashes. If restart
is false, the object will be activated on demand (via a remote method call to the

object).

A concrete subclass of the Activatable class must call this constructor to

register and export the object during initial construction. As a side-effect of

activatable object construction, the remote object is both “registered” with the

activation system and “exported” (on an anonymous port, if port is zero) to the

RMI runtime so that it is available to accept incoming calls from clients.

The constructor throws ActivationException if registering the object with

the activation system fails. RemoteException is thrown if exporting the

object to the RMI runtime fails.

The second constructor is the same as the first Activatable constructor but

allows the specification of the client and server socket factories used to

communicate with this activatable object. See the section in about “RMI Socket

Factories” for details.

The third constructor is used to activate and export the object (with the

ActivationID , id) on a specified port. A concrete subclass of the

Activatable class must call this constructor when the object itself is activated
via its special “activation” constructor whose parameters must be:

• the object's activation identifier (ActivationID), and

• the object's initialization/bootstrap data (a MarshalledObject).

As a side-effect of construction, the remote object is “exported” to the RMI

runtime (on the specified port) and is available to accept incoming calls from

clients. The constructor throws RemoteException if exporting the object to

the RMI runtime fails.

The fourth constructor is the same as the third constructor, but allows the

specification of the client and server socket factories used to communicate with

this activatable object.

The getID method returns the object’s activation identifier. The method is

protected so that only subclasses can obtain and object’s identifier. The object’s

identifier is used to report the object as inactive or to unregister the object’s

activation descriptor.

The register method registers, with the activation system, an object

descriptor, desc, for an activatable remote object so that it can be activated on

demand. This method is used to register an activatable object without having
Chapter 7: Remote Object Activation Page 61

7

to first create the object. This method returns the Remote stub for the

activatable object so that it can be saved and called at a later time thus forcing

the object to be created/activated for the first time. The method throws

UnknownGroupException if the group identifier in desc is not registered with

the activation system. ActivationException is thrown if the activation

system is not running. Finally, RemoteException is thrown if the remote call

to the activation system fails.

The inactive method is used to inform the system that the object with the

corresponding activation id is currently inactive. If the object is currently

known to be active, the object is unexported from the RMI runtime (only if

there are no pending or executing calls) so the that it can no longer receive

incoming calls. This call also informs this VM’s ActivationGroup that the

object is inactive; the group, in turn, informs its ActivationMonitor . If the

call completes successfully, subsequent activate requests to the activator will

cause the object to reactivate. The inactive method returns true if the object

was successfully unexported (meaning that it had no pending or executing

calls at the time) and returns false if the object could not be unexported due to

pending or in-progress calls. The method throws UnknownObjectException
if the object is not known (it may already be inactive); an

ActivationException is thrown if the group is not active; a

RemoteException is thrown if the call informing the monitor fails. The

operation may still succeed if the object is considered active but has already

unexported itself.

The unregister method revokes previous registration for the activation

descriptor associated with id. An object can no longer be activated via that id. If

the object id is unknown to the activation system, a

UnknownObjectException is thrown. If the activation system is not running

an ActivationException is thrown. If the remote call to the activation

system fails, then a RemoteException is thrown.

The first exportObject method may be invoked explicitly by an “activatable”

object, that does not extend the Activatable class, in order to both a) register

the object's activation descriptor, desc, constructed from the supplied codebase
and data, with the activation system (so the object can be activated), and b)

export the remote object, obj, on a specific port (if the port is zero, then an

anonymous port is chosen). Once the object is exported, it can receive

incoming RMI calls.
Page 62 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

This exportObject method returns the activation identifier obtained from

registering the descriptor, desc, with the activation system. If the activation

group is not active in the VM, then ActivationException is thrown. If the

object registration or export fails, then RemoteException is thrown.

This method does not need to be called if obj extends Activatable , since the

first Activatable constructor calls this method.

The second exportObject method is the same as the first except it allows the

specification of client and server socket factories used to communicate with the

activatable object.

The third exportObject method exports an “activatable” remote object (not

necessarily of type Activatable) with the identifier, id, to the RMI runtime to

make the object, obj, available to receive incoming calls. The object is exported

on an anonymous port, if port is zero.

During activation, this exportObject method should be invoked explicitly by

an “activatable” object, that does not extend the Activatable class. There is

no need for objects that do extend the Activatable class to invoke this

method directly; this method is called by the third constructor above (which a

subclass should invoke from its special activation constructor).

This exportObject method returns the Remote stub for the activatable

object. If the object export fails, then the method throws RemoteException .

The fourth exportObject method is the same as the third but allows the

specification of the client and server socket factories used to communicate with

this activatable object.

The unexportObject method makes the remote object, obj, unavailable for

incoming calls. If the force parameter is true, the object is forcibly unexported

eve if there are pending calls to the remote object or the remote object still has

calls in progress. If the force parameter is false, the object is only unexported if

there are no pending or in progress calls to the object. If the object is

successfully unexported, the RMI runtime removes the object from its internal

tables. Removing the object from RMI use in this forcible manner may leave

clients holding stale remote references to the remote object. This method

throws java.rmi.NoSuchObjectException if the object was not previously

exported to the RMI runtime.
Chapter 7: Remote Object Activation Page 63

7

Constructing an Activatable Remote Object

In order for an object to be activated, the “activatable” object implementation

class (whether or not it extends the Activatable class) must define a special

public constructor that takes two arguments, its activation identifier of type

ActivationID , and its activation data, a java.rmi.MarshalledObject ,

supplied in the activation descriptor used during registration. When an

activation group activates a remote object inside its VM, it constructs the object

via this special constructor (described in more detail below). The remote object

implementation may use the activation data to initialize itself in a suitable

manner. The remote object may also wish to retain its activation identifier, so

that it can inform the activation group when it becomes inactive (via a call to

the Activatable.inactive method).

The first and second constructor forms for Activatable is used to both

register and export an activatable object on a specified port. This constructor

should be used when initially constructing the object; the third form of the

constructor is used when re-activating the object.

A concrete subclass of Activatable must call the first or second constructor

form to register and export the object during initial construction. This

constructor first creates an activation descriptor (ActivationDesc) with the

object’s class name, the object’s supplied codebase and data, and whose

activation group is the default group for the VM. Next, the constructor

registers this descriptor with the default ActivationSystem . Finally, the

constructor exports the activatable object to the RMI runtime on the specific

port (if port is zero, then an anonymous port is chosen) and reports the object as

an activeObject to the local ActivationGroup . If an error occurs during

registration or export, the constructor throws RemoteException . Note that

the constructor also initializes its ActivationID (obtained via registration), so

that subsequent calls to the protected method getID will return the object’s

activation identifier.

The third constructor form for Activatable is used to export the object on a

specified port. A concrete subclass of Activatable must call the third

constructor form when it is activated via the object’s own “activation”

constructor which takes two arguments:

• the object’s ActivationID
• the object’s initialization data, a MarshalledObject
Page 64 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

This constructor only exports the activatable object to the RMI runtime on the

specific port (if port is 0, then an anonymous port is chosen), it does not inform

the ActivationGroup that the object is active, since it is the

ActivationGroup that is activating the object and knows it to be active

already.

The following is an example of a remote object interface, Server , and an

implementation, ServerImpl , that extends the Activatable class:

package examples;

public interface Server extends java.rmi.Remote {
public void doImportantStuff ()

throws java.rmi.RemoteException;
}

public class ServerImpl extends Activatable implements Server
{

// Constructor for initial construction, registration and export
public ServerImpl (String codebase, MarshalledObject data)

throws ActivationException, java.rmi.RemoteException
{

// register object with activation system, then
// export on anonymous port
super(codebase, data, false, 0);

}

// Constructor for activation and export; this constructor
// is called by the ActivationInstantiator.newInstance
// method during activation in order to construct the object.
public ServerImpl (ActivationID id, MarshalledObject data)

throws java.rmi.RemoteException
{

// call the superclass’s constructor in order to
// export the object to the RMI runtime.
super(id, 0);
// initialize object (using data, for example)

}

public void doImportantStuff () { ... }
}

An object is responsible for exporting itself. The constructors for Activatable
take care of exporting the object to the RMI runtime with the live reference type

of a UnicastRemoteObject , so the object implementation extending

Activatable does not need to worry about the detail of exporting the object
Chapter 7: Remote Object Activation Page 65

7

explicitly (other than invoking the appropriate superclasses constructor). If an

object implementation does not extend the class Activatable , the object must

export the object explicitly via a call to one of the

Activatable.exportObject static methods,.

In the following example, ServerImpl does not extend Activatable , but

rather another class, so ServerImpl is responsible for exporting itself during

initial construction and activation. The following class definition shows

ServerImpl ’s initialization constructor and its special “activation”

constructor and the appropriate call to export the object within each

constructor:

package examples;
public class ServerImpl extends SomeClass implements Server
{

// constructor for initial creation
public ServerImpl (String codebase, MarshalledObject data)

throws ActivationException, java.rmi.RemoteException
{

// register and export the object
Activatable.exportObject(this, codebase, data, false, 0);

}

// constructor for activation
public ServerImpl (ActivationID id, MarshalledObject data)

throws java.rmi.RemoteException
{

// export the object
Activatable.exportObject(this, id, 0);

}

public void doImportantStuff () { ... }
}

Registering an Activation Descriptor Without Creating the Object

To register an activatable remote object with the activation system without first

creating the object, the programmer can simply register an activation

descriptor (an instance of the class ActivationDesc) for the object. An

activation descriptor contains all the necessary information so that the
Page 66 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

activation system can activate the object when needed. An activation

descriptor for an instance of the class examples.ServerImpl can be

registered in the following manner (exception handling elided):

Server server;
ActivationDesc desc;
String codebase = “http://zaphod/codebase/”;

MarshalledObject data = new MarshalledObject(“some data”);

desc = new ActivationDesc(“examples.ServerImpl”, codebase, data);
server = (Server)Activatable.register(desc);

The register call returns a Remote stub that is the stub for the

examples.ServerImpl object and implements the same set of remote

interfaces that examples.ServerImpl implements (i.e, the stub implements

the remote interface Server). This stub object (above, cast and assigned to

server) can be passed as a parameter in any method call expecting an object that

implements the examples.Server remote interface.

7.4 Activation Interfaces
In the RMI activation protocol, there are two guarantees that the activator must

make for the system to function properly:

• like all system daemons, the activator should remain running while the

machine is up, and

• the activator must not reactivate remote objects that are already active.

The activator maintains a database of appropriate information for the groups

and objects that it participates in activating.

7.4.1 The Activator Interface

The activator is one of the entities that participates during the activation

process. As described earlier, a faulting reference (inside a stub) calls the

activator’s activate method to obtain a “live” reference to an activatable

remote object. Upon receiving a request for activation, the activator looks up

the activation descriptor for the activation identifier, id, determines the group

in which the object should be activated and invokes the newInstance method

on the activation group’s instantiator (the remote interface ActivationGroup
is described below). The activator initiates the execution of activation groups
Chapter 7: Remote Object Activation Page 67

7

as necessary. For example, if an activation group for a specific group descriptor

is not already executing, the activator will spawn a child VM for the activation

group to establish the group in the new VM.

The activator is responsible for monitoring and detecting when activation

groups fail so that it can remove stale remote references from its internal tables.

package java.rmi.activation;
public interface Activator extends java.rmi.Remote
{

java.rmi.MarshalledObject activate (ActivationID id,
 boolean force)

throws UnknownObjectException, ActivationException,
 java.rmi.RemoteException;

}

The activate method activates the object associated with the activation

identifier, id. If the activator knows the object to be active already and the force
parameter is false , the stub with a “live” reference is returned immediately to

the caller; otherwise, if the activator does not know that corresponding the

remote object is active or the force parameter is true , the activator uses the

activation descriptor information (previously registered to obtain the id) to

determine the group (VM) in which the object should be activated. If an

ActivationInstantiator corresponding to the object’s group already

exists, the activator invokes the activation instantiator’s newInstance method

passing it the id and the object’s activation descriptor.

If the activation instantiator (group) for the object’s group descriptor does not

yet exist, the activator starts a new incarnation of an

ActivationInstantiator executing (by spawning a child process, for

example). When the activator re-creates an ActivationInstantiator for a group,

it must increment the group’s incarnation number. Note that the incarnation

number is zero-based. The activation system uses incarnation numbers to

detect late ActivationSystem.activeGroup and

ActivationMonitor.inactiveGroup calls. The activation system discards

calls with an earlier incarnation number than the current number for the

group.

Note – The activator must communicate both the activation group’s identifier,

descriptor and incarnation number when it starts up a new activation group.

The activator spawns an activation group in a separate VM (as a separate or

child process, for example), and therefore must pass information specifying the

information necessary to create the group via the
Page 68 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

ActivationGroup.createGroup method. How the activator sends this

information to the spawned process is unspecified, however, this information

could be sent in the form of marshalled objects to the child process’s standard
input.

When the activator receives the activation group’s call back (via the

ActivationSystem.activeGroup method) specifying the activation group’s

reference and incarnation number, the activator can then invoke that activation

instantiator’s newInstance method to forward each pending activation

request to the activation instantiator and return the result (a marshalled remote

object reference, a stub) to each caller.

Note that the activator receives a MarshalledObject instead of a Remote
object so that the activator does not need to load the code for that object, or

participate in distributed garbage collection for that object. If the activator kept

a strong reference to the remote object, the activator would then prevent the

object from being garbage collected under the normal distributed garbage

collection mechanism.

The activate method throws ActivationException if activation fails.

Activation may fail for a variety of reasons: the class could not be found, the

activation group could not be contacted, etc. The activate method throws

UnknownObjectException if no activation descriptor for the activation

identifier, id, has been previously registered with this activator.

RemoteException is thrown if the remote call to the activator fails.

7.4.2 The ActivationSystem Interface

The ActivationSystem provides a means for registering groups and

activatable objects to be activated within those groups. The

ActivationSystem works closely with both the Activator , which activates

objects registered via the ActivationSystem , and the ActivationMonitor ,

which obtains information about active and inactive objects and inactive

groups.

package java.rmi.activation;
public interface ActivationSystem extends java.rmi.Remote
{

public static final int SYSTEM_PORT = 1098;

ActivationGroupID registerGroup (ActivationGroupDesc desc)
throws ActivationException, java.rmi.RemoteException;
Chapter 7: Remote Object Activation Page 69

7

ActivationMonitor activeGroup (ActivationGroupID id,
ActivationInstantiator group,
long incarnation)

throws UnknownGroupException, ActivationException,
 java.rmi.RemoteException;

void unregisterGroup (ActivationGroupID id)
throws ActivationException, UnknownGroupException,

 java.rmi.RemoteException;

ActivationID registerObject (ActivationDesc desc)
throws ActivationException, UnknownGroupException,

 java.rmi.RemoteException;

void unregisterObject (ActivationID id)
throws ActivationException, UnknownObjectException,

 java.rmi.RemoteException;

void shutdown () throws java.rmi.RemoteException;
}

Note – As a security measure, all of the above methods (registerGroup ,

activeGroup , unregisterGroup , registerObject , unregisterObject,
and shutdown) will throw java.rmi.AccessException , a subclass of

java.rmi.RemoteException if called from a client that does not reside on

the same host as the activation system.

The registerObject method is used to register an activation descriptor, desc,

and obtain an activation identifier for an activatable remote object. The

ActivationSystem creates an ActivationID (an activation identifier) for

the object specified by the descriptor, desc, and records, in stable storage, the

activation descriptor and its associated identifier for later use. When the

Activator receives an activate request for a specific identifier, it looks up

the activation descriptor (registered previously) for the specified identifier and

uses that information to activate the object. If the group referred to in desc is

not registered with this system, then the method throws

UnknownGroupException . If registration fails (e.g., database update failure,

etc), then the method throws ActivationException. If the remote call fails, then

RemoteException is thrown.
Page 70 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

The unregisterObject method removes the activation identifier, id, and

associated descriptor previously registered with the ActivationSystem .

After the call completes, the object can no longer be activated via the object's

activation id. If the object id is unknown (not registered) the method throws

UnknownObjectException . If the unregister operation fails (e.g., database

update failure, etc), then the method throws ActivationException. If the remote

call fails, then RemoteException is thrown.

The registerGroup method registers the activation group specified by the

group descriptor, desc, with the activation system and returns the

ActivationGroupID assigned to that group. An activation group must be

registered with the ActivationSystem before objects can be registered

within that group. If group registration fails, the method throws

ActivationException . If the remote call fails then RemoteException is

thrown.

The activeGroup method is a call back from the ActivationGroup (with

the identifier, id), to inform the activation system that group is now active and

is the ActivationInstantiator for that VM. This call is made internally by

the ActivationGroup.createGroup method to obtain an

ActivationMonitor that the group uses to update the system regarding

objects’ and the group’s status (i.e., that the group or objects within that group

have become inactive). If the group is not registered, then the method throws

UnknownGroupException . If the group is already active, then

ActivationException is thrown. If the remote call to the activation system

fails, then RemoteException is thrown.

The unregisterGroup method removes the activation group with identifier,

id, from the activation system. An activation group makes this call back to

inform the activator that the group should be destroyed. If this call completes

successfully, objects can no longer be registered or activated within the group.

All information of the group and its associated objects is removed from the

system. The method throws UnknownGroupException if the group is not

registered. If the remote call fails, then RemoteException is thrown. If the

unregister fails, ActivationException is thrown (e.g., database update failure,

etc.).

The shutdown method gracefully terminates (asynchronously) the activation

system and all related activation processes (activator, monitors and groups).

All groups spawned by the activation daemon will be destroyed and the

activation daemon will exit. In order to shut down the activation system

daemon, rmid, execute the command:
Chapter 7: Remote Object Activation Page 71

7

rmid -stop [-port num]

This command will shut down the activation daemon on the specified port (if

no port is specified, the daemon on the default port will be shut down).

7.4.3 The ActivationMonitor Class

An ActivationMonitor is specific to an ActivationGroup and is obtained

when a group is reported via a call to ActivationSystem.activeGroup
(this is done internally by the ActivationGroup.createGroup method). An

activation group is responsible for informing its ActivationMonitor when

either: its objects become active, inactive or the group as a whole becomes

inactive.

package java.rmi.activation;
public interface ActivationMonitor

extends java.rmi.Remote
{

public abstract void inactiveObject (ActivationID id)
throws UnknownObjectException, RemoteException;

public void activeObject (ActivationID id,
java.rmi.MarshalledObject mobj)

throws UnknownObjectException, java.rmi.RemoteException;

public void inactiveGroup (ActivationGroupID id,
 long incarnation)

throws UnknownGroupException, java.rmi.RemoteException;
}

An activation group calls its monitor’s inactiveObject method when an

object in its group becomes inactive (deactivates). An activation group

discovers that an object (that it participated in activating) in its VM is no

longer active via a call to the activation group’s inactiveObject method.

The inactiveObject call informs the ActivationMonitor that the remote

object reference it holds for the object with the activation identifier, id, is no

longer valid. The monitor considers the reference associated with id as a stale

reference. Since the reference is considered stale, a subsequent activate call

for the same activation identifier results in re-activating the remote object. If

the object is not known to the ActivationMonitor , the method throws

UnknownObjectException . If the remote call fails, then RemoteException
is thrown.
Page 72 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

The activeObject call informs the ActivationMonitor that the object

associated with id is now active. The parameter obj is the marshalled

representation of the object’s stub. An ActivationGroup must inform its

monitor if an object in its group becomes active by other means than being

activated directly by the system (i.e., the object is registered and “activated”

itself). If the object id is not previously registered, then the method throws

UnknownObjectException . If the remote call fails, then RemoteException
is thrown.

The inactiveGroup call informs the monitor that the group specified by id
and incarnation is now inactive. The group will be re-created with a greater

incarnation number upon a subsequent request to activate an object within the

group. A group becomes inactive when all objects in the group report that they

are inactive. If either the group id is not registered or the incarnation number is

smaller than the current incarnation for the group, then the method throws

UnknownGroupException . If the remote call fails, then RemoteException is

thrown.

7.4.4 The ActivationInstantiator Class

The ActivationInstantiator is responsible for creating instances of

activatable objects. A concrete subclass of ActivationGroup implements the

newInstance method to handle creating objects within the group.

package java.rmi.activation;
public interface ActivationInstantiator

extends java.rmi.Remote
{

public MarshalledObject newInstance (ActivationID id,
 ActivationDesc desc)

throws ActivationException, java.rmi.RemoteException;

}

The activator calls an instantiator’s newInstance method in order to re-create

in that group an object with the activation identifier, id, and descriptor, desc.

The instantiator is responsible for:

• determining the class for the object using the descriptor’s getClassName
method,
Chapter 7: Remote Object Activation Page 73

7

• loading the class from the codebase path obtained from the descriptor

(using the getLocation method),

• creating an instance of the class by invoking the special “activation”

constructor of the object’s class that takes two arguments: the object’s

ActivationID , and the MarshalledObject containing object-specific

initialization data, and

• returning a MarshalledObject containing the remote object it created.

An instantiator is also responsible for reporting when objects it creates or

activates are no longer active, so that it can make the appropriate

inactiveObject call to its ActivationMonitor (see the

ActivationGroup class for more details).

If object activation fails, then the newInstance method throws

ActivationException . If the remote call fails, then the method throws

RemoteException .

7.4.5 The ActivationGroupDesc Class

An activation group descriptor (ActivationGroupDesc) contains the

information necessary to create or re-create an activation group in which to

activate objects in the same Java VM.

Such a descriptor contains:

• the group's class name,

• the group's codebase path (the location of the group's class), and

• a “marshalled” object that can contain object-specific initialization data.

The group's class must be a concrete subclass of ActivationGroup . A

subclass of ActivationGroup is created or re-created via the

ActivationGroup.createGroup static method that invokes a special

constructor that takes two arguments:

• the group's ActivationGroupID , and

• the group's initialization data (in a java.rmi.MarshalledObject)

package java.rmi.activation;
public final class ActivationGroupDesc

implements java.io.Serializable
{

Page 74 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

public ActivationGroupDesc (java.util.Properties props,
 CommandEnvironment env);;

public ActivationGroupDesc (String className,
 String codebase,
 java.rmi.MarshalledObject data,
 java.util.Properties props,
 CommandEnvironment env);

public String getClassName ();

public String getLocation ();

public java.rmi.MarshalledObject getData ();

public CommandEnvironment getCommandEnvironment ();

public java.util.Properties getPropertiesOverrides ();

}

The first constructor creates a group descriptor that uses system default for

group implementation and code location. Properties specify Java environment

overrides (which will override system properties in the group

implementation's VM). The command environment can control the exact

command/options used in starting the child VM, or can be null to accept

rmid 's default.

The second constructor is the same as the first, but allows the specification of

Properties and CommandEnvironment .

The getClassName method returns the group’s class name.

The getLocation method returns the codebase path from where the group’s

class can be loaded.

The getData method returns the group’s initialization data in marshalled

form.

The getCommandEnvironment method returns the command environment

(possibly null).

The getPropertiesOverrides method returns the properties overrides

(possibly null) for this descriptor.
Chapter 7: Remote Object Activation Page 75

7

7.4.6 The ActivationGroupDesc.CommandEnvironment Class

The CommandEnvironment class allows overriding default system properties

and specifying implemention-defined options for an ActivationGroup .

public static class CommandEnvironment
implements java.io.Serializable

{
public CommandEnvironment (String cmdpath, String[] args);
public boolean equals (java.lang.Object);
public String[] getCommandOptions ();
public String getCommandPath ();
public int hashCode ();

}

The constructor creates a CommandEnvironment with the given command,

cmdpath, and additional command line options, args.

The equals implements content equality for command environment objects.

The hashCode method is implemented appropriately so that a

CommandEnvironment can be stored in a hash table if necessary.

The getCommandOptions method returns the environment object’s command

line options.

The getCommandPath method returns the environment object’s command

string.

7.4.7 The ActivationGroupID Class

The identifier for a registered activation group serves several purposes:

• it identifies the group uniquely within the activation system, and

• it contains a reference to the group’s activation system so that the group can

contact its activation system when necessary.

The ActivationGroupID is returned from the call to

ActivationSystem.registerGroup and is used to identify the group

within the activation system. This group identifier is passed as one of the

arguments to the activation group’s special constructor when an activation

group is created or re-created.
Page 76 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

package java.rmi.activation;
public class ActivationGroupID implements java.io.Serializable
{

public ActivationGroupID (ActivationSystem system);

public ActivationSystem getSystem ();

public boolean equals (Object obj);

public int hashCode ();
}

The ActivationGroupID constructor creates a unique group identifier whose

ActivationSystem is system.

The getSystem method returns the activation system for the group.

The hashCode method returns a hashcode for the group’s identifier. Two

group identifiers that refer to the same remote group will have the same hash

code.

The equals method compares two group identifiers for content equality. The

method returns true if both of the following conditions are true: 1) the unique

identifiers are equivalent (by content), and 2) the activation system specified in

each refers to the same remote object.

7.4.8 The ActivationGroup Class

An ActivationGroup is responsible for creating new instances of

“activatable” objects in its group, informing its ActivationMonitor when

either: its objects become active or inactive, or the group as a whole becomes

inactive.

An ActivationGroup is initially created in one of several ways:

• as a side-effect of creating a “default” ActivationDesc for an object, or

• by an explicit call to the ActivationGroup.createGroup method, or

• as a side-effect of activating the first object in a group whose

ActivationGroupDesc was only registered.

Only the activator can re-create an ActivationGroup . The activator spawns,

as needed, a separate VM (as a child process, for example) for each registered

activation group and directs activation requests to the appropriate group. It is

implementation specific how VMs are spawned. An activation group is created
Chapter 7: Remote Object Activation Page 77

7

via the ActivationGroup.createGroup static method. The createGroup
method has two requirements on the group to be created: 1) the group must be

a concrete subclass of ActivationGroup , and 2) the group must have a

constructor that takes two arguments:

• the group's ActivationGroupID , and

• the group's initialization data (in a MarshalledObject)

When created, the default implementation of ActivationGroup will set the

system properties to the system properties in force when it

ActivationGroupDesc was created, and will set the security manager to the

java.rmi.RMISecurityManager . If your application requires some specific

properties to be set when objects are activated in the group, the application

should set the properties before creating any ActivationDesc s (before the

default ActivationGroupDesc is created).

package java.rmi.activation;
public abstract class ActivationGroup

extends UnicastRemoteObject
implements ActivationInstantiator

{
protected ActivationGroup (ActivationGroupID groupID)

throws java.rmi.RemoteException;

public abstract MarshalledObject newInstance (ActivationID id,
ActivationDesc desc)

throws ActivationException, java.rmi.RemoteException;

public abstract boolean inactiveObject (ActivationID id)
throws ActivationException, UnknownObjectException,

 java.rmi.RemoteException;

public static ActivationGroup createGroup (ActivationGroupID id,
ActivationGroupDesc desc,

 long incarnation)
throws ActivationException;

public static ActivationGroupID currentGroupID ();

public static void setSystem (ActivationSystem system)
throws ActivationException;

public static ActivationSystem getSystem ()
throws ActivationException;
Page 78 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

protected void activeObject (ActivationID id,
java.rmi.MarshalledObject mobj)

throws ActivationException, UnknownObjectException,
 java.rmi.RemoteException;

protected void inactiveGroup ()
throws UnknownGroupException, java.rmi.RemoteException;

}

The activator calls an activation group’s newInstance method in order to

activate an object with the activation descriptor, desc. The activation group is

responsible for:

• determining the class for the object using the descriptor’s getClassName
method,

• loading the class from the URL path obtained from the descriptor (using the

getLocation method),

• creating an instance of the class by invoking the special constructor of the

object’s class that takes two arguments: the object’s ActivationID , and a

MarshalledObject containing the object’s initialization data, and

• returning a serialized version of the remote object it just created to the

activator.

The method throws ActivationException if the instance for the given

descriptor could not be created.

The group's inactiveObject method is called indirectly via a call to the

Activatable.inactive method. A remote object implementation must call

Activatable 's inactive method when that object deactivates (the object

deems that it is no longer active). If the object does not call

Activatable.inactive when it deactivates, the object will never be garbage

collected since the group keeps strong references to the objects it creates.

The group's inactiveObject method unexports the remote object, associated

with id (only if there are no pending or executing calls to the remote object)

from the RMI runtime so that the object can no longer receive incoming RMI

calls. If the object currently has pending or executing calls, inactiveObject
returns false and no action is taken.

If the unexportObject operation was successful (meaning that the object has

no pending or executing calls), the group informs its ActivationMonitor
(via the monitor's inactiveObject method) that the remote object is not

currently active so that the remote object will be reactivated by the activator
Chapter 7: Remote Object Activation Page 79

7

upon a subsequent activation request. If the operation was successful,

inactiveObject returns true. The operation may still succeed if the object is

considered active by the ActivationGroup but has already been unexported.

The inactiveObject method throws an UnknownObjectException if the

activation group is has no knowledge of this object (e.g., the object was

previously reported as inactive, or the object was never activated via the

activation group). If the inactive operation fails (e.g., If the remote call to the

activator (or activation group) fails, RemoteException is thrown.

The createGroup method creates and sets the activation group for the current

VM. The activation group can only be set if it is not currently set. An activation

group is set using the createGroup method when the Activator initiates

the re-creation of an activation group in order to carry out incoming activate
requests. A group must first register a group descriptor with the

ActivationSystem before it can be created via this method (passing it the

ActivationID obtained from previous registration).

The group specified by the ActivationGroupDesc , desc, must be a concrete

subclass of ActivationGroup and have a public constructor that takes two

arguments; the ActivationGroupID for the group and a

MarshalledObject containing the group’s initialization data (obtained from

its ActivationGroupDesc). Note: if your application creates its own custom

activation group, the group must set a security manager in the constructor, or

objects cannot be activated in the group.

After the group is created, the ActivationSystem is informed that the group

is active by calling the activeGroup method which returns the

ActivationMonitor for the group. The application need not call

activeGroup independently since that call back is taken care of by the

createGroup method.

Once a group is created, subsequent calls to the currentGroupID method will

return the identifier for this group until the group becomes inactive, at which

point the currentGroupID method will return null.

The parameter incarnation indicates the current group incarnation, i.e., the

number of times the group has been activated. The incarnation number is used

as a parameter to the activeGroup method, once the group has been

successfully created. The incarnation number is zero-based. If the group

already exists, or if an error occurs during group creation, the createGroup
method throws ActivationException .
Page 80 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

The setSystem method sets the ActivationSystem , system, for the VM. The

activation system can only be set if no group is currently active. If the

activation system is not set via an explicit call to setSystem , then the

getSystem method will attempt to obtain a reference to the

ActivationSystem by looking up the name

java.rmi.activation.ActivationSystem in the Activator’s registry. By

default, the port number used to look up the activation system is defined by

ActivationSystem.SYSTEM_PORT . This port can be overridden by setting

the property java.rmi.activation.port . If the activation system is

already set when setSystem is called, the method throws

ActivationException .

The getSystem method returns the activation system for the VM. The

activation system may be set by the setSystem method (described above).

The activeObject method is a protected method used by subclasses to make

the activeObject call back to the group’s monitor to inform the monitor that

the remote object with the specified activation id and whose stub is contained

in mobj is now active. The call is simply forwarded to the group’s

ActivationMonitor .

The inactiveGroup method is a protected method used by subclasses to

inform the group’s monitor that the group has become inactive. A subclass

makes this call when each object the group participated in activating in the VM

has become inactive.

7.4.9 The MarshalledObject Class

A MarshalledObject is a container for an object that allows that object to be

passed as a parameter in an RMI call, but postpones deserializing the object at

the receiver until the application explicitly requests the object (via a call to the

container object). The serializable object contained in the MarshalledObject is

serialized and deserialized (when requested) with the same semantics as

parameters passed in RMI calls, which means that any remote object in the

MarshalledObject is represented by a serialized instance of its stub. The

object contained by the MarshalledObject may be a remote object, a non-

remote object, or an entire graph of remote and non-remote objects.

When an object is placed inside the MarshalledObject wrapper, the

serialized form of the object is annotated with the codebase URL (where the

class can be loaded); likewise, when the contained object is retrieved from its
Chapter 7: Remote Object Activation Page 81

7

MarshalledObject wrapper, if the code for the object is not available locally,

the URL (annotated during serialization) is used to locate and load the

bytecodes for the object’s class.

package java.rmi;
public final class MarshalledObject implements java.io.Serializable
{

public MarshalledObject (Object obj)
throws java.io.IOException;

public Object get ()
throws java.io.IOException, ClassNotFoundException;

public int hashCode ();

public boolean equals ();
}

MarshalledObject ’s constructor takes a serializable object, obj, as its single

argument and holds the marshalled representation of the object in a byte

stream. The marshalled representation of the object preserves the semantics of

objects that are passed in RMI calls:

• each class in the stream is annotated with its codebase URL so that when the

object is reconstructed (by a call to the get method), the bytecodes for each

class can be located and loaded, and

• remote objects are replaced with their proxy stubs.

When an instance of the class MarshalledObject is written to a

java.io.ObjectOutputStream , the contained object’s marshalled form

(created during construction) is written to the stream; thus, only the byte

stream is serialized.

When a MarshalledObject is read from a java.io.ObjectInputStream ,

the contained object is not deserialized into a concrete object; the object

remains in its marshalled representation until the marshalled object’s get
method is called.

The get method always reconstructs a new copy of the contained object from

its marshalled form. The internal representation is deserialized with the

semantics used for unmarshalling parameters for RMI calls. So, the

deserialization of the object’s representation loads class code (if not available

locally) using the URL annotation embedded in the serialized stream for the

object.
Page 82 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

7

The hashCode of the marshalled representation of the object is the same as the

object passed to the constructor. The equals method will return true if the

marshalled representation of the objects being compared are equivalent. The

comparison that equals uses ignores a class’s codebase annotation, meaning

that two objects are equivalent if they have the same serialized representation

except for the codebase of each class in the serialized representation.
Chapter 7: Remote Object Activation Page 83

7

Page 84 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Stub/Skeleton Interfaces 8
This section contains the interfaces and classes used by the stubs and skeletons

generated by the rmic stub compiler.

Topics:
• The RemoteStub Class

• The RemoteCall Interface

• The RemoteRef Interface

• The ServerRef Interface

• The Skeleton Interface

• The Operation Class

8.1 The RemoteStub Class
The java.rmi.server.RemoteStub class is the common superclass for

stubs of remote objects. Stub objects are surrogates that support exactly the

same set of remote interfaces defined by the actual implementation of a remote

object.

package java.rmi.server;
public abstract class RemoteStub extends java.rmi.RemoteObject {

protected RemoteStub();
Page 85

8

protected RemoteStub(RemoteRef ref);
protected static void setRef(RemoteStub stub, RemoteRef ref);

}

The first constructor of RemoteStub creates a stub with a null remote

reference. The second constructor creates a stub with the given remote

reference, ref.

The setRef method is deprecated (and unsupported) in JDK1.2.

8.1.1 Type Equivalency of Remote Objects with a Stub class

Clients interact with stub (surrogate) objects that have exactly the same set of

remote interfaces defined by the remote object’s class; the stub class does not

include the non-remote portions of the class hierarchy that constitutes the

object’s type graph. This is because the stub class is generated from the most

refined implementation class that implements one or more remote interfaces.

For example, if C extends B and B extends A, but only B implements a remote

interface, then a stub is generated from B, not C.

Because the stub implements the same set of remote interfaces as the remote

object’s class, the stub has, from the point of view of the Java system, the same

type as the remote portions of the server object’s type graph. A client,

therefore, can make use of the built-in Java operations to check a remote

object's type and to cast from one remote interface to another.

Stubs are generated using the rmic compiler.

8.1.2 The Semantics of Object Methods Declared final

The following methods are declared final in the java.lang.Object class

and therefore cannot be overridden by any implementation:

• getClass

• notify

• notifyAll

• wait

The default implementation for getClass is appropriate for all Java objects,

local or remote; so, the method needs no special implementation for remote

objects. When used on a remote stub, the getClass method reports the exact
Page 86 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

8

type of the stub object, generated by rmic . Note that stub type reflects only the

remote interfaces implemented by the remote object, not that object’s local

interfaces.

The wait and notify methods of java.lang.Object deal with waiting and

notification in the context of the Java language’s threading model. While use of

these methods for remote stubs does not break the Java threading model, these

methods do not have the same semantics as they do for local Java objects.

Specifically, using these methods operates on the client’s local reference to the

remote object (the stub), not the actual object at the remote site.

8.2 The RemoteCall Interface
The interface RemoteCall is an abstraction used by the stubs and skeletons of

remote objects to carry out a call to a remote object.

Note – The RemoteCall interface is deprecated in JDK 1.2. The JDK 1.2 stub

protocol does not make use of this interface anymore. In JDK 1.2, stubs now

use the new invoke method which does not require RemoteCall as a

parameter.

package java.rmi.server;
import java.io.*;

public interface RemoteCall {
ObjectOutput getOutputStream() throws IOException;
void releaseOutputStream() throws IOException;
ObjectInput getInputStream() throws IOException;
void releaseInputStream() throws IOException;
ObjectOutput getResultStream(boolean success)

throws IOException, StreamCorruptedException;
void executeCall() throws Exception;
void done() throws IOException;

}

The method getOutputStream returns the output stream into which either

the stub marshals arguments or the skeleton marshals results.

The method releaseOutputStream releases the output stream; in some

transports this will release the stream.

The method getInputStream returns the InputStream from which the stub

unmarshals results or the skeleton unmarshals parameters.
Chapter 8: Stub/Skeleton Interfaces Page 87

8

The method releaseInputStream releases the input stream. This will allow

some transports to release the input side of a connection early.

The method getResultStream returns an output stream (after writing out

header information relating to the success of the call). Obtaining a result

stream should only succeed once per remote call. If success is true, then the

result to be marshaled is a normal return; otherwise the result is an exception.

StreamCorruptedException is thrown if the result stream has already been

obtained for this remote call.

The method executeCall does whatever it takes to execute the call.

The method done allows cleanup after the remote call has completed.

8.3 The RemoteRef Interface
The interface RemoteRef represents the handle for a remote object. Each stub

contains an instance of RemoteRef that contains the concrete representation of

a reference. This remote reference is used to carry out remote calls on the

remote object for which it is a reference.

package java.rmi.server;

public interface RemoteRef extends java.io.Externalizable {
Object invoke(Remote obj,

 java.lang.reflect.Method method,
 Object[] params,
 long opnum)

throws Exception;

RemoteCall newCall(RemoteObject obj, Operation[] op, int opnum,
long hash) throws RemoteException;

void invoke(RemoteCall call) throws Exception;
void done(RemoteCall call) throws RemoteException;
String getRefClass(java.io.ObjectOutput out);
int remoteHashCode();
boolean remoteEquals(RemoteRef obj);
String remoteToString();

}

The first invoke method delegates method invocation to the stub’s (obj)
remote reference and allows the reference to take care of setting up the

connection to the remote host, marshaling some representation for the method
and parameters, params, then communicating the method invocation to the
Page 88 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

8

remote host. This method either returns the result of the method invocation on

the remote object which resides on the remote host or throws a

RemoteException if the call failed or an application-level exception if the

remote invocation throws an exception. Note that the operation number,

opnum, represents a hash of the method signature and may be used to encode

the method for transmission.

The method hash for opnum is a 64-bit (long) integer and is computed using the

first two 32-bit values of a message digest of a byte stream using the National

Institute of Standards and Technology (NIST) Secure Hash Algorithm (SHA-1).

The byte stream contains the UTF encoding of a string consisting of the remote

method's name followed by its method descriptor (see section 4.3.3 of The Java

Virtual Machine Specification for a description of the method descriptor). The

hash value is assembled from the first and second 32-bit values of the SHA-1

hash:

long hash = sha[1] << 32 + sha[0]

Note – The newCall , invoke and done methods are deprecated in JDK 1.2.

The stubs generated by rmic using the JDK 1.2 stub protocol version do not use

these methods any longer. The sequence of calls consisting of newCall ,

invoke , and done have been replaced by a new invoke method that takes a

Method object as one of its parameters.

The method newCall creates an appropriate call object for a new remote

method invocation on the remote object obj. The operation array op contains the

available operations on the remote object. The operation number, opnum, is an

index into the operation array which specifies the particular operation for this

remote call. Passing the operation array and index allows the stubs generator

to assign the operation indexes and interpret them. The remote reference may

need the operation description to encode in the call.

The method invoke executes the remote call. invoke will raise any “user”

exceptions which should pass through and not be caught by the stub. If any

exception is raised during the remote invocation, invoke should take care of

cleaning up the connection before raising the “user exception” or

RemoteException .

The method done allows the remote reference to clean up (or reuse) the

connection. done should only be called if the invoke call returns successfully

(non-exceptionally) to the stub.
Chapter 8: Stub/Skeleton Interfaces Page 89

8

The method getRefClass returns the nonpackage-qualified class name of the

reference type to be serialized onto the stream out.

The method remoteHashCode returns a hashcode for a remote object. Two

remote object stubs that refer to the same remote object will have the same

hash code (in order to support remote objects as keys in hashtables). A

RemoteObject forwards a call to its hashCode method to the

remoteHashCode method of the remote reference.

The method remoteEquals compares two remote objects for equality. Two

remote objects are equal if they refer to the same remote object. For example,

two stubs are equal if they refer to the same remote object. A RemoteObject
forwards a call to its equals method to the remoteEquals method of the

remote reference.

The method remoteToString returns a String that represents the reference of

this remote object.

8.4 The ServerRef Interface
The interface ServerRef represents the server-side handle for a remote object

implementation.

package java.rmi.server;

public interface ServerRef extends RemoteRef {

RemoteStub exportObject(java.rmi.Remote obj, Object data)
throws java.rmi.RemoteException;

String getClientHost() throws ServerNotActiveException;
}

The method exportObject finds or creates a client stub object for the

supplied Remote object implementation obj.The parameter data contains

information necessary to export the object (such as port number).

The method getClientHost returns the host name of the current client.

When called from a thread actively handling a remote method invocation, the

host name of the client invoking the call is returned. If a remote method call is

not currently being service, then ServerNotActiveException is called.
Page 90 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

8

8.5 The Skeleton Interface
The interface Skeleton is used solely by the implementation of skeletons

generated by the rmic compiler. A skeleton for a remote object is a server-side

entity that dispatches calls to the actual remote object implementation.

Note – The Skeleton interfaces is deprecated in JDK1.2. Every 1.1 (and

version 1.1 compatible skeletons generated in 1.2 using rmic -vcompat , the

default) skeleton class generated by the rmic stub compiler implements this

interface. Skeletons are no longer required for remote method call dispatch in

JDK1.2 compatible versions. To generate stubs that are compatible with JDK1.2

or later versions, use the command rmic with the option -v1.2 .

package java.rmi.server;

public interface Skeleton {

void dispatch(Remote obj, RemoteCall call, int opnum, long hash)
throws Exception;

 Operation[] getOperations();
}

The dispatch method unmarshals any arguments from the input stream

obtained from the call object, invokes the method (indicated by the operation

number opnum) on the actual remote object implementation obj, and marshals

the return value or throws an exception if one occurs during the invocation.

The getOperations method returns an array containing the operation

descriptors for the remote object’s methods.

8.6 The Operation Class
The class Operation holds a description of a Java method for a remote object.

Note – The Operation interface is deprecated in JDK 1.2. The JDK 1.2 stub

protocol no longer uses the old RemoteRef.invoke method which takes an

Operation as one of its arguments. In JDK 1.2, stubs now use the new

invoke method which does not require Operation as a parameter.
Chapter 8: Stub/Skeleton Interfaces Page 91

8

package java.rmi.server;

public class Operation {

public Operation(String op);

public String getOperation();

public String toString();
}

An Operation object is typically constructed with the method signature.

The method getOperation returns the contents of the operation descriptor

(the value with which it was initialized).

The method toString also returns the string representation of the operation

descriptor (typically the method signature).
Page 92 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

GarbageCollector Interfaces 9
The interfaces and classes in this chapter are used by the distributed garbage

collector (DGC)for RMI.

Topics:
• The Interface DGC

• The Lease Class

• The ObjID Class

• The UID Class

• The VMID Class

9.1 The Interface DGC
The DGC abstraction is used for the server side of the distributed garbage

collection algorithm. This interface contains the two methods: dirty and

clean . A dirty call is made when a remote reference is unmarshaled in a

client (the client is indicated by its VMID). A corresponding clean call is made

when no more references to the remote reference exist in the client. A failed

dirty call must schedule a strong clean call so that the call’s sequence number

can be retained in order to detect future calls received out of order by the

distributed garbage collector.
Page 93

9

A reference to a remote object is leased for a period of time by the client holding

the reference. The lease period starts when the dirty call is received. It is the

client’s responsibility to renew the leases, by making additional dirty calls,

on the remote references it holds before such leases expire. If the client does

not renew the lease before it expires, the distributed garbage collector assumes

that the remote object is no longer referenced by that client.

package java.rmi.dgc;
import java.rmi.server.ObjID;

public interface DGC extends java.rmi.Remote {

Lease dirty(ObjID[] ids, long sequenceNum, Lease lease)
throws java.rmi.RemoteException;

void clean(ObjID[] ids, long seqNum, VMID vmid, boolean strong)
throws java.rmi.RemoteException;

}

The method dirty requests leases for the remote object references associated

with the object identifiers contained in the array argument ids. The lease
contains a client’s unique virtual machine identifier (VMID) and a requested

lease period. For each remote object exported in the local virtual machine, the

garbage collector maintains a reference list — a list of clients that hold

references to it. If the lease is granted, the garbage collector adds the client’s

VMID to the reference list for each remote object indicated in ids. The

sequenceNum parameter is a sequence number that is used to detect and discard

late calls to the garbage collector. The sequence number should always increase

for each subsequent call to the garbage collector.

Some clients are unable to generate a unique VMID. This is because a VMID is

a universally unique identifier only if it contains a true host address, an

address which some clients are unable to obtain due to security restrictions. In

this case, a client can use a VMID of null , and the distributed garbage

collector will assign a VMID for the client.

The dirty call returns a Lease object that contains the VMID used and the

lease period granted for the remote references. (A server can decide to grant a

smaller lease period than the client requests.) A client must use the VMID the

garbage collector uses in order to make corresponding clean calls when the

client drops remote object references.
Page 94 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

9

A client virtual machine need only make one initial dirty call for each remote

reference referenced in the virtual machine (even if it has multiple references to

the same remote object). The client must also make a dirty call to renew

leases on remote references before such leases expire. When the client no

longer has any references to a specific remote object, it must schedule a clean
call for the object ID associated with the reference.

The clean call removes the vmid from the reference list of each remote object

indicated in ids. The sequence number is used to detect late clean calls. If the

argument strong is true, then the clean call is a result of a failed dirty call, and

the sequence number for the client vmid therefore needs to be remembered.

9.2 The Lease Class
A lease contains a unique virtual machine identifier and a lease duration. A

Lease object is used to request and grant leases to remote object references.

package java.rmi.dgc;

public final class Lease implements java.io.Serializable {

public Lease(VMID id, long duration);

public VMID getVMID();

public long getValue();
}

The Lease constructor creates a lease with a specific VMID and lease duration.

The VMID may be null .

The getVMID method returns the client VMID associated with the lease.

The getValue method returns the lease duration.

9.3 The ObjID Class
The class ObjID is used to identify remote objects uniquely in a virtual

machine over time. Each identifier contains an object number and an address

space identifier that is unique with respect to a specific host. An object

identifier is assigned to a remote object when it is exported.
Chapter 9: Garbage Collector Interfaces Page 95

9

An ObjID consists of an object number (a long) and a unique identifier for the

address space (a UID).

package java.rmi.server;

public final class ObjID implements java.io.Serializable {

public ObjID ();

public ObjID (int num);

public void write(ObjectOutput out) throws java.io.IOException;

public static ObjID read(ObjectInput in)
throws java.io.IOException;

public int hashCode()

public boolean equals(Object obj)

public String toString()
}

The first form of the ObjID constructor generates a unique object identifier.

The second constructor generates well-known object identifiers (such as those

used by the registry and the distributed garbage collector) and takes as an

argument a well-known object number. A well-known object ID generated via

this second constructor will not clash with any object IDs generated via the

default constructor; to enforce this, the object number of the ObjID is set to the

“well-known” number supplied in the constructor and all UID fields are set to

zero.

The method write marshals the object ID’s representation to an output

stream.

The method read constructs an object ID whose contents is read from the

specified input stream.

The method hashCode returns the object number as the hashcode

The equals method returns true if obj is an ObjID with the same contents.

The toString method returns a string containing the object ID representation.

The address space identifier is included in the string representation only if the

object ID is from a non-local address space.
Page 96 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

9

9.4 The UID Class
The class UID is an abstraction for creating identifiers that are unique with

respect to the host on which it is generated. A UID is contained in an ObjID as

an address space identifier. A UID consists of a number that is unique on the

host (an int), a time (a long), and a count (a short).

package java.rmi.server;

public final class UID implements java.io.Serializable {

 public UID();

 public UID(short num);

 public int hashCode();

 public boolean equals(Object obj);

 public String toString();

 public void write(DataOutput out) throws java.io.IOException;

public static UID read(DataInput in) throws java.io.IOException;
}

The first form of the constructor creates a pure identifier that is unique with

respect to the host on which it is generated. This UID is unique under the

following conditions: a) the machine takes more than one second to reboot, and

b) the machine's clock is never set backward. In order to construct a UID that is

globally unique, simply pair a UID with an InetAddress .

The second form of the constructor creates a well-known UID . There are 216 -1

such possible well-known IDs. An ID generated via this constructor will not

clash with any ID generated via the default UID constructor which generates a

genuinely unique identifier with respect to this host.

The methods hashCode , equals , and toString are defined for UIDs. Two

UIDs are considered equal if they have the same contents.

The method write writes the UID to the output stream.

The method read constructs a UID whose contents is read from the specified

input stream.
Chapter 9: Garbage Collector Interfaces Page 97

9

9.5 The VMID Class
The class VMID provides a universally unique identifier among all Java virtual

machines. A VMID contains a UID and a host address. A VMID can be used to

identify client virtual machines.

package java.rmi.dgc;

public final class VMID implements java.io.Serializable {

public VMID();

public static boolean isUnique();

public int hashCode();

public boolean equals(Object obj);

public String toString();
}

The VMID default constructor creates a globally unique identifier among all

Java virtual machines under the following conditions:

• the conditions for uniqueness for objects of the class

java.rmi.server.UID are satisfied, and

• an address can be obtained for the host that is unique and constant for the

lifetime of the UID object.

A VMID contains the host address of the machine on which it was created. Due

to security restrictions, obtaining the true host address is not always possible

(for example, the loopback host may be used under security-restricted

conditions). The method isUnique can be called to determine if VMIDs
generated in this virtual machine are, in fact, unique among all virtual

machines. The method isUnique returns true if a valid host name can be

determined (other than loopback host); otherwise it returns false.

The hashCode , equals and toString methods are defined for VMIDs. Two

VMIDs are considered equal if they have the same contents.
Page 98 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

RMIWireProtocol 10
10.1 Overview
The RMI protocol makes use of two other protocols for its on-the-wire format:

Java Object Serialization and HTTP. The Object Serialization protocol is used to

marshal call and return data. The HTTP protocol is used to “POST” a remote

method invocation and obtain return data when circumstances warrant. Each

protocol is documented as a separate grammar. Nonterminal symbols in

production rules may refer to rules governed by another protocol (either Object

Serialization or HTTP). When a protocol boundary is crossed, subsequent

productions use that embedded protocol.

Notes about Grammar Notation
• We use a similar notation to that used in the Java Language Specification

(see section 2.3 of the JLS).

• Control codes in the stream are represented by literal values expressed in

hexadecimal.

• Some nonterminal symbols in the grammar represent application specific

values supplied in a method invocation. The definition of such a

nonterminal consists of its Java type. A table mapping each of these

nonterminals to its respective type follows the grammar.
Page 99

10
10.2 RMI Transport Protocol
The wire format for RMI is represented by a Stream. The terminology adopted

here reflects a client perspective. Out refers to output messages and In refers to

input messages. The contents of the transport header are not formatted using

Object Serialization.

Stream:
Out
In

The input and output streams used by RMI are paired. Each Out stream has a

corresponding In stream. An Out stream in the grammar maps to the output

stream of a socket (from the client’s perspective). An In stream (in the

grammar) is paired with the corresponding socket’s input stream. Since output

and input streams are paired, the only header information needed on an input

stream is an acknowledgment as to whether the protocol is understood; other

header information (such as the magic number and version number) can be

implied by the context of stream pairing.

10.2.1 Format of an Output Stream

An output stream in RMI consists of transport Header information followed by

a sequence of Messages. Alternatively, an output stream can contain an

invocation embedded in the HTTP protocol.

Out:
Header Messages
HttpMessage

Header:
0x4a 0x52 0x4d 0x49 Version Protocol

Version:
0x00 0x01

Protocol:
StreamProtocol
SingleOpProtocol
MultiplexProtocol

StreamProtocol:
0x4b
Page 100 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
SingleOpProtocol:
0x4c

MultiplexProtocol:
0x4d

Messages:
Message
Messages Message

The Messages are wrapped within a particular protocol as specified by Protocol.
For the SingleOpProtocol, there may only be one Message after the Header, and

there is no additional data that the Message is wrapped in. The SingleOpProtocol
is used for invocation embedded in HTTP requests, where interaction beyond a

single request and response is not possible.

For the StreamProtocol and the MultiplexProtocol, the server must respond with

a a byte 0x4e acknowledging support for the protocol, and an

EndpointIdentifier that contains the host name and port number that the server

can see is being used by the client. The client can use this information to

determine its host name if it is otherwise unable to do that for security reasons.

The client must then respond with another EndpointIdentifier that contains the

client’s default endpoint for accepting connections. This can be used by a

server in the MultiplexProtocol case to identify the client.

For the StreamProtocol, after this endpoint negotiation, the Messages are sent

over the output stream without any additional wrapping of the data. For the

MultiplexProtocol, the socket connection is used as the concrete connection for a

multiplexed connection, as described in Section 10.6, “RMI’s Multiplexing

Protocol.” Virtual connections initiated over this multiplexed connection

consist of a series of Messages as described below.

There are three types of output messages: Call, Ping and DgcAck. A Call
encodes a method invocation. A Ping is a transport-level message for testing

liveness of a remote virtual machine. A DGCAck is an acknowledgment

directed to a server’s distributed garbage collector that indicates that remote

objects in a return value from a server have been received by the client.

Message:
Call
Ping
DgcAck
Chapter 10: RMI Wire Protocol Page 101

10
Call:
0x50 CallData

Ping:
0x52

DgcAck:
0x54 UniqueIdentifier

10.2.2 Format of an Input Stream

There are currently three types of input messages: ReturnData, HttpReturn and

PingAck. ReturnData is the result of a “normal” RMI call. An HttpReturn is a

return result from an invocation embedded in the HTTP protocol. A PingAck is

the acknowledgment for a Ping message.

In:
ProtocolAck Returns
ProtocolNotSupported
HttpReturn

ProtocolAck:
0x4e

ProtocolNotSupported:
0x4f

Returns:
Return
Returns Return

Return:
ReturnData
PingAck

ReturnData:
0x51 ReturnValue

PingAck:
0x53
Page 102 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
10.3 RMI’s Use of Object Serialization Protocol
Call and return data in RMI calls are formatted using the Java Object

Serialization protocol. Each method invocation’s CallData is represented by the

ObjectIdentifier (the target of the call), an Operation (a number representing the

method to be invoked), a Hash (a number that verifies that client stub and

remote object skeleton use the same stub protocol), followed by a list of zero or

more Arguments for the call.

In the JDK1.1 stub protocol the Operation represented the method number as

assigned by rmic and the Hash was the stub/skeleton hash which is the stub’s

interface hash. In the JDK1.2 stub protocol (JDK1.2 stubs are generated using

the -v1.2 option with rmic), Operation has the value -1 and the Hash is a hash

representing the method to call. The hash is described in the section “The

RemoteRef Interface:.

CallData:
ObjectIdentifier Operation Hash Argumentsopt

ObjectIdentifier:
ObjectNumber UniqueIdentifier

UniqueIdentifier:
Number Time Count

Arguments:
Value
Arguments Value

Value:
Object
Primitive

A ReturnValue of an RMI call consists of a return code to indicate either a

normal or exceptional return, a UniqueIdentifier to tag the return value (used to

send a DGCAck if necessary) followed by the return result: either the Value
returned or the Exception thrown.

ReturnValue:
0x01 UniqueIdentifier Valueopt

0x02 UniqueIdentifier Exception
Chapter 10: RMI Wire Protocol Page 103

10
Note – ObjectIdentifier, UniqueIdentifier, and EndpointIdentifier are not written

out using default serialization, but each uses its own special write method

(this is not the writeObject method used by Object Serialization); the write
method for each type of identifier adds its component data consecutively to the

output stream.

10.3.1 Class Annotation and Class Loading

RMI overrides the annotateClass and resolveClass methods of

ObjectOutputStream and ObjectInputStream respectively. Each class is

annotated with the codebase URL (the location from which the class can be

loaded). In the annotateClass method, the classloader that loaded the class

is queried for its codebase URL. If the classloader is non-null and the

classloader has a non-null codebase, then the codebase is written to the stream

using the ObjectOutputStream.writeObject method; otherwise a null is

written to the stream using the writeObject method. Note: as an

optimization, classes in the “java” package are not annotated, since they are

always available to the receiver.

The class annotation is resolved during deserialization using the

ObjectInputStream.resolveClass method. The resolveClass method

first reads the annotation via the ObjectInputStream.readObject method.

If the annotation, a codebase URL, is non-null, then it obtains the classloader

for that URL and attempts to load the class. The class is loaded by using a

java.net.URLConnection to fetch the class bytes (the same mechanism

used by a web browser’s applet classloader).

10.4 RMI’s Use of HTTP POST Protocol
In order to invoke remote methods through a firewall, some RMI calls make

use of the HTTP protocol, more specifically HTTP POST. The URL specified in

the post header can be one of the following:

http:// <host>: <port> /
http:// <host>:80/cgi-bin/java-rmi?forward= <port>

The first URL is used for direct communication with an RMI server on the

specific host and port. The second URL form is used to invoke a “cgi” script on

the server which forwards the invocation to the server on the specified port.
Page 104 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
An HttpPostHeader is a standard HTTP header for a POST request. An

HttpResponseHeader is a standard HTTP response to a post. If the response

status code is not 200, then it is assumed that there is no Return. Note that only

a single RMI call is embedded in an HTTP POST request.

HttpMessage:
HttpPostHeader Header Message

HttpReturn:
HttpResponseHeader Return

Note – Only the SingleOpProtocol appears in the Header of an HttpMessage. An

HttpReturn does not contain a protocol acknowledgment byte.

10.5 Application Specific Values for RMI
This table lists the nonterminal symbols that represent application specific

values used by RMI. The table maps each symbol to its respective type. Each is

formatted using the protocol in which it is embedded.

Count short

Exception java.lang.Exception

Hash long

Hostname UTF

Number int

Object java.lang.Object

ObjectNumber long

Operation int

PortNumber int

Primitive byte, int, short, long...

Time long
Chapter 10: RMI Wire Protocol Page 105

10
10.6 RMI’s Multiplexing Protocol
The purpose of multiplexing is to provide a model where two endpoints can

each open multiple full duplex connections to the other endpoint in an

environment where only one of the endpoints is able to open such a

bidirectional connection using some other facility (e.g., a TCP connection). RMI

use this simple multiplexing protocol to allow a client to connect to an RMI

server object in some situations where that is otherwise not possible. For

example, some security managers for applet environments disallow the

creation of server sockets to listen for incoming connections, thereby

preventing such applets to export RMI objects and service remote calls from

direct socket connections. If the applet can open a normal socket connection to

its codebase host, however, then it can use the multiplexing protocol over that

connection to allow the codebase host to invoke methods on RMI objects

exported by the applet. This section describes how the format and rules of the

multiplexing protocol.

10.6.1 Definitions

This sections defines some terms as they are used in the rest of the description

of the protocol.

An endpoint is one of the two users of a connection using the multiplexing

protocol.

The multiplexing protocol must layer on top of one existing bidirectional,

reliable byte stream, presumably initiated by one of the endpoints to the other.

In current RMI usage, this is always a TCP connection, made with a

java.net.Socket object. This connection will be referred to as the concrete
connection.

The multiplexing protocol facilitates the use of virtual connections, which are

themselves bidirectional, reliable byte streams, representing a particular

session between two endpoints. The set of virtual connections between two

endpoints over a single concrete connection comprises a multiplexed connection.

Using the multiplexing protocol, virtual connections can be opened and closed

by either endpoint. The state of an virtual connection with respect to a given

endpoint is defined by the elements of the multiplexing protocol that are sent

and received over the concrete connection. Such state involves if the
Page 106 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
connection is open or closed, the actual data that has been transmitted across,

and the related flow control mechanisms. If not otherwise qualified, the term

connection used in the remainder of this section means virtual connection.

A virtual connections within a given multiplexed connection is identified by a

16 bit integer, known as the connection identifier. Thus, there exist 65,536

possible virtual connections in one multiplexed connection. The

implementation may limit the number of these virtual connections that may be

used simultaneously.

10.6.2 Connection State and Flow Control

Connections are manipulated using the various operations defined by the

multiplexing protocol. The following are the names of the operations defined

by the protocol: OPEN, CLOSE, CLOSEACK, REQUEST, and TRANSMIT. The

exact format and rules for all the operations are detailed in Section 10.6.3,

“Protocol Format.”

The OPEN, CLOSE, and CLOSEACK operations control connections becoming

opened and closed, while the REQUEST and TRANSMIT operations are used

to transmit data across an open connection within the constraints of the flow

control mechanism.

Connection States

A virtual connection is open with respect to a particular endpoint if the

endpoint has sent an OPEN operation for that connection, or it has received an

OPEN operation for that connection (and it had not been subsequently closed).

The various protocol operations are described below.

A virtual connection is pending close with respect to a particular endpoint if the

endpoint has sent a CLOSE operation for that connection, but it has not yet

received a subsequent CLOSE or CLOSEACK operation for that connection.

A virtual connection is closed with respect to a particular endpoint if it has

never been opened, or if it has received a CLOSE or a CLOSEACK operation

for that connection (and it has not been subsequently opened).
Chapter 10: RMI Wire Protocol Page 107

10
Flow Control

The multiplexing protocol using a simple packeting flow control mechanism to

allow multiple virtual connections to exist in parallel over the same concrete

connection. The high level requirement of the flow control mechanism is that

the state of all virtual connections is independent; the state of one connection

may not affect the behavior of others. For example, if the data buffers handling

data coming in from one connection become full, this cannot prevent the

transmission and processing of data for any other connection. This is necessary

if the proceedings of one connection is dependent on the completion of the use

of another connection, such as would happen with recursive RMI calls.

Therefore, the practical implication is that the implementation must always be

able to consume and process all of the multiplexing protocol data ready for

input on the concrete connection (assuming that it conforms to this

specification).

Each endpoint has two state values associated with each connection: how

many bytes of data the endpoint has requested but not received (input request
count) and how many bytes the other endpoint has requested but have not

been supplied by this endpoint (output request count).

An endpoint’s output request count is increased when it receives a REQUEST

operation from the other endpoint, and it is decreased when it sends a

TRANSMIT operation. An endpoint’s input request count is increased when it

sends a REQUEST operation, and it is decreased when it receives a TRANSMIT

operation. It is a protocol violation if either of these values becomes negative.

It is a protocol violation for an endpoint to send a REQUEST operation that

would increase its input request count to more bytes that it can currently

handle without blocking. It should, however, make sure that its input request

count is greater than zero if the user of the connection is waiting to read data.

It is a protocol violation for an endpoint to send a TRANSMIT operation

containing more bytes that its output request count. It may buffer outgoing

data until the user of the connection requests that data written to the

connection be explicitly flushed. If data must be sent over the connection,

however, by either an explicit flush or because the implementation’s output

buffers are full, then the user of the connection may be blocked until sufficient

TRANSMIT operations can proceed.
Page 108 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
Beyond the rules outlined above, implementations are free to send REQUEST

and TRANSMIT operations as deemed appropriate. For example, an endpoint

may request more data for a connection even if its input buffer is not empty.

10.6.3 Protocol Format

The byte stream format of the multiplexing protocol consists of a contiguous

series of variable length records. The first byte of the record is an operation

code that identifies the operation of the record and determines the format of

the rest of its content. The following legal operation codes are defined:

value name

0xE1 OPEN

0xE2 CLOSE

0xE3 CLOSEACK

0xE4 REQUEST

0xE5 TRANSMIT

It is a protocol violation if the first byte of a record is not one of the defined

operation codes. The following sections describe the format of the records for

each operation code.

OPEN operation

This is the format for records of the OPEN operation:

size (bytes) name description

1 opcode operation code (OPEN)

2 ID connection identifier

An endpoint sends an OPEN operation to open the indicated connection. It is a

protocol violation if ID refers to a connection that is currently open or pending

close with respect to the sending endpoint. After the connection is opened,

both input and request count states for the connection are zero for both

endpoints.
Chapter 10: RMI Wire Protocol Page 109

10
Receipt of an OPEN operation indicates that the other endpoint is opening the

indicated connection. After the connection is opened, both input and output

request count states for the connection are zero for both endpoints.

To prevent identifier collisions between the two endpoints, the space of valid

connection identifiers is divided in half, depending on the value of the most

significant bit. Each endpoint is only allowed to open connections with a

particular value for the high bit. The endpoint that initiated the concrete

connection must only open connections with the high bit set in the identifier

and the other endpoint must only open connections with a zero in the high bit.

For example, if an RMI applet that cannot create a server socket initiates a

multiplexed connection to its codebase host, the applet may open virtual

connections in the identifier range 0x8000-7FFF, and the server may open

virtual connection in the identifier range 0-0x7FFF.

CLOSE operation

This is the format for records of the CLOSE operation:

size (bytes) name description

1 opcode operation code (OPEN)

2 ID connection identifier

An endpoint sends a CLOSE operation to close the indicated connection. It is a

protocol violation if ID refers to a connection that is currently closed or

pending close with respect to the sending endpoint (it may be pending close

with respect to the receiving endpoint if it has also sent a CLOSE operation for

this connection). After sending the CLOSE, the connection becomes pending

close for the sending endpoint. Thus, it may not reopen the connection until it

has received a CLOSE or a CLOSEACK for it from the other endpoint.

Receipt of a CLOSE operation indicates that the other endpoint has closed the

indicated connection, and it thus becomes closed on the receiving endpoint.

Although the receiving endpoint may not send any more operations for this

connection (until it is opened again), it still should provide data in the

implementation’s input buffers to readers of the connection. If the connection

had previously been open instead of pending close, the receiving endpoint

must respond with a CLOSEACK operation for the connection.
Page 110 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

10
CLOSEACK operation

The following is the format for records with the CLOSEACK operation:

size (bytes) name description

1 opcode operation code (OPEN)

2 ID connection identifier

An endpoint sends a CLOSEACK operation to acknowledge a CLOSE

operation from the receiving endpoint. It is a protocol violation if ID refers to a

connection that is not pending close for the receiving endpoint when the

operation is received.

Receipt of a CLOSEACK operation changes the state of the indicated

connection from pending close to closed, and thus the connection may be

reopened in the future.

REQUEST operation

This is the format for records of the REQUEST operation:

size (bytes) name description

1 opcode operation code (OPEN)

2 ID connection identifier

4 count number of additional bytes requested

An endpoint sends a REQUEST operation to increase its input request count

for the indicated connection. It is a protocol violation if ID does not refer to a

connection that is open with respect to the sending endpoint. The endpoint’s

input request count is incremented by the value count. The value of count is a

signed 32 bit integer, and it is a protocol violation if it is negative or zero.

Receipt of a REQUEST operation causes the output request count for the

indicated connection to increase by count. If the connection is pending close by

the receiving endpoint, then any REQUEST operations may be ignored.

TRANSMIT operation

This is the format for records of the TRANSMIT operation.
Chapter 10: RMI Wire Protocol Page 111

10
size (bytes) name description

1 opcode operation code (OPEN)

2 ID connection identifier

4 count number of bytes in transmission

count data transmission data

An endpoint sends a TRANSMIT operation to actually transmit data over the

indicated connection. It is a protocol violation if ID does not refer to a

connection that is open with respect to the sending endpoint. The endpoint’s

output request count is decremented by the value count. The value of count is a

signed 32 bit integer, and it is a protocol violation if it is negative or zero. It is

also a protocol violation if the TRANSMIT operation would cause the sending

endpoint’s output request count to become negative.

Receipt of a TRANSMIT operation causes the count bytes of data to be added

to the queue of bytes available for reading from the connection. The receiving

endpoint’s input request count is decremented by count. If this causes the input

request count to become zero and the user of the connection is trying to read

more data, the endpoint should respond with another REQUEST operation. If

the connection is pending close by the receiving endpoint, then any

TRANSMIT operations may be ignored.

Protocol Violations

If a protocol violation occurs, as defined above or if a communication error is

detected in the concrete connection, then the multiplexed connection is shut
down. The real connection is terminated, and all virtual connections become

closed immediately. Data already available for reading from virtual

connections may be read by the users of the connections.
Page 112 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Exceptions InRMI A
Topics:
• Exceptions During Remote Object Export

• Exceptions During RMI Call

• Exceptions or Errors During Return

• Naming Exceptions

• Other Exceptions
Page 113

A.1 Exceptions During Remote Object Export
When a remote object class is created that extends UnicastRemoteObject ,

the object is exported, meaning it can receive calls from external Java virtual

machines and can be passed in an RMI call as either a parameter or return

value. An object can either be exported on an anonymous port or on a specified

port. For objects not extended from UnicastRemoteObject , the

java.rmi.server.UnicastRemoteObject.exportObject method is used

to explicitly export the object.

Exception Context

java.rmi.StubNotFoundException 1. Class of stub not found.
2. Name collision with class of same

name as stub causes one of these
errors:

• Stub can’t be instantiated.
• Stub not of correct class.
3. Bad URL due to wrong codebase.
4. Stub not of correct class.

java.rmi.server.SkeletonNotFoundException

note: this exception is deprecated in JDK1.2
1. Class of skeleton not found.
2. Name collision with class of same

name as skeleton causes one of
these errors:

• Skeleton can’t be instantiated.
• Skeleton not of correct class.
3. Bad URL due to wrong codebase.
4. Skeleton not of correct class.

java.rmi.server.ExportException The port is in use by another VM.
Page 114 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

A.2 Exceptions During RMI Call

A.3 Exceptions or Errors During Return

Exception Context

java.rmi.UnknownHostException Unknown host.

java.rmi.ConnectException Connection refused to host.

java.rmi.ConnectIOException I/O error creating connection.

java.rmi.MarshalException I/O error marshaling transport

header, marshaling call header, or

marshaling arguments.

java.rmi.NoSuchObjectException Attempt to invoke a method on an

object that is no longer available.

java.rmi.StubNotFoundException Remote object not exported.

java.rmi.activation.ActivateFailedException Thrown by RMI runtime when

activation fails during a remote call

to an activatable object

Exception Context

java.rmi.UnmarshalException 1. Corrupted stream leads to either an I/O or
protocol error when:

• Marshaling return header.
• Checking return type.
• Checking return code.
• Unmarshaling return.
2. Return value class not found.

java.rmi.UnexpectedException An exception not mentioned in the method

signature occurred (excluding runtime

exceptions). The UnexpectedException
exception object contains the underlying

exception that was thrown by the server.
Appendix : Exceptions In RMI Page 115

A.3.1 Possible Causes of java.rmi.ServerException

These are some of the underlying exceptions which can occur on the server

when the server is itself executing a remote method invocation. These

exceptions are wrapped in a java.rmi.ServerException ; that is the

java.rmi.ServerException contains the original exception for the client to

extract. These exceptions are wrapped by ServerException so that the client

will know that its own remote method invocation on the server did not fail, but

that a secondary remote method invocation made by the server failed.

java.rmi.ServerError Any error that occurs while the server is

executing a remote method. The ServerError
exception object contains the underlying error

that was thrown by the server,

java.rmi.ServerException Any remote exception that occurs while the

server is executing a remote method. For

examples, see Section A.3.1, “Possible Causes

of java.rmi.ServerException“.

java.rmi.ServerRuntimeException

note: this exception is deprecated in
JDK1.2

This exception is not thrown by servers

running JDK1.2 compatible versions. A

RuntimeException are propagated to clients

in tact.

Exception Context

java.rmi.server.SkeletonMismatchException

note: this exception is deprecated in JDK1.2
Hash mismatch of stub and skeleton.

java.rmi.UnmarshalException I/O error unmarshaling call header.

I/O error unmarshaling arguments.

java.rmi.MarshalException Protocol error marshaling return.

java.rmi.RemoteException Method number out of range due to

corrupted stream.

Exception Context
Page 116 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

A.4 Naming Exceptions
The following table lists the exceptions specified in methods of the

java.rmi.Naming class and the java.rmi.registry.Registry interface.

A.5 Activation Exceptions
The following table lists the exceptions that can be thrown in activities

involving activatable objects. The activation API is in the package

java.rmi.activation .

Exception Context

java.rmi.AccessException Operation disallowed. The registry

restricts bind, rebind, and unbind to

the same host. The lookup operation

can originate from any host.

java.rmi.AlreadyBoundException Attempt to bind a name that is

already bound.

java.rmi.NotBoundException Attempt to look up a name that is not

bound.

java.rmi.UnknownHostException Attempt to contact a registry on an

unknown host.

Exception Context

java.rmi.activation.ActivateFailedException Thrown by RMI runtime when

activation fails during a remote call

to an activatable object.

java.rmi.activation.ActivationException General exception class used by the

activation interfaces and classes.

java.rmi.activation.UnknownGroupException Thrown by methods of the

activation classes and interfaces

when the ActivationGroupID

parameter or ActivationGroupID in

an ActivationGroupDesc parameter

is invalid.

java.rmi.activation.UnknownObjectException Thrown by methods of the

activation classes and interfaces

when the ActivationID parameter is

invalid.
Appendix : Exceptions In RMI Page 117

A.6 Other Exceptions

Exception Context

java.rmi.RMISecurityException

note: this exception is deprecated in JDK1.2
A security exception that is thrown

by the RMISecurityManager.

java.rmi.server.ServerCloneException Clone failed.

java.rmi.server.ServerNotActiveException Attempt to get the client host via the

RemoteServer.getClientHost method

when the remote server is not

executing in a remote method.

java.rmi.server.SocketSecurityException Attempt to export object on an illegal

port.
Page 118 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

Properties InRMI B
Topics:
• Server Properties

• Activation Properties

• Other Properties
Page 119

B.1 Server Properties
The following table contains a list of properties typically used by servers for

configuration. Note that properties are typically restricted from being set from

applets.

Property Description

java.rmi.server.codebase Indicates the codebase URL of classes

originating from the VM. The codebase

property is used to annotate class descriptors of

classes originating from a VM so that the class

for an object sent as a parameter or return

value in a remote method call can be loaded at

the receiver.

java.rmi.server.disableHttp If set to true, disables the use of HTTP for RMI

calls. This means that RMI will never resort to

using HTTP to invoke a call via a firewall.

Defaults to false (HTTP usage is enabled).

java.rmi.server.hostname RMI uses IP addresses to indicate the location

of a server (embedded in a remote reference). If

the use of a hostname is desired, this property

is used to specify the fully-qualified hostname

for RMI to use for remote objects exported to

the local VM. The property can also be set to an

IP address.

Not set by default.

java.rmi.dgc.leaseValue Sets the lease duration that the RMI runtime

grants to clients referencing remote objects in

the VM. Defaults to 10 minutes.
Page 120 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

java.rmi.server.logCalls If set to true, server call logging is turned on

and prints to stderr. Defaults to false.

java.rmi.server.useCodebaseOnly If set to true, when RMI loads classes (if not

available via CLASSPATH) they are only

loaded using the URL specified by the property

java.rmi.server.codebase.

java.rmi.server.useLocalHostname If the java.rmi.server.hostname property

is not set and this property is set, then RMI will

not use an IP address to denote the location

(embedded in remote references) of remote

objects that are exported into the VM. Instead,

RMI will use the value of the call to the method

java.net.InetAddress.getLocalHost .

Property Description
Appendix : Properties In RMI Page 121

B.2 Activation Properties
The following table contains a list of properties used in activation.

Property Description

java.rmi.activation.port The port number on which the

ActivationSystem is exported. This port

number should be specified in a VM if the

activation daemon rmid uses a port other

than the default.

java.rmi.activation.activator.class The class that implements the interface

java.rmi.activation.Activator . This

property is used internally to locate the

resident implementation of the Activator

from which the stub class name can be

found.
Page 122 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

ithin
ated
B.3 Other Properties

These properties are used to locate specific implementation classes w
implementation packages. Note: all these properties have been deprec
in JDK1.2.

Property Description

java.rmi.loader.packagePrefix

(deprecated in JDK1.2)

The package prefix for the class that implements

the interface java.rmi.server.LoaderHandler.

Defaults to sun.rmi.server.

java.rmi.registry.packagePrefix

(deprecated in JDK1.2)

The package prefix for the class that implements

the interface java.rmi.registry.RegistryHandler.

Defaults to sun.rmi.registry.

java.rmi.server.packagePrefix

(deprecated in JDK1.2)

The server package prefix. Assumes that the

implementation of the server reference classes

(such as UnicastRef and UnicastServerRef) are

located in the package defined by the prefix.

Defaults to sun.rmi.server.
Appendix : Properties In RMI Page 123

Page 124 Java™ Remote Method Invocation Specification—JDK 1.2, October 1998

	Java™ Remote Method Invocation Specification
	Table of Contents
	Introduction
	1.1 Background
	1.2 System Goals

	Java Distributed Object Model
	2.1 Distributed Object Applications
	2.2 Definition of Terms
	2.3 The Distributed and Nondistributed Models Contrasted
	2.4 Overview of RMI Interfaces and Classes
	2.4.1 The java.rmi.Remote Interface
	2.4.2 The RemoteException Class
	2.4.3 The RemoteObject Class and its Subclasses

	2.5 Implementing a Remote Interface
	2.6 Parameter Passing in Remote Method Invocation
	2.6.1 Passing Non-remote Objects
	2.6.2 Passing Remote Objects
	2.6.3 Referential Integrity
	2.6.4 Class Annotation
	2.6.5 Parameter Transmission

	2.7 Locating Remote Objects

	RMI System Overview
	3.1 Stubs and Skeletons
	3.2 Thread Usage in Remote Method Invocations
	3.3 Garbage Collection of Remote Objects
	3.4 Dynamic Class Loading
	3.5 RMI Through Firewalls Via Proxies
	3.5.1 How an RMI Call is Packaged within the HTTP Protocol
	3.5.2 The Default Socket Factory
	3.5.3 Configuring the Client
	3.5.4 Configuring the Server
	3.5.5 Performance Issues and Limitations

	Client Interfaces
	4.1 The Remote Interface
	4.2 The RemoteException Class
	4.3 The Naming Class

	Server Interfaces
	5.1 The RemoteObject Class
	5.1.1 Object Methods Overridden by the RemoteObject Class
	5.1.2 Serialized Form

	5.2 The RemoteServer Class
	5.3 The UnicastRemoteObject Class
	5.3.1 Constructing a New Remote Object
	5.3.2 Exporting an Implementation Not Extended From RemoteObject
	5.3.3 Passing a UnicastRemoteObject in an RMI Call
	5.3.4 Serializing a UnicastRemoteObject
	5.3.5 Unexporting a UnicastRemoteObject
	5.3.6 The clone method

	5.4 The Unreferenced Interface
	5.5 The RMISecurityManager Class
	5.6 The RMIClassLoader Class
	5.7 The LoaderHandler Interface
	5.8 RMI Socket Factories
	5.8.1 The RMISocketFactory Class
	5.8.2 The RMIServerSocketFactory Interface
	5.8.3 The RMIClientSocketFactory Interface

	5.9 The RMIFailureHandler Interface
	5.10 The LogStream Class
	5.11 Stub and Skeleton Compiler

	Registry Interfaces
	6.1 The Registry Interface
	6.2 The LocateRegistry Class
	6.3 The RegistryHandler Interface

	Remote Object Activation
	7.1 Overview
	7.1.1 Terminology
	7.1.2 Lazy Activation

	7.2 Activation Protocol
	7.3 Implementation Model for an “Activatable” Remote Object
	7.3.1 The ActivationDesc Class
	7.3.2 The ActivationID Class
	7.3.3 The Activatable Class

	7.4 Activation Interfaces
	7.4.1 The Activator Interface
	7.4.2 The ActivationSystem Interface
	7.4.3 The ActivationMonitor Class
	7.4.4 The ActivationInstantiator Class
	7.4.5 The ActivationGroupDesc Class
	7.4.6 The ActivationGroupDesc.CommandEnvironment Class
	7.4.7 The ActivationGroupID Class
	7.4.8 The ActivationGroup Class
	7.4.9 The MarshalledObject Class

	Stub/Skeleton Interfaces
	8.1 The RemoteStub Class
	8.1.1 Type Equivalency of Remote Objects with a Stub class
	8.1.2 The Semantics of Object Methods Declared final

	8.2 The RemoteCall Interface
	8.3 The RemoteRef Interface
	8.4 The ServerRef Interface
	8.5 The Skeleton Interface
	8.6 The Operation Class

	Garbage Collector Interfaces
	9.1 The Interface DGC
	9.2 The Lease Class
	9.3 The ObjID Class
	9.4 The UID Class
	9.5 The VMID Class

	RMI Wire Protocol
	10.1 Overview
	10.2 RMI Transport Protocol
	10.2.1 Format of an Output Stream
	10.2.2 Format of an Input Stream

	10.3 RMI’s Use of Object Serialization Protocol
	10.3.1 Class Annotation and Class Loading

	10.4 RMI’s Use of HTTP POST Protocol
	10.5 Application Specific Values for RMI
	10.6 RMI’s Multiplexing Protocol
	10.6.1 Definitions
	10.6.2 Connection State and Flow Control
	10.6.3 Protocol Format

	Exceptions In RMI
	A.1 Exceptions During Remote Object Export
	A.2 Exceptions During RMI Call
	A.3 Exceptions or Errors During Return
	A.3.1 Possible Causes of java.rmi.ServerException

	A.4 Naming Exceptions
	A.5 Activation Exceptions
	A.6 Other Exceptions

	Properties In RMI
	B.1 Server Properties
	B.2 Activation Properties
	B.3 Other Properties

