

JavaMail

™

 Guide for
Service Providers

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Part No.: 8xx-xxxx-xx
Revision 01, August 1998

August 1998

JavaMail Guide for Service Providers

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, California 94303 U.S.A. All rights reserved.

This product or documentation is protected by copyright and
distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or documentation may
be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun
suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaSoft, JavaMail,
JavaBeans, JDK, and Solaris are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was
developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply
with Sun’s written license agreements.

U.S. Government approval required when exporting the product.
Use, duplication, or disclosure by the U.S. Govt is subject to
restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or
DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a)
DOCUMENTATION IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, ANY KIND OF IMPLIED OR
EXPRESS WARRANTY OF NON-INFRINGEMENT OR THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Copyright 1998 Sun Microsystems, Inc. All rights reserved. Use is
subject to license terms. Third-party software, including font
technology, is copyrighted and licensed from Sun suppliers. Sun,
Sun Microsystems, the Sun Logo, Solaris, Java are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Use, duplication, or disclosure by the U.S. Govt is subject
to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),
or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a)

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué
avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou
document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de
ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est
protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, Java, JavaSoft, JavaMail,
JavaBeans, et JDK sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays. L’interface d’utilisation graphique OPEN LOOK et Sun™ a été
développée par Sun Microsystems, Inc. pour ses utilisateurs et
licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la
recherche et le développement du concept des interfaces
d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur
l’interface d’utilisation graphique Xerox, cette licence couvrant
également les licenciés de Sun qui mettent en place l’interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun. L’accord du gouvernement américain est
requis avant l’exportation du produit.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES
AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES
DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE
RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE
UTILISATION PARTICULÈRE OU À L’ABSENCE DE
CONTREFAÇON.

Copyright 1998 Sun Microsystems, Inc. Tous droits réservés.
Distribué par des licences qui en restreignent l’utilisation. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux
polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun. Sun, Sun Microsystems, le logo Sun, Solaris,
Java sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Please
Recycle

iii

Contents

Chapter 1: Introduction 1

Chapter 2: Messages 3
The Structure of a Message 3

Simple Messages 4
Multipart Messages 4

Messages and the JavaBeans Activation Framework 5
The DataSource 6
The DataContentHandler 6

Message Subclasses 7
Creating a Message Subclass 7

Message Attributes 7
Setting Message Content 8
Accessing Message Content 8

Creating a MimeMessage Subclass 9
Creating the Subclass 9
Headers 10
Content 12
Special Cases: Protocols that Provide Preparsed Data 13

Chapter 3: Message Storage and Retrieval 15
Store 15

Authentication 15
The protocolConnect Method 16
The connect Method 16

Folder Retrieval 16
Folders 17

Folder Naming 18
Folder State 18
Messages Within a Folder 19

Getting Messages 20
Searching Messages 21
Getting Message Data in Bulk 22

Folder Management 23
Appending and Copying Messages 23
JavaMail Guide for Service Providers August 1998

iv Contents

Expunging Messages 23
Handling Message Flags 24

Chapter 4: Message Transport 25
Transport 25

The sendMessage Method 25
The protocolConnect Method 26

Address 27

Chapter 5: Events 29

Chapter 6: Packaging 31
JavaMail Guide for Service Providers August 1998

1

Chapter 1:

Introduction

JavaMail provides a common, uniform API for managing electronic mail. It allows
service-providers to provide a standard interface to their standards-based or
proprietary messaging systems using the Java programming language. Using this
API, applications access message stores, and compose and send messages.

FIGURE 1-1

The JavaMail API is composed of a set of abstract classes that model the various
pieces of a typical mail system. These classes include,

■ Message—Abstract class that represents an electronic mail message.
JavaMail implements the RFC822 and MIME Internet messaging standards. The
MimeMessage class extends Message to represent a MIME-style email message.

■ Store —Abstract class that represents a database of messages maintained by a
mail server and grouped by owner. A Store uses a particular access protocol.

■ Folder —Abstract class that provides a way of hierarchically organizing
messages. Folder s can contain messages and other folders. A mail server
provides each user with a default folder, and users can typically create and fill
subfolders.

■ Transport —Abstract class that represents a specific transport protocol. A
Transport object uses a particular transport protocol to send a message.

As a service provider, you implement abstract classes in terms of your specific
protocol or system. For example, an IMAP provider implements the JavaMail API
using the IMAP4 protocol. Clients then use your implementation to manipulate their
electronic mail.

Mail

JavaMail Client
Mail Server

Network
JavaMail Guide for Service Providers August 1998

2 Chapter 1: Introduction

The following figure shows a client using an IMAP4 implementation to read mail, and
an SMTP implementation to send mail. (They can be from the same or different
vendors.)

FIGURE 1-2

This Service Provider’s Guide shows you how to develop and package a JavaMail
service provider for your clients. It is meant to be used in conjunction with the
Javadoc provided with the JavaMail API and the JavaMail API Specification.

This guide covers:

■ Creating messages
■ Storing and retrieving messages
■ Sending a message
■ Communicating with a client (for example, notifying the client of new mail)
■ Packaging your implementation

The descriptions of the first three tasks show how to subclass the appropriate abstract
classes and implement their abstract methods. In addition, the task descriptions point
out the methods that have default implementations that you might choose to override
for the sake of efficiency.

SMTP

Abstract Classes

Implementation: Implementation:

Transport, Store, Folder...

SMTPTransport... IMAPStore,
IMAPFolder...

IMAP

JavaMail Client

 Calls for
sending mail

 Calls for
reading mail

Mail Server

Destination

SMTP
JavaMail Guide for Service Providers August 1998

3

Chapter 2:

Messages

Messages are central to any electronic mail system. This chapter discusses how to
implement them for your provider.

If your provider allows only for the common case of creating and sending MIME style
messages, then your provider can use the pre-written JavaMail message
implementation: the javax.mail.internet .MimeMessage class. Implementations
that furnish a protocol like SMTP fall into this category.

If your implementation does not fall into the previous category, you will have to
implement your own Message subclass. This chapter

■ Explains the structure of a Message object
■ Explains how Message objects use the JavaBeans™ Activation Framework
■ Shows you how to develop a Message subclass

The Structure of a Message
The Message class models an electronic mail message. It is an abstract class that
implements the Part interface.

The Message class defines a set of attributes and content for an electronic mail
message. The attributes, which are name-value pairs, specify addressing information
and define the structure of the message’s content (its content type). Messages can
contain a single content object or, indirectly, multiple content objects. In either case, the
content is held by a DataHandler object.
JavaMail Guide for Service Providers August 1998

4 Chapter 2: Messages
The Structure of a Message

Simple Messages
A simple message has a single content object, which is wrapped by a DataHandler
object. The following figure shows the structure of a Message object:

FIGURE 2-1 Structure of a Simple Message

Multipart Messages
In addition to the simple structure shown above, messages can also contain multiple
content objects. In this case the DataHandler object contains a Multipart object,
instead of merely a a single block of content data.

A Multipart object is a container of BodyPart objects. The structure of a BodyPart
object is similar to the structure of a Message object, because they both implement the
Part interface.

Each BodyPart object contains attributes and content, but the attributes of a
Bodypart object are limited to those defined by the Part interface. An important
attribute is the content-type of this part of the message content. The content of a
BodyPart object is a DataHandler that contains either data or another Multipart
object. The following figure shows this structure:

Message Class

Header Attributes

Content Body

Attributes, such as
Content-Type .

 DataHandler Object

Contains data that conforms
to the Content-Type attribute
JavaMail Guide for Service Providers August 1998

5 Chapter 2: Messages
Messages and the JavaBeans Activation Framework

FIGURE 2-2 Structure of a Message with Multiple Content Types

Messages and the JavaBeans Activation Framework
As shown in FIGURE 2-1 on page 4, the content of a message is represented by a
DataHandler object. The DataHandler class is part of the JavaBeans Activation
Framework (JAF). Documentation on the JAF can be obtained from the world-wide
web at
http://java.sun.com/beans/glasgow/jaf.html .

The DataHandler class provides a consistent interface to data, independent of its
source and format. The data can be from message stores, local files, URLs or objects in
the Java programming language.

Multipart Object

Header Attributes

Content Body

Message

Header Attributes

Content Body

Message
attributes, with a
content type of
Multipart.

Contains a
Multipart object
instead of data

Contains either data, or
another Multipart
object.

Attributes from the
Part interface,
such as this part’s content
type

BodyPart Object

A Multipart Message can hold
more than one BodyPart Object.

BodyPart Object

 DataHandler Object

 DataHandler Object
JavaMail Guide for Service Providers August 1998

6 Chapter 2: Messages
Messages and the JavaBeans Activation Framework

The DataSource
A DataHandler object accepts data in the form of an object in the Java programming
language directly. For data from message stores, files or URLs, however, a
DataHandler depends on objects that implement the DataSource interface to
provide data access. A DataSource object provides access to data in the form of an
input stream.The DataSource interface is also part of the JAF. JavaMail provides the
following DataSource objects:

■ javax.mail.MultipartDataSource
■ javax.mail.internet.MimePartDataSource

The DataContentHandler
DataHandler objects return the content of a message as an object in the Java
programming language. They use objects that implement the DataContentHandler
interface to translate message content between the streams provided by DataSource
objects and objects in the Java programming language. The getContent and
writeTo methods of the text/plain DataContentHandler show this:
 public class text_plain implements DataContentHandler {
 // This method creates a String from a “text/plain”
 // data source
 public Object getContent(DataSource dataSource) {
 InputStream inputStream = dataSource.getInputStream();
 ByteArrayOutputStream outputStream =
 new ByteArrayOutputStream();
 int c;

 while ((c = inputStream.read()) != -1)
 outputStream.write(c)
 // get the character set from the content-type
 String charset = getCharSet(dataSource.getContentType());
 return new String(outputStream.toByteArray(), charset);
 }

 // This method creates a byte stream from a String
 public void writeTo(Object object, String type,
 OutputStream outputStream) {
 OutputStreamWriter writer =
 new OutputStreamWriter(outputStream, getCharset(type));
 String string = (String)object;
 writer.write(string, 0, string.length());
 writer.flush();
 }
 }
JavaMail Guide for Service Providers August 1998

7 Chapter 2: Messages
Message Subclasses
DataContentHandlers are also part of the JAF. The JavaMail implementation in the
com.sun.mail.handlers package includes DataContentHandlers for the
following two MIME types:

■ multipart/mixed (the name of the class is multipart_mixed)
■ text/plain (the name of the class is text_plain)

A DataHandler typically finds the correct DataContentHandler for a particular
MIME type through the MailCap registry. (The client programmer can also provide
the correspondence programmatically.)

Message Subclasses
The following factors determine the message class of your provider:

■ If applications will use your provider for interacting with a non-MIME messaging
system, create a subclass of the Message class (See “Creating a Message Subclass”
on page 7.)

■ If applications will use your provider to interact with a message store that
supports MIME messages, create a subclass of the MimeMessage class. (See
“Creating a MimeMessage Subclass” on page 9.)

■ If applications will use your provider to send MIME messages then use the
MimeMessage class without subclassing it.

Creating a Message Subclass
When you subclass the Message class, you must implement methods that manage
attributes, that retrieve content, and that set content.

Message Attributes
Your implementation is expected to support the attributes in the Message class and
its Part interface by implementing their get and set methods. If your messaging
system does not allow the modification of an attribute, have the method that sets it
throw the IllegalWriteException .

In addition to supporting the predefined attributes, you can also expose attributes
specific to your implementation. To make a system-specific attribute available in your
subclass, add a field that represents the attribute and provide accessor methods for it.
JavaMail Guide for Service Providers August 1998

8 Chapter 2: Messages
Message Subclasses
Setting Message Content
The Message class provides a number of abstract methods for setting message
content. These will be used by clients preparing an outgoing message.

Some methods take message data directly, and expect your implementation to wrap
the data in a DataHandler object:

To wrap the data, use the DataHandler constructor that requires an object and a data
type. You can then call the same method that clients call when they have wrapped
their data in a DataHandler object themselves:

This method is abstract.

Accessing Message Content
The Message class provides three methods for getting the message content:

■ public javax.activation.DataHandler getDataHandler()
■ public java.lang.Object getContent()
■ public java.io.InputStream getInputStream()

They are used by clients to get a message from a folder. To implement these methods:

1. Optional: provide a cache for the DataHandler object
Caching the DataHandler can improve performance if it reduces the number of
times you must access the store.
 public MyMessage extends Message {
 // field for caching the data handler
 private DataHandler dh;
 ...
 }

2. Implement the abstract getDataHandler method
Return the appropriate DataHandler object. For example:
 public MyMessage extends Message {
 ...
 public DataHandler getDataHandler() throws MessagingException {
 if (dh == null)
 dh = new DataHandler(new SomeDataSource(this));
 return dh;
 }
 }
Note that you must provide a DataSource object to the DataHandler . For example,
the MimeMessage subclass uses the MimePartDataSource class.

public void setContent(java.lang.Object obj,
 java.lang.String type)

public void setText(java.lang.String text)

public void setDataHandler(javax.activation.DataHandler dh)
JavaMail Guide for Service Providers August 1998

9 Chapter 2: Messages
Message Subclasses
3. Have the getInputStream and getContent methods delegate to the JAF.
Implement the getInputStream and getContent methods to call the
corresponding DataHandler methods.
For example:
 public InputStream getInputStream () throws IOException {
 return getDataHandler().getInputStream();
 }
 public Object getContent () throws IOException {
 return getDataHandler().getContent();
 }

Using the techniques described above ensures that you make proper use of the JAF.
The javax.mail.internet package is implemented this way.

Creating a MimeMessage Subclass
The javax.mail.internet package provides a complete implementation of the
internet standards that define the structure of an email message: RFC822 and MIME
(RFC2045 - 2047). It defines a subclass of the Message class called MimeMessage. The
MimeMessage class adds:

1. Methods to get and set MIME-specific attributes.

2. The ability to parse a MIME-style input stream into its header and content.

3. The ability to generate a MIME-style bytestream.

This section explains enough about the MimeMessage class and the
javax.mail.internet package to enable you to implement a subclass of
MimeMessage. The upcoming sections use a POP3 implementation, POP3Message,
as an example.

Creating the Subclass
A newly created message, when it represents a message from a message store, should
be a lightweight object that is filled with data only as that data is required. Your
constructor, therefore, should create a message object that does not immediately load
its data. For example:
public class POP3Message extends MimeMessage {

// Keep track of whether data has been loaded
boolean loaded = false;
 ...
public POP3Message(POP3Folder folder, int messageNumber) {

// This MimeMessage constructor returns an empty message object
super(folder, messageNumber);

}
...

}

JavaMail Guide for Service Providers August 1998

10 Chapter 2: Messages
Message Subclasses
Objects that return messages, such as folders, can use this constructor. For example,
the folder class that is part of the POP3 service provider, POP3Folder , could get a
particular POP3 message:
 public Message getMessage(int messageNumber) {
 POP3Message message;
 ...
 message = new POP3Message(this, messageNumber);
 ...
 return message;
 }

The next sections, which discuss how to manage Message headers and content,
describe a way to load the message’s data on demand.

Headers
The MimeMessage constructor holds its headers in a
javax.mail.internet.InternetHeaders object. This object, when constructed
with an InputStream , reads lines from the stream until it reaches the blank line that
indicates end of header. It stores the lines as RFC822 header-fields. After the
InternetHeaders object reads from the input stream, the stream is positioned at the
start of the message body.

The POP3 implementation uses this constructor to load the message headers when
one is requested:
 public class POP3Message extends MimeMessage {
 //Keep track of whether the Message data has been loaded
 boolean loaded = false;
 int hdrSize;
 ...
 public String[] getHeader(String name) {
 //Get the headers on demand from the message store
 load();
 // Don’t need to reimplement getting the header object’s contents
 return super.getHeader(name);
 }

 /*** Reimplement all variants of getHeader() as above ***/
 ...

 private synchronized void load() {
 if (!loaded) {
 // Get message data (headers and content) and cache it
 content = POP3Command(“RETR”, msgno);
 // Open a stream to the cache
 InputStream is = new ByteArrayInputStream(content);
 // Setup “headers” field by getting the header data
 headers = new InternetHeaders(is);
 // Save header size to easily access msg content from cache
 hdrSize = content.length - is.available();
 loaded = true;
JavaMail Guide for Service Providers August 1998

11 Chapter 2: Messages
Message Subclasses
 }
 }
 }

Internationalization of Headers

RFC 822 allows only 7bit US-ASCII characters in email headers. MIME (RFC 2047)
defines techniques to encode non-ASCII text in various portions of a RFC822 header,
so that such text can be safely transmitted across the internet. These encoding
techniques convert non-ASCII characters into sequences of ASCII characters. At the
receiving end these characters must be decoded to recreate the original text.

The RFCs specify which standard headers allow such encoding. For example, the
Subject header permits encoded characters, but the Content-ID header does not.

The MimeMessage.getHeader methods obtain the named header from the
InternetHeaders object without decoding it; they return raw data. Similarly, the
MimeMessage.setHeader method sets the named header without encoding it. The
specialized methods such as getSubject , setSubject , getDescription and
setDescription do apply MIME and RFC822 semantics to the header value.

If your MimeMessage subclass adds new headers that require encoding and
decoding, your implementation of those headers’ supporting get and set methods is
responsible for doing this. The MimeUtility class provides a variety of static methods
to help you, such as the decodeText and encodeText methods.

The decodeText method decodes a raw header and returns its value as a Unicode
string. An example of its use:
 public String getMyHeader() throws MessagingException {
 String rawvalue = getHeader(“MyHeader”, null);
 try {
 return MimeUtility.decodeText(rawvalue);
 } catch (UnsupportedEncodingException ex) {
 return rawvalue;
 }
 }

The encodeText method encodes a raw header and sets its value as a Unicode
string. An example of its use:
 public void setMyHeader(String rawHeader) throws MessagingException
 {
 try {
 setHeader(“MyHeader”,
 MimeUtility.encodeText(rawHeader);
 } catch (UnsupportedEncodingException uex) {
 throw new MessagingException(“Encoding error”, uex);
 }
 }
JavaMail Guide for Service Providers August 1998

12 Chapter 2: Messages
Message Subclasses
Content
The getDataHandler method returns a DataHandler object that wraps (contains)
the message’s content data. As shown in the discussion on how to “Implement the
abstract getDataHandler method” on page 8, this is done by instantiating a
DataHandler object with a suitable DataSource object. (The DataHandler object uses
the DataSource object to provide a stream to a DataContentHandler object. The
DataContentHandler object translates message content from the stream to an object
in the Java programming language.)

For a MimeMessage object, the DataSource object is a MimePartDataSource . The
MimePartDataSource provides an input stream that decodes any MIME content-
transfer encoding that is present. The MimePartDataSource class:

1. Creates a DataSource from a MimePart

The constructor MimePartDataSource(MimePart part) stores the part object
internally and delegates to its methods. For example, the MimePartDataSource
object’s getContentType method just calls the part’s getContentType
method.

2. Implements the DataSource interface’s getInputStream method

The MimePartDataSource uses the part available to it to decode any MIME
content-transfer encoding that is present. To do this the getInputStream
method:

a. Fetches the data stream using the part ’s getContentStream protected
method.

b. Checks whether the part has any encoding (using the getEncoding method)

c. If it finds any encoding, it attempts to decode the bytes

d. Returns the decoded bytes.

When you subclass the MimeMessage class, you only need to override the
getContentStream method to work with your protocol. When the
MimePartDataSource class’s getInputStream method is run, your subclass’s
getContentStream method provides the protocol-specific data stream, and the
MimeMessage implementations of the remaining calls decode the content.

The POP3Message example follows. All but the getContentStream method is
unchanged from the example in “Headers” on page 10.
 public class POP3Message extends MimeMessage {
 boolean loaded = false;
 int hdrSize;
 ...
 protected synchronized InputStream getContentStream() {
 load();
 return new ByteArrayInputStream(content, hdrSize,
 content.length - hdrSize);
JavaMail Guide for Service Providers August 1998

13 Chapter 2: Messages
Message Subclasses
 }
 ...
 private synchronized void load() {
 if (!loaded) {
 // Get message data (headers and content) and cache it
 content = POP3Command(“RETR”, msgno);
 // Open a stream to the cache
 InputStream is = new ByteArrayInputStream(content);
 // Setup “headers” field by getting the header data
 headers = new InternetHeaders(is);
 // Save header size to easily access msg content from cache
 hdrSize = content.length - is.available();
 loaded = true;
 }
 }
 }

When clients call the POP3Message class’s getDataHandler , getContent , or
getInputStream methods of a MimeMessage, the bytes they receive are already
decoded.

Multipart MIME Messages

As discussed in “The Structure of a Message” on page 3, messages can have a single
content object or, indirectly, multiple content objects. The DataHandler of a MIME
multipart message contains an object of class MimeMultipart from the
javax.mail.internet package. Invoking the getContent method on a MIME
multipart message typically returns this class.

You typically do not have to subclass the MimeMultipart class. The multipart
DataContentHandler provided by the com.sun.mail.handlers package creates
this object internally when it is given a DataSource. It is directed to do so by this entry
in mailcap file in the JavaMail distribution:
multipart/*;; x-java-content-handler=\
com.sun.mail.handlers.multipart_mixed

Note that classes in the com.sun.mail package, and its subpackages, are not part of
the JavaMail API. They are separate implementations of the API.

Special Cases: Protocols that Provide Preparsed Data
Some protocols, such as IMAP, provide preparsed data. In this case, you override
most MimeMessage methods to avoid parsing the input stream. A MimeMessage
subclass for a protocol like IMAP acts like an interface that models the MIME API.

For example, if multipart IMAP content is retrieved in the same way as multipart
MIME content, the DataContentHandler re-parses the multipart data that has
already been parsed at the server. To avoid the extra parse, you create a special type of
JavaMail Guide for Service Providers August 1998

14 Chapter 2: Messages
Message Subclasses
DataSource - the MultipartDataSource , and pass that to the DataHandler . The
DataHandler passes it on to the MultipartDataContentHandler , which avoids
the parse if its DataSource is already of type MultipartDataSource .

So, an IMAPMessage’s getDataHandler() method may be:
 public javax.activation.DataHandler getDataHandler()
 throws MessagingException {
 if (dh != null)
 return dh;
 if (myType.equals("multipart")) {
 dh = new DataHandler(new IMAPMultipartDataSource(this));
 } else {
 dh = new DataHandler(new IMAPDataSource(this));
 }
 return dh;
 }

The IMAPMultipartDataSource is a subclass of MultipartDataSource .
JavaMail Guide for Service Providers August 1998

15
Chapter 3:

Message Storage and Retrieval

Users interact with message stores to fetch and manipulate electronic mail messages.
This chapter discusses how to implement the classes that allow clients this access. If
you are creating a JavaMail service provider that allows a client to send mail, but does
not interface with a mail store, you do not have to implement this functionality.

To provide message storage and retrieval, you must implement some abstract classes:

■ Store , which models the message database and the access protocol used to
retrieve messages. Its implementation is discussed in “Store” on page 15.

■ Folder , which represents a node in the message storage hierarchy used to
organize messages. Its implementation is discussed in “Folders” on page 17.

Store
The Store class models a message database and its access protocol. A client uses it to
connect to a particular message store, and to retrieve folders (groups of messages).

To provide access to a message store, you must extend the Store class and
implement its abstract methods. In addition, you must override the default
implementation of at least one method that handles client authentication. The next
sections cover how to write these methods. They begin with authentication, since it
precedes retrieval when the provider is used.

Authentication
JavaMail provides a framework to support both the most common style of
authentication, (username, passphrase), and other more sophisticated styles such as a
challenge-response dialogue with the user. To furnish the (username, passphrase)
style authentication in your provider, override the protocolConnect method. To
use another style of authentication, you must override the version of the connect
method that takes no arguments.
JavaMail Guide for Service Providers August 1998

16 Chapter 3: Message Storage and Retrieval
Store
The protocolConnect Method
The Store class provides a set of methods that establish a connection with a message
store. Establishing a connection typically involves setting up a network connection to
a host and authenticating the user with the message store installed on that host. The
protocolConnect method handles these tasks.

The signature of the protocolConnect method is:

The method returns true if the connection and authentication succeed. If the
connection fails, it throws a MessagingException . If the authentication fails, it
returns false .

The default implementation of protocolConnect returns false , indicating that the
authentication failed. You should provide an implementation that connects to the
given host at the specified port, and performs the service-specific authentication using
the given username and passphrase. The simplest implementation, for message stores
that do not require authentication, merely has this method return true . An example
of such a message store is one that is local file-based.

Note that clients do not call the protocolConnect method directly. Instead, the
protocolConnect method is invoked when clients call one of the connect
methods

The connect Method
To provide authentication schemes more sophisticated than (username, passphrase),
you must override the version of the connect method that takes no arguments.

The connect method takes no arguments and uses an Authenticator object to
obtain information from the user if the information is not already available. (The
client provides the Authenticator object.)

It then uses that information to connect to the message store and authenticate the
user. Finally, if the connection is successful, it delivers an OPENED
ConnectionEvent . (For more information about events, see Chapter 5: Events.)

Folder Retrieval
A message store stores messages, and often allows users to further group their
messages. These groups of messages are called folders, and are represented by the
abstract class, Folder . The Store class provides abstract methods for allowing the
user to retrieve a folder:

■ getDefaultFolder
■ getFolder

boolean protocolConnect(String host, int port,
 String user, String password)
JavaMail Guide for Service Providers August 1998

17 Chapter 3: Message Storage and Retrieval
Folders
If you are unfamiliar with folders, please read “Folders” on page 17 before continuing
with this section.

The getDefaultFolder method must return the default folder. The returned folder
must be in a closed state. (This is the default initial state of a folder.)

The getFolder methods return the specified folders:

These methods return the requested folders whether or not they exist in the store.
(This is similar to the java.io.File API.) Do not validate the folder’s existence in
the getFolder methods.

The folders returned by the getFolder methods must be in a closed state. (The
default initial state of a folder is closed.)

Note – The Store object should not cache Folder objects. Invoking the getFolder
method multiple times on the same folder name must return that many distinct
Folder objects.

Folders
The Folder class models a node in a mail storage hierarchy. Folders can contain
messages or subfolders or both. The following figure illustrates this:

FIGURE 3-1 Message Store Containing Folders

Each user has a folder that has the case-insensitive name INBOX. Providers must
support this name. Folders have two states: they can be closed (operations on a closed
folder are limited) or open.

Folder getFolder(String name)
Folder getFolder(URLName urlname)

Store

User1 User2

Inbox Inbox Personal

Mom

Folder

User...

Message Store

represented
in User2’s
client

in User2’s
client
JavaMail Guide for Service Providers August 1998

18 Chapter 3: Message Storage and Retrieval
Folders
Since Folder is an abstract class, you must extend it and implement its abstract
methods. In addition, some of its methods have default implementations that,
depending on your system, you may want to override for performance purposes. This
section covers many of the abstract methods that you must implement, and the
methods whose default implementations you might want to override. It groups them
in the following way:

■ “Folder Naming”: getName , getFullName , getSeparator

■ “Folder State”: open , close

■ “Messages Within a Folder”: getMessage , getMessages , search , fetch

■ “Folder Management”: getPermanentFlags , setFlags , appendMessages ,
copyMessages , expunge

Folder Naming
Each folder has a name. One such name is INBOX; You must support that name in a
case-insensitive fashion. Typically, mail systems allow users to create and name other
folders for organizing their messages, leading to a tree-like organization of electronic
mail in the message store.

The Folder class has two abstract methods that return the name of a folder:

■ getName
■ getFullName

A folder’s full name is the combination of its name and its ancestors’ names. Each
level in the hierarchy of the folder’s full name is separated from the next by the
hierarchy delimiter character. The hierarchy delimiter character is returned by the
method getSeparator .

The getSeparator method is an abstract method; implement it to return a Folder ’s
hierarchy delimiter. If your message store does not support a hierarchical storage
structure, the getSeparator method must return the NUL character (\u0000).

Folder State
Folders can be in one of two states: open or closed. Initially a folder is closed. The
operations allowed on a closed folder are limited; in particular, very few message
related operations are allowed. Having the initial state of folders be closed allows
them to be created as light-weight objects, with no dedicated server connection
required. For example, an IMAP provider can designate a single server connection as
the “common” connection for all closed folders.

Folders are opened using the method:

public abstract void open(int mode)
JavaMail Guide for Service Providers August 1998

19 Chapter 3: Message Storage and Retrieval
Folders
where mode is either READ_ONLY or READ_WRITE. These modes have the intuitive
meanings: only a folder opened in READ_WRITE mode can be modified. If this folder
is opened successfully, you must deliver an OPENED connection event.

The effect of opening multiple connections to the same folder on a specific Store is
implementation dependent. You can choose to allow multiple readers but only one
writer, or you could allow multiple writers as well as readers.

Once a folder is open, a variety of message specific methods, such as getMessage ,
can be invoked on it. Implement the open method such that these operations can be
successfully conducted after the method returns. For example, an IMAP provider
might want to open a new connection to the server and issue the SELECT command
to select this folder.

Open folders can be closed with the method:

The close method on an open folder typically has the Folder object get rid of its
message-cache, if it maintains one, and generally reset itself, so that its a light-weight
object again. Invoking the close method on a closed folder should not have any
effect.

The close method must indicate that the folder is closed even if it terminates
abnormally by throwing a MessagingException . That is, you must still deliver a
CLOSED connection event and make the Folder object such that calls to the isOpen
method return false .

Messages Within a Folder
Folders can be viewed as presenting a resizable array of messages to a client. They
allow the client to access a message based on its index within this array. The index is
the message’s sequence-number. Sequence numbers begin at one (1) and continue,
incrementing by one, through the total number of messages in the folder. A Folder
implementation typically employs a suitable collection class, such as Vector , to store
messages.

This section discusses the abstract methods that the Folder class provides to clients
for retrieving messages and the information they contain. It groups these methods as
follows:

■ “Getting Messages”
■ “Searching Messages”
■ “Getting Message Data in Bulk”

public abstract void close(boolean expunge)
JavaMail Guide for Service Providers August 1998

20 Chapter 3: Message Storage and Retrieval
Folders
Getting Messages
The Folder class provides two methods to get one or more messages from a folder:
getMessage and getMessages .

The getMessage Method

The signature of the getMessage method is:

Note that the getMessage method is abstract; you must provide an implementation
for it. It returns the Message object with the given sequence number. Message
numbers begin at one (1).

It is important that your implementation of the getMessage method does not return
a completely filled (also called a heavy-weight) Message object. The client’s
expectation is that a Message object is just a “reference” to the message, so instead
you should create Message objects that are almost empty (also called light-weight
messages). The client will fill it as content is needed by the user. For example, an
IMAP implementation might create IMAPMessage objects that initially contain only
the appropriate IMAP Sequence number or IMAP UID.

The getMessages Methods

The getMessages methods have the following signatures:

The getMessages methods have default implementations that use getMessage to
return the requested messages. The getMessages method, when given no
parameters, returns all of the Message objects in the folder.

Note – Folder implementations should cache Message objects. This insures that if a
client calls the getMessage method multiple times, the implementation will
efficiently return the same Message object unless the client calls the expunge
method.

Clients that use message-numbers as their references to messages will invoke the
getMessage method quite often to get at the appropriate Message object. Creating a
new Message object each time, instead of caching the messages, would be expensive
in terms of memory and time.

public abstract Message getMessage(int index)

public Message[] getMessages()
public Message[] getMessages(int[] msgnums)
public Message[] getMessages(int start, int end)
JavaMail Guide for Service Providers August 1998

21 Chapter 3: Message Storage and Retrieval
Folders
Searching Messages
The Folder class provides search methods that return the messages that match the
given search criteria. The signatures of the methods are shown below. The first
search method shown, which takes only a SearchTerm argument, applies the
search criteria to each message in the folder. The second search method shown
applies the search criteria to the specified messages.

Default implementations are provided for both search methods. The default
implementations do client-side searching by applying the given SearchTerm on each
Message and returning those messages that match.

If your message store supports server-side searching, you can override the default
implementation to take advantage of it. Your implementation should

1. Construct a search expression corresponding to the SearchTerm provided.
The client uses SearchTerm objects to construct a tree of terms that represent a
search criteria. For example, the tree shown below represents a search for messages
from “manager” that contain the word “deadline” in the subject:

Traverse the search-tree specified by the given SearchTerm to construct the search
expression for the server-side search.

2. Use the constructed search expression on the server.
For example, an IMAP provider will convert the SearchTerm into an IMAP search
sequence and pass it on to the IMAP server.

If the SearchTerm is too complex, or contains a subclass of the SearchTerm class
that the client has defined, you can either throw a SearchException or use the
default implementation of client-side searching by calling super.search

3. Return light-weight Message objects.
To repeat the example given on page 20, an IMAP implementation might return
IMAPMessage objects that initially contain only the appropriate IMAP Sequence
number or IMAP UID.

Message[] search(SearchTerm term)
Message[] search(SearchTerm term, Message[] msgs)

AndTerm

FromTerm SubjectTerm

manager deadline
JavaMail Guide for Service Providers August 1998

22 Chapter 3: Message Storage and Retrieval
Folders
Getting Message Data in Bulk
As mentioned in the previous sections, a Message object should start out as a light-
weight reference to the corresponding message. The client invokes methods to fill in
the message as the data is required.

To help deliver message content, certain server-based message access protocols, such
as IMAP, allow batch fetching of message attributes for a range of messages in a
single request. The Folder class provides a fetch method to allow service providers
to take advantage of this capability; check your service provider’s documentation.

The fetch method takes an array of Message objects and a FetchProfile object as
arguments. Its signature is:

The FetchProfile object lists the message attributes to be obtained for the
messages. The fetch method, if a service provider supports getting message data in
bulk, gets the requested attributes and stores them in the Message objects.

If your access protocol allows batch fetching of message attributes, then you should
override this method to allow clients to take advantage of it. The default
implementation of the fetch method returns without doing any work.

When clients call the fetch method, they provide a FetchProfile with the names
of the items to be obtained. The items can be pre-defined FetchProfile attributes,
the names of header-fields, or both. The currently defined attributes are:

■ ENVELOPE—This includes the common “toplevel” attributes of a message. These
are generally the main addressing attributes - From, To, Cc, Bcc, Reply-To, Subject
and SentDate. GUI Mailers usually display a subset of these items in header-list
window, so a provider must attempt to include at least these items. For example,
an IMAP provider will include the ENVELOPE data item.

■ CONTENT_INFO—This specifies information about the content of the message,
including the ContentType, ContentDisposition, Size and LineCount. For
example, an IMAP provider will include the BODYSTRUCTURE data item.

■ FLAGS—This specifies the flags for a message. (More information on flags is
provided in “Handling Message Flags”)

Your implementation of the fetch method should support the FetchProfile
attributes appropriate for your system.

public void fetch(Message[] msgs, FetchProfile fp)
JavaMail Guide for Service Providers August 1998

23 Chapter 3: Message Storage and Retrieval
Folders
Folder Management
This section discusses the abstract methods that the Folder class provides to clients
for manipulating a group of messages in a folder. It groups these methods as follows:

■ “Appending and Copying Messages”
■ “Expunging Messages”
■ “Handling Message Flags”

Appending and Copying Messages
The Folder object provides an abstract appendMessages method. Your
implementation should add the given messages onto the end of this folder’s messages
and deliver a MessageCountEvent if possible. Note that the append operation is
valid on a closed folder.

Some or all of the Message objects might belong to the same Store as this Folder .
If your system can optimize the append operation by doing server-side copies, you
might want to check for and handle this special case.

The copyMessages method copies the specified messages from this folder to the
destination folder. There is a default implementation for this method that uses the
appendMessages method to do the copy. If your system supports server-side copy,
make sure that this operation employs that optimization, either by overriding this
method or by implementing the appendMessages method to handle this case.

Expunging Messages
The Folder object provides an abstract expunge method. Your implementation
should:

■ Remove all messages that are marked deleted (i.e, have their DELETED flag set)
from the folder and set the values of those messages’ expunged fields to true.

■ Renumber the messages in the folder that occur after an expunged message so
that their sequence-numbers match their index within the folder. For example, if
messages A and C are removed due to the expunge method being invoked, the
remaining messages (B, D and E) are renumbered suitably:

■ Send one or more MessageCountEvents to notify listeners about the removal of
the messages. When you call the notifyMessageRemovedListeners method,
its boolean argument, removed , must be set to true.

A (1) B (2) C (3) D (4) E (5) Folder before invoking the expunge method

B (1) D (2) E (3) Folder after invoking the expunge method
JavaMail Guide for Service Providers August 1998

24 Chapter 3: Message Storage and Retrieval
Folders
Only the getMessageNumber and isExpunged methods are valid on an expunged
Message object.

Some messaging systems support shared folders that can be accessed and modified
from multiple sessions at the same time. In such cases, multiple open Folder objects
can correspond to the same physical folder. An expunge operation on one of those
Folder objects removes all deleted messages from the physical folder. However, the
other folders must not remove the corresponding Message objects from their lists.
They should mark those messages as expunged , so that any direct method on those
Messages will fail. They may also fire MessageCountEvents (with the removed
boolean flag set to false) to notify listeners about the removal. In essence, those
Folders will continue to present the same, unchanged array of Messages to their
clients. The array is purged and messages are renumbered only when the expunge
method is directly invoked.

Refer to Section 6.2.3 in the JavaMail 1.1 Specification document for the rationale for
this behavior.

Handling Message Flags
Flags are indicators of message state stored with a message. The set of flags associated
with a message is represented by a Flags object; individual flags are represented by
the Flags.Flag object. The flags represented by the Flags.Flag class include
ANSWERED, DELETED, DRAFT, FLAGGED, RECENT, SEEN, and USER. (The USER flag
means that this folder supports user-defined flags.)

The Folder class provides the getPermanentFlags method and the setFlags
methods for handling flags. This section first covers the getPermanentFlags
method, then the setFlags methods.

The getPermanentFlags method is abstract:

Your implementation should return a Flags object that contains every Flags.Flag
that your system supports.

The setFlags methods have default implementations to set the specified flags on a
given range of messages. They set the flags on each Message object individually
(after obtaining the message by calling the getMessage method, if necessary) and
send the appropriate MessageChangedEvent .

Most message stores provide a call in their API to efficiently set flags on a group of
messages. If your system does this, consider overriding the default implementations
of the setFlags methods to make use of the server-side optimization.

If you override the setFlags methods, be sure that the methods that operate on
sequence-numbers do not abort the operation if any sequence-number refers to an
expunged message. Instead of aborting, your implementation should continue
operating on the rest of the messages.

public abstract Flags getPermanentFlags()
JavaMail Guide for Service Providers August 1998

25
Chapter 4:

Message Transport

The JavaMail API provides the ability for users to send electronic mail messages. This
chapter describes how to furnish a JavaMail service provider of a message transport
system. If you are creating a JavaMail service provider that allows a client to access a
mail server but does not handle sending mail, you do not have to implement this
functionality.

To provide a message transport system, you must,

■ Provide a Transport implementation (See “Transport” on page 25.)
■ Provide an Address subclass (See “Address” on page 27.)

Transport
The function of the Transport class is to send (transport) messages; it is an abstract
class. To implement a specific transport protocol:

■ Subclass the Transport class;

■ Implement the Transport class’s abstract method, sendMessage;

■ Override the default implementation of the Transport class’s
protocolConnect method.

The sendMessage Method
The Transport class provides static methods that applications use to send messages.
The default implementations of these methods call the abstract method
sendMessage to do the actual transmission. The sendMessage method has the
following signature:

■ public abstract
 void sendMessage(Message m, Address[] address)
 throws MessagingException

To implement this method, follow these steps:
JavaMail Guide for Service Providers August 1998

26 Chapter 4: Message Transport
Transport
1. Check the type of the given message.
Typically, a service provider handles only certain types of messages. For example, an
SMTP provider typically sends MimeMessages . In the face of an unknown message
type, you can have sendMessage either fail and throw a MessagingException , or
you can try to coerce it into a known type and send it.

2. Transmit the message
Get the byte stream of the message, and transmit the message using its writeTo
method.

3. Send a TransportEvent
The TransportEvent indicates the delivery status of the message. The possible
event types are MESSAGE_DELIVERED, MESSAGE_NOT_DELIVERED and
MESSAGE_PARTIALLY_DELIVERED. For more information about events, see
Chapter 5: Events.

4. Throw an exception if the delivery is unsuccessful
If the delivery fails, completely or partially, you must throw a suitable
MessagingException or SendFailedException .

The protocolConnect Method
The Transport class provides methods for applications to call that establish a
connection with a transport. The methods, called connect , have default
implementations that establish a connection by calling the protocolConnect
method. You must override the protocolConnect method.

The signature of the protocolConnect method looks like this:

■ protected
 boolean protocolConnect(String host, int port,
 String user, String password)

The method returns true if the connection and authentication succeed. If the
connection fails, it throws a MessagingException . If the authentication fails, it
returns false .

The default implementation of protocolConnect returns false , indicating that the
authentication failed. You should provide an implementation that connects to the
given host at the specified port , and performs the transport-specific authentication
using the given username and password .
JavaMail Guide for Service Providers August 1998

27 Chapter 4: Message Transport
Address
Address
The Address class is an abstract class. Subclasses provide specific implementations.
Every Address subclass has a type-name, which identifies the address-type
represented by that subclass. For example, the
javax.mail.internet.InternetAddress subclass has the type-name: rfc822 .

The type-name is used to map address-types to Transport protocols. These
mappings are set in the address.map registry. For example, the default address.map
in the JavaMail package contains the following entry:
rfc822=smtp

Setting up the address-type to transport-protocol mapping is covered in
Chapter 6: Packaging, Step 5.

The Address-type to Transport mapping is used by JavaMail to determine the
Transport object to be used to send a message. The getTransport(Address)
method on Session does this, by searching the address.map for the transport-
protocol that corresponds to the type of the given address object. For example,
invoking the getTransport(Address) method with an InternetAddress object,
will return a Transport object that implements the smtp protocol.

An Address subclass may also provide additional methods that are specific to that
address-type. For example, one method that the InternetAddress class adds is the
getAddress method.
JavaMail Guide for Service Providers August 1998

28 Chapter 4: Message Transport
Address
JavaMail Guide for Service Providers August 1998

29
Chapter 5:

Events

The Store , Folder and Transport classes use events to communicate state changes
to applications. The documentation for the methods of these classes specify which
events to generate. A compliant provider must broadcast these events.

To broadcast an event, call the appropriate notify Event Listeners method. For
example, to manage MessageCountEvents for new mail notification, your Folder
subclass should call the notifyMessageAddedListeners(msgs) method. (It is
best to use the default implementations of the Notify Event Listeners methods,
because they dispatch their events in an internal event-dispatcher thread. Using a
separate thread like this avoids deadlocks from breakage in the locking hierarchy.)

Every event generated by the Store , Folder and Transport classes also has
associated addListener and removeListener methods. Like the
notify Event Listeners methods, these methods already have useful
implementations. A programmer using your service provider implementation calls
the appropriate addEvent Listener and remove Event Listener methods to
control which event notifications are received.
JavaMail Guide for Service Providers August 1998

30 Chapter 5: Events
JavaMail Guide for Service Providers August 1998

31
Chapter 6:

Packaging

Provider software must be packaged for use by JavaMail clients. To do this:

1. Choose a suitable name for your package
The recommended way of doing this is to reverse your company domain name, and
then add a suitable suffix. For example, Sun’s IMAP provider is named
com.sun.mail.imap .

2. Make sure that your key classes are public
If you provide access to a message store, your Store subclass must be a public
class. If you provide a way to send messages, your Transport subclass must be a
public class. (This allows JavaMail to instantiate your classes.)

3. Bundle your provider classes into a suitably named jar file
The name of the jar file should reflect the protocol you are providing. For example,
an NNTP provider may have a jar file named nntp.jar . Refer to a suitable Java
programming language book for details on how to create jar files.

Because your jar file must be included in an application’s classpath so that it can
be found by the application’s classloader, include the name of your jar file in the
documentation for your provider. Mention that the application’s classpath should be
updated to include the location of the jar file.

4. Create a registry entry for the protocol your implementation provides
A registry entry is a set of attributes that describe your implementation. There are five
attributes that describe a protocol implementation. Each attribute is a name-value pair
whose syntax is name=value . The attributes are separated by semicolons (;). The
attributes are:
JavaMail Guide for Service Providers August 1998

32 Chapter 6: Packaging
For example, an entry for a POP3 provider from FOOBAR.com looks like this:
 protocol=pop3; type=store; class=com.foobar.pop3.POP3Store;
 vendor=FOOBAR

The users or administrators of a JavaMail application place your registry entry into a
registry, either manually or using a configuration tool. This installs your provider into
the client’s JavaMail system.

A registry is comprised of resource files. The name of the file that holds your entry is
called javamail.providers . JavaMail searches resource files in the following
order:

1. java.home/lib/javamail.providers

2. META-INF/javamail.providers

In the documentation that you provide to users, provide your registry entry and
request that it be placed in one of the two files listed above.

5. Create any mapping from an address type to your protocol
If you are providing an implementation that allows applications to send mail, you
must create a mapping between the types of addresses that your implementation can
deliver and your protocol. The mapping has the format addressType =protocol ,
where

■ addressType is the string returned by your Address subclass’s getType
method

■ protocol is the value of the protocol attribute that you provided in the Step 4.

TABLE 6-1 Attributes in a JavaMail Resource File

Attribute Name Description of the Attribute Value

protocol Name assigned to the protocol, such as imap

type Type of protocol: either the value store or the value transport

class Full name of the class, including its package, that implements this
protocol

vendor Optional entry: a string identifying yourself or your organization as the
vendor

version Optional entry: a string identifying the version number of this
implementation
JavaMail Guide for Service Providers August 1998

33 Chapter 6: Packaging
The users or administrators of a JavaMail application place your mapping into the
address.map registry, either manually or using a configuration tool. As stated
previously, a registry is comprised of resource files. The name of the file that holds
your mapping is called javamail.address.map . JavaMail searches resource files in
the following order:

1. java.home/lib/javamail.address.map

2. META-INF/javamail.address.map

In the documentation that you provide to users, provide your mapping, and request
that it be placed in one of the two files listed above.
JavaMail Guide for Service Providers August 1998

34 Chapter 6: Packaging
JavaMail Guide for Service Providers August 1998

	JavaMail™ Guide for Service Providers
	Contents
	Chapter�1: Introduction
	Chapter�2: Messages
	The Structure of a Message
	Simple Messages
	Multipart Messages

	Messages and the JavaBeans Activation Framework
	The DataSource
	The DataContentHandler

	Message Subclasses
	Creating a Message Subclass
	Creating a MimeMessage Subclass

	Chapter�3: Message Storage and Retrieval
	Store
	Authentication
	Folder Retrieval

	Folders
	Folder Naming
	Folder State
	Messages Within a Folder
	Folder Management

	Chapter�4: Message Transport
	Transport
	The sendMessage Method
	The protocolConnect Method

	Address

	Chapter�5: Events
	Chapter�6: Packaging

