
This is a draft specification of the Enterprise JavaBeans architecture for public review. We ex-
pect to finalize this specification after 60 - 90 days of public review.

Enterprise JavaBeans is a component architecture for development and deployment of object-
oriented distributed enterprise-level Java applications. Applications written using Enterprise
JavaBeans are scalable, transactional, and multi-user secure. These applications can be written
once, and then deployed on any Java enabled server platform.

Please send technical comments on this specification to:

ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright 1997 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

Sun Microsystems

Enterprise JavaBeansTM

microsystems

Vlada Matena & Mark Hapner

February 4, 1998 4:46 pm
Version 0.9

Enterprise JavaBeans

Sun Microsystems Inc. 2 February 4, 1998

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the Unites States
and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Enterprise JavaBeans

Sun Microsystems Inc. 3 February 4, 1998

Contents

1. Introduction . 6

1.1 Preface. 6

1.2 Target audience . 6

1.3 Acknowledgments. 6

1.4 Organization. 6

2. Goals . 7

2.1 Overall goals . 7

2.2 Goals for Release 1.0 . 7

3. Roles and scenarios . 8

3.1 Roles . 8

3.2 Scenario 1: Development, deployment, assembly 10

4. Fundamentals . 11

4.1 Enterprise beans as components . 11

4.2 Enterprise JavaBeans contracts . 12

4.3 Session and entity objects . 14

4.4 Standard CORBA mapping . 15

5. Client view of a session bean. 17

5.1 Overview . 17

5.2 EJB container . 17

5.3 Home interface. 18

5.4 EJB object . 19

5.5 Session object identity. 20

5.6 Client’s view of session bean’s life cycle 20

5.7 Creating and using a session bean. 21

6. Session bean component contract . 23

6.1 Overview . 23

6.2 Goals . 23

6.3 A container’s management of its working set 23

6.4 Conversational state . 24

6.5 The protocol between a session bean and its container 25

6.6 STATEFUL non-transactional session bean state diagram 28

6.7 STATEFUL transactional session bean state diagram 30

6.8 Sequence diagrams for a STATEFUL session bean 31

6.9 Stateless session beans . 36

6.10 Sequence diagrams for a STATELESS session bean. 38

6.11 The responsibilities of the enterprise bean provider 40

6.12 The responsibilities of the container provider 42

7. Example session scenario . 44

7.1 Overview . 44

Enterprise JavaBeans

Sun Microsystems Inc. 4 February 4, 1998

7.2 Inheritance relationship . 45

8. Client view of an entity . 48

8.1 Overview . 48

8.2 EJB container . 49

8.3 Enterprise bean’s home interface. 50

8.4 Entity EJB object life cycle . 52

8.5 Primary key and object identity. 54

8.6 Enterprise bean’s remote interface . 55

8.7 Enterprise bean’s handle . 56

9. Entity bean component contract. 57

9.1 The runtime execution model . 57

9.2 Entity persistence. 58

9.3 Instance life cycle. 60

9.4 The entity bean component contract . 62

9.5 Concurrent access from multiple transactions. 67

9.6 The responsibilities of the enterprise bean provider. 68

9.7 The responsibilities of the container provider 70

9.8 Miscellaneous. 72

9.9 Container-managed entity beans. 73

9.10 Sequence diagrams . 75

10. Example entity scenario. 88

10.1 Overview . 88

10.2 Inheritance relationship . 89

11. Support for transactions . 92

11.1 Transaction model . 92

11.2 Relationship to JTS. 92

11.3 Scenarios . 92

11.4 Declarative transaction management . 97

11.5 Bean-managed demarcation . 100

11.6 Transaction management and exceptions 100

12. Exception handling . 101

12.1 Client’s view of exceptions. 101

12.2 Rules for the enterprise bean developer 101

12.3 Rules for the container provider . 102

12.4 Exceptions from create and finder methods. 103

13. Support for distribution . 104

13.1 Overview . 104

13.2 Client-side objects . 104

13.3 Interoperability via network protocol . 104

14. Support for security . 106

14.1 Package java.security . 106

Enterprise JavaBeans

Sun Microsystems Inc. 5 February 4, 1998

14.2 Security-related methods in InstanceContext 106

14.3 Security-related deployment descriptor properties 106

14.4 Examples. 106

15. Ejb-jar file . 108

15.1 ejb-jar file . 108

15.2 Deployment descriptor . 108

15.3 ejb-jar Manifest. 108

16. Enterprise bean provider responsibilities. 109

16.1 Classes and interfaces . 109

16.2 Environment properties . 109

16.3 Deployment descriptor . 109

16.4 Programming restrictions . 109

16.5 Component packaging responsibilities. 110

17. Container provider responsibilities . 111

17.1 Enterprise bean deployment tools . 111

17.2 Runtime infrastructure . 112

17.3 Runtime management tools . 112

18. Enterprise JavaBeans API Reference. 113

19. Related documents . 157

Appendix A. Glossary of terms . 158

Appendix B. Example application . 159

Appendix C. Features deferred to future releases 160

C.1 Programmatic access to security . 160
C.2 Enterprise beans with extended transactional semantics . . . 160

Appendix D. Issues and dependencies. 161

D.1 Pending issues . 161

Appendix E. package javax.jts. 163

Appendix F. Revision history . 177

F.1 Changes since Release 0.8 . 177

Enterprise JavaBeans

Sun Microsystems Inc. 6 February 4, 1998

1 Introduction

1.1 Preface

We would like to thank all the reviewers who sent us feedback on Release 0.8 of the
Enterprise JavaBeans specification. We have read and incorporated the feedback and
comments from as many reviewers as we could, and will try to incorporate the remain-
ing comments into the next revision of the specification.

We thank the reviewers for their time and effort in helping us to improve the specifica-
tion.

1.2 Target audience

The target audience for this specification are the vendors of transaction processing plat-
forms, vendors of enterprise application tools, and other vendors who want to provide
support for Enterprise JavaBeans in their products.

Many concepts described in this document are system-level issues that the application
programmer using Enterprise JavaBeans will not have to deal with. Since the main goal
of Enterprise JavaBeans is to hide these complex system level issues from the applica-
tion programmer, we plan to provide a separate Enterprise JavaBean programmer’s
primer.

1.3 Acknowledgments

Rick Cattell, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan Cheung,
and Anil Vijendran have provided invaluable input to the design of Enterprise Java-
Beans.

Enterprise JavaBeans is a broad effort that includes contribution from numerous groups
at Sun and at partner companies. The ongoing specification review process has been ex-
tremely valuable, and the many comments that we have received helped us to define the
specification.

1.4 Organization

 TODO - describe document organization

Enterprise JavaBeans

Sun Microsystems Inc. 7 February 4, 1998

2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

• Enterprise JavaBeans will be the standard component architecture for building
distributed object-oriented business applications in Java. Enterprise JavaBeans
will make it possible to build distributed applications by combining components
developed using tools from different vendors.

• Enterprise JavaBeans will make it easy to write applications: Application
developers will not have to deal with low-level details of transaction and state
management; multi-threading; resource pooling; and other complex low-level
APIs. However, an expert-level programmer will be allowed to gain direct
access to the low-level APIs.

• Enterprise JavaBeans applications will follow the “write-once, run anywhere”
philosophy of Java. An enterprise bean can be developed once, and then
deployed on multiple platforms without recompilation or source code
modification.

• The Enterprise JavaBeans architecture will address the development,
deployment, and runtime aspects of an enterprise application’s life cycle.

• The Enterprise JavaBeans architecture will define the contracts that enable tools
from multiple vendors to develop and deploy components that can interoperate
at runtime.

• The Enterprise JavaBeans architecture will be compatible with existing server
platforms. Vendors will be able to extend their existing products to support
Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java APIs.

• The Enterprise JavaBeans architecture will provide interoperability between
enterprise beans and non-Java applications.

• The Enterprise JavaBeans architecture will be compatible with CORBA.

2.2 Goals for Release 1.0

In Release 1.0, we want to focus on the following aspects:

• Define the distinct “roles” that are assumed by the component architecture.

• Define the client’s view of enterprise beans.

• Define the enterprise bean developer’s view.

• Define the responsibilities of anEJB container providerand server provider;
together these make up a system that supports the deployment and execution of
enterprise beans.

• Define the format of theejb-jar file, EJB’s unit of deployment.

Enterprise JavaBeans

Sun Microsystems Inc. 8 February 4, 1998

3 Roles and scenarios

3.1 Roles

The Enterprise JavaBeans architecture defines five distinct roles in the application de-
velopment and deployment workflow. Each role may be performed by a different party.
Enterprise JavaBeans specifies the contracts that ensure that the product of each role is
compatible with the product of the other roles.

 In some scenarios, a single party may perform several roles. For example, the
container provider and the EJB server provider may be the same vendor. Or a
single programmer may perform the role of the enterprise bean provider and
the role of the application assembler.

The following sections define the five EJB roles.

3.1.1 Enterprise bean provider

An enterprise bean provider is typically an application domain expert. An enterprise
bean provider develops reusable components called enterprise beans. An enterprise
bean implements a business task.

An enterprise bean provider is not an expert at system-level programming. Therefore,
an enterprise bean provider usually does not program transactions, concurrency, secu-
rity, distribution and other services into the enterprise beans. An enterprise bean pro-
vider relies on an EJB container provider for these services.

The output of an enterprise bean provider is an ejb-jar file that contains enterprise
beans. Each bean includes its Java classes, its deployment descriptor, and its environ-
ment properties.

3.1.2 Application assembler

An application assembler is a domain expert who composes applications out of enter-
prise beans. An application assembler produces an ejb-jar file that contains enterprise
beans with their deployment descriptors and environment properties. The ejb-jar file
might include additional files that are part of the assembled application but whose def-
inition is outside of Enterprise JavaBeans.

The assembler may also write a GUI client-side for the applications.

3.1.3 Deployer

A deployer is an expert at a specific operational environment, and is responsible for the
deployment of enterprise beans and their containers. A deployer typically uses tools
provided by the container provider to adapt enterprise beans to a specific operational
environment.

For example, a deployer is responsible for mapping the security roles assumed by the
enterprise beans to those required by the organization that will be using the enterprise
beans. A deployer typically reads the attribute settings in the enterprise beans’ deploy-

Enterprise JavaBeans

Sun Microsystems Inc. 9 February 4, 1998

ment descriptors and modifies the values of the enterprise beans’ environment proper-
ties.

3.1.4 EJB container provider

The expertise of a container provider is system-level programming, possibly combined
with some application-domain expertise. The focus of a container provider is on the de-
velopment of a scalable, secure, transaction-enabled container system. The container
provider insulates the enterprise bean from the specifics of an underlying EJB server by
providing a simple, standard API between the enterprise bean and the container (this
API is part of this specification).

For enterprise entity beans with container-managed persistence, the entity container is
typically responsible for persistence of the entity beans installed in the container. The
container provider’s tools are used to generate code that moves data between the enter-
prise bean’s instance variables and a database or an existing middle-tier application.
The container provider may be an expert in the area of providing access to enterprise’s
existing data sources or applications.

A container provider is responsible for the evolution of enterprise beans. For example,
the container provider should allow enterprise bean classes to be upgraded without in-
validating existing clients or losing existing enterprise bean objects.

Enterprise JavaBeans defines the component contract that must be supported by every
compliant EJB container. Enterprise JavaBeans allows container vendors to develop
specialized containers that extend this contract. Examples of specialized containers in-
clude a container that supports an application-domain specific framework, a container
that bridges the EJB server environment with existing applications (such a container
can make the existing applications appear as regular enterprise beans), a container that
implements an Object/Relational mapping, or container that is built on top of an object-
oriented database system.

3.1.5 EJB server provider

An EJB server provider is a specialist in the area of distributed transaction manage-
ment, distributed objects, and other lower-level system-level services. A typical EJB
server provider is an OS vendor, middleware vendor, or database vendor.

Typically, the EJB server provider will provide a container that implements the EJB
session container[4.2.2] contract, and may also provide anentity container[4.2.2] for
one or more data sources supported on the EJB server.

An EJB server provider will typically publish its lower-level interfaces to allow third
parties to develop containers.

 A later release of Enterprise JavaBeans may standardize the interfaces
between a container and an EJB server.

Enterprise JavaBeans

Sun Microsystems Inc. 10 February 4, 1998

3.2 Scenario 1: Development, deployment, assembly

Wombat Inc. is an enterprise bean provider that specializes in the development of soft-
ware components for the banking sector. Wombat Inc. has developed theAccountBean
andTellerBean enterprise beans, and packages them in anejb-jar file.

Wombat sells the enterprise beans to banks that may use containers and EJB servers
from multiple vendors. One of the banks uses a container from the Acme Corporation.
Acme’s tools that are part of Acme’s container product facilitate the deployment of en-
terprise beans from any provider, including Wombat Inc. The deployment process re-
sults in generating additional classes used internally by the Acme container. The
additional classes allow the Acme container to manage enterprise bean objects at runt-
ime, as defined by the EJB component contract.

Since theAccountBean andTellerBeanenterprise beans by themselves are not a com-
plete application, the bank MIS department may use Acme’s tools to assemble theAc-
countBean andTellerBean enterprise beans with other enterprise beans (possibly from
another vendor) and possibly with some non-EJB existing software, into a complete ap-
plication. The MIS department takes on both the EJB deployer and application assem-
bler roles.

Enterprise JavaBeans

Sun Microsystems Inc. 11 February 4, 1998

4 Fundamentals

This chapter defines the scope of the Enterprise JavaBeans specification.

4.1 Enterprise beans as components

Enterprise JavaBeans is an architecture for component based distributed computing.
Enterprise beans are components of distributed transaction-oriented enterprise applica-
tions.

4.1.1 Component characteristics

The essential characteristics of an enterprise bean are:

• An enterprise bean is contained and managed at runtime by a container.

• An enterprise bean can be customized at deployment time by editing its
environment properties.

• Various metadata, such as a transaction mode and security attributes, are
separated out from the enterprise bean class. This allows the metadata to be
manipulated using container’s tools at design and deployment time.

• Client access is mediated by the container and the EJB server on which the
enterprise bean is deployed.

• If an enterprise bean uses only the standard container services defined by the
EJB specification, the enterprise bean can be deployed in any compliant EJB
container.

• Specialized containers can provide additional services beyond those defined by
the EJB specification. An enterprise bean that depends on such a service can be
deployed only in a container that supports the service.

• An enterprise bean can be included in a composite application without requiring
source code changes or recompilation of the enterprise bean.

• A client’s view of an enterprise bean is defined by the bean developer. Its view
is unaffected by the container and server the bean is deployed in. This ensures

that both beans and their 100% Pure JavaTM clients are write-once-run-
anywhere.

4.1.2 Flexible component model

The enterprise bean architecture is flexible enough to implement components such as
the following:

• An object that represents a stateless service.

• An object that represents a conversational session with a particular client. Such
session objects automatically maintain their conversational state across multiple
client-invoked methods.

• A persistent entity object that is shared among multiple clients.

Enterprise JavaBeans

Sun Microsystems Inc. 12 February 4, 1998

Although the state management protocol defined by the Enterprise JavaBeans architec-
ture is simple, it provides an enterprise bean developer great flexibility in managing a
bean’s state.

A client always uses the same API for object creation, lookup, method invocation, and
destruction, regardless of how an enterprise bean is implemented, and what function it
provides to the client.

4.2 Enterprise JavaBeans contracts

This section describes the Enterprise JavaBeans Release 1.0 contracts.

4.2.1 Client’s view contract

This is a contract between a client and a container. The client’s view contract provides
a uniform development model for applications using enterprise beans as components.
This uniform model enables using higher level development tools, and will allow great-
er reuse of components.

Both the enterprise bean provider and the container provider have obligations to fulfill
the contract. This contract includes:

• Object identity.

• Method invocation.

• Home interface.

A client expects that an enterprise bean object has a unique identifier. The container
provider is responsible for generating a unique identifier for each EJB object. For entity
enterprise beans (See Subsection 4.3.2), the EJB provider is responsible for supplying
a unique primary key that the container embeds into the EJB object’s identifier.

A client locates an enterprise bean container through the standard Java Naming and Di-

rectory InterfaceTM (JNDI). Within a container, the primary key is used to identify each
EJB object.

An enterprise bean and its container cooperate to implement the create, find, and de-
stroy operations callable by clients.

An enterprise bean provider defines a remote interface that defines the business meth-
ods callable by a client. The enterprise bean provider is also responsible for writing the
implementation of the business methods in the enterprise bean class. The container is
responsible for allowing the clients to invoke an enterprise bean through its associated
remote interface. The container delegates the invocation of a business method to its im-
plementation in the enterprise bean class.

An enterprise bean provider is responsible for supplying an enterprise bean’shome in-
terface. The enterprise bean’s home interface extends thejavax.ejb.EJBHome inter-
face. A home interface defines zero or morecreate(...) methods, one for each way to
create an EJB object. A home interface for entity beans may define zero or morefinder
methods, one for each way to lookup an EJB object, or a collection of EJB objects of a
particular type.

Enterprise JavaBeans

Sun Microsystems Inc. 13 February 4, 1998

The enterprise bean provider is responsible for the implementation of theejbCreate(...)
methods in the enterprise bean class, whose signature must match those of thecre-
ate(...) methods defined in the bean’s home interface. The container is responsible for
delegating a client-invokedcreate(...) method to the matchingejbCreate(...) method on
an enterprise bean instance.

The enterprise entity bean provider is responsible for the implementation of the
ejbFindMETHOD(...) methods in the enterprise bean class, whose signature must
match those of thefindMETHOD(...)finder methods defined in the bean’s home inter-
face. The container is responsible for delegating a client-invokedfindMETHOD(...)
method to the matchingejbFindMETHOD(...) method on an enterprise bean instance.

4.2.2 Component contract

This is a contract between an enterprise bean and its container. This contract includes:

• An enterprise bean class instance’s view of its life cycle. For a session
enterprise bean, this includes the state management callbacks defined by the
javax.ejb.SessionBeanandjavax.ejb.SessionSynchronizationinterfaces. For an
entity enterprise bean, this includes the state management callbacks defined by
thejavax.ejb.EntityBeaninterface. The container invokes the callback methods
defined by these interfaces at the appropriate times to notify the instance of the
important events in its life cycle.

• The javax.ejb.SessionContext interface that a container passes to a session
enterprise bean instance at instance creation. The instance uses the
SessionContextinterface to obtain various information and services from its
container. Similarly, an entity instance uses thejavax.ejb.EntityContext
interface to communicate with its container.

• The environmentjava.util.Properties that a container makes available to an
enterprise bean.

• A list of services that every container must provide for its enterprise beans.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise beans
with their declarative deployment information. All EJB tools must support ejb-jar files.

The ejb-jar contract includes:

• JAR file manifest entries that describe the content of the ejb-jar file.

• Java class files for the enterprise beans.

• Enterprise beans’ deployment descriptors. A deployment descriptor includes
the declarative attributes associated with an enterprise bean. The attributes
instruct the container how to manage the enterprise bean objects.

• Enterprise beans’ environment properties that the enterprise bean requires at
runtime.

Enterprise JavaBeans

Sun Microsystems Inc. 14 February 4, 1998

The following figure illustrates the Enterprise JavaBeans contracts that are defined in
Release 1.0.

Note that while the figure illustrates only a remote client running outside of the contain-
er, the client-side API is also applicable to clients who themselves are enterprise beans
installed in an EJB container.

4.3 Session and entity objects

Enterprise JavaBeans 1.0 defines two types of enterprise beans:

• A session object type.

• An entity object type.

The support for session objects is mandatory for an EJB 1.0 compliant container. The
support for entity objects is optional for an EJB 1.0 compliant container, but it will be-
come mandatory for EJB 2.0 compliant containers.

4.3.1 Session objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

• Can be transaction-aware.

• Updates data in an underlying database.

client EnterpriseBean

 ejb-jar file

container

container
contract

client’s view

EJB server

Enterprise JavaBeans

Sun Microsystems Inc. 15 February 4, 1998

• Relatively short-lived.

• Is destroyed when the EJB server crashes. The client has to re-establish a new
session object to continue computation.

• Does not represent data that should be stored in a database.

A typical EJB server and container provide a scalable runtime environment to execute
a large number of session objects concurrently.

4.3.2 Entity objects

A typical entity object has the following characteristics:

• Represents data in the database.

• Transactional.

• Shared access from multiple users.

• Can be long-lived (lives as long as the data in the database).

• Survives crashes of the EJB server. A crash is transparent to the client.

A typical EJB server and container provide a scalable runtime environment for a large
number of concurrently active entity objects.

4.4 Standard CORBA mapping

To ensure interoperability for multi-vendor EJB environments, we define a standard
mapping of the Enterprise JavaBeans client’s view contract to CORBA.

The mapping to CORBA covers:

1. Mapping of the EJB client interfaces to CORBA IDL.

2. Propagation of transaction context.

3. Propagation of security context.

The Enterprise JavaBeans to CORBA mapping not only enables on-the-wire interoper-
ability among multiple vendors’ implementations of an EJB server, but it also enables
non-Java clients to access server-side applications written as enterprise beans through
standard CORBA APIs.

The Enterprise JavaBeans to CORBA mapping relies on the standard CORBA Object
Services protocols for the propagation of the transaction and security context.

The CORBA mapping is defined in an accompanying document [6].

Enterprise JavaBeans

Sun Microsystems Inc. 16 February 4, 1998

The following figure illustrates a heterogeneous environment that includes systems
from five different vendors.

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP

Enterprise JavaBeans

Sun Microsystems Inc. 17 February 4, 1998

5 Client view of a session bean

This chapter describes the client’s view of a session enterprise bean. The session bean
itself implements the bean’s business logic. All the functionality for remote access, se-
curity, concurrency, transactions, etc. is provided by the bean’s container.

Although the client view of the enterprise bean is provided by classes implemented by
the container, the container itself is transparent to the client.

5.1 Overview

For a client, a session enterprise bean is a non-persistent object that implements some
business logic running on the server. One way to think of a session object is that a ses-
sion object is a logical extension of the client program that runs on the server. A session
object is not shared among multiple clients.

A client accesses a session enterprise bean through the session bean’s remote interface.
The object that implements the remote interface is called anEJB object.An EJB object
is a remote Java object accessible from a client through the standard Java APIs for re-
mote object invocation [3].

From its creation until destruction, an EJB object lives in a container. Transparently to
the client, the container provides security, concurrency, transactions, swapping to sec-
ondary storage, and other services for the EJB object.

Each session EJB object has an identity which, in general,does not survive a crash and
restart of the container, although a high-end container implementation can mask con-
tainer and server crashes to the client.

The client’s view of an EJB object is location-independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

Multiple EJB classes can be installed in a container. The container allows the clients to
look up the home interfaces of the installed EJB classes via JNDI. Each home interface
provides methods to create and destroy the EJB objects of the corresponding EJB class.

The client’s view of an EJB object is the same, irrespective of the implementation of
the enterprise bean and its container.

5.2 EJB container

An EJB container (container for short) is a system that functions as the “container” for
enterprise beans. Enterprise beans of multiple EJB classes can live in the same contain-
er. The client can look up the home interface for a specific EJB class using JNDI. The
container is responsible for making the installed EJB classes available to the client
through JNDI.

A container is where an enterprise bean object lives, just as a record lives in a database,
and a file or directory lives in a file system.

Enterprise JavaBeans

Sun Microsystems Inc. 18 February 4, 1998

5.2.1 Locating an enterprise bean’s home interface

A client locates an enterprise bean’s home interface using JNDI. For example, a con-
tainer forCart EJB objects can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)

initialContext.lookup(“applications/mall/freds-carts”);

A client’s JNDI name space may be configured to include the home interfaces of EJB
classes installed in multiple EJB containers located on multiple machines on a network.
The actual locations of an EJB class and EJB container are, in general, transparent to
the client.

5.2.2 What a container provides

The following diagram illustrates the view that a session container provides to its cli-
ents.

5.3 Home interface

An EJB container implements the home interface of each enterprise bean installed in
the container. The container makes the home interfaces available to the client through
JNDI.

The home interface allows a client to do the following:

• Create new EJB objects of a given class in the container.

client

EJB objects

EJB Home

container

EJB objectsEJB objects

EJB class 1

EJB objects

EJB Home

EJB objectsEJB objects

EJB class 2

Enterprise JavaBeans

Sun Microsystems Inc. 19 February 4, 1998

• Destroy an EJB object of a given class.

• Get the javax.ejb.EJBMetaData interface for the enterprise bean. The
javax.ejb.EJBMetaDatainterface is intended to allow application assembly
tools to discover information about the enterprise bean. The meta-data is
defined to allow loose client/server binding and scripting.

5.3.1 Creating an EJB object

A home interface defines one or morecreate(...) methods, one for each way to create
an EJB object. The arguments of thecreate methods are typically used to initialize the
state of the created EJB object.

The following example illustrates a home interface that defines a singlecreate(...)
method:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)

throws RemoteException, BadAccountException;
}

The following example illustrates how a client creates a new EJB object using acre-
ate(...) method of theCartHome interface:

cartHome.create(“John”, “7506”);

5.3.2 Destroying an EJB object

Thejavax.ejb.EJBHome interface defines several methods that allow a client to destroy
an EJB object. In addition, a client may destroy an EJB object using thedestroy() meth-
od on thejavax.ejb.EJBObject interface.

5.4 EJB object

A client never accesses instances of the enterprise bean’s class directly. A client always
uses the enterprise bean’s remote interface to access an enterprise bean’s instance. The
class that implements the enterprise bean’s remote interface is provided by the contain-
er. The distributed objects that this class implements are calledEJB objects.

An EJB object supports:

• The business logic methods of the object. The EJB object delegates invocation
of a business method to the enterprise bean instance.

• The methods of thejavax.ejb.EJBObject interface. javax.ejb.EJBObject
interface. These methods allow the client to:

• Get the EJB object’s container.
• Get the EJB object’s handle.
• Test if the EJB object is identical with another EJB object.
• Destroy the EJB object.

The implementation of the methods defined in thejavax.ejb.EJBObject
interface is provided by the container.

Enterprise JavaBeans

Sun Microsystems Inc. 20 February 4, 1998

5.5 Session object identity

Session objects are intended to be private resources used only by the client that created
them. For this reason, session EJB objects, from the clients perspective, appear anony-
mous. In contrast to entity EJB objects which expose their identity as a primary key,
session objects hide their identity.

Since all session objects hide their identity, there is no need to provide a finder for them.
The home interface for a session object must not define any finder methods.

A session EJB object handle can be held beyond the life of a client process by serializ-
ing the handle to persistent store. When the handle is later deserialized, the session EJB
object it returns will work as long as the object still exists on the server (an earlier tim-
eout or server crash may have destroyed it).

5.6 Client’s view of session bean’s life cycle

From a client point of view, the life cycle of a session bean object is illustrated below.

An object does not exist until it is created. When an object is created by a client, the
client gets a reference to the newly created EJB object.

A client that has a reference to an object can then do any of the following:

• Invoke application methods on the object through the session bean’s remote
interface.

• Get a reference to the object’s home interface.

• Get a handle for the object

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create()

object.destroy()

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException

or

home.destroy(...)

Server crash/timeout

handle.getEJBObject

or
Server crash/timeout

Enterprise JavaBeans

Sun Microsystems Inc. 21 February 4, 1998

• Pass the object as a parameter or return value within the scope of the client.

• Destroy the object. A container may also destroy the object automatically when
the object’s lifetime expires.

References to an EJB object that does not exist are invalid. Attempted invocations on
an object that does not exist will throwjava.rmi.ejb.NoSuchObjectException.

5.7 Creating and using a session bean

An example of the session bean runtime objects is illustrated by the following diagram:

A client creates a Cart session object (which provides a shopping service) using acre-
ate(...) method of the Cart’s home interface. The client then uses this object to fill the
cart with items and to purchase its contents.

If the client wishes to start his shopping session on his work machine and later complete
this session from his home machine, this can be done by getting the session’s handle,
sending the serialized handle to his home, and using it to reestablish access to the orig-
inal Cart.

For the following example, we start off by looking up the Cart’s home interface in JN-
DI. We then use the home interface to create aCart EJB object, and add a few items to
it:

CartHome cartHome = (CartHome) lookup(...) ;
Cart cart = cartHome.create(...);
cart.addItem(66);
cart.addItem(22);

Next we decide to complete this shopping session at home so we serialize a handle to
this cart session and mail it home:

Handle cartHandle = cart.getHandle();

CartEBclient

Cart

CartHome

container

Enterprise JavaBeans

Sun Microsystems Inc. 22 February 4, 1998

serialize cartHandle, attach to message and mail it home...

Finally we deserialize the handle at home and purchase the content of the shopping cart:

Handle cartHandle = deserialize from mail attachment...
Cart cart = (Cart) cartHandle.getEJBObject();
cart.purchase();
cart.destroy();

Enterprise JavaBeans

Sun Microsystems Inc. 23 February 4, 1998

6 Session bean component contract

This chapter specifies the contract between a session bean and its container. It defines
the life cycle of a session bean instance.

This chapter defines the developer’s view of session bean state management and the
container’s responsibility for managing it.

6.1 Overview

By definition, a session bean instance is an extension of the client that creates it:

• Its fields containconversational state on behalf of the client. This state
describes the conversation represented by a specific client/instance pair.

• It typically reads and updates data in a database on behalf of the client. Within
a transaction, some of this data may be cached in the bean.

• Its lifetime is typically that of its client.

 A session bean instance’s life may also be terminated by a container-specified
timeout or the failure of the server it is running on. For this reason, a client must
always be prepared to recreate a new instance if it loses the one it is using.

Typically, a session bean’s conversational state is not written to the database. A bean
developer simply stores it in the bean’s fields and assumes its value is retained for the
lifetime of the bean.

On the other hand, cached database data must be explicitly managed by the bean. A
bean must write any database updates it is caching prior to the bean’s transaction com-
pletion, and it must refresh any potentially stale database data it contains at the begin-
ning of the next transaction.

6.2 Goals

The goal of the session bean model is to make developing a session bean as simple as
developing the same functionality directly in a client.

The session bean container manages the life cycle of the session bean, notifying it when
bean action may be necessary, and providing a full range of services to ensure the bean
implementation scales to support a large number of clients.

The remainder of this section describes the session bean life cycle in detail and the pro-
tocol between the bean and its container.

6.3 A container’s management of its working set

In order to efficiently manage the size of its working set, a session bean container may
need to temporarily transfer the state of an idle session bean to some form of secondary
storage. The transfer from the working set to secondary storage is calledpassivation.
The transfer back is calledactivation.

A container may only passivate a session bean when that bean isnot in a transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 24 February 4, 1998

In order to help its container manage its state, a session bean is specified at deployment
as having one of the following state management modes:

• STATELESS - the bean contains no conversational state between methods; any
bean instance can be used for any client.

• STATEFUL - the bean contains conversational state which must be retained
across methods and transactions.

6.4 Conversational state

A STATEFUL session bean’s conversational state is defined as its field values plus the
transitive closure of the objects reachable from the session bean’s fields.

The transitive closure of a session bean instance is defined in terms of the standard Java
Serialization protocol—the fields that would be stored by serializing the enterprise
bean instance are considered part of the enterprise bean state.

In advanced cases, a session bean’s conversational state may contain open resources.
Examples of this are: open files, open sockets and open database cursors. It is not pos-
sible for a container to retain open resources while a session bean is passivated. A de-
veloper of such a session bean must close and open the resources using theejbPassivate
and ejbActivatenotifications.

6.4.1 Instance passivation and conversational state

The container performs the Java Serialization (or an equivalent of Java Serialization)
of the instance’s state after it invokes theejbPassivate method on the instance. The en-
terprise bean developer must ensure that the instance’s state is serializable afterejbPas-
sivate completes. The container may destroy an instance if the instance is not
serializable afterejbPassivate.

An instance may hold EJB object references to other EJB objects (sessions or entities).
When the container passivates the instance afterejbPassivate, it must store the EJB ob-
ject references with the passivated instance, and reconstruct these object references
when it loads the instance’s state beforeejbActivate.

While a session container is not required to use the Java Serialization protocol to store
the state of a passivated session instance, it must achieve the equivalent result. The one
exception is that containers are not required to reset the value oftransient fields during
activation1.

Declaring the enterprise bean’s fields as “transient” is strongly discouraged
to avoid having to deal with the indeterministic state of the transient variables
after an instance has been passivated and re-activated.

6.4.2 The effect of transaction rollback on conversational state

A session bean’s conversational state is not transactional. It is not automatically rolled
back to its initial state if the bean’s transaction rolls back.

1.This is to allow containers that use specialized JVM to swap out an instance’s state without performing the
actual Java Serialization protocol on the instance.

Enterprise JavaBeans

Sun Microsystems Inc. 25 February 4, 1998

If a rollback could result in a session bean’s conversational state being inconsistent with
the state of the underlying database, the bean developer must use the afterCompletion
notification to manually reset its state.

6.5 The protocol between a session bean and its container

Containers themselves make no actual service demands on their session beans. The
calls a container makes on a bean provide it with access to container services and de-
liver notifications issued by the container.

6.5.1 The requiredSessionBean interface

All session beans must implement theSessionBean interface.

ThesetSessionContext method is called by the bean’s container to associate a session
bean instance with its context maintained by the container. Typically a session bean re-
tains its session context as part of its conversational state.

TheejbDestroy notification signals that the instance is in the process of being destroyed
by the container. Since most session beans don’t have any database or resource state to
clean up, the implementation of this method is typically left empty.

The ejbPassivate notification signals the intent of the container to passivate the in-
stance. TheejbActivatenotification signals the instance it has just been reactivated.
Since containers automatically maintain the conversational state of a session bean in-
stance while it is passivated, most session beans can ignore these notifications. Their
purpose is to allow advanced beans to maintain open resources that need to be closed
prior to an instance’s passivation and reopened when it is reactivated.

6.5.2 TheSessionContext interface

All bean containers provide their bean instances with aSessionContext. This gives the
bean instance access to the instance’s context maintained by the container. TheSession-
Context interface has the following methods:

• ThegetEJBObject method returns the EJB object for the instance.

• ThegetHome method returns the home interface for the instance’s EJB class.

• The getEnvironment method returns the environment properties list the bean
was deployed with.

• ThegetCallerIdentity method returns the identity of the current invoker of the
bean instance’s EJB object.

• The isCallerInRole predicate tests if the immediate caller has a particular role.

• ThesetRollbackOnly method allows the instance to mark the current transaction
such that the only outcome of the transaction is to roll it back.

• The getCurrentTransaction method returns thejavax.jts.CurrentTransaction
interface that the bean can use for explicit transaction demarcation1.

Enterprise JavaBeans

Sun Microsystems Inc. 26 February 4, 1998

6.5.3 The optionalSessionSynchronization interface

A session bean can optionally implement thejavax.ejb.SessionSynchronizationinter-
face. This interface can provides the bean with transaction synchronization notifica-
tions. Session beans use these notifications to manage database data they may cache
within transactions.

TheafterBegin notification signals a session instance that a new transaction has begun.
At this point, the instance is already in the transaction and may do any database work
it requires within the scope of the transaction.

ThebeforeCompletion notification is issued when a session instance’s client has com-
pleted work on its current transaction but prior to committing the instance’s resources.
This is the time when the instance should write out any database updates it has cached.
The instance can cause the transaction to rollback by invoking thesetRollbackOnly
method on its session context.

TheafterCompletion notification signals that the current transaction has completed. A
completion status oftrue indicates the transaction committed; a status offalse indicates
a rollback occurred. Since a session instance’s conversational state is not transactional,
it may need to manually reset its state if a rollback occurred.

6.5.4 Business method delegation

The enterprise bean’s remote interface defines the business methods callable by a cli-
ent. The enterprise bean’s remote interface is implemented by the EJB object class gen-
erated by the container tools. The EJB object class delegates an invocation of a business
method to the matching business method implementation in the enterprise bean class.

6.5.5 Session bean’sejbCreate(...) methods

A client creates a session bean instance using one of thecreate methods defined in the
bean’s home interface. The bean’s home interface is provided by the bean developer;
its implementation is generated by the bean’s container.

The container creates an instance of a session bean in three steps. First, the container
calls the bean class’newInstance method to create a bean instance. Second, the contain-
er calls thesetSessionContext method to pass the context object to the instance. Third,
the container calls the instance’sejbCreatemethod whose signature matches the signa-
ture of thecreate method invoked by the client. The input parameters sent from the cli-
ent are passed to theejbCreate method.

Each session bean must have at least oneejbCreate method. The number and signatures
of a session bean’screate methods are specific to each EJB class.

Since a session bean represents a specific, private conversation between the bean and
its client, its create parameters typically contain the information the client uses to per-
sonalize the bean instance for its use.

1.The container makes theCurrentTransaction interface available only to the beans deployed with the
BEAN_MANAGED transaction attribute. ThegetCurrentTransaction interface will fail if invoked by a
bean that is deployed with any of the other transaction attributes.

Enterprise JavaBeans

Sun Microsystems Inc. 27 February 4, 1998

6.5.6 Serializing session bean methods

A container serializes calls to each of its bean instances. Most containers will support
many instances of a bean executing concurrently; however, each instance sees only a
serialized sequence of method calls.

The method calls a container serializes includes those delivered via an instance’s EJB
object as well as the service callbacks made by the container itself.

6.5.7 Transaction context of session bean methods

A session bean’safterBegin andbeforeCompletion methods are always called with the
proper transaction context (if the bean is transactional).

A session bean’snewInstance, setSessionContext, ejbCreate, ejbDestroy, ejbPassivate,
finalize(), ejbActivate,and afterCompletion methods are always called without a trans-
action. So, for example, it would usually be wrong to make database updates within a
session bean’sejbCreate or ejbDestroy method.

A session bean’s deployment descriptor determines whether or not its business methods
are called with a transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 28 February 4, 1998

6.6 STATEFUL non-transactional session bean state diagram

The following figure illustrates the life cycle of a STATEFUL non-transactional ses-
sion bean instance.

The following is a walk-through the lifecyle of a session bean instance:

• A non-transactional session bean’s life starts when a client invokes a create(...)
method on the bean’s home interface. This causes the container to invoke
newInstance() on the bean class to create a new memory object for the
enterprise bean. Next, the container creates a session context for the instance,
and callssetSessionContext() followed byejbCreate(...) on the instance, and
returns an EJB object to the client.

• The bean instance is now ready for client methods.

• The container’s caching algorithm may decide that the bean instance should be
evicted from memory (this could be done at the end of each method, or by using
an LRU policy). The container will issueejbPassivate() on the instance. After
this completes, the container must save the instance’s state to secondary
storage.

does not
 exist

method
 ready passive

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate(args)

create(args)

ejbDestroy()

destroy()

method

chosen as LRU victim

ejbActivate()

method

ejbPassivate()

create()
ejbDestroy

action initiated by client
action initiated by container

Enterprise JavaBeans

Sun Microsystems Inc. 29 February 4, 1998

• If a client invokes a method on this passivated instance, the container activates
the session instance prior to delegating the method invocation to it. To activate
the session instance, the container restores the instance’s state from secondary
storage and issuesejbActivate() on it.

• The enterprise bean is again ready for client methods.

• When the client callsdestroy() on the EJB object, this causes the container to
issueejbDestroy() on the bean instance. This ends the life of the session bean
instance. Any subsequent attempt by its client to invoke the instance will result
in throwing thejava.rmi.NoSuchObjectException(this exception is a subclass
of java.rmi.RemoteException). Note that a container can implicitly call the
destroy() method on the EJB object after the lifetime of the EJB object has
expired.

Enterprise JavaBeans

Sun Microsystems Inc. 30 February 4, 1998

6.7 STATEFUL transactional session bean state diagram

The following figure illustrates the life cycle of a STATEFUL transactional session
bean instance.

The following is a walk-through of the life cycle of a STATEFUL transactional session
bean instance:

method

commitafterBegin()

1. beforeCompletion()

does not
 exist

active passive

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate(args)

create(args)

ejbDestroy()

destroy()
chosen as LRU victim

ejbPassivate()

method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

ejbActivate()

method

2. afterCompletion(true)
afterCompletion(false)

rollback

Enterprise JavaBeans

Sun Microsystems Inc. 31 February 4, 1998

• A transactional session bean’s life starts when a client invokes a create(...)
method on the enterprise bean’s home interface. This causes the container to
invokenewInstance() on the bean class to create a new memory object for the
enterprise bean. Next, the container callssetSessionContext() followed by
ejbCreate(...) on the instance, and returns an EJB object to the client.

• The bean instance is now ready to be included in a transaction.

• After the bean instance is included in a transaction and before any of its other
methods are executed within the transaction, the container issuesafterBegin on
it.

• Bean methods invoked by the client in this transaction can now be delegated to
the bean instance.

• If a transaction commit has been requested, prior to actually committing the
transaction, the container issuesbeforeCompletion on the instance. This is when
the instance should write any cached updates to the database.

• The container then attempts to commit the transaction, resulting in either a
commit or rollback. If, in the previous step, transaction rollback had been
requested, rollback status is reached without issuingbeforeCompletion.

• When the transaction completes, the container issuesafterCompletion on the
instance, specifying the status of the completion (commit or rollback). If a
rollback occurred, the bean instance may need to reset its conversational state
back to the value it had at the beginning of the transaction.

• The container’s caching algorithm may decide that the bean instance should be
evicted from memory (this could be done at the end of each method, or by using
an LRU policy). The container issuesejbPassivate() on the instance. After this
completes, the container must save the instance’s state to secondary storage.

• If this passivated instance’s EJB object is included in a transaction, the
container will activate the session instance. To activate the session instance, the
container restores the instance’s state from secondary storage and issues
ejbActivate() on it.

• The enterprise bean is again ready to be included in a transaction.

• When the client callsdestroy() on the EJB object, this causes the container to
issueejbDestroy() on the bean instance. This ends the life of the session bean
instance. Any subsequent attempt by its client to invoke the instance will result
in throwing thejava.rmi.NoSuchObjectException(this exception is a subclass
of java.rmi.RemoteException). Note that a container can implicitly invoke the
destroy() method on the instance after the lifetime of the EJB object has expired.

6.8 Sequence diagrams for a STATEFUL session bean

This section contains sequence diagrams that illustrates the interaction of the classes.

Enterprise JavaBeans

Sun Microsystems Inc. 32 February 4, 1998

6.8.1 Notes

The sequence diagrams illustrate a box labeled “container provided classes”. These are
either classes that are part of the container, or classes that were generated by the con-
tainer tools. These classes communicate with each other through protocols that are con-
tainer implementation specific. Therefore, the communication between these classes is
not shown in the diagrams.

6.8.2 Creating a session object

The following diagram illustrates the creation of a transactional session enterprise bean.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB
object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 33 February 4, 1998

6.8.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transac-
tion.

business method

afterBegin

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

javax.jts.CurrentTransactionTransaction.begin()

If the instance was passivated it is reactivated

register_synchronization(synchronization)

new

business method
business method

business method

read some data

home
container

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 34 February 4, 1998

6.8.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session
enterprise bean instance.

write updates to DB

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

CurrentTransactionTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

beforeCompletion()

afterCompletion(status)

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 35 February 4, 1998

6.8.5 Passivating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session enter-
prise bean instance. Passivation typically happens spontaneously based on the needs of
the container. Activation typically occurs when a client calls a method.

ejbActivate

ejbPassivate

read state

client instanceEJB instance
context

containerEJB
object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

home

Enterprise JavaBeans

Sun Microsystems Inc. 36 February 4, 1998

6.8.6 Destroying a session object

The following diagram illustrates the destruction of a session bean.

6.9 Stateless session beans

Stateless session beans are session beans with no conversational state. This means that
each bean instance is identical, when it is not involved in serving a client-invoked meth-
od.

The home interface of a stateless session bean must have acreate method that takes no
arguments, and returns the session bean’s remote interface. The home interface must
not have any othercreate methods. The session enterprise bean class must define a sin-
gleejbCreate method. ThisejbCreate method must take no arguments.

Since all instances of a stateless session bean are equivalent, the container can choose
to delegate a client’s work to any available instance.

A container only needs to retain the number of instances it needs to service the current
client load. Due to client think time, this number is typically much smaller than the
number of active clients. Passivation is not needed for stateless sessions. If another
stateless session bean instance is needed to handle an increase in client work load, the
container creates one. If a stateless session bean is not needed to handle the current cli-
ent work load, the container can destroy it.

Since stateless session beans minimize the resources needed to support a large popula-
tion of clients, depending the implementation of the container, applications that use this
approach may scale somewhat better than those using stateful session beans. This ben-
efit may be offset by the increased complexity of the client application that uses the
stateless beans.

Clients use thecreate anddestroy method on the home interface of a stateless session
bean just like they do on a stateful session bean. Although the client thinks it is control-

client instance

destroy()

EJB session
context

containerEJB
object

container provided classes

synchro-
nization

ejbDestroy()

home

Enterprise JavaBeans

Sun Microsystems Inc. 37 February 4, 1998

ling the life cycle of an EJB instance, the container is handling thecreate anddestroy
calls without necessarily creating and destroying an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply
delegates client work to any available instance that is method-ready.

6.9.1 Stateless session bean state diagram

When a client calls a method on its stateless session bean reference, the container se-
lects one of its method-ready instances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session bean instance.

The following is a walk-through the lifecyle of a session bean instance:

• A non-transactional session bean’s life starts when the container invokes
newInstance() on the bean class to create a new memory object for the
enterprise bean. Next, the container callssetSessionContext() followed by
ejbCreate() on the instance. The container can perform the instance creation at
anytime, with no relationship to a client’s invoking thecreate() method.

• The bean instance is now ready to be delegated a method call from any client.

• When the container no longer needs the instance (this usually happens when the
container wants to reduce the number of instances in the method-ready pool),
the container invokesejbDestroy() on it. This ends the life of the stateless
session bean instance.

does not
 exist

method-ready
pool

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbDestroy()

method

method()
ejbCreate()

action initiated by client
action initiated by container

Enterprise JavaBeans

Sun Microsystems Inc. 38 February 4, 1998

6.10 Sequence diagrams for a STATELESS session bean

This section contains sequence diagrams that illustrates the interaction of the classes.

6.10.1 Client-invokedcreate()

The following diagram illustrates the creation of an EJB object that is implemented by
a stateless session bean.

6.10.2 Business method invocation

The following diagram illustrates the invocation of a business method.

client instance transaction
service

EJB session
context

EJB
object

create()

container provided classes

new

synchro-
nizationhome

container

business method

client instance transactiondatabase
service

EJB session
context

EJB
object

container provided classes

synchro-
nization

business method

read or update some data

home
container

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 39 February 4, 1998

6.10.3 Client-invokeddestroy()

The following diagram illustrates the destruction of an EJB object that is implemented
by a stateless session bean.

6.10.4 Adding instance to the pool

The following diagram illustrates the sequence for container’s adding an instance to the
method-ready pool.

client instance

destroy()

EJB session
context

containerEJB
object

container provided classes

synchro-
nizationhome

instance transaction
service

EJB

ejbCreate()

session
context

EJB
object

container provided classes

synchro-
nization

setSessionContext()

new

home
container

new

Enterprise JavaBeans

Sun Microsystems Inc. 40 February 4, 1998

The following diagram illustrates the sequence for container’s removing an instance
from the method-ready pool.

6.11 The responsibilities of the enterprise bean provider

This section describes the responsibilities of session enterprise bean provider to ensure
that an enterprise bean can be deployed in any EJB container.

6.11.1 Classes and interfaces

The enterprise bean provider is responsible for providing the following class files:

• Enterprise bean class.

• Enterprise bean’s remote interface.

• Enterprise bean’s home interface.

6.11.2 Enterprise bean class

The following are the requirements for session enterprise bean class:

The class must implement thejavax.ejb.SessionBean interface.

The class must be defined aspublic, and must not beabstract.

The class must not implement the enterprise bean’s remote interface.

The class must implement the business methods and theejbCreatemethods.

The class can optionally implement thejavax.ejb.SessionSynchronization interface.

6.11.3 ejbCreate methods

The enterprise bean class may define zero or moreejbCreate(...) methods whose signa-
tures must follow these rules:

The method name must beejbCreate.

instance transaction
service

EJB session
context

EJB
object

container provided classes

synchro-
nizationhome

container

ejbDestroy()

finalize()

Java
VM

finalize()

Enterprise JavaBeans

Sun Microsystems Inc. 41 February 4, 1998

The method must be declared aspublic.

The return type must bevoid.

The methods arguments must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions. The throws
clause may also includejavax.ejb.EJBException,but it must not include theja-
va.rmi.RemoteException.

6.11.4 Business methods

The class may define zero or more business methods whose signatures must follow
these rules:

The function names can be arbitrary, but they must not conflict with the names of the
methods defined by the EJB architecture (ejbCreate, ejbActivate, etc.).

The business method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions. The throws
clause may also include thejavax.ejb.EJBException, and it must not include theja-
va.rmi.RemoteException.

6.11.5 Enterprise bean’s remote interface

The following are the requirements for the enterprise bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

For each method defined in the remote interface, there must be a matching method in
the enterprise bean’s class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the
enterprise bean class must be defined in the throws clause of the method of the
remote interface. The only exception to this rule is thejavax.ejb.EJBException
that must not be defined in the throws clause of the remote method.

6.11.6 Enterprise bean’s home interface

The following are the requirements for the enterprise bean’s home interface signature:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

Enterprise JavaBeans

Sun Microsystems Inc. 42 February 4, 1998

Each method defined in the home interface must be one of the following:

• A create method.

Eachcreate method must be named “create”, and it must match one of theejbCreate
methods defined in the enterprise bean class. The matchingejbCreate method must
have the same number and types of its arguments (note that the return type is different).

The return type for acreate method must be the enterprise bean’s remote interface type.

All the exceptions defined in the throws clause of anejbCreate method of the enterprise
bean class must be defined in the throws clause of the matchingcreate method of the
remote interface. The only exception to this rule is thejavax.ejb.EJBException that
must not be defined in the throws clause of thecreate method.

6.12 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a session
bean.

6.12.1 Generation of implementation classes

The tools provided by the container are responsible for the generation of additional
classes at enterprise bean deployment time. The tools obtains the information that they
need for generation of the additional classes by introspecting the classes and interfaces
provided by the enterprise bean provider and from the information obtained from the
bean’s deployment descriptor.

The container tools must generate the following classes:

• A class that implements the enterprise bean’s home interface (EJB Object
class).

• A class that implements the enterprise bean’s remote interface (EJB Home
class).

The container tools may also generate a class that mixes some container specific code
with the enterprise bean class. The code may, for example, help the container to manage
the bean instances at runtime. Subclassing, delegation, and code generation can be used
by the tools.

The container’s tools may also allow generation of additional code that wraps the busi-
ness methods and is used to customize the business logic to an existing operational en-
vironment. For example, a wrapper for adebit function on theAccountManagerbean
may check that the debited amount does not exceed a certain limit.

6.12.2 EJB Home class

The EJB home class is a container generated class that implements the enterprise bean’s
home interface. The class implements the methods of thejavax.ejb.EJBHome interface,
and thecreate methods specific to the enterprise bean.

The implementation of eachcreate(...)methods invokes a matchingejbCreate(...).

Enterprise JavaBeans

Sun Microsystems Inc. 43 February 4, 1998

The implementation of thedestroy(...) methods defined in thejavax.ejb.EJBHome in-
terface must activate the instance (if the instance is in the passive state) and invoke the
ejbDestroy method on the instance.

6.12.3 EJB Object class

The EJB Object class is a container generated class that implements the enterprise
bean’s remote interface. It implements the methods of thejavax.ejb.EJBObject inter-
face and the business methods specific to the enterprise bean.

The implementation of thedestroy(...) method (defined in thejavax.ejb.EJBObjectin-
terface) must activate the instance (if the instance is in the passive state) and invoke the
ejbDestroy method on the instance.

The implementation of each business method must activate the instance (if the instance
is in the passive state) and invoke the matching business method on the instance.

6.12.4 Single-threaded rule

The container must ensure that only one thread can be executing an instance at any
time.The exception to this rule is that a container must allow callbacks to an instance
within the same transaction. For example, if a client invokes enterprise bean A, A calls
another enterprise bean B, and B invokes a callback method on A, the container must
allow the callback from B to A, even though A is still executing the client’s call.

Note that a session enterprise bean is intended to support only a single client. Therefore,
it would be an application error if two clients attempted to invoke the same session
bean. The EJB specification leaves the container behavior implementation specific if
concurrent access occurs.

6.12.5 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security check-
ing, and exception handling described in Chapters 11, 14, and 12.

Enterprise JavaBeans

Sun Microsystems Inc. 44 February 4, 1998

7 Example session scenario

This chapter describes an example development and deployment scenario of a session
enterprise bean. We use the scenario to explain the responsibilities of the enterprise
bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between a session enterprise bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise bean provider and
the client-side programmer).

7.1 Overview

Wombat Inc. has developed theCartBean session bean. The CartBean is deployed in a
container provided by the Acme Corporation.

Enterprise JavaBeans

Sun Microsystems Inc. 45 February 4, 1998

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteCart

Cart

CartBean

AcmeRemote

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

CartHome

extends or implements interface

extends implementation, code generation, or delegation

AcmeCartHome

AcmeHome AcmeBean

SessionBean

AcmeCartBean

Home

Enterprise JavaBeans

Sun Microsystems Inc. 46 February 4, 1998

7.2.1 What the session bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the session bean’s remote interface (Cart). The remote interface defines
the business methods callable by a client. The remote interface must extend the
javax.ejb.EJBObject interface, and follow the standard rules for a Java RMI
remote interface. The remote interface must be defined aspublic.

• Write the business logic in the session bean class (CartBean). The enterprise
bean class must not implement the enterprise bean’s remote interface (Cart).
The enterprise bean must implement thejavax.ejb.SessionBean interface, and
define theejbCreate(...) methods invoked at an EJB object creation.

• Define a home interface (CartHome) for the enterprise bean. The home
interface must be defined aspublic, extend thejavax.ejb.EJBHomeinterface,
and follow the standard rules for Java RMI remote interfaces.

• Specify the environment properties that the session bean needs at runtime. The
environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
session bean provider wishes to pass with the bean to the next stage of the
development/deployment workflow.

7.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

• The AcmeHome class provides the Acme implementation of the
javax.ejb.EJBHome methods.

• The AcmeRemote class provides the Acme implementation of the
javax.ejb.EJBObject methods.

• The AcmeBean class provides additional state and methods to allow Acme’s
container to manage its session bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

7.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the remote bean class (AcmeRemoteCart) for the session bean. The
remote bean class is a “wrapper” class for the enterprise bean and provides the
client’s view of the enterprise bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote bean class.

• Generate the implementation of the session bean class suitable for the Acme
container (AcmeCartBean). AcmeCartBean includes the business logic from
the CartBean class mixed with the services defined in the AcmeBean class.
Acme tools can use inheritance, delegation, and code generation to achieve a
mix-in of the two classes.

Enterprise JavaBeans

Sun Microsystems Inc. 47 February 4, 1998

• Generate the implementation class for the session bean’s home interface
(AcmeCartHome). The tools also generate the classes that implement the
communication stub and skeleton for the home class.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans

Sun Microsystems Inc. 48 February 4, 1998

8 Client view of an entity

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

This chapter describes the client’s view of an entity EJB object. It is actually a contract
fulfilled by an enterprise bean’s container in which the enterprise bean is installed, with
only the business methods supplied by the enterprise bean itself.

Although the client view of the enterprise beans is provided by classes implemented by
the container, the container itself is transparent to the client.

8.1 Overview

For a client, an entity enterprise bean is a persistent object that represents an object view
of an entity stored in a persistent storage (for example, in a database) or an entity that
is implemented by an existing enterprise application.

A client accesses an entity enterprise bean through the entity bean’s remote interface.
The object that implements the remote interface is called anEJB object.An EJB object
is a remote Java object accessible from a client through the standard Java APIs for re-
mote object invocation [3].

From its creation until its destruction, an EJB object lives in a container. Transparently
to the client, the container provides security, concurrency, transactions, persistence,
and other services for the EJB objects that live in the container. The container is trans-
parent to the client—there is no API that a client can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the en-
tity bean is installed properly synchronizes access to the entity state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the
container in which the entity object has been created. The object identity is implement-
ed by the container.

The client’s view of an EJB object is location independent. A client running in the same
JVM as the EJB object uses the same API as a client running in a different JVM on the
same or different machine.

Multiple EJB classes can be installed in a container. For each EJB class installed in a
container, the container implements the enterprise bean’shome interface.The home in-
terface allows the client to create, look up, and destroy entity EJB objects of a given
enterprise bean. A client can look up the enterprise bean’s home interface through JN-
DI; it is the responsibility of the container to make the enterprise bean’s home interface
available in the JNDI name space.

A client’s view of an EJB object is the same, irrespective of the implementation of the
enterprise bean and its container. This ensures that a client application does not break
if an enterprise bean is moved to a different container, or its implementation is changed.

Enterprise JavaBeans

Sun Microsystems Inc. 49 February 4, 1998

8.2 EJB container

An EJB container (container for short) is a system that functions as a “container” for
enterprise beans. A container is where an enterprise bean object lives, just as a record
lives in a database, and a file or directory lives in a file system.

Multiple EJB classes can be installed in a single container. For each EJB class installed
in a container, the container provides ahome interface that allows the client to create,
look up, and destroy EJB objects of the corresponding EJB class. The container makes
the enterprise beans’ home interfaces available in the JNDI name space to allow clients
to look up the home interfaces through JNDI.

An EJB server may host one or multiple EJB containers. The containers are transparent
to the client: there is no client API to manipulate the container, and there is now way
for a client to tell in which container an enterprise bean is installed.

8.2.1 Locating enterprise bean’s home interface

A client locates an enterprise bean’s home interface using JNDI. For example, the home
interface for the Account enterprise bean can be located using the following code seg-
ment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)

initialContext.lookup(“applications/bank/accounts”);

A client’s JNDI name space may be configured to include the home interfaces of EJB
classes installed in multiple EJB containers located on multiple machines on a network.
The actual location of an EJB container is, in general, transparent to the client.

Enterprise JavaBeans

Sun Microsystems Inc. 50 February 4, 1998

8.2.2 What a container provides

The following diagram illustrates the view that an entity container provides to its cli-
ents.

8.3 Enterprise bean’s home interface

The container provides the implementation of the home interface of each enterprise
bean installed in the container. The container makes the home interface of every enter-
prise bean installed in the container accessible to the clients through JNDI. The imple-
mentation class of an enterprise bean’s home interface is calledEJB home.

The home interface of an entity bean allows a client to do the following:

• Create new EJB objects.

• Look up existing EJB objects.

• Destroy an EJB object.

• Get the javax.ejb.EJBMetaData interface for the enterprise bean. The
javax.ejb.EJBMetaDatainterface is intended to allow application assembly
tools to discover information about the enterprise bean. The meta-data is
defined to allow loose client/server binding and scripting.

client

EJB objects

EJB Home

container

EJB objectsEJB objects

EJB class 1

EJB objects

EJB Home

EJB objectsEJB objects

EJB class 2

other EJB classes

Enterprise JavaBeans

Sun Microsystems Inc. 51 February 4, 1998

An enterprise bean’s home interface must extend thejavax.ejb.EJBHome interface, and
follow the standard rules for Java remote interfaces.

8.3.1 create methods

An entity bean’s home interface can define zero or morecreate(...) methods, one for
each way to create an EJB object. The arguments of thecreate methods are typically
used to initialize the state of the created EJB object.

The return type of acreate method is the enterprise bean’s remote interface.

The throws clause of everycreate method must include thejava.rmi.RemoteException.
The throws clause typically includes also thejavax.ejb.CreateException.

The following is an example of thecreate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException;

 ...
}

The following example illustrates how a client creates a new EJB object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);

8.3.2 finder methods

An entity bean’s home interface defines one or morefindermethods1, one for each way
to look up an EJB object, or a collection of EJB objects of a particular type. The names
of each finder method must start with the prefix “find”, such asfindLargeAccounts(...).
The arguments of a finder method are used by the entity bean implementation to locate
the requested entity objects. The return type of a finder method must be the enterprise
bean’s remote interface, or a type representing a collection of EJB objects.

The throws clause of every finder method must include thejava.rmi.RemoteException.
The throws clause typically includes also thejavax.ejb.FinderException.

The home interface of every entity bean includes thefindByPrimaryKey(primaryKey)
method that allows a client to locate an entity bean using a primary key. The name of
the method is alwaysfindByPrimaryKey, it has single argument that is of the enterprise
bean’s primary key type, and its return type is the enterprise bean’s remote interface.

The following is an example of thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...

1.ThefindByPrimaryKey(primaryKey)method is mandatory for all entity beans.

Enterprise JavaBeans

Sun Microsystems Inc. 52 February 4, 1998

public Account findByPrimaryKey(String AccountNumber)
 throws RemoteException, FinderException;

}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

8.3.3 destroy methods

The javax.ejb.EJBHome interface defines several methods that allow the client to de-
stroy EJB objects.

public interface EJBHome extends Remote {
void destroy(Handle handle) throws RemoteException,

DestroyException;
void destroy(Object primaryKey) throws RemoteException,

DestroyException;
}

8.4 Entity EJB object life cycle

This section describes the life cycle of an EJB object from the perspective of a client.

Enterprise JavaBeans

Sun Microsystems Inc. 53 February 4, 1998

The following diagram illustrates a client’s point of view of an entity EJB object life
cycle (the termreferenced in the diagram means that the client program has a reference
of the EJB object).

An EJB object does not exist until it is created. Until it is created, it has no identity. Af-
ter it is created, it has identity. A client creates an EJB object using the enterprise bean’s
home interface that is implemented by the container. When an EJB object is created by
a client, the client obtains a reference to the newly created EJB object.

In an environment with a legacy data, EJB objects may “exist” before the container and
EJB object are deployed. In addition, an entity EJB object may be “created” in the en-
vironment via a mechanism other than by invoking acreate(...) method of the home in-
terface (e.g. by inserting a database record), but still may be accessible by a container’s
clients via the finder methods. Also, an EJB object may be deleted directly using other
means than thedestroy() operation (e.g. by deletion of a database record). The “direct
insert” and “direct delete” transitions in the diagram represent such direct database ma-
nipulation.

For an existing EJB object, a client can get a reference to an EJB object in any of the
following ways:

• Receive a reference as a parameter in a method call (input parameter or result).

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create(...)

home.destroy(...)

home.find(...)

object.destroy()

release reference

object.businessMethod(...)

obj.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException

home.destroy(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or

Enterprise JavaBeans

Sun Microsystems Inc. 54 February 4, 1998

• Look up the EJB object using a finder method of the enterprise bean’s home
interface.

• Obtain the reference from a bean’s handle (handles are described later in
Section 8.7).

A client that has a reference to an object can then do any of the following:

• Invoke business methods on the object through the EJB object’s remote
interface.

• Obtain a reference to the enterprise bean’s home interface.

• Pass the reference as a parameter or return value.

• Obtain the EJB object’s primary key.

• Obtain the EJB object’s handle.

• Destroy the EJB object.

All references to an object that does not exist are invalid. All attempted invocations on
an object that does not exist will result in anjava.rmi.NoSuchObjectExceptionbeing
thrown.

All entity EJB objects are consideredpersistent objects. The lifetime of an entity EJB
object is not limited by the lifetime of the Java Virtual Machine process in which it ex-
ecutes. A crash of the Java Virtual Machine may result in a rollback of current transac-
tions, but does not destroy previously created EJB entity objects, or invalidate their
references held by clients.

Multiple clients can access the same EJB object concurrently. Transactions are used to
isolate the clients’s work from each other.

8.5 Primary key and object identity

Every entity EJB object has a unique identity within its home. The object’s identity
within its container is determined by the EJB object’s home, and EJB object’s primary
key. If two EJB objects have the same home and the same primary key, they are con-
sidered identical.

Enterprise JavaBeans allows a primary key object to be anyjava.io.Serializable class.
The primary key class is specific to an enterprise bean class (i.e. each enterprise bean
class may have a difference class for its primary key).

A client that holds a reference to an EJB object can determine the object’s identity with-
in its home by invoking thegetPrimaryKey() method on the reference.

A client can test whether two EJB object references refer to the same entity by any of
the following methods:

• Invoke theisIdentical(object) method on one of the references and pass the
other reference as the method’s argument.

Enterprise JavaBeans

Sun Microsystems Inc. 55 February 4, 1998

• Obtain the entity objects’ primary keys, and compare the keys using the Java
equality operator. This method works only the two EJB references refer to EJB
objects with the same home.

The following code illustrates using theisIdentical() method to test if two object refer-
ences refer to the same entity EJB object:

Account acc1 = ...;
Account acc2 = ...;

if (acct1.isIdentical(acc2)) {
acc1 and acc2 are the same EJB objects

} else {
acc2 and acc2 are different EJB object

}

A client that knows the primary key of an entity EJB object can obtain a reference to
the object by invoking thefindByPrimaryKey(key) method of the home interface imple-
mented by the container.

Note that Enterprise JavaBeans does not specify “object equality” for EJB object refer-
ences. The result of comparing two object references using the JavaObject.equals(Ob-
ject obj) method is unspecified. Performing theObject.hashCode() method on two
object references that represent the same object is not guaranteed to yield the same re-
sult. Therefore, a client should always use theisIdentical method to determine if two
EJB object references refer to the same EJB object.

8.6 Enterprise bean’s remote interface

A client accesses an entity bean through the enterprise bean’s remote interface. An en-
terprise bean’s remote interface must extend thejavax.ejb.EJBObject interface. A re-
mote interface defines the business methods that are callable by clients.

The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObject interface defines methods that allow the client to do the fol-
lowing operations on an EJB object’s reference:

• Obtain the home interface for the EJB class.

• Destroy the EJB object.

Enterprise JavaBeans

Sun Microsystems Inc. 56 February 4, 1998

• Obtain the EJB object’s handle.

• Obtain the EJB object’s primary key.

The implementation of the methods defined in thejavax.ejb.EJBObject interface is pro-
vided by the container. The business methods are delegated to the enterprise bean class.

Note that the EJB object does not expose the enterprise bean’s methods introduced by
thejavax.ejb.EnterpriseBean andjavax.ejb.EntityControl interfaces to the client. These
interfaces are not intended for the client—they are for the container to manage the EJB
instances.

8.7 Enterprise bean’s handle

A handle is an object that identifies an EJB object. A client that has a reference to an
EJB object can obtain the object’s handle by invokinggetHandle() method on the ref-
erence.

Since the handle’s class implements thejava.io.Serializable interface, a client may se-
rialize it. The client may use the serialized handle later, possibly in a different process,
to re-obtain a reference to the EJB object identified by the handle.

Containers that store long-lived entities will typically provide handle implementations
that allow clients to store a handle for a long time (possibly many years). Such a handle
will be usable even if parts of the technology used by the container (e.g. ORB, DBMS,
server) have been upgraded or replaced while the client has stored the handle.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account EJB object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and resurrect
// an object reference to the account EJB object from the handle.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account) handle.getEJBObject();
account.debit(100.00);

Enterprise JavaBeans

Sun Microsystems Inc. 57 February 4, 1998

9 Entity bean component contract

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

The entity bean component contract is the contract between an entity bean and its con-
tainer. It defines the life cycle of an entity bean instance and the model for method del-
egation the client-invoked business methods. The main goal of this contract is to ensure
that a component is portable across all compliant EJB containers.

This chapter defines the enterprise bean developer’s view of this contract, and the con-
tainer’s responsibility for managing the component’s life cycle.

9.1 The runtime execution model

This section describes the runtime model and the classes used in the description of the
contract between an entity enterprise bean and its container.

An enterprise bean instanceis an object whose class was provided by the enterprise
bean developer.

classes provided by
enterprise bean provider

classes generated by
container tools

client

container

EJB objects

EJB home

EJB objectsEJB objects

enterprise bean
instances

EJB objects

EJB home

EJB objectsEJB objects

enterprise bean
instances

bean class 1

bean class 2

Enterprise JavaBeans

Sun Microsystems Inc. 58 February 4, 1998

An EJB object is an object whose class was generated at deployment time by the con-
tainer provider’s tools. The EJB object class implements the enterprise bean’s remote
interface. A client never references an enterprise bean instance directly—a client al-
ways references an EJB object whose implementation is provided by the container.

An EJB homeobject provides the life cycle operations (create, destroy, find) for its EJB
objects. The class for the EJB home object was generated by the container provider’s
tools at deployment time. The home object implements the enterprise bean’s home in-
terface that was defined by the EJB provider.

9.2 Entity persistence

An entity enterprise bean implements an object view of an entity stored in an underly-
ing database, or an entity implemented by an existing enterprise application (e.g. CICS
or SAP R/3). The protocol for transferring the state of the entity between the instance
variables of an enterprise bean instance and the underlying database is referred as object
persistence.

The entity component protocol allows the enterprise bean provider either to implement
the enterprise bean’s persistence directly in the enterprise bean class (we call this bean-
managed persistence), or delegate the enterprise bean’s persistence to the container (we
call this container-managed persistence).

In many cases, the underlying data source may be an existing application rather than a
database.

Account

Container

Client
Account 100

Bean

Account

Container

Client
Account 100

Entity Bean

existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application

Enterprise JavaBeans

Sun Microsystems Inc. 59 February 4, 1998

9.2.1 Bean-managed persistence

In the bean-managed case, the enterprise bean provider writes database access calls

(e.g. using JDBCTM or JSQL) directly in the methods of the enterprise bean class. The
database access calls are performed in theejbCreate(...), ejbDestroy(), ejbFind-
METHOD(), ejbLoad(), andejbStore() enterprise bean callback methods.

The advantage of using bean-managed persistence is that the enterprise bean can be in-
stalled into a container without the container having to generate database calls that im-
plement the enterprise bean’s persistence. The main disadvantage is that the persistence
is hard-coded into the enterprise bean class, which makes it hard to adapt the enterprise
bean to a different data source.

9.2.2 Container-managed persistence

In the container-managed case, the bean developer does not write the database access
calls in the enterprise bean. Instead, the container provider’s tools generate the database
access calls at enterprise bean’s deployment time (i.e. when the enterprise bean class is
installed into a container). The enterprise bean provider must specify thecontainer-
ManagedFields deployment descriptor property to specify the list of instance fields for
which the container provider tools must generate access calls.

The enterprise bean provider must declare the container-managed fields aspublic to al-
low the container tools to generate the additional classes that transfer data between the
instance fields and the data source. The container-managed fields must be of Java prim-
itive types.

 This restriction to only primitive types can, in the future, be relaxed to allow
persisting bean handles, references to other enterprise beans, and any
java.io.Serializable objects.

The advantage of using container-managed persistence is that the enterprise bean class
is independent from the data source in which the entity is stored. The container tools
can generate classes that use JDBC or JSQL to access the entity state in a relational da-
tabase, or classes that implement access to a non-relational data source, such as IMS
databases, or classes that implement function calls to existing enterprise applications,
such as SAP R/3 or CICS applications.

The disadvantage is that sophisticated tools must be used at deployment time to map
the enterprise bean’s fields to a data source. These tools and containers are typically
specific to each data source.

Enterprise JavaBeans

Sun Microsystems Inc. 60 February 4, 1998

9.3 Instance life cycle

The following diagram illustrates the life cycle of an enterprise bean’s instance.

An instance is in one of the three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any
particular EJB object identity.

• Ready state. An instance in the ready state is assigned to an EJB object.

The following is a walk-through of the life cycle of an entity enterprise bean instance:

• An enterprise bean’s instance life starts when the container creates the instance
usingnewInstance(). The container then invokes thesetEntityContext() method
to pass the instance a reference to an entity context interface. The entity context
object allows the instance to invoke services provided by the container and
obtain the information about the caller of a client-invoked method1.

1.The entity context passed by the container to the instance in the setEntityContext method is an interface not
a class that contains static information. For example, the result of the getPrimaryKey() method might be
different each time an instance moves from the pool state to the ready state.

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()
2. finalize()

ready

ejbPassivate()
ejbDestroy()ejbCreate(args)

ejbStore()ejbLoad()

business method

ejbFindMETHOD()

ejbPostCreate()

Enterprise JavaBeans

Sun Microsystems Inc. 61 February 4, 1998

• The instance enters the pool of available instances of the enterprise bean class.
While the instance is in the available pool, the instance is not associated with an
identity of a specific EJB object. All instances in the pool are equivalent, and
therefore can be assigned by the container to any EJB object at the transition to
the ready state. While the instance is in the pooled state, the container may use
the instance to execute any of the enterprise bean’s finder methods (shown as
ejbFindMETHOD(...) in the diagram).

• An instance transitions from the pooled state to the ready state when the
container picks that instance to service a client call on an EJB object for which
there is no instance in the ready state in the proper transaction context. There
are two possible transitions from the pooled to the ready state: through the
ejbCreate(...) and ejbPostCreate()methods, or through theejbActivate()
method. The container invokes theejbCreate(...)andejbPostCreate() methods
when the instance is assigned to an EJB object during EJB object creation (i.e.
when the client invokes a create method on the bean’s home object). The
container invokes theejbActivate() method on an instance when the instance
needs to be activated to service an invocation on an existing EJB object.

• When an enterprise bean instance is in the ready state, the instance is associated
with a specific EJB object. While the instance is in the ready state, the container
can invoke theejbLoad() and ejbStore() methods zero or more times, at
anytime. A business method can be invoked on the instance zero or more times.
Invocations of theejbLoad() andejbStore() methods can be arbitrarily mixed
with invocations of business methods. The purpose of theejbLoad andejbStore
methods is to synchronize the state of the instance with the state of the entity in
the underlying data source.

• Eventually, the container will transition the instance to the pooled state. There
are two possible transitions from the ready to the pooled state: through the
ejbPassivate() method, and through theejbDestroy() method. The container
invokes theejbPassivate() method when the container wants to disassociate the
instance from the EJB object without destroying the EJB object. The container
invokes theejbDestroy() method when the container is destroying the EJB
object (i.e. when the client invoked thedestroy() method on the EJB object, or
one of thedestroy() methods on the enterprise bean’s home interface).

• When the instance is put back into the pool, it is no longer associated with the
identity of the EJB object. The container can assign the instance to any EJB
object of the same enterprise bean class.

• An instance in the pool can be removed by calling theunsetEntityContext()
method on the instance. The Java runtime will eventually invoke thefinalize()
method on the instance.

Notes:

Enterprise JavaBeans

Sun Microsystems Inc. 62 February 4, 1998

1. The entity context passed by the container to the instance in the
setEntityContext method is an interface not a class that contains static
information. For example, the result ofgetPrimaryKey() method might be
different each time an instance moves from the pool state to the ready state.

9.4 The entity bean component contract

This section specifies the contract between an entity bean and its container. The con-
tract is specified here assuming bean-managed persistence. The differences in the con-
tract for a container-managed persistence are defined in Section 9.9.

9.4.1 Enterprise bean instance’s view:

The following describes the enterprise bean instance’s side of the contract:

An enterprise bean is responsible for implementing the following functionality in the
enterprise bean methods:

• public void setEntityContext(EntityContext ic);

A container uses this method to pass a reference to theEntityContext interface
to the enterprise bean instance. If the enterprise bean instance needs to use the
entity context during its lifetime, it must remember the entity context in an
instance variable.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of thesetEntityContext(ic) method to allocate
any resources that are to be held by the instance for its lifetime. Such resources
cannot be specific to an EJB object identity since the instance might be reused
during its lifetime to serve multiple EJB objects.

• public void unsetEntityContext(EntityContext ic);

A container invokes this method before terminating the life of the instance.

It is unspecified in which transaction context this method is called. An identity
of an EJB object is not available during this method.

The instance can take advantage of theunsetEntityContext(ec) method to free
any resources that are held by the instance (these resource typically had been
allocated by thesetEntityContext() method).

• public void ejbCreate(...);

There are zero1 or moreejbCreate(...) methods, whose signatures match the
signatures of thecreate(...)methods of the enterprise bean’s home interface.
The container invokes anejbCreate(...) method on an enterprise bean instance
when a client invokes a matchingcreate(...)function.

1.An entity enterprise bean has noejbCreate(...) methods if it does not define any create methods in its home
interface. Such an entity enterprise bean does not allow the clients to create new EJB objects. The enterprise
bean restricts the clients to accessing entities that were created through direct database inserts.

Enterprise JavaBeans

Sun Microsystems Inc. 63 February 4, 1998

The implementation of theejbCreate(...) method typically validates the client-
supplied arguments, and inserts a record representing the entity into the
database. The method also initializes the instance’s variables. TheejbCreate(...)
method must return the primary key for the created entity.

An ejbCreate(...) method executes in the proper transaction context.

• public void ejbPostCreate();

The ejbPostCreate() method gives the enterprise bean instance a chance to
perform additional initialization after anejbCreate(...) method has completed.
The EJB object identity is available during theejbPostCreate() method. The
instance may, for example, pass its own EJB object reference to another EJB
object as a method argument.

An ejbPostCreate() method executes in the proper transaction context.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the
instance from the pool and assigns it to a specific EJB object identity. The
ejbActivate() method gives the enterprise bean instance the chance to acquire
additional resources that it needs while it is in the ready state.

This method executes in an unspecified transaction context. The instance can
obtain the identity of the EJB object via thegetPrimaryKey() or getEJBObject()
method on the entity context. The instance can rely on that the primary key and
EJB object identity will remain associated with the instance until the
completion ofejbPassivate() or ejbDestroy().

Note that instance should not use theejbActivate() method to read the state of
the entity from the database; the instance should load its state only in the
ejbLoad() method.

public void ejbPassivate();
The container invokes this method on an instance when the container decides to
disassociate the instance from an EJB object identity, and put the instance back
into the pool of available instances. TheejbPassivate() method gives the
enterprise bean the chance to release any resources that should not be held while
the instance is in the pool (these resource typically had been allocated during
theejbActivate() method).

This method executes in an unspecified transaction context. The instance can
still obtain the identity of the EJB object via thegetPrimaryKey() or
getEJBObject()method on the entity context.

Note that instance should not use theejbPassivate() method to write its state to
the database; the instance should store its state only in theejbStore() method.

• public void ejbDestroy();

Enterprise JavaBeans

Sun Microsystems Inc. 64 February 4, 1998

The container invokes this method on an instance as a result of a client’s
invoking a destroy method. The instance is in the ready state whenejbDestroy()
is invoked and it will be entered into the pool when the method completes.

This method executes in the effective transaction context of the client’sdestroy
method. The instance can still obtain the identity of the EJB object via the
getPrimaryKey() or getEJBObject()method on the entity context.

An enterprise bean instance should use this method to destroy its entity
representation in the database.

Since the instance will be entered into the pool, the state of the instance at the
end of this method must be equivalent to the state of a passivated instance. This
means that the instance must release any resource that it would normally release
in theejbPassivate() method.

• public void ejbLoad();

The container invokes this method on an instance in the ready state to advise the
instance that it must synchronize its instance variables from the entity state in
the database. The instance must be prepared for the container to invoke this
method at any time that the instance is in the ready state.

An instance should refresh its state in theejbLoad() method by reading the
entity state from the database.

This method executes in the proper transaction context.

• public void ejbStore();

The container invokes this method on an instance to advise the instance that the
instance must synchronize the entity state in the database with its instance
variables. The instance must be prepared for the container to invoke this method
at any time that the instance is in the ready state.

An instance should write its state to the database in theejbStore() method.

This method executes in the proper transaction context.

• public void ejbFindMETHOD(...);

The container invokes this method on the instance when the container selects
the instance to execute a matching client-invokedfindMETHOD(...) method.
The instance is in the pooled state (i.e. it is not assigned to any particular EJB
object identity) when the container selects the instance to execute the
ejbFindMETHOD method on it, and is returned to the pooled state when the
execution of theejbFindMethod method completes.

TheejbFindMETHOD method executes in the proper transaction context.

The implementation of anejbFindMETHOD method should use the method’s
arguments to locate the requested object or a collection of objects in the
database. The method must return a primary key or a collection of primary keys
to the container.

Enterprise JavaBeans

Sun Microsystems Inc. 65 February 4, 1998

9.4.2 Container’s view:

The following describes the container’s side of the state management contract. The con-
tainer must call the following methods as indicated below:

• public void setEntityContext(ec);

The container invokes this method to pass a reference to the enterprise bean’s
entity context to the enterprise bean. The container must invoke this method
after it creates the instance, and before it puts the instance into the pool of
available instances.

It does not matter whether the container calls this method inside or outside of a
transaction context. At this point, the entity context is not associated with any
EJB object.

• public void unsetEntityContext();

The container invokes this method when the container wants to reduce the
number of instances in the pool. After this method completes, the container is
not allowed to reuse this instance, and therefore it should drop any references to
the instance to allow the Java garbage collector to eventually invoke the
finalize() method on the instance.

It does not matter whether the container calls this method inside or outside of a
transaction context.

• public void ejbCreate(...);

• public void ejbPostCreate();

The container invokes these two methods during the creation of an EJB entity
object as a result of a client’s invoking acreate(...)method on the enterprise
bean’s EJB home.

The container first invokes theejbCreate(...) method whose signature matches
thecreate(...) method invoked by the client. TheejbCreate(...) method returns
a primary key for the created entity. The container creates an EJB object
reference for the primary key. The container invokes theejbPostCreate()
method to allow the instance to fully initialize itself. Finally, the container
returns the EJB object reference to the client.

The container must invoke this method in the proper transaction context.

• public void ejbActivate();

The container invokes this method on an enterprise bean instance at activation
time (i.e., when the instance is taken from the pool and assigned to an EJB
object). The container must ensure that the primary key of the associated EJB
object is available to the instance if the instance invokes thegetPrimaryKey()
or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

Enterprise JavaBeans

Sun Microsystems Inc. 66 February 4, 1998

Note that instance is not yet ready for the delivery of a business method. The
container must still invoke theejbLoad()method prior to a business method.

• public void ejbPassivate();

The container invokes this method on an enterprise bean instance at passivation
time (i.e., when the instance is being disassociated from an EJB object and
moved into the pool). The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey()or getEJBObject()method on its entity context.

A container may call this method inside or outside of a transaction context.

Note that if the instance state has been updated by a transaction, the container
must first invoke theejbStore() method on the instance before it invokes
ejbPassivate() on it.

• public void ejbDestroy();

The container invokes this method before it ends the life of an EJB object as a
result of a client’s invoking a destroy operation.

The container invokes this method in the transaction context of the client’s
destroy method. The container must ensure that the primary key of the
associated EJB object is still available to the instance if the instance invokes the
getPrimaryKey() or getEJBObject()method on its entity context.

• public void ejbLoad();

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its instance state from its state in the
database.

The container invokes this method in the proper transaction context.

• public void ejbStore();

The container must invoke this method on the instance whenever it becomes
necessary for the instance to synchronize its state in the database with the state
of the instance’s fields.

The container invokes this method in the proper transaction context.

• public void ejbFindMETHOD(...);

The container invokes theejbFindMETHOD(...) method on an instance when a
client invokes a matchingfindMETHOD(...) method on the enterprise bean’s
home interface. The container must pick an instance that is in the pooled state
(i.e. the instance is not associated with any EJB object) for the execution of the
ejbFindMETHOD(...) method.

The container must invoke theejbFindMETHOD(...) method in the proper
transaction context.

Enterprise JavaBeans

Sun Microsystems Inc. 67 February 4, 1998

If the ejbFindMETHOD method is declared to return a single primary key, the
container creates and EJB object reference for the primary key and returns it to
the client. If theejbFindMETHOD method is declared to return a collection of
primary keys, the container creates a collection of EJB objects for the primary
keys returned fromejbFindMETHOD, and returns the collection to the client.

9.5 Concurrent access from multiple transactions

The enterprise bean developer does not have to worry about concurrent access from
multiple transactions when writing the business methods. The enterprise bean develop-
er writes the methods assuming that the container will ensure appropriate synchroniza-
tion for entity beans that are accessed concurrently from multiple transactions.

The entity container typically uses one of two implementation strategies to achieve
proper synchronization (these strategies are illustrative not prescriptive):

• The container activates multiple instances of the enterprise bean, one for each
transaction in which the entity is being accessed. The transaction
synchronization is performed automatically by the underlying database during
the database access calls performed by theejbLoad, ejbCreate, ejbStore,and
ejbDestroymethods. The database system provides all the necessary transaction
synchronization (provided that the developer has set the proper JDBC isolation
level), the container does not have to perform any synchronization logic. The
commit-time options B and C in Subsection 9.10.4 is applicable to this type of
container.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100EJB Object
Account 100

TX 1

TX 2

EB instances

Enterprise JavaBeans

Sun Microsystems Inc. 68 February 4, 1998

• The container acquires an exclusive lock on the instance’s state in the database.
The container activates a single instance and serializes the access from multiple
transactions to this instance. The commit-time option A in Subsection 9.10.4 is
applicable to this type of container.

9.6 The responsibilities of the enterprise bean provider

This section describes the responsibilities of an entity enterprise bean provider to en-
sure that an enterprise bean can be deployed in any EJB container.

9.6.1 Classes and interfaces

The enterprise bean provider is responsible for providing the following class files:

• Enterprise bean class.

• Enterprise bean’s remote interface.

• Enterprise bean’s home interface.

9.6.2 Enterprise bean class

The following are the requirements for an entity enterprise bean class:

The class must implement thejavax.ejb.EntityBean interface.

The class must be defined aspublic, and must not beabstract.

The class must not implement the enterprise bean’s remote interface.

The class must implement the business methods, and theejbCreate, ejbPostCreate,and
ejbFindMETHOD methods as described later in this section.

9.6.3 ejbCreate methods

The enterprise bean class may define zero or moreejbCreate(...) methods whose signa-
tures must follow these rules:

The method name must beejbCreate.

The method must be declared aspublic.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

EJB Object
Account 100

TX 1

TX 2

EB instance

Enterprise JavaBeans

Sun Microsystems Inc. 69 February 4, 1998

The return type must be the primary key type.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions. The throws
clause may also includejavax.ejb.EJBExceptionand javax.ejb.CreateException, but it
must not include thejava.rmi.RemoteException.

The return type of anejbCreate method must be either the primary key type, or a col-
lection (See 9.8.1).

9.6.4 ejbFind methods

The enterprise bean class must define theejbFindByPrimaryKey method.

The enterprise bean class may also define additionalejbFindMETHOD(...) finder meth-
ods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrima-
ryKey, ejbFindLargeAccounts, ejbFindLateShipments).

A finder method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The return type of a finder method must be the enterprise bean’s primary key type, or
a collection of objects of the primary key type (See Subsection 9.8.1).

A finder method’s throws clause may define arbitrary application specific exceptions.
The throws clause may also include thejavax.ejb.EJBExceptionandjavax.ejb.Finder-
Exception, but it must not include thejava.rmi.RemoteException.

Each entity enterprise bean class must define theejbFindByPrimaryKey method.

9.6.5 Business methods

The class may define zero or more business methods whose signatures must follow
these rules:

The function names can be arbitrary, but they must not conflict with the names of the
methods defined by the EJB architecture (ejbCreate, ejbActivate, etc.).

The business method must be declared aspublic.

The methods arguments and return value types must be legal types for Java RMI.

The throws clause may define arbitrary application specific exceptions. The throws
clause may also include thejavax.ejb.EJBException, and it must not include theja-
va.rmi.RemoteException.

9.6.6 Enterprise bean’s remote interface

The following are the requirements for the enterprise bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

Enterprise JavaBeans

Sun Microsystems Inc. 70 February 4, 1998

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

For each method defined in the remote interface, there must be a matching method in
the enterprise bean’s class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the
enterprise bean class must be defined in the throws clause of the method of the
remote interface. The only exception to this rule is thejavax.ejb.EJBException
that must not be defined in the throws clause of the remote method.

9.6.7 Enterprise bean’s home interface

The following are the requirements for the enterprise bean’s home interface signature:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for Java RMI. This means
that their arguments and return values must be of valid types for Java RMI, and their
throws clause must include thejava.rmi.RemoteException.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

Eachcreate method must be named “create”, and it must match one of theejbCreate
methods defined in the enterprise bean class. The matchingejbCreate method must
have the same number and types of its arguments (note that the return type is different).

The return type for acreate method must be the enterprise bean’s remote interface type.

All the exceptions defined in the throws clause of anejbCreate method of the enterprise
bean class must be defined in the throws clause of the matchingcreate method of the
remote interface. The only exception to this rule is thejavax.ejb.EJBException that
must not be defined in the throws clause of thecreate method.

9.7 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support an entity
bean.

9.7.1 Generation of implementation classes

The tools provided by the container are responsible for the generation of additional
classes at enterprise bean deployment time. The tools obtains the information that they
need for generation of the additional classes by introspecting the classes and interfaces
provided by the enterprise bean provider and from the information obtained from the
bean’s deployment descriptor.

Enterprise JavaBeans

Sun Microsystems Inc. 71 February 4, 1998

The container tools must generate the following classes:

• A class that implements the enterprise bean’s home interface.

• A class that implements the enterprise bean’s remote interface.

The container tools may also generate a class that mixes some container specific code
with the enterprise bean class. The code may, for example, help the container to manage
the bean instances at runtime. Subclassing, delegation, and code generation can be used
by the tools.

The container’s tools may also allow generation of additional code that wraps the busi-
ness methods and is used to customize the business logic to an existing operational en-
vironment. For example, a wrapper for adebit function on theAccount bean may check
that the debited amount does not exceed a certain limit.

9.7.2 EJB Home class

The EJB home class is a container generated class that implements the enterprise bean’s
home interface. The class implements the methods of thejavax.ejb.EJBHome interface,
and the type specificcreate andfinder methods specific to the enterprise bean.

The implementation of eachcreate(...)methods invokes a matchingejbCreate(...)
method, and then theejbPostCreate() method.

The implementation of thedestroy(...) methods defined in thejavax.ejb.EJBHome in-
terface must activate an instance (if an instance is not already in the ready state) and
invoke theejbDestroy method on the instance.

The implementation of eachfindMETHOD(...)methods invokes a matchingejbFind-
METHOD(...) method. The implementation of thefindMETHOD(...)method must cre-
ate an EJB object for the primary key returned from theejbFindMETHOD, and return
the EJB object reference to the client. If theejbFindMETHOD method returns a collec-
tion of primary keys, the implementation of thefindMETHOD(...)method must create
a collection of EJB objects for the primary keys, and return the collection to the client.

9.7.3 EJB Object class

The EJB Object class is a container generated class that implements the enterprise
bean’s remote interface. It implements the methods of thejavax.ejb.EJBObject inter-
face and the business methods specific to the enterprise bean.

The implementation of thedestroy(...) method (defined in thejavax.ejb.EJBObjectin-
terface) must activate an instance (if an instance is not already in the ready state) and
invoke theejbDestroy method on the instance.

The implementation of each business method must activate and instance (if an instance
is not already in the ready state) and invoke the matching business method on the in-
stance.

9.7.4 Single-threaded rule

The container must ensure that only one thread can be executing an instance at any time.
Consequently, the container must not invoke any of the life cycle methods while a busi-

Enterprise JavaBeans

Sun Microsystems Inc. 72 February 4, 1998

ness method invocation is in-progress, or invoke multiple business methods on an in-
stance concurrently. Therefore, an instance is never passivated while it is executing a
business method.

The exception to this rule is that a container must allow callbacks to an instance within
the same transaction. For example, if a client invokes enterprise bean A, A calls another
enterprise bean B, and B invokes a callback method on A, the container must allow the
callback from B to A, even though A is still executing the client’s call.

9.7.5 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security check-
ing, and exception handling described in Chapters 11, 14, and 12.

9.8 Miscellaneous

9.8.1 Collections

The return type of an entity finder method can be either a single EJB object reference
or a collection of EJB object references. If there is the possibility that the finder method
may find more than one EJB object, the bean developer should define the return type
of theejbFindMETHOD(...) andfindMETHOD(...) method to be a collection.

The JDK 1.1.x type for a collection is thejava.util.Enumeration interface, and therefore
a finder method that returns a collection of EJB objects must define the return type to
be java.util.Enumeration.

JDK 1.2 will provide better support for collections. A future release of EJB will
extend the allowed types for finders to use the JDK 1.2 collections, in additions
to the java.util.Enumeration type.

The following is an example of a finder method defined in a home interface:

public AccountHome {
...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

The following is an example of a finder method implemented in the enterprise bean’s
class:

public AccountBean {
...
public java.util.Enumeration ejbFindLargeAccounts(

double limit)
throws FinderException, EJBException

{
...

}
...

}

Enterprise JavaBeans

Sun Microsystems Inc. 73 February 4, 1998

9.9 Container-managed entity beans

Sections 9.3 through 9.7 describe the component contract for entity beans with bean-
managed persistence. This section specifies the contract for the entity beans with con-
tainer-managed persistence.

We define here the differences from the contract for entities with bean-managed persis-
tence.

9.9.1 containerManagedFields deployment descriptor property

The container determines that an entity bean is of the container-managed persistence
type by examining thecontainerManagedFields property of the deployment descriptor.
If the containerManagedFields property is defined in the deployment descriptor, the
entity bean is of the container-managed persistence type.

The value of thecontainerManagedFields property is a list of instance fields that the
enterprise bean provider expects the container to manage by loading and storing from
a database. The enterprise bean code should not contain any database access calls—the
database access calls will be generated by the container tools at deployment time.

The containers that specialize in providing support for container-managed persistence
will typically provided rich deployment time tools to allow the enterprise bean deployer
to establish the mapping of the instance fields to the underlying data source. Such con-
tainers are likely to be specialized for a particular legacy data source. It is expected that
although the mapping process is made easy by the container provider’s tools, the bean
deployer may be involved in the mapping process (i.e. the mapping process is not fully
automatic).

The container moves data between the bean’s instance variables and the underlying
data source before or after the execution of theejbCreate, ejbDestroy, ejbLoad, andejb-
Store, as described in the below subsections. The container is also responsible for the
implementation of the finder methods.

9.9.2 ejbCreate

While in the case of bean-managed persistence the enterprise bean developer is respon-
sible for writing the code that inserts a record into the database in theejbCreate(...)
methods, in the case of container-managed persistence it is the container who performs
the database insert after theejbCreate(...) method completes.

The enterprise bean developer’s responsibility is to initialize the container-managed
fields in anejbCreate(...) method from the input arguments such that whenejbCre-
ate(...) returns, the container can extract the container-managed fields from the in-
stance, and insert them into the database.

The return value of anejbCreate(...) method must be void for enterprise beans with con-
tainer-managed persistence.

The container is responsible for extracting the primary key fields of the newly created
entity representation in the database, and for creating an EJB object reference for the
primary key.

Enterprise JavaBeans

Sun Microsystems Inc. 74 February 4, 1998

Then the container invokes theejbPostCreate() method on the instance. The instance
can discover the primary key by callinggetPrimaryKey() on its session context object.

The container must performejbCreate, database insert operation, andejbPostCreate in
the proper transaction context.

9.9.3 ejbDestroy

The container invokes theejbDestroy() method on an entity bean instance with contain-
er-managed persistence in response to a client-invokeddestroy() operation on an EJB
object reference or on the EJB home interface.

The enterprise bean provider can use theejbDestroy method to implement any actions
that must be done before the entity representation is removed from the database.

After ejbDestroy returns, the container removes the entity representation from the da-
tabase.

The container must performejbDestroy and the database delete operation in the proper
transaction context.

9.9.4 ejbLoad

When the container needs to synchronize the state of an instance with the entity state in
the database, the container reads the entity state from the database into the container-
managed fields and then it invokes theejbLoad() method on the instance.

The enterprise bean developer can rely on the container’s having loaded the container-
managed fields from the database just before the container invoked theejbLoad() meth-
od. The enterprise bean can use theejbLoad() method, for example, to perform some
computation on the values of the fields that were read by the container (for example,
perform uncompression of text fields).

9.9.5 ejbStore

When the container needs to synchronize the state of the entity state in the database with
the state of the instance, the container first calls theejbStore() method on the instance,
and then it extracts the container-managed fields and writes them to the database.

The enterprise bean developer should use theejbStore() method to set up the values of
the container-managed fields just before the container writes them to the database. For
example, theejbStore() method may perform compression of text before the text is
stored in the database.

9.9.6 finder methods

The enterprise bean provider does not write the finder (ejbFindMETHOD(...)) methods.

The finder methods are generated at bean deployment time using the container provid-
er’s tools. The tools can, for example, create a subclass of the enterprise bean class that
implements theejbFindMethod() methods, or the tools can generate the implementa-
tion of the finder methods directly in the class that implements the enterprise bean’s
home interface.

Enterprise JavaBeans

Sun Microsystems Inc. 75 February 4, 1998

9.9.7 primary key type

The container must be able to manipulate the primary key type. Therefore, the primary
key type for a bean with container-managed persistence must follow these rules:

• The primary key type must bepublic.

• All fields in the primary key class must be declared aspublic.

• The class must have apublic default constructor.

• The names of the fields in the primary key class must be a subset of the names
of the container-managed fields (this allows the container to extract the primary
key fields from an instance’s container-managed fields, and vice versa).

9.9.8 Isolation levels

The enterprise bean provider must specify the requested transaction isolation level for
an entity bean with container-managed persistence in the bean’s deployment descriptor.

The possible isolation levels are:

• NONE (illegal value in the deployment descriptor)

• READ_UNCOMMITTED

• READ_COMMITTED

• REPEATABLE_READ

• SERIALIZABLE

These isolation levels correspond to the JDBC isolation levels, and are defined in the
javax.ejb.deployment.IsolationLevel class.

The isolation level is specified at the level of the whole bean, and may be overridden at
the level of an individual method.

The container is allowed to use a higher isolation level than that specified in the bean’s
deployment descriptor.

9.10 Sequence diagrams

This section uses sequence diagrams to illustrate the interactions between an entity
bean instance and its container.

9.10.1 Notes

The sequence diagrams illustrate a box labeled “container provided classes”. These are
either classes that are part of the container, or classes that were generated by the con-
tainer tools. These classes communicate with each other through protocols that are con-
tainer implementation specific. Therefore, the communication between these classes is
not shown in the diagrams.

Enterprise JavaBeans

Sun Microsystems Inc. 76 February 4, 1998

9.10.2 Creating an entity object

The following diagram illustrates the creation of an enterprise bean with bean-managed
persistence.

client instance transactiondatabase

javax.jts.CurrentTransactionTransaction.begin()

service
EJB

register_synchronization(synchronization)

ejbCreate(args)

entity
context

EJB
object

create(args)

container provided classes

create representation in DB

new

business method
business method

synchro-
nization

new

home

ejbPostCreate()

container

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 77 February 4, 1998

The following diagram illustrates the creation of an enterprise bean with container-
managed persistence:

client instance transactiondatabase

javax.jts.CurrentTransaction.begin()

service
EJB

register_synchronization(synchronization)

instance
context

EJB
object

create(args)

container provided classes

extract container-managed field

business method
business method

synchro-
nization

new

ejbCreate(args)

new

home

ejbPostCreate()

container

register resource manager

create entity representation in DB

Enterprise JavaBeans

Sun Microsystems Inc. 78 February 4, 1998

9.10.3 Passivating and activating an instance in a transaction

The following diagram illustrates the passivation and reactivation of an enterprise bean
instance with bean-managed persistence.

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nizationhome

Enterprise JavaBeans

Sun Microsystems Inc. 79 February 4, 1998

The following diagram illustrates the passivation and reactivation of an enterprise bean
instance with container-managed persistence.

9.10.4 Committing a transaction

This section describes the sequence during transaction commit.

business method
ejbActivate()

ejbStore()

extract container-managed fields

ejbPassivate()

business method

ejbLoad()

read entity state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nizationhome

update entity state in DB

set container-managed fields

Enterprise JavaBeans

Sun Microsystems Inc. 80 February 4, 1998

The entity bean protocol is designed to allow a container the flexibility to select the dis-
position of an instance at transaction commit time. The sequence diagrams in this sec-
tion illustrate three alternative commit options with respect to the instance state. The
selection of the commit option is transparent to the entity bean—the entity bean will
work correctly regardless of the option chosen by the container.

The three options are:

• Option A: The container caches a “ready” instance between transactions. The
instance has exclusive access to the state of the object in the persistent storage,
and therefore the container does not have to synchronize the instance’s state
from the persistent storage at the beginning of the next transaction.

• Option B: The container caches a “ready” instance between transactions. Unlike
in Option A, the instance does not have exclusive access to the state of the
object in the persistent storage, and therefore the container must synchronize the
instance’s state from the persistent storage at the beginning of the next
transaction.

• Option C: The container does not cache a “ready” instance between
transactions. An instance is returned to the pool of available instances after a
transaction has completed.

Note that the container must synchronize the instance’s state with the persistent storage
at transaction commit for all the three options.

Table 1: Summary of commit-time options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No

Enterprise JavaBeans

Sun Microsystems Inc. 81 February 4, 1998

The following diagram illustrates the transaction commit protocol that involves an en-
terprise bean instance with bean-managed persistence.

ejbStore()

write state to DB

client instance transactiondatabase
service

EJB instance
context

containerEJB
object

container provided classes

synchro-
nization

javax.jts.CurrentTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

home

Enterprise JavaBeans

Sun Microsystems Inc. 82 February 4, 1998

The following diagram illustrates the transaction commit protocol for an enterprise
bean instance with container-managed persistence.

ejbStore()

extract container-managed fields

client instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nization

javax.jts.CurrentTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

home
container

update entity state in DB

Enterprise JavaBeans

Sun Microsystems Inc. 83 February 4, 1998

9.10.5 Starting the next transaction

The following diagram illustrates the protocol performed for a bean with bean-managed
persistence at the beginning of a new transaction. The three options illustrated in the
diagram correspond to the three commit options in the previous subsection.

business method

business method

read state from DB

client instance transactiondatabase
service

EJB instance
context

EJB
object

container provided classes

synchro-
nization

javax.jts.CurrentTransaction.begin()

ejbActivate()Option C:

Option A: do nothing

Option B: ejbLoad()

read state from DB
ejbLoad()

register_synchronization(synchronization)

new

business method
business method

home
container

register resource manager

register resource manager

Enterprise JavaBeans

Sun Microsystems Inc. 84 February 4, 1998

The following diagram illustrates the protocol performed for a bean with container-
managed persistence at the beginning of a new transaction.

business method

business method

read state from DB

client instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nization

javax.jtsCurrentTransactionTransaction.begin()

ejbActivate()Option C:

Option A:
do nothing

Option B:

ejbLoad()

register_synchronization(synchronization)

new

business method
business method

ejbLoad()

read entity state from DB

home
container

register resource manager

register resource manager

set container managed fields

set container managed fields

Enterprise JavaBeans

Sun Microsystems Inc. 85 February 4, 1998

9.10.6 Destroying an entity object

The following diagram illustrates the destruction of an entity enterprise bean with bean-
managed persistence.

The following diagram illustrates the destruction of an entity enterprise bean with con-
tainer-managed persistence.

client instance transactiondatabase
service

destroy()

EJB entity
context

EJB
object

container provided classes

synchro-
nization

destroy representation
in DB

ejbDestroy()

home
container

client instance transactiondatabase
service

destroy()

EJB entity
context

EJB
object

container provided classes

synchro-
nization

destroy representation in DB

ejbDestroy()

home
container

Enterprise JavaBeans

Sun Microsystems Inc. 86 February 4, 1998

9.10.7 Finding an object

The following diagram illustrates the execution of a finder method on an entity enter-
prise bean with bean-managed persistence.

The following diagram illustrates the execution of a finder method on an entity enter-
prise bean with container-managed persistence.

client instance transactiondatabase
service

EJB

ejbFindMETHOD(args)

entity
context

EJB
object

findMETHOD(args)

container provided classes

search DB

synchro-
nizationhome

new

container

client instance transactiondatabase
service

EJB

search DB

entity
context

EJB
object

findMETHOD(args)

container provided classes

synchro-
nizationhome

new

container

Enterprise JavaBeans

Sun Microsystems Inc. 87 February 4, 1998

9.10.8 Adding and removing instance from the pool

The diagrams in Subsections 9.10.2 through 9.10.7 did not show the sequences between
the “does not exist” and “pooled” state (See the diagram in Section 9.3).

The following diagram illustrates the sequence for container’s adding an instance to the
pool.

The following diagram illustrates the sequence for container’s removing an instance
from the pool.

instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nizationhome

container

new

new

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
object

container provided classes

synchro-
nizationhome

container

unsetEntityContext()

finalize()

Java
VM

finalize()

Enterprise JavaBeans

Sun Microsystems Inc. 88 February 4, 1998

10 Example entity scenario

 Note: Container support for entity enterprise beans is an optional feature for
EJB 1.0 compliance. Container support for entity enterprise beans will become
mandatory in EJB 2.0.

This chapter describes an example development and deployment scenario for an entity
enterprise bean. We use the scenario to explain the responsibilities of the enterprise
bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be con-
sidered illustrative rather than prescriptive. Container providers are free to implement
the contract between an enterprise bean and its container in a different way that
achieves an equivalent effect (from the perspectives of the enterprise bean provider and
the client-side programmer).

10.1 Overview

Wombat Inc. has developed theAccountBean enterprise bean. The AccountBean enter-
prise bean is deployed in a container provided by the Acme Corporation.

Enterprise JavaBeans

Sun Microsystems Inc. 89 February 4, 1998

10.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illus-
trated in the following diagram:

AcmeRemoteAccount

Account

AccountBean

AcmeRemote

EJBHome

AcmeHome

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountHome

AcmeBean

EntityBean

AcmeAccountBean

AccountHome

Enterprise JavaBeans

Sun Microsystems Inc. 90 February 4, 1998

10.2.1 What the enterprise bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the enterprise bean’s remote interface (Account). The remote interface
defines the business methods callable by a client. The remote interface must
extend thejavax.ejb.EJBObject interface, and follow the standard rules for a
Java RMI remote interface. The remote interface must be defined aspublic.

• Write the business logic in the enterprise bean class (AccountBean). The
enterprise bean class must not implement the enterprise bean’s remote interface
(Account). The enterprise bean must implement thejavax.ejb.EntityBean
interface, and define theejbCreate(...) methods invoked at an EJB object
creation.

• Define a home interface (AccountHome) for the enterprise bean. The home
interface defines the EJB class specificcreate andfinder methods. The home
interface must be defined aspublic, extend thejavax.ejb.EJBHomeinterface,
and follow the standard rules for Java RMI remote interfaces.

• Specify the environment properties that an enterprise bean requires at runtime.
The environment properties is a standardjava.util.Properties file.

• Define a deployment descriptor that specifies any declarative metadata that the
enterprise bean provider wishes to pass with the enterprise bean to the next stage
of the development/deployment workflow.

10.2.2 Classes supplied by container provider

The following classes are supplied by the container provider, Acme Corp:

• The AcmeHome class provides the Acme implementation of the
javax.ejb.EJBHome methods.

• The AcmeRemote class provides the Acme implementation of the
javax.ejb.EJBObject methods.

• The AcmeBean class provides additional state and methods to allow Acme’s
container to manage its enterprise bean instances. For example, if Acme’s
container uses an LRU algorithm, then AcmeBean may include the clock count
and methods to use it.

10.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the remote bean class (AcmeRemoteAccount) for the enterprise bean.
The remote bean class is a “wrapper” class for the enterprise bean and provides
the client’s view of the enterprise bean. The tools also generate the classes that
implement the communication stub and skeleton for the remote bean class.

Enterprise JavaBeans

Sun Microsystems Inc. 91 February 4, 1998

• Generate the implementation of the enterprise bean class suitable for the Acme
container (AcmeAccountBean). AcmeAccountBean includes the business logic
from the AccountBean class mixed with the services defined in the AcmeBean
class. Acme tools can use inheritance, delegation, and code generation to
achieve mix-in of the two classes.

• Generate the home class (AcmeAccountHome) for the enterprise bean. The
home class implements the enterprise bean’s home interface (AccountHome).
The tools also generate the classes that implement the communication stub and
skeleton for the home class.

Many of the above classes and tools are container-specific (i.e., they reflect the way
Acme Corp implemented them). Other container providers may use different mecha-
nisms to produce their runtime classes, and the generated classes most likely will be dif-
ferent from those generated by Acme’s tools.

Enterprise JavaBeans

Sun Microsystems Inc. 92 February 4, 1998

11 Support for transactions

One of the key features of Enterprise JavaBeans is support for distributed transactions.
Enterprise JavaBeans allows an application developer to write an application that atom-
ically updates data in multiple databases which are possibly distributed across multiple
sites. The sites may use EJB servers and containers from different vendors.

No distinction is made between session and entity beans in this section. This section ap-
plies equally to both.

An enterprise bean developer or client programmer does not have to deal with the com-
plexity of distributed transactions. The burden of managing transactions is shifted to the
container and EJB server providers. A container implements the declarative transaction
scopes defined later in this chapter. The EJB server implements the necessary low-level
transaction protocols, such as the two-phase commit protocol between a transaction
manager and a database system, transaction context propagation, and distributed two-
phase commit.

11.1 Transaction model

Enterprise JavaBeans supports flat transactions, modeled after the OMG Object Trans-
action Service 1.1 (OTS). An enterprise bean object that istransaction-enabled corre-
sponds to theTransactionalObject described in OTS (a future release may allow an
enterprise bean to act as a recoverable object).

 Note: The decision not to support nested transactions was to allow vendors of
existing transaction processing and database management systems to
incorporate support for Enterprise JavaBeans. If these vendors provide support
for nested transactions in the future, Enterprise JavaBeans may be enhanced to
take advantage of nested transactions.

11.2 Relationship to JTS

Enterprise JavaBeans is high-level component framework that attempts to hide system
complexity from the application developer. Therefore, most enterprise beans do not di-
rectly access transaction management.

JTS is a lower-level API, which may be implemented by the EJB server and used by
the container. However, EJB server and container implementors are free to use other
transaction manager API for their integration.

11.3 Scenarios

This section describes several scenarios that illustrate the distributed transaction capa-
bilities of Enterprise JavaBeans.

11.3.1 Update of multiple databases

Enterprise JavaBeans makes it possible for an application program to update data in
multiple databases in a single transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 93 February 4, 1998

In the following figure, a client invokes the enterprise bean X. X updates data in two
databases, A and B. Then X calls another enterprise bean Y. Y updates data in database
C. The EJB server ensures that the updates to databases A, B, and C are either all com-
mitted, or all rolled back.

The application programmer does not have to do anything to handle transaction seman-
tics. The enterprise beans X and Y perform the database updates using the standard
JDBC API. Behind the scenes, the EJB server enlists the database connections as part
of the transaction. When the transaction commits, the EJB server and the database sys-
tems perform a two-phase commit protocol to ensure atomic updates across all the three
databases.

11.3.2 Update of databases via multiple EJB servers

Enterprise JavaBeans allows updates of data at multiple sites to be performed in a single
transaction.

In the following figure, a client invokes the enterprise bean X. X updates data in data-
base A, and then calls another enterprise bean Y that is installed in a remote EJB server.

X

client EJB server

Y

database A database Bdatabase C

Enterprise JavaBeans

Sun Microsystems Inc. 94 February 4, 1998

Y updates data in database B. Enterprise JavaBeans makes it possible to perform the
updates to databases A and B as a single transaction.

When X invokes Y, the two EJB servers cooperate to propagate the transaction context
from X to Y. This transaction context propagation is transparent to the application-level
code.

At transaction commit time, the two EJB servers use a distributed two-phase commit
protocol (if the capability exists) to ensure the atomicity of the database updates.

11.3.3 Client-managed demarcation

A client or a non-transaction enterprise bean object can use thejavax.jts.CurrentTrans-
action interface to explicitly demarcate transaction boundaries.

X

client EJB server

database A

Y

EJB server

database B

Enterprise JavaBeans

Sun Microsystems Inc. 95 February 4, 1998

A client program using explicit transaction demarcation may perform atomic updates
across multiple databases residing at multiple transaction servers, as illustrated in the
following figure.

The application programmer does not have to do anything to make the updates to data-
bases A and B performed by enterprise beans X and Y atomic other than demarcate the
transaction by thebegin andcommit calls. A proxy of a transaction service on the client
automatically propagates the transaction context to the two EJB servers. When the cli-
ent program calls commit, the two EJB servers perform the two-phase commit protocol.

11.3.4 Container-managed demarcation

Whenever a client invokes an enterprise bean, the container interposes on the method
invocation. The interposition allows the container to control transaction demarcation
declaratively through thetransaction attribute.

For example, if an enterprise bean is deployed with theREQUIRES transaction at-
tribute, the container automatically initiates a transaction whenever a client invokes a
transaction-enabled enterprise bean while the client is not associated with a transaction
context.

The following figure illustrates such a scenario. A non-transactional client invokes the
enterprise bean X. Since the message from the client does not include a transaction con-
text, the container starts a new transaction before dispatching the remote method on X.
X’s work is performed in the context of the transaction. When X calls other enterprise
beans (Y in our example), the work performed by the other enterprise beans is also au-

Xclient

EJB server

database A

Y

EJB server

database B

begin

commit

Enterprise JavaBeans

Sun Microsystems Inc. 96 February 4, 1998

tomatically included in the transaction (subject to the transaction attribute of the other
enterprise bean).

The container automatically commits the transaction at the time X returns a reply to the
client.

11.3.5 Bean-managed demarcation

An enterprise bean with theBEAN_MANAGEDtransaction attribute can use thejav-
ax.jts.CurrentTransaction interface to demarcate transactions.

11.3.6 Interoperability with non-Java clients and servers

Although the focus of Enterprise JavaBeans is the Java API for writing distributed en-
terprise applications in Java, it is desirable that such applications can also interoperate
with non-Java clients and servers.

A container can make it possible for an enterprise bean to be invoked from a non-Java
client. For example, the CORBA mapping of Enterprise JavaBeans [6] allows any

X

client EJB server

Y

database A database B

begin

commit

Enterprise JavaBeans

Sun Microsystems Inc. 97 February 4, 1998

CORBA client to invoke any enterprise bean object on a CORBA-enabled server using
the standard CORBA API.

Providing connectivity to existing server applications is also important. An EJB server
may choose to provide access to existing enterprise applications, such as applications
running under CICS on a mainframe. For example, an EJB server may provide a bridge
that makes existing CICS programs accessible to enterprise beans. The bridge can make
the CICS programs visible to the Java developer as if the CICS programs were other
enterprise beans installed in some container on the EJB server.

 Note: It is beyond the scope of the Enterprise JavaBeans specification to define
the bridging protocols that would enable such interoperability. Such bridges
will be a value added by some EJB servers.

11.4 Declarative transaction management

Every client method invocation on an enterprise bean object is interposed by the con-
tainer. The interposition allows for delegating the transaction management responsibil-
ities to the container.

The declarative transaction management is controlled by atransaction attribute asso-
ciated with each enterprise bean’s home container. The container provider’s tools can
be used to set and change the values of transaction attributes.

Enterprise JavaBeans defines the following values for the transaction attribute:

• NOT_SUPPORTED

• BEAN_MANAGED

• REQUIRES

• SUPPORTS

• REQUIRES_NEW

• MANDATORY

X

CORBA client EJB server

X

database A database B

bridge
CICS

LU 6.2

Enterprise JavaBeans

Sun Microsystems Inc. 98 February 4, 1998

The transaction attribute is specified in the enterprise bean’s deployment descriptor. A
transaction attribute can be associated with the entire bean (to apply to all methods), or
it can be associated with an individual method.

11.4.1 NOT_SUPPORTED

A container must always invoke an enterprise bean that has theNOT_SUPPORTED
transaction attribute without a transaction scope. If a client calls with a transaction
scope, the container suspends the association of the transaction scope with the current
thread before delegating the method call to the enterprise bean object. The container re-
sumes the suspended association when the method call on the enterprise bean object has
completed.

The suspended transaction context of the client is not passed to resources or other en-
terprise bean objects that are invoked from the enterprise bean object.

11.4.2 BEAN_MANAGED

An enterprise bean with theBEAN_MANAGEDattribute can use thejavax.jts.Current-
Transaction interface to demarcate transaction boundaries.

 TODO: need to described the rules that the enterprise bean must follow when
doing transaction demarcation and the rules for the container to deal with
suspending and resuming caller’s transaction.

11.4.3 REQUIRES

If a client invokes an enterprise bean object that has theREQUIRES transaction at-
tribute while the client is associated with a transaction context, the container invokes
the enterprise bean’s method in the client’s transaction context.

If the client invokes the enterprise bean object while the client is not associated with a
transaction context, the container automatically starts a new transaction before delegat-
ing a method call to the enterprise bean object, and attempts to commit the transaction
when the method call on the enterprise bean object has completed. The container per-
forms the commit protocol before the method result is sent to the client.

The transaction context is passed to the resources or other enterprise bean objects that
are invoked from the enterprise bean object.

11.4.4 SUPPORTS

An enterprise bean object that has theSUPPORTS transaction attribute is invoked in
the client’s transaction scope. If the client does not have a transaction scope, the enter-
prise bean is also invoked without a transaction scope.

The transaction context (if any) is passed to the resources or other enterprise bean ob-
jects that are invoked from the enterprise bean object.

11.4.5 REQUIRES_NEW

An enterprise bean that has theREQUIRES_NEW transaction attribute is always in-
voked in the scope of a new transaction. The container starts a new transaction before

Enterprise JavaBeans

Sun Microsystems Inc. 99 February 4, 1998

delegating a method call to the enterprise bean object, and attempts to commit the trans-
action when the method call on the enterprise bean object has completed. The container
performs the commit protocol before the method result is sent to the client.

If the client request is associated with a transaction, the association is suspended before
the new transaction is started and is resumed when the new transaction has completed.

The new transaction context is passed to the resources or other enterprise bean objects
that are invoked from the enterprise bean object.

11.4.6 MANDATORY

An enterprise bean object that has theMANDATORY attribute is always invoked in the
scope of the client’s transaction. If the client attempts to invoke the enterprise bean
without a transaction context, the container throws theTransactionRequired exception
to the client.

The client’s transaction context is passed to the resources or other enterprise bean ob-
jects that are invoked from the enterprise bean object.

11.4.7 Transaction attribute summary

The following table provides a summary of the transaction scopes under which a meth-
od on an enterprise bean object method executes, as a function of the transaction at-
tribute and client’s transaction context.

A dash means “no global transaction context exists or will be propagated”. The contain-
er can execute the method outside of any transaction, or as a local transaction.

Table 2: Effect of the declarative transaction attribute

Transaction attribute Client’s transaction
Transaction associated with
enterprise bean’s method

NOT_SUPPORTED
- -

T1 -

BEAN_MANAGED
- -

T1 T1

REQUIRES
- T2

T1 T1

SUPPORTS
- -

T1 T1

REQUIRES_NEW
- T2

T1 T2

MANDATORY
- error

T1 T1

Enterprise JavaBeans

Sun Microsystems Inc. 100 February 4, 1998

11.5 Bean-managed demarcation

An enterprise bean with theBEAN_MANAGEDattribute is allowed to use thejav-
ax.jts.CurrentTransaction interface to demarcate transaction boundaries.

The container makes thejavax.jts.CurrentTransaction interface available to the enter-
prise bean though theInstanceContext.getCurrentTransaction() method, as illustrated
in the following example.

import javax.jts.CurrentTransaction;
...
InstanceContext ic = ...;
...
CurrentTransaction tx = ic.getCurrentTransaction();
tx.begin();
...
tx.commit();

Enterprise beans deployed with a transaction attribute other thanBEAN_MANAGED
are not allowed to access directly the underlying transaction manager. This means that
the container makes the JTS API unavailable to the enterprise bean.

11.6 Transaction management and exceptions

The EJB server and EJB container may throw the TransactionRollbackException,
TransactionRequiredException, and InvalidTransactionExceptionexceptions in the
situations defined in the JTS specification. See Appendix E for the reference pages of
these exceptions.

Enterprise JavaBeans

Sun Microsystems Inc. 101 February 4, 1998

12 Exception handling

This chapter describes the rules for exception handling.

12.1 Client’s view of exceptions

A clients access an enterprise bean through the enterprise bean’s remote and home in-
terfaces. Both these interface are Java RMI interfaces. Therefore, the throws clause of
every method of these interfaces includes the mandatoryjava.rmi.RemoteException
that is thrown to the client as an indication of a system-level failure.

The java.rmi.RemoteException may be thrown by the communication subsystem be-
tween the client and the container, or by the container. The container throws this excep-
tion to the client if it cannot complete a client’s request because of an unexpected
condition when delegating the client invocation to the enterprise bean.

In addition to the mandatoryjava.rmi.RemoteException exception, the throws clause of
the methods may include any number of application specific exceptions. These excep-
tions are thrown by the enterprise bean, and passed unchanged by the container to the
client.

12.1.1 Exceptions and transactions

If a client running in a transaction scope invokes an enterprise bean business method,
or acreate, destroy, or finder method, and the method returns with an exception, the
client can assume that the transaction has not been automatically marked for rollback-
only if the exception is an exception other than thejavax.jts.TransactionRollbackEx-
ception. The client may attempt to recover the transaction, for example, by calling the
enterprise bean method again with different arguments.

The client can assume that the transaction has been marked for rollback if the exception
is thejava.rmi.TransactionRollbackException exception. It is fruitless for the client to
continue the transaction because the transaction can never commit.

If the client receives thejava.rmi.RemoteException exception other than theja-
va.rmi.TransactionRollbackException (note thatjava.rmi.TransactionRollbackExcep-
tion is a subclass ofjava.rmi.RemoteException), the client, in general, does not know if
the enterprise bean’s method has completed or not. Therefore, if a transactional client
receives thejava.rmi.RemoteExceptionexception, the client should roll back the cur-
rent transaction to prevent inconsistent data. Only expert-level clients should attempt to
recover anjava.rmi.RemoteException within a transaction.

12.2 Rules for the enterprise bean developer

The business methods, theejbCreate, ejbDestroy, andejbFindMETHODmethods, de-
fined and implemented by the enterprise bean class may define application-level excep-
tions and thejavax.ejb.EJBException in their throws clauses.

The application-level exceptions are meant to be thrown to the client to indicate an ap-
plication specific error condition (for example, exceeding a bank-imposed withdrawal
limit on a checking account). The enterprise bean developer may assume that the con-

Enterprise JavaBeans

Sun Microsystems Inc. 102 February 4, 1998

tainer passes these exceptions unchanged to the client and does not rollback the client’s
transaction (if the enterprise bean method was executed as part of the client’s transac-
tion). Therefore, the enterprise bean developer must be careful to leave its state consis-
tent when throwing an application-level exception because the client may recover the
exception and try to commit the transaction.

The enterprise bean developer should throw thejavax.ejb.EJBException from any of its
method (business method,ejbCreate, ejbDestroy, and any of the other container call-
back methods) to indicate an unexpected system-level failure (e.g. failure to open data-
base connection).

12.3 Rules for the container provider

The container must deal with exceptions thrown by the enterprise bean’s methods as
follows.

The container must pass all the application-level exceptions (i.e. all exceptions defined
in the method’s throws clause other than thejavax.ejb.EJBException) thrown by the en-
terprise bean’s business methods,ejbCreate, ejbPostCreate, ejbDestroy, andejbFind-
METHODmethods to the client. The container must not convert an application-level
exception into, for example, thejava.rmi.RemoteException.

The container must catch thejavax.ejb.EJBException thrown by the enterprise bean’s
methods. The container should log the exception to alert the system administrator of the
problem. If thejavax.ejb.EJBExceptionprevents successful completion of a client’s re-
quest, the container must throw thejava.rmi.RemoteException to the client.

If an enterprise bean’s instance throws anjavax.ejb.EJBException, the container must
assume that the instance is in an undefined state. The container must no longer use the
instance for processing.

The container must catch all unchecked exceptions thrown by the enterprise bean’s
methods, and treat them the same way as anjavax.ejb.EJBException.

12.3.1 Exceptions and transactions

In general, an exception thrown by an enterprise bean method should not cause the con-
tainer to automatically rollback a transaction or mark the transaction for rollback. This
is to allow the client a chance to recover from application-level exception.

Only the following cases require that the container roll back a transaction, or mark it
for rollback, as a result of an exception thrown by the enterprise bean:

• The enterprise bean’s method that threw the exception executed in a transaction
that was automatically started by the container before dispatching the method
(Section 11.4 explains when the container automatically starts a transaction
before calling an enterprise bean’s method). In this case, the container must
rollback the transaction when it catches any exception from the enterprise
bean’s method (including an application-level exceptions) before it throws an
exception to the client. The exception thrown to the client is determined using
the rules in the previous subsection.

Enterprise JavaBeans

Sun Microsystems Inc. 103 February 4, 1998

• The enterprise bean’s method executed in the transaction context imported from
the client, and the method threw thejavax.ejb.EJBException or an unchecked
exception. The container must mark the transaction for rollback, and throw the
javax.jts.TransactionRollbackException to the client. The
javax.jts.TransactionRollbackException is a subclass of the
java.rmi.RemoteException, and it informs the client that any attempted recovery
of the exception within the transaction would be fruitless since the transaction
cannot commit.

12.4 Exceptions fromcreateand finder methods

12.4.1 Exceptions from thecreate methods

The throws clause of everycreate(...) method defined in the enterprise bean’s remote
interface must include thejava.rmi.RemoteException to allow reporting of system-level
errors.

The throws clause may include zero or more application-level exceptions that are spe-
cific to the enterprise bean.

For entity beans, it t is recommended that the application-level exceptions include the
javax.ejb.CreateExceptionto allow standard reporting of application-level errors that
may occur during the attempt to create the entity.

Currently, the EJB specification defines thejavax.ejb.DuplicateKeyExceptionas the
only standard create exception. Thejavax.ejb.DuplicateKeyExceptionexception is a
subclass ofjavax.ejb.CreateException.

Note: Future release of EJB may define additional standard “create”
exceptions as subclasses of javax.ejb.CreateException.

12.4.2 Exceptions from thefind methods

[Relevant only to entity beans since sessions have no finders.]

The throws clause of everyfind(...) method defined in the enterprise bean’s remote in-
terface must include thejava.rmi.RemoteException to allow reporting of system-level
errors.

The throws clause may include zero or more application-level exceptions that are spe-
cific to the enterprise bean.

It t is recommended that the application-level exceptions include thejavax.ejb.Finder-
Exceptionto allow standard error reporting from the finder methods.

Currently, the EJB specification defines thejavax.ejb.ObjectNotFoundExceptionas the
standard way for a finder method to report that the specified object does not exist. The
finder methods that are defined to return a single object should use this exception to re-
port that an EJB object does not exist. The finder methods that are defined to return a
collection of EJB objects should return an empty collection—they should not throw the
javax.ejb.ObjectNotFoundException.

Enterprise JavaBeans

Sun Microsystems Inc. 104 February 4, 1998

13 Support for distribution

13.1 Overview

Support for remote client access to an enterprise bean object is through the standard
Java API for remote method invocation (Java RMI) [3]. This API allows a client to in-
voke an enterprise bean object using any distributed object protocol, including the in-
dustry standard IIOP protocol, as defined in the OMG Java to IDL Mapping
specification [5].

The Java RMI API makes access to an enterprise bean objectlocation transparent to a
client programmer.

13.2 Client-side objects

The following objects are present in the client’s JVM:

• A local for the EJB object.

• A stub for the enterprise bean’s home object.

The EJB home object, and the EJB object are remote objects in the sense of Java RMI.
The Java RMI specification [3] and the OMG Java to IDL Mapping specification [5]
define the stubs for the factory, container, and EJB objects, and the communication be-
tween the stubs and the objects on the server.

The communication stubs and skeletons are generated at enterprise bean’s deployment
time by the EJB container provider tools.

13.3 Interoperability via network protocol

13.3.1 Mapping to CORBA

The standard mapping of Enterprise JavaBeans to CORBA is defined in [6].

enterprise bean

container ‘s address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container

Enterprise JavaBeans

Sun Microsystems Inc. 105 February 4, 1998

The mapping enables the following interoperability:

• A non-Java CORBA client can access any enterprise bean object.

• A client using an ORB from one vendor can access enterprise beans residing on
a CORBA-based EJB server provided by another vendor.

• Enterprise beans in one CORBA-based EJB server can access enterprise beans
in another CORBA-based EJB server.

13.3.2 Support for other protocols

Other forms of distributions are possible. For example, a client may use HTTP to in-
voke a servlet that invokes an enterprise bean object through the EJB object and home
interfaces.

A container may also provide additional client’s view API for the installed enterprise
beans. For example, a container may choose to expose the installed enterprise beans to
OLE Automation clients, such as Visual Basic or Visual Basic Scripting engine. The
mapping to protocols other than IIOP is not covered by the current EJB specification.

Enterprise JavaBeans

Sun Microsystems Inc. 106 February 4, 1998

14 Support for security

Support for security in Enterprise JavaBeans includes the following components:

• Use of the existing Java security APIs defined in the core packagejava.security.

• Security-related methods inInstanceContext.

• Security-related attributes in the deployment descriptor.

The following sections describe support for security in more detail.

 TODO: this chapter needs more examples

14.1 Packagejava.security

The packagejava.security provides the generic Java security-related interfaces. Enter-
prise JavaBeans uses the applicable existing Java security APIs. This section describes
the parts of the java.security API that are relevant to Enterprise JavaBeans.

14.1.1 classjava.security.Identity

The java.security.Identity class encapsulates the concept of “user identity” for security
purposes. Please refer to the reference page ofjava.security.Identity for the description.

14.2 Security-related methods inInstanceContext

The InstanceContext interface contains the following security-related method:

• getCallerIdentity

• hasRole

Please refer to reference page ofjavax.ejb.InstanceContext for the description of this
method.

14.3 Security-related deployment descriptor properties

An enterprise bean’s deployment descriptor allows a container to perform security
management outside of the enterprise bean code. The security management of an enter-
prise bean is determined by the bean’s security descriptor. Please see the reference page
for javax.ejb.deployment.SecurityDescriptor.

14.4 Examples

The following example illustrates programmatic access to the security information.

14.4.1 Obtain client’s Identity

/* Obtain the security identity of the client. */
Identity caller = instanceContext.getCallerIdentity();

/* getName returns a printable representation of identity. */
String clientAccount = caller.getName();

Enterprise JavaBeans

Sun Microsystems Inc. 107 February 4, 1998

14.4.2 Check client’s role

/*
* Check if the client has the “vip-account” role
*/
Identity vipAccount = new Identity(“vip-account”);

if (instanceContext.isCallerInRole(vipAccount)) {
do something;

} else {
do something else;

}

Enterprise JavaBeans

Sun Microsystems Inc. 108 February 4, 1998

15 Ejb-jar file

Enterprise JavaBeans defines the format for packaging of enterprise beans. The pack-
aging format can be used both for distribution of individual enterprise beans as compo-
nents, and for distribution of an entire server-side application built of multiple
enterprise beans.

15.1 ejb-jar file

Enterprise beans are packaged for deployment in a standard Java Archive File called an
ejb-jar file.

An ejb-jar file contains the enterprise beans’ class files and their deployment descrip-
tors. The ejb-jar file’s manifest file identifies the enterprise beans that are included in
the file.

15.2 Deployment descriptor

An enterprise bean provider must include a deployment descriptor for each enterprise
bean. A deployment descriptor is a serialized instance of ajavax.ejb.deployment.Enti-
tyDescriptor or javax.ejb.deployment.SessionDescriptor object. Please refer to the ref-
erence pages for information on deployment descriptors.

15.3 ejb-jar Manifest

An ejb-jar file must include amanifest file. The manifest file identifies the enterprise
beans included in the ejb-jar file.

The manifest file must be named “META-INF/MANIFEST.MF”.

The manifest file is organized as a sequence ofsections. Sections are separated by emp-
ty lines. Each section contains one or moreheaders, each of the form<tag>: <value>.
The sections that provide information on enterprise beans in the archive use headers
with the following<tags>:

• Name, whose<value> is the relative name of the enterprise bean’s serialized
deployment descriptor.

• Enterprise-Bean, whose<value> is True.

Every enterprise bean must have a section in the manifest file. The headers with the
Name andEnterprise-Bean<tags> are mandatory for all enterprise beans.

For example, two relevant sections of an ejb-jar manifest might be:

Name: bank/AccountDeployment.ser
Enterprise-Bean: True

Name: quotes/QuoteServerDeployment.ser
Enterprise-Bean: True

Enterprise JavaBeans

Sun Microsystems Inc. 109 February 4, 1998

16 Enterprise bean provider responsibilities

16.1 Classes and interfaces

The enterprise bean provider is responsible for the following classes and interfaces:

• The enterprise bean class.

• The enterprise bean’s remote interface.

• The enterprise bean’s home interface.

The requirements for these classes and interfaces are specified in Sections 6.10, 9.6, and
9.9.

Furthermore, the Java types used for the arguments, return value, and exceptions of the
enterprise bean’s remote interface and enterprise bean’s home interface must be valid
types in the Java to IDL Mapping specification [5].

16.2 Environment properties

If the enterprise bean depends on certain environment properties, the enterprise bean
provider must provide the environment properties for the bean. Environment properties
are defined as a standardjava.util.Properties object.

The enterprise bean provider must define file all thekey:value pairs that the enterprise
bean’s instances will require at runtime. The values are typically edited at deployment
time by the container provider tools.

16.3 Deployment descriptor

The enterprise bean provider must provide a deployment descriptor for every enterprise
bean. The format of a deployment descriptor is described in Section 16.3.

16.4 Programming restrictions

 NOTE: this is only a partial list of restrictions that the enterprise developer
must observe.

The enterprise bean developer must follow these restriction when implementing the
methods of the enterprise bean’s class:

• An enterprise bean is not allowed to start new threads or attempt to terminate
the running thread.

• An enterprise bean is not allowed to use read/writestatic fields. Using read-only
static fields is allowed. Therefore, allstatic fields must be declared asfinal.

• An enterprise bean is not allowed to use thread synchronization primitives.

• An enterprise bean is not allowed to use the JTS interfaces directly. The only
exception are enterprise beans with theBEAN_MANAGEDtransaction attribute
which are allowed to use thejavax.jts.CurrentTransactioninterface to
demarcate transactions.

Enterprise JavaBeans

Sun Microsystems Inc. 110 February 4, 1998

• An enterprise bean is not allowed to change itsjava.security.Identity. Any such
attempt will result in thejava.security.SecurityException being thrown.

• A transaction-enabled enterprise bean using JDBC is not allowed to use the
commit and rollback methods. An enterprise bean that is not transaction-
enabled is allowed to use thecommit androllback methods.

16.5 Component packaging responsibilities

The enterprise bean provider is responsible for putting the following classes and files
in the ejb-jar file:

• The enterprise bean class with any classes that the enterprise bean depends on.

• The deployment descriptor file that contains the deployment attributes for the
enterprise bean.

• The enterprise bean’s remote interface with any classes that the interface
depends on.

• The enterprise bean’s home interface with any classes that the interface depends
on.

• Enterprise bean’s environment properties.

• The Manifest file that identifies the deployment descriptors of all the enterprise
beans in the ejb-jar file.

Enterprise JavaBeans

Sun Microsystems Inc. 111 February 4, 1998

17 Container provider responsibilities

17.1 Enterprise bean deployment tools

17.1.1 Tools to read ejb-jar

The container must include tools that support deployment of enterprise beans packaged
in the ejb-jar file format.

The tools must discover all the enterprise beans that are in the JAR file by reading the
ejb-jar Manifest file. The Manifest file provides the relative name of the serialized de-
ployment descriptors (i.e. .ser files).

For each enterprise bean in the ejb-jar file, the tools must:

• Deserialized the deployment descriptor, and read the information contained in
the bean’s deployment descriptor using the getter methods. The information
provides the default setting for the enterprise bean’s declarative attributes, such
as transaction and security attributes. The deployment descriptor also include
the initial value of the bean’s environment properties, and provides the class
names for the enterprise bean class, remote and home interfaces, and the class
name of the primary key type.

• Generate the container specific classes as specified in the Sections 6.12 and 9.7.

• Generate the classes for stubs and skeletons used by the underlying distributed
objects protocol.

• Make the enterprise bean’s home interface available in JNDI for clients to be
able to find and access the enterprise bean.

17.1.2 Tools to manage deployment descriptor attributes

The EJB container may provide tools that allow the EJB deployer to modify the infor-
mation imported from the enterprise bean’s deployment descriptor. In certain scenarios,
the tools may restrict the deployer from changing some or all deployment descriptor at-
tributes. The EJB specification does not specify which attributes can or cannot be
changed at deployment time.

17.1.3 Tools to customize business logic

The EJB container may provide tools that allow the EJB deployer to customize business
logic of the deployed enterprise beans. For example, the tools may allow the deployer
to writewrapper functions for the business methods. To allow maximum freedom for
the tool vendors, the EJB specification does not architect the customization.

17.1.4 Tools for container-managed persistence

The EJB containers that support container-managed persistence should provide tools
that allow the deployer to map the container-managed fields to an enterprise’s existing
data source or application system. These tools are typically specific to the legacy data
source or application system.

Enterprise JavaBeans

Sun Microsystems Inc. 112 February 4, 1998

17.2 Runtime infrastructure

The EJB container must provide the runtime infrastructure that complies with the EJB
specification. In particular, the container must:

• Implement the Session protocol described in Chapters 5 and 6.

• If the container supports Entities, it must implement the Entity protocol
described in Chapters 8 and 9.

• Implement the support for transaction described in Chapter 11.

• Implement the support for security described in Chapter 14.

• Handle exceptions as described in Chapter 12.

• If the container uses IIOP as the distributed object protocol, it should implement
the EJB to CORBA mapping defined in [6].

17.3 Runtime management tools

The container should provide tools that allow runtime management and monitoring of
the enterprise beans running in the container.

Enterprise JavaBeans

Sun Microsystems Inc. 113 February 4, 1998

18 Enterprise JavaBeans API Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb:

Interfaces:

public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle
public interface InstanceContext
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization

Classes:

public class CreateException
public class DestroyException
public class DuplicateKeyException
public class EJBException
public class FinderException
public class ObjectNotFoundException

packagejavax.ejb.deployment:

Classes:

public class DeploymentDescriptor
public class EntityDescriptor
public class IsolationLevel
public class MethodDescriptor
public class SecurityDescriptor
public class SessionDescriptor
public class TransactionAttribute

Enterprise JavaBeans

Sun Microsystems Inc. 114 February 4, 1998

Interface EJBHome

public interface javax.ejb. EJBHome
 extends java.rmi. Remote
{
 public abstract void

destroy (Handle handle);
 public abstract void

destroy (Object primaryKey);
 public abstract EJBMetaData

getEJBMetaData ();
}

The EJBHome interface is an interface that is extended by all enterprise bean's home interfaces. An enter-
prise bean's home interface defines the methods that allow a client to create, find, and destroy EJB objects.

Each enterprise bean has a home interface. The home interface must extend the javax.ejb.EJBHome inter-
face, and define the enterprise bean type specific create and finder methods (session beans do not have find-
ers).

The home interface is defined by the enterprise bean provider and implemented by the enterprise bean con-
tainer.

Methods

• destroy

public abstract void destroy(Handle handle)
 throws RemoteException, DestroyException

Destroy an EJB object identified by its handle.

Throws: DestroyException
Thrown if the enterprise bean or the container does not allow the client to destroy the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Throws: DestroyException
The enterprise bean or the container does not allow destruction of the object.

• destroy

public abstract void destroy(Object primaryKey)
 throws RemoteException, DestroyException

Destroy an EJB object identified by its primary key.

Throws: DestroyException
Thrown if the enterprise bean or the container does not allow the client to destroy the object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Throws: DestroyException
The enterprise bean or the container does not allow destruction of the object.

Enterprise JavaBeans

Sun Microsystems Inc. 115 February 4, 1998

• getEJBMetaData

public abstract EJBMetaData getEJBMetaData()
 throws RemoteException

Obtain the EJBMetaData interface for the enterprise bean. The EJBMetaData interface allows the client to
obtain information about the enterprise bean.

The information obtainable via the EJBMetaData interface is intended to be used by tools.

Returns:
The enterprise bean's EJBMetaData interface.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans

Sun Microsystems Inc. 116 February 4, 1998

Interface EJBMetaData

public interface javax.ejb. EJBMetaData
{
 public abstract EJBHome getEJBHome ();
 public abstract Class

getHomeInterfaceClass ();
 public abstract Class

getPrimaryKeyClass ();
 public abstract Class

getRemoteInterfaceClass ();
 public abstract boolean isSession ();
}

The EJBMetaData interface allows a client to obtain the enterprise bean's meta-data. The meta-data is
intended to for development tools used for building applications that use deployed enterprise beans.

Methods

• getEJBHome

public abstract EJBHome getEJBHome()

Obtain the home interface of the enterprise bean.

• getHomeInterfaceClass

public abstract Class getHomeInterfaceClass()

Obtain the Class object for the EJB's home interface.

• getPrimaryKeyClass

public abstract Class getPrimaryKeyClass()

Obtain the Class object for the EJB's primary key class.

• getRemoteInterfaceClass

public abstract Class getRemoteInterfaceClass()

Obtain the Class object for the EJB's remote interface.

• isSession

public abstract boolean isSession()

Test if the enterprise bean's type is "session".

Returns:
True if the type of the enterprise bean is session.

Enterprise JavaBeans

Sun Microsystems Inc. 117 February 4, 1998

Interface EJBObject

public interface javax.ejb. EJBObject
 extends java.rmi. Remote
{
 public abstract void destroy ();
 public abstract EJBHome getEJBHome ();
 public abstract Handle getHandle ();
 public abstract Object getPrimaryKey ();
 public abstract boolean

isIdentical (EJBObject obj);
}

The EJBObject interface is an interface that is extended by all enterprise bean's remote interface. An enter-
prise bean's remote interface provides the client's view of an EJB object. An enterprise bean's remote defines
the business methods callable by a client.

Each enterprise bean has a remote interface. The remote interface must extend the javax.ejb.EJBObject
interface, and define the enterprise bean specific business methods.

The enterprise bean's remote interface is defined by the enterprise bean provider and implemented by the
enterprise bean container.

Methods

• destroy

public abstract void destroy()
 throws RemoteException, DestroyException

Destroy the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Throws: DestroyException
The enterprise bean or the container does not allow destruction of the object.

• getEJBHome

public abstract EJBHome getEJBHome()
 throws RemoteException

Obtain the enterprise bean's home interface. The home interface defines the enterprise bean's create, finder,
and destroy operations.

Returns:
A reference to the enterprise bean's home interface.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getHandle

public abstract Handle getHandle()
 throws RemoteException

Obtain a handle for the EJB object. The handle can be used at later time to re-obtain a reference to the EJB

Enterprise JavaBeans

Sun Microsystems Inc. 118 February 4, 1998

object, possibly in a different Java Virtual Machine.

Returns:
A handle for the EJB object.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws RemoteException

Obtain the primary key of the EJB object.

Returns:
The EJB object's primary.

• isIdentical

public abstract boolean isIdentical(EJBObject obj)
 throws RemoteException

Test if a given EJB object is identical to the invoked EJB object.

Parameters:
obj

An object to test for identity with the invoked object.

Returns:
True if the given EJB object is identical to the invoked object, false otherwise.

Throws: RemoteException
Thrown when the method failed due to a system-level failure.

Enterprise JavaBeans

Sun Microsystems Inc. 119 February 4, 1998

Interface EnterpriseBean

public interface javax.ejb. EnterpriseBean
 extends java.io. Serializable
{
}

The EnterpriseBean interface is an interface that every enterprise bean class must implement. It is a common
superinterface for the SessionBean and EntityBean interfaces.

Enterprise JavaBeans

Sun Microsystems Inc. 120 February 4, 1998

Interface EntityBean

public interface javax.ejb. EntityBean
 extends javax.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbDestroy ();
 public abstract void ejbLoad ();
 public abstract void ejbPassivate ();
 public abstract void ejbPostCreate ();
 public abstract void ejbStore ();
 public abstract void

setEntityContext (EntityContext ctx);
 public abstract void

unsetEntityContext ();
}

The EntityBean interface is implemented by every entity enterprise bean class. The container uses the Enti-
tyBean methods to notify the enterprise bean instances of the instance's life cycle events.

Note: Support for entity enterprise beans is optional for EJB 1.0 compliant containers. Support for entities
will become mandatory for EJB 2.0 compliant containers.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws EJBException

A container invokes this method on the instance when the instance is taken out of the pool of available
instances to become associated with a specific EJB object. This method transitions the instance to the ready
state.

This method executes in an unspecified transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbDestroy

public abstract void ejbDestroy()
 throws EJBException, DestroyException

A container invokes this method before it destroys the EJB object that is currrently associated with the
instance. This method is invoked when a client invokes a destroy operation on the enterprise bean's home
interface or the EJB object's remote interface. This method transitions the instance from the ready state to
the pool of available instances.

This method is called in the transaction context of the destroy operation.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

Throws: DestroyException
The enterprise bean does not allow destruction of the object.

Enterprise JavaBeans

Sun Microsystems Inc. 121 February 4, 1998

• ejbLoad

public abstract void ejbLoad()
 throws EJBException

A container invokes this method on the instance to instruct the instance to synchronize its state by loading it
state from the underlying database.

This method always executes in the proper transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbPassivate

public abstract void ejbPassivate()
 throws EJBException

A container invokes this method on instance before the instance becomes disassociated with a specific EJB
object. After this method completes, the container will place the instance into the pool of available instances.

This method executes in an unspecified transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbPostCreate

public abstract void ejbPostCreate()
 throws EJBException

A container invokes this function as part of the protocol for the creation of an EJB object. The container calls
ejbPostCreate on the instance after it calls the appropriate ejbCreate(...) method on the instance.

This method is called in the proper transaction context.

The EJB object identity has been established before the container calls ejbPostCreate() and therefore the
instance can, for example, pass a reference to the EJB object to other enterprise beans in a method argument.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbStore

public abstract void ejbStore()
 throws EJBException

A container invokes this method on the instance to instruct the instance to synchronize its state by storing it
to the underlying database.

This method always executes in the proper transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• setEntityContext

public abstract void
setEntityContext(EntityContext ctx)

 throws EJBException

Set the associated entity context. The container invokes this method on an instance after the instance has
been created.

Enterprise JavaBeans

Sun Microsystems Inc. 122 February 4, 1998

This method is called in an unspecified transaction context.

Parameters:
ctx

An EntityContext interface for the instance. The instance should store the reference to the
context in an instance variable.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• unsetEntityContext

public abstract void unsetEntityContext()
 throws EJBException

Unset the associated entity context. The container calls this method before destroying the instance.

This is the last method that the container invokes on the instance. The Java garbage collector will eventually
invoke the finalize() method on the instance.

This method is called in an unspecified transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

Enterprise JavaBeans

Sun Microsystems Inc. 123 February 4, 1998

Interface EntityContext

public interface javax.ejb. EntityContext
 extends javax.ejb. InstanceContext
{
 public abstract EJBObject getEJBObject ();
 public abstract Object getPrimaryKey ();
 public abstract void

setPrimaryKey (Object primaryKey);
}

The EntityContext interface provides an instance with access to the container-provided runtime context of an
entity enterprise bean instance. The container passes the EntityContext interface to an entity enterprise bean
instance after the instance has been created.

The EntityContext interface remains associated with the instance for the lifetime of the instance. Note that
the information that the instance obtains using the EntityContext interface (such as the result of the getPri-
maryKey() method) may change, as the container assigns the instance to different EJB objects during the
instance's life cycle.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of an entity enterprise bean can call this method only when the instance is in the "ready" state,
i.e. after and within the ejbActivate or ejbCreate method, and before the ejbPassivate or ejbDestroy method.
If the instance calls this method from the ejbCreate method, it may do it only after it called setPrimaryKey.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

• getPrimaryKey

public abstract Object getPrimaryKey()
 throws IllegalStateException

Obtain the primary key of the EJB object that is currently associated with this instance.

An entity enterprise bean instance can call this method only when the instance is in the ready state; from the
ejbActivate(), ejbPassivate(), and ejbDestroy() methods; and from the ejbCreate(...) methods after the
instance has called the set primary key method on the InstanceContext interface.

Note: The result of this method is that same as the the result of getEJBObject().getPrimaryKey().

Returns:
The EJB object currently associated with the instance.

Enterprise JavaBeans

Sun Microsystems Inc. 124 February 4, 1998

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

• setPrimaryKey

public abstract void
setPrimaryKey(Object primaryKey)

 throws IllegalStateException, DuplicateKeyException

Associate the primary key with the EJB object that is being currently created. This method is callable only
from the ejbCreate(...) methods of an entity enterprise bean class.

Throws: DuplicateKeyException
Thrown if creating of the entity would result in creation of a record with duplicate primary key.
This exception is thrown only if the entity bean uses container managed persistence.

Throws: IllegalStateException
Thrown if the instance invokes this method from a method other than ejbCreate(...).

Enterprise JavaBeans

Sun Microsystems Inc. 125 February 4, 1998

Interface Handle

public interface javax.ejb. Handle
 extends java.io. Serializable
{
 public abstract EJBObject getEJBObject ();
}

The Handle interface is implemented by all EJB object handles. A handle is an abstraction of a network ref-
erence to an EJB object. A handle is intended to be used as a "robust" persistent reference to an EJB object.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws RemoteException

Obtain the EJB object represented by this handle.

Throws: RemoteException
The EJB object could not be obtained because of a system-level failure.

Enterprise JavaBeans

Sun Microsystems Inc. 126 February 4, 1998

Interface InstanceContext

public interface javax.ejb. InstanceContext
{
 public abstract Identity

getCallerIdentity ();
 public abstract CurrentTransaction

getCurrentTransaction ();
 public abstract EJBHome getEJBHome ();
 public abstract Properties

getEnvironment ();
 public abstract boolean

isCallerInRole (Identity role);
 public abstract void setRollbackOnly ();
}

The InstanceContext interface provides an instance with access to the container-provided runtime context of
an enterprise bean instance.

This interface is extended by the SessionContext and EntityContext interface to provide additional methods
specific to the enterprise bean type.

Methods

• getCallerIdentity

public abstract Identity getCallerIdentity()

Obtain the java.security.Identity of the caller.

Returns:
The Identity object that identifies the caller.

• getCurrentTransaction

public abstract CurrentTransaction
getCurrentTransaction()

 throws IllegalStateException

Obtain the transaction demaraction interface.

Returns:
The CurrentTransaction interface that the enterprise bean instance can use for transaction demarca-
tion.

Throws: IllegalStateException
Thrown if the instance container does not make the CurrentTransaction interface available to the
instance (only the enterprise beans with the BEAN_MANAGED transaction attribute are allowed
to use the CurrentTransaction interface).

• getEJBHome

public abstract EJBHome getEJBHome()

Obtain the enterprise bean's home interface.

Returns:

Enterprise JavaBeans

Sun Microsystems Inc. 127 February 4, 1998

The enterprise bean's home interfac.

• getEnvironment

public abstract Properties getEnvironment()

Obtain the enterprise bean's environment properties.

Note: If the enterprise bean has no environment properties this method returns an empty java.util.Properties
object. This method never returns null.

Returns:
The environment properties for the enterprise bean.

• isCallerInRole

public abstract boolean
isCallerInRole(Identity role)

Test if the caller has a given role.

Parameters:
role

The java.security.Identity of the role to be tested.

Returns:
True if the caller has the specified role.

• setRollbackOnly

public abstract void setRollbackOnly()

Mark the current transaction for rollback. The transaction will become permanently marked for rollback. A
transaction marked for rollback can never commit.

Enterprise JavaBeans

Sun Microsystems Inc. 128 February 4, 1998

Interface SessionBean

public interface javax.ejb. SessionBean
 extends javax.ejb. EnterpriseBean
{
 public abstract void ejbActivate ();
 public abstract void ejbDestroy ();
 public abstract void ejbPassivate ();
 public abstract void

setSessionContext (SessionContext ctx);
}

The SessionBean interface is implemented by every session enterprise bean class. The container uses the
SessionBean methods to notify the enterprise bean instances of the instance's life cycle events.

Methods

• ejbActivate

public abstract void ejbActivate()
 throws EJBException

The activate method is called when the instance is activated from its "passive" state. The instance should
acquire any resource that it has released earlier in the ejbPassivate() method.

This method is called in no transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbDestroy

public abstract void ejbDestroy()
 throws EJBException

A container invokes this method before it ends the life of the session object. This happens as a result of a cli-
ent's invoking a destroy operation, or when a container decides to terminate the session object after a time-
out.

This method is called in no transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• ejbPassivate

public abstract void ejbPassivate()
 throws EJBException

The passivate method is called before the instance enters the "passive" state. The instance should release any
resources that that it can re-acquire later in the ejbActivate() method.

After the passivate method completes, the instance must be in a state that allows the container to use the Java
Serialization protocol to externalize and store away the instance's state.

This method is called in no transaction context.

Throws: EJBException

Enterprise JavaBeans

Sun Microsystems Inc. 129 February 4, 1998

Thrown if the instance could not perform the function requested by the container.

• setSessionContext

public abstract void
setSessionContext(SessionContext ctx)

 throws EJBException

Set the associated session context. The container calls this method after the instance creation.

The enterprise bean instance should store the reference to the context object in an instance variable.

This method is called in no transaction context.

Parameters:
ctx

An SessionContext interface for the instance.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

Enterprise JavaBeans

Sun Microsystems Inc. 130 February 4, 1998

Interface SessionContext

public interface javax.ejb. SessionContext
 extends javax.ejb. InstanceContext
{
 public abstract EJBObject getEJBObject ();
}

The SessionContext interface provides access to the runtime session context that the container provides for a
session enterprise bean instance. The container passes the SessionContext interface to an instance after the
instance has been created. The session context remains associated with the instance for the lifetime of the
instance.

Methods

• getEJBObject

public abstract EJBObject getEJBObject()
 throws IllegalStateException

Obtain a reference to the EJB object that is currently associated with the instance.

An instance of a session enterprise bean can call this method at anytime between the ejbCreate() and ejbDe-
stroy() methods, including from within the ejbCreate() and ejbDestroy() methods.

An instance can use this method, for example, when it wants to pass a reference to itself in a method argu-
ment or result.

Returns:
The EJB object currently associated with the instance.

Throws: IllegalStateException
Thrown if the instance invokes this method while the instance is in a state that does not allow the
instance to invoke this method.

Enterprise JavaBeans

Sun Microsystems Inc. 131 February 4, 1998

Interface SessionSynchronization

public interface javax.ejb. SessionSynchronization
{
 public abstract void afterBegin ();
 public abstract void

afterCompletion (boolean committed);
 public abstract void beforeCompletion ();
}

The SessionSynchronization interface allows a session bean instance to be notified by its container of trans-
action boundaries.

An session bean class is not required to implement this interface. A session bean class should implement this
interface only if it wishes to synchronize its state with the transactions.

Methods

• afterBegin

public abstract void afterBegin()
 throws EJBException

The afterBegin method notifies a session bean instance that a new transaction has started, and that the subse-
quent business methods on the instance will be invoked in the context of the transaction.

The instance can use this method, for example, to read data from a database and cache the data in the
instance fields.

This method executes in the proper transaction context.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• afterCompletion

public abstract void
afterCompletion(boolean committed)

 throws EJBException

The afterCompletion method notifies a session bean instance that a transaction commit protocol has com-
pleted, and tells the instance whether the transaction has been committed or rolled back.

This method executes with no transaction context.

This method executes with no transaction context.

Parameters:
committed

True if the transaction has been committted, false if is has been rolled back.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

• beforeCompletion

public abstract void beforeCompletion()
 throws EJBException

Enterprise JavaBeans

Sun Microsystems Inc. 132 February 4, 1998

The beforeCompletions method notifies a session bean instance that a transaction is about to be committed.
The instance can use this method, for example, to write any cached data to a database.

This method executes in the proper transaction context.

Note: The instance may still cause the container to rollback the transaction by invoking the setRollback-
Only() method on the instance context, or by throwing an exception.

Throws: EJBException
Thrown if the instance could not perform the function requested by the container.

Enterprise JavaBeans

Sun Microsystems Inc. 133 February 4, 1998

Class CreateException

public class javax.ejb. CreateException
 extends java.lang. Exception
{
 public CreateException ();
 public CreateException (String message);
}

The CreateException exception should be included in the throws clause of the create(...) methods of
entity enterprise beans. The exception is used as a standard application-level exception to report a failure to
create an entity EJB object.

Constructors

• CreateException

public CreateException()

Constructs an CreateException with no detail message.

• CreateException

public CreateException(String message)

Constructs an CreateException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 134 February 4, 1998

Class DestroyException

public class javax.ejb. DestroyException
 extends java.lang. Exception
{
 public DestroyException ();
 public DestroyException (String message);
}

The DestroyException exception is thrown at an attempt to destroy an EJB object, and the enterprise bean or
the container does not allow the object to be destroyed.

Constructors

• DestroyException

public DestroyException()

Constructs an DestroyException with no detail message.

• DestroyException

public DestroyException(String message)

Constructs an DestroyException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 135 February 4, 1998

Class DuplicateKeyException

public class javax.ejb. DuplicateKeyException
 extends javax.ejb. CreateException
{
 public DuplicateKeyException ();
 public

DuplicateKeyException (String message);
}

The DuplicateKeyException exception is thrown if an entity EJB object cannot be created because an object
with the same key already exists. This exception is thrown by the create methods defined in an enterprise
bean's home interface.

Constructors

• DuplicateKeyException

public DuplicateKeyException()

Constructs an DuplicateKeyException with no detail message.

• DuplicateKeyException

public DuplicateKeyException(String message)

Constructs an DuplicateKeyException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 136 February 4, 1998

Class EJBException

public class javax.ejb. EJBException
 extends java.lang. Exception
{
 public EJBException ();
 public EJBException (Exception ex);
 public EJBException (String message);
 public Exception getCausedByException ();
}

The EJBException exception is thrown by an enterprise bean instance to its container to report that the
invoked business method or callback method could not be completed because of an unexpected error (e.g.
the instance failed to open a database connection).

The enterprise bean provider should provide a detail descriptive message as part of the exception string. The
container should log all reported EJBExceptions and make them available to the system administrator.

If a client-invoked method cannot not be completed because of an instance's throwing the EJBException, the
container must throw the java.rmi.RemoteException, or an exception that is a subclass of java.rmi.Remote-
Exception, to the client.

If the EJBException was thrown by an instance while the instance performed work in the scope of a transac-
tion that was initiated by the container, the container must rollback the transaction must rollback the transac-
tion before throwing the java.rmi.RemoteException to the client.

If the EJBException was thrown by an instance while the instance performed work in the scope of a transac-
tion that was imported from the client, the container must mark the transaction for rollback and throw the
javax.jts.TransactionRollbackException to the client. The javax.jts.TransactionRollbackException is a sub-
class of java.rmi.RemoteException, and it indicates to the client that it would be fruitless to continue work in
the scope of the transaction.

Constructors

• EJBException

public EJBException()

Constructs an EJBException with no detail message.

• EJBException

public EJBException(Exception ex)

Constructs an EJBException that embeds the exception that caused the instance to thrown the EJBExcep-
tion.

• EJBException

public EJBException(String message)

Constructs an EJBException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 137 February 4, 1998

Methods

• getCausedByException

public Exception getCausedByException()

Obtain the exception that caused the EJBException being thrown.

Enterprise JavaBeans

Sun Microsystems Inc. 138 February 4, 1998

Class FinderException

public class javax.ejb. FinderException
 extends java.lang. Exception
{
 public FinderException ();
 public FinderException (String message);
}

/** The FinderException exception should be included in the throws clause of the findMETHOD(...) meth-
ods of entity enterprise beans. The exception is used as a standard application-level exception to report a
failure to find the request EJB object(s).

Constructors

• FinderException

public FinderException()

Constructs an FinderException with no detail message.

• FinderException

public FinderException(String message)

Constructs an FinderException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 139 February 4, 1998

Class ObjectNotFoundException

public class javax.ejb. ObjectNotFoundException
 extends javax.ejb. FinderException
{
 public ObjectNotFoundException ();
 public

ObjectNotFoundException (String message);
}

The ObjectNotFoundException exception is thrown by a finder method to indicate the specified EJB object
does not exist.

Only the finder methods that are declared to return a single EJB object use this exception. This exception
should not be thrown by finder method that return a collection of EJB objects (they should return a null col-
lection instead).

Constructors

• ObjectNotFoundException

public ObjectNotFoundException()

Constructs an ObjectNotFoundException with no detail message.

• ObjectNotFoundException

public ObjectNotFoundException(String message)

Constructs an ObjectNotFoundException with the specified detail message.

Enterprise JavaBeans

Sun Microsystems Inc. 140 February 4, 1998

Class DeploymentDescriptor

public class javax.ejb.deployment. DeploymentDescriptor
 extends java.lang. Object
 implements java.io. Serializable
{
 public DeploymentDescriptor ();
 public Class getEnterpriseBeanClass ();
 public Properties

getEnvironmentProperties ();
 public Class getHomeInterface ();
 public Name getJNDIName ();
 public MethodDescriptor

getMethodDescriptor (int index);
 public MethodDescriptor[]

getMethodDescriptors ();
 public Class getRemoteInterface ();
 public SecurityDescriptor

getSecurityDescriptor ();
 public int getTransactionAttribute ();
 public void

setEnterpriseBeanClass (Class value);
 public void

setEnvironmentProperties (Properties value);
 public void

setHomeInterface (Class value);
 public void setJNDIName (Name value);
 public void

setMethodDescriptor (int index,
MethodDescriptor value);

 public void
setMethodDescriptors (MethodDescriptor value[]);

 public void
setRemoteInterface (Class value);

 public void
setSecurityDescriptor (SecurityDescriptor value);

 public void
setTransactionAttribute (int value);

}

The DeploymentDescriptor class is the common baseclass for the SessionDescriptor and EntityDescriptor
deployment descriptor classes. The class is designed as a JavaBean component.

A serialized instance of a deployment descriptor class is used as the standard format for passing the enter-
prise bean's declarative deployment attributes in the ejb-jar file. The deployment descriptor setter functions
are used by the enterprise bean provider's tools to create the deployment descriptor before it is put into the
ejb-jar file, and the getter functions are used by the container provider's tools to read the deployment descrip-
tor from the ejb-jar file when the enterprise bean is installed into the container.

After an enterprise bean has been installed into a container, the container's tools can be then used to view and
change the setting of the deployment attributes.

Enterprise JavaBeans

Sun Microsystems Inc. 141 February 4, 1998

Constructors

• DeploymentDescriptor

public DeploymentDescriptor()

Create an instance of the deployment descriptor.

Methods

• getEnterpriseBeanClass

public Class getEnterpriseBeanClass()

Get the enterprise bean's class.

Returns:
The Class object for the enterprise bean's class.

• getEnvironmentProperties

public Properties getEnvironmentProperties()

Get enterprise bean's environment properties.

Returns:
Enterprise bean's environment properties.

• getHomeInterface

public Class getHomeInterface()

Get the enterprise bean's home interface.

Returns:
The Class object for the enterprise bean's home.

• getJNDIName

public Name getJNDIName()

Get the name to associate with the enterprise bean in the JNDI name space. The cointainer will make the
enterprise bean's home interface available at a JNDI name that ends with this relative path.

For example, if getJNDIName() returns "bank/Account", the container must make the bean's home interface
available under the JNDI name "/prefix/bank/Account", where "prefix" can be an arbitrary composite JNDI
name, e.g. "/x/y/z/bank/Account". The "prefix" part can also be empty.

Returns:
A JNDI name for this enterprise bean.

• getMethodDescriptor

public MethodDescriptor
getMethodDescriptor(int index)

Get the method descriptor by an index.

Parameters:
index

Enterprise JavaBeans

Sun Microsystems Inc. 142 February 4, 1998

The index of the method descriptor.

Returns:
The method descriptor at the specified index.

• getMethodDescriptors

public MethodDescriptor[] getMethodDescriptors()

Get the array of the enterprise bean's method descriptors.

Returns:
An array of enterprise bean's method descriptors, or null of the enterprise bean does not provide
method-level descriptors.

• getRemoteInterface

public Class getRemoteInterface()

Get the enterprise bean's remote interface.

Returns:
The Class object for the enterprise bean's remote interface.

• getSecurityDescriptor

public SecurityDescriptor getSecurityDescriptor()

Get the enterprise bean's security descriptor.

Returns:
The enterprise bean's security descriptor.

• getTransactionAttribute

public int getTransactionAttribute()

Get the enterprise bean's transaction attribute. The values of the transaction attribute are defined in the class
TransactionAttribute.

Returns:
The enterprise bean's transaction attribute.

• setEnterpriseBeanClass

public void setEnterpriseBeanClass(Class value)

Set the enterprise bean's class.

Parameters:
value

The Class object for the enterprise bean's class.

• setEnvironmentProperties

public void
setEnvironmentProperties(Properties value)

Set enterprise bean's environment properties.

Parameters:
value

Enterprise bean's environment properties.

Enterprise JavaBeans

Sun Microsystems Inc. 143 February 4, 1998

• setHomeInterface

public void setHomeInterface(Class value)

Set the enterprise bean's home interface.

Parameters:
value

The Class object for the enterprise beans home.

• setJNDIName

public void setJNDIName(Name value)

Set the name to associate with the enterprise bean in the JNDI name space. The cointainer will make the
enterprise bean's home interface available at a JNDI name that ends with this relative path.

Parameters:
value

A JNDI name for this enterprise bean.

• setMethodDescriptor

public void
setMethodDescriptor(int index,

MethodDescriptor value)

Set the method descriptor by an index.

Parameters:
index

The index of the method descriptor.
value

The method descriptor to be set at the specified index.

• setMethodDescriptors

public void
setMethodDescriptors(MethodDescriptor value[])

Set the array of the enterprise bean's method descriptors.

A deployment descriptor may define zero or several MethodDescriptors. If a MethodDescriptor is defined
for a method, the MethodDescriptor overrides the values of the transactionAttribute and securityDescriptor
set at the bean level.

A MethodDescriptor can be provided for the methods defined in the enterprise bean's remote interface, home
interface,

Parameters:
value

An array of the enterprise bean's method descriptors.

• setRemoteInterface

public void setRemoteInterface(Class value)

Set the enterprise bean's remote interface.

Parameters:
value

The Class object for the enterprise bean's remote interface.

Enterprise JavaBeans

Sun Microsystems Inc. 144 February 4, 1998

• setSecurityDescriptor

public void
setSecurityDescriptor(SecurityDescriptor value)

Set the enterprise bean's security descriptor.

The SecurityDescriptor applies to all methods of the enterprise bean, unless it is overridden by a MethodDe-
scriptor.

Parameters:
value

The enterprise bean's security descriptor.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the enterprise bean's transaction attribute. The values of the transaction attribute are defined in the class
TransactionAttribute.

The transaction attribute applies to all methods of the enterprise bean, unless it is overridden by a Method-
Descriptor.

Parameters:
value

The enterprise bean's transaction attribute.

Enterprise JavaBeans

Sun Microsystems Inc. 145 February 4, 1998

Class EntityDescriptor

public class javax.ejb.deployment. EntityDescriptor
 extends javax.ejb.deployment. DeploymentDescriptor
{
 public EntityDescriptor ();
 public Field

getContainerManagedField (int index);
 public Field[]

getContainerManagedFields ();
 public Class getPrimaryKeyClass ();
 public void

setContainerManagedField (int index,
Field value);

 public void
setContainerManagedFields (Field values[]);

 public void
setPrimaryKeyClass (Class value);

}

The SessionDescriptor class defines the deployment descriptor for an entity enterprise bean.

A serialized instance of a deployment descriptor class is used as the standard format for passing an enter-
prise bean's declarative attributes in the ejb-jar file. The deployment descriptor setter functions are used by
the enterprise bean provider's tools to create the deployment descriptor before it is put into the ejb-jar file,
and the getter functions are used by the container provider's tools to read the deployment descriptor from the
ejb-jar file.

Constructors

• EntityDescriptor

public EntityDescriptor()

Create an instance of the deployment descriptor.

Methods

• getContainerManagedField

public Field getContainerManagedField(int index)

Get the container-managed field at the given index.

Parameters:
index

The index of the field.

Returns:
The Field of the specified container-managed field.

• getContainerManagedFields

public Field[] getContainerManagedFields()

Enterprise JavaBeans

Sun Microsystems Inc. 146 February 4, 1998

Get the array of container-managed enterprise bean's fields.

Returns:
The array of container-managed fields.

• getPrimaryKeyClass

public Class getPrimaryKeyClass()

Get the enterprise bean's primary key class.

Returns:
The Class object for the primary key.

• setContainerManagedField

public void
setContainerManagedField(int index, Field value)

Set the container-managed field at the given index.

Parameters:
index

The index of the field.
value

The Field of the specified container-managed field.

• setContainerManagedFields

public void
setContainerManagedFields(Field values[])

Set the array of container-managed enterprise bean's fields.

Parameters:
value

The array of container-managed fields.

• setPrimaryKeyClass

public void setPrimaryKeyClass(Class value)

Get the enterprise bean's primary key class.

Parameters:
value

The Class object for the primary key.

Enterprise JavaBeans

Sun Microsystems Inc. 147 February 4, 1998

Class IsolationLevel

public class javax.ejb.deployment. IsolationLevel
 extends java.lang. Object
{
 public final static int NONE;
 public final static int READ_COMMITTED;
 public final static int READ_UNCOMMITTED;
 public final static int REPEATABLE_READ;
 public final static int SERIALIZABLE ;
}

The IsolationLevel class defines the value of the enterprise bean's transaction isolation levels.

The deployment descriptor of an entity bean with container-managed persistence uses the values defined in
the IsolationLevel class to tell the container the requested isolation level for the database access operations
that will be generated by the container provider tools.

Variables

• NONE

public final static int NONE

Transactions are not supported. This is an illegal value for a an entity with container-managed persistence.

• READ_COMMITTED

public final static int READ_COMMITTED

The container tools must generate database access calls with an isolation degree that is equivalent to the
JDBC TRANSACTION_READ_COMMITTED level.

• READ_UNCOMMITTED

public final static int READ_UNCOMMITTED

The container tools must generate database access calls with an isolation degree that is equivalent to the
JDBC TRANSACTION_READ_UNCOMMITTED level.

• REPEATABLE_READ

public final static int REPEATABLE_READ

The container tools must generate database access calls with an isolation degree that is equivalent to the
JDBC TRANSACTION_REPEATABLE_READ level.

• SERIALIZABLE

public final static int SERIALIZABLE

The container tools must generate database access calls with an isolation degree that is equivalent to the
JDBC TRANSACTION_SERIALIZABLE level.

Enterprise JavaBeans

Sun Microsystems Inc. 148 February 4, 1998

Class MethodDescriptor

public class javax.ejb.deployment. MethodDescriptor
 extends java.lang. Object
{
 public MethodDescriptor (Method method);
 public Method getMethod ();
 public SecurityDescriptor

getSecurityDescriptor ();
 public int getTransactionAttribute ();
 public void

setSecurityDescriptor (SecurityDescriptor value);
 public void

setTransactionAttribute (int value);
}

The MethodDescriptor is used to provide deployment information specific to a single method. The method-
level information overrides any information set at the enterprise bean-level.

A MethodDescriptor can be provided for the following methods of a session enterprise bean class: ejbCre-
ate(...), ejbDestroy(), and any business method.

A MethodDescriptor can be provided for the following methods of an entity enterprise bean class: ejbCre-
ate(...), ejbDestroy(), ejbFindMETHOD(...), and any business method.

Constructors

• MethodDescriptor

public MethodDescriptor(Method method)

Construct a MethodDescriptor for a given Method.

Methods

• getMethod

public Method getMethod()

Get the Method to which this MethodDescriptor applies.

Returns:
The Method associated with this MethodDescriptor.

• getSecurityDescriptor

public SecurityDescriptor getSecurityDescriptor()

Get the SecurityDescriptor for the method.

Returns:
The SecurityDescriptor for the method.

• getTransactionAttribute

public int getTransactionAttribute()

Enterprise JavaBeans

Sun Microsystems Inc. 149 February 4, 1998

Get the transaction attribute for the method.

Returns:
The transaction attribute for the method.

• setSecurityDescriptor

public void
setSecurityDescriptor(SecurityDescriptor value)

Set the SecurityDescriptor for the method.

Parameters:
value

The SecurityDescriptore for the method.

• setTransactionAttribute

public void setTransactionAttribute(int value)

Set the transaction attribute for the method.

Parameters:
value

The transaction attribute for the method.

Enterprise JavaBeans

Sun Microsystems Inc. 150 February 4, 1998

Class SecurityDescriptor

public class javax.ejb.deployment. SecurityDescriptor
 extends java.lang. Object
{
 public final static int Client ;
 public final static int SpecifiedUser ;
 public final static int System ;
 public SecurityDescriptor ();
 public Identity

getAllowedUser (int index);
 public Identity[] getAllowedUsers ();
 public int getRunAsAttribute ();
 public Identity getRunAsIdentity ();
 public void setAllowedUser (int index,

Identity value);
 public void

setAllowedUsers (Identity values[]);
 public void setRunAsAttribute (int value);
 public void

setRunAsIdentity (Identity value);
}

The SecurityDescriptor descriptor defines security-related attributes for enterprise bean. A SecurityDescrip-
tor can be used both at the level of the entire bean, or the level of individual methods.

Variables

• Client

public final static int Client

Run the enterprise bean method with the client's Identity.

• SpecifiedUser

public final static int SpecifiedUser

Run the enterprise bean method with the Identity of a specified user account.

• System

public final static int System

Run the enterprise bean method with the Identity of a "privileged account". The container maps the abstract
notion of a "privileged account" to some privileged account on the target system, such as the database
administrator, or the operating system administrator account.

Constructors

• SecurityDescriptor

public SecurityDescriptor()

Constructor.

Enterprise JavaBeans

Sun Microsystems Inc. 151 February 4, 1998

Methods

• getAllowedUser

public Identity getAllowedUser(int index)

Get the Identity at the specified index in the array of Identities that are granted access to execute the enter-
prise bean method.

Parameters:
index

Index of the Identity to be obtained.

Returns:
The Identity at the specified index.

• getAllowedUsers

public Identity[] getAllowedUsers()

Get the array of Identities that are granted access to execute the enterprise bean method.

Returns:
An array of Identities.

• getRunAsAttribute

public int getRunAsAttribute()

Get the "runAsAttribute" security attribute.

Returns:
The runAs attribute. The value must be one of Client, SpecifiedUser, and System.

• getRunAsIdentity

public Identity getRunAsIdentity()

Get the Identity of the specified user account with whose credentials to run the enterprise bean method. This
attribute is consulted only if the value of the runAsAttribute is SpecifiedUser.

Returns:
The Identity to associate with the execution of the enterprise bean method.

• setAllowedUser

public void
setAllowedUser(int index, Identity value)

Set the Identity at the specified index in the array of Identities that are granted access to execute the enter-
prise bean method.

Parameters:
index

Index of the Identity to be set.
value

The Identity to be set.

• setAllowedUsers

public void setAllowedUsers(Identity values[])

Enterprise JavaBeans

Sun Microsystems Inc. 152 February 4, 1998

Set the array of Identities that are granted access to execute the enterprise bean method. param value An
array of Identities.

• setRunAsAttribute

public void setRunAsAttribute(int value)

Set the "runAsAttribute" security attribute.

Parameters:
value

The runAs attribute. The value must be one of Client, SpecifiedUser, and System.

• setRunAsIdentity

public void setRunAsIdentity(Identity value)

Set the Identity of the specified user account with whose credentials to run the enterprise bean method. This
attribute is consulted only if the value of the runAsAttribute is set to SpecifiedUser.

Parameters:
value

The Identity to associate with the execution of the enterprise bean method.

Enterprise JavaBeans

Sun Microsystems Inc. 153 February 4, 1998

Class SessionDescriptor

public class javax.ejb.deployment. SessionDescriptor
 extends javax.ejb.deployment. DeploymentDescriptor
{
 public final static int STATEFUL;
 public final static int STATELESS;
 public SessionDescriptor ();
 public int getSessionTimeout ();
 public int getStateManagement ();
 public void setSessionTimeout (int value);
 public void

setStateManagement (int value);
}

The SessionDescriptor class defines the deployment descriptor for a session enterprise bean.

A serialized instance of a deployment descriptor class is used as the standard format for passing an enter-
prise bean's declarative attributes in the ejb-jar file. The deployment descriptor setter functions are used by
the enterprise bean provider's tools to create the deployment descriptor before it is put into the ejb-jar file,
and the getter functions are used by the container provider's tools to read the deployment descriptor from the
ejb-jar file.

Variables

• STATEFUL

public final static int STATEFUL

The session bean is stateful and can be passivated between transactions.

• STATELESS

public final static int STATELESS

The session bean is stateless. A stateless bean can be reused for multiple session objects.

Constructors

• SessionDescriptor

public SessionDescriptor()

Create an instance of the deployment descriptor.

Methods

• getSessionTimeout

public int getSessionTimeout()

Get the session timeout value in seconds. A zero value means that the container should use a default.

Returns:
The timeout value in seconds.

Enterprise JavaBeans

Sun Microsystems Inc. 154 February 4, 1998

• getStateManagement

public int getStateManagement()
 throws IllegalStateException

Get the session bean's state management attribute.

Returns:
The session bean's state management attribute. Its value must be either STATELESS or STATE-
FUL.

Throws: IllegalStateException
Thrown if the attribute's value has not yet been set.

• setSessionTimeout

public void setSessionTimeout(int value)

Set the session timeout value in seconds. A zero value means that the container should use a default.

Parameters:
value

The timeout value in seconds.

• setStateManagement

public void setStateManagement(int value)

Set the session bean's state management attribute.

Returns:
The session bean's state management attribute. Its value must be either STATELESS or STATE-
FUL.

Enterprise JavaBeans

Sun Microsystems Inc. 155 February 4, 1998

Class TransactionAttribute

public class javax.ejb.deployment. TransactionAttribute
 extends java.lang. Object
{
 public final static int BEAN_MANAGED;
 public final static int MANDATORY;
 public final static int NOT_SUPPORTED;
 public final static int REQUIRED;
 public final static int REQUIRES_NEW;
 public final static int SUPPORTS;
}

The TransactionAttribute class defines the value of the enterprise bean's transaction attribute.

Variables

• BEAN_MANAGED

public final static int BEAN_MANAGED

The enterprise bean manages transaction boundaries itself using the java.jts.CurrentTransaction interface.
The container does not perform any transaction management on the bean's behalf.

• MANDATORY

public final static int MANDATORY

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container throws the java.jts.TransactionRequiredExcep-
tion to the caller.

• NOT_SUPPORTED

public final static int NOT_SUPPORTED

The enterprise bean does not support a transaction. The container must not invoke the enterprise bean's
method in the scope of a transaction.

• REQUIRED

public final static int REQUIRED

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container starts a new transaction, executes the enter-
prise bean's method in the scope of the transaction, and commits the transaction when the enterprise bean's
method has completed.

• REQUIRES_NEW

public final static int REQUIRES_NEW

Enterprise JavaBeans

Sun Microsystems Inc. 156 February 4, 1998

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

The container starts a new transaction, executes the enterprise bean's method in the scope of the new transac-
tion, and commits the new transaction when the enterprise bean's method has completed.

If the caller is associated with a transaction, the association of the current thread with the caller's transaction
is suspended during the execution of the enterprise bean's method, and resumed when the enterprise bean's
method has completed.

• SUPPORTS

public final static int SUPPORTS

The container is responsible for managing transaction boundaries for the enterprise bean as follow.

If the caller is associated with a transaction, the execution of the enterprise bean method will be associated
with the caller's transaction.

If the caller is not associated with a transaction, the container executes the enterprise bean's method without
a transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 157 February 4, 1998

19 Related documents

[1] JavaBeans.http://www.javasoft.com/beans.

[2] Java Naming and Directory Interface (JNDI).http://www.javasoft.com/products/jn-
di.

[3] Java Remote Method Invocation (RMI).http://www.javasoft.com/products/rmi.

[4] Java Security.http://www.javasoft.com/security.

[5] Java to IDL Mapping. Joint Initial Submission. OMG TC Document TC orbos/97-
08-06.

[6] Enterprise JavaBeans to CORBA Mapping. Unpublished JavaSoft document avail-
able to the Enterprise JavaBeans reviewers.

[7] OMG Object Transaction Service.http://www.omg.org/corba/sectrans.htm#trans.

[8] ORB Portability Submission, OMG document orbos/97-04-14.

Enterprise JavaBeans

Sun Microsystems Inc. 158 February 4, 1998

Appendix A: Glossary of terms

Enterprise JavaBeans

Sun Microsystems Inc. 159 February 4, 1998

Appendix B: Example application

 TODO

Enterprise JavaBeans

Sun Microsystems Inc. 160 February 4, 1998

Appendix C: Features deferred to future releases

The focus of Release 1.0 is to define the basic component model for session and entity
enterprise beans. The model includes: the distributed object model; enterprise bean ap-
plication programming model; state and transaction management protocols.

Given the broad scope of the Enterprise JavaBeans specification, we defer to future re-
leases the features that introduce an advanced programming style. This conservative
approach reduces the chance of our having to make a backward incompatible change in
a future release.

Examples of the features that we would like to consider for a later release are listed be-
low.

C.1 Programmatic access to security

We would like to allow expert-level enterprise beans to temporarily change their effec-
tive security Identity.

C.2 Enterprise beans with extended transactional semantics

Some enterprise beans may need to themselves be resource managers. One example is
an enterprise bean that tries to provide transactional semantics across resource manag-
ers that do not participate in two-phase commit. The access to legacy data or business
logic may be transaction monitor requests or a database stored procedures, each of
which is itself a transaction with a corresponding compensating transaction. The enter-
prise bean would keep track of these transactions and call the compensating transaction
if rollback occurred. This allows the same simple transactional programming model to
be used externally on the enterprise bean (i.e., transaction begin, commit, rollback),
while not holding locks on the real resources.

These enterprise beans need a much richer contract with the transaction service that al-
lows full participation in two-phase commit.

Enterprise JavaBeans

Sun Microsystems Inc. 161 February 4, 1998

Appendix D: Issues and dependencies

D.1 Pending issues

We track the important pending issues here on which we would like to receive input
from the reviewers.

D.1.1 Argument passing semantics

Enterprise JavaBeans should define the rules for the semantics of parameter passing in
calls between two enterprise beans. We believe that the arguments that implement the
java.rmi.Remote interface should be passed by-reference, and that all other arguments
should be passed by-value even if the target enterprise bean is in the same container and
JVM.

We believe that this needs to be made part of the architecture to prevent unpredictable
behaviour of applications built from enterprise beans when deployed in different con-
tainers.

These proposed semantics are consistent with those used by RMI and the Java to IDL
Mapping [5] and therefore would be familiar to Java programmers.

D.1.2 Runtime significance of ejb-jar file

In this revision of the specification, an ejb-jar file has no significance at runtime. This
means that a container treats a method invocation between two enterprise bean objects
in the same way, independent from whether the two enterprise beans are part of the
same or different ejb-jar files.

Some reviewers suggested that it would make sense to treat the interactions between
the enterprise beans that are part of the same ejb-jarspecial, as follows.

• The runAsIdentity applies to the whole ejb-jar file, not to the individual
enterprise beans.

• All arguments are passed by-reference (i.e. using the Java semantics, not the
Java RMI semantics).

This would imply that an ejb-jar should treated as a single application with multiple en-
try points (each enterprise bean is an entry point) rather than a collection of independent
components (independent at least as far as the transaction, state, and security manage-
ment is concerned). For a given transaction, a container would have to execute all the
enterprise beans that are part of an ejb-jar in the same JVM process in order to preserve
the by-reference semantics of argument passing.

This proposal would effectively lead to a two-level component architecture (ejb-jar
files and individual enterprise beans) with more complex rules than in the current sin-
gle-level component architecture. We have currently no plans to introduce such a two-
level component architecture.

Enterprise JavaBeans

Sun Microsystems Inc. 162 February 4, 1998

D.1.3 Declarative transaction attribute at method-level

Many reviewers gave us input that enterprise beans are likely to be coarse-grained ob-
jects potentially with a large number of client callable methods. A single declarative
transaction attribute at the object-level may often become a problem because different
methods may require different transaction attributes.

The suggested solution is to allow a per-method transaction attribute to override the one
at object-level. This would be analogous to the security permissions defined on per-
method basis.

D.1.4 NOT_SUPPORTED transaction attribute

It was pointed out that the name of this transaction attribute might be confusing if the
enterprise bean in fact uses JTS to perform explicit transaction demarcation. A sugges-
tion was made that we add a new attribute (e.g.UsesCurrentTransaction) that distin-
guishes an enterprise bean that uses theCurrentTransaction interface from one that
does not support transactions. The container would not make theCurrentTransaction
interface available to an enterprise bean that does not support transaction.

We have added the BEAN_MANAGED transaction attribute to the 0.796 specification.

D.1.5 Deployment descriptor format

Many reviewers suggested that using a serialized bean as a deployment descriptor
would be a better alternative to using ajava.util.Properties file.

We have changed the format of the deployment descriptor to a serialized Java object in
the 0.796 release.

Enterprise JavaBeans

Sun Microsystems Inc. 163 February 4, 1998

Appendix E: package javax.jts

This Appendix provides the documentation of the classes and interfaces that are part of
the packagejavax.jts that are relevant to Enterprise JavaBeans. Note that the package
javax.jts may include other classes and interfaces that are not shown here.

interface CurrentTransaction
interface TransactionControl

class Status

class HeuristicCommitException
class HeuristicException
class HeuristicMixedException
class HeuristicRollbackException
class TransactionRequiredException
class TransactionRolledbackException
class InvalidTransactionException

Enterprise JavaBeans

Sun Microsystems Inc. 164 February 4, 1998

Interface CurrentTransaction

public interface javax.jts. CurrentTransaction
{
 public abstract void begin ();
 public abstract void commit ();
 public abstract TransactionControl

getControl ();
 public abstract int getStatus ();
 public abstract void

resume (TransactionControl suspended);
 public abstract void rollback ();
 public abstract void rollbackOnly ();
 public abstract void

setTransactionTimeout (int seconds);
 public abstract TransactionControl

suspend ();
}

The CurrentTransaction interface defines the methods that allow an application to to explicitly manage trans-
action boundaries and control the association of transactions and threads.

Methods

• begin

public abstract void begin()
 throws IllegalStateException

Create a new transaction and associate it with the current thread.

Throws: IllegalStateException
Thrown if the thread is already associated with a transaction.

• commit

public abstract void commit()
 throws TransactionRolledbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException, IllegalStateException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: TransactionRolledbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
rolled back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 165 February 4, 1998

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• getControl

public abstract TransactionControl getControl()

Obtain the TransactionControl for the transaction that is associated associated with the current thread.

The returned TransactionControl can be used later by the thread as an argument to the resume method.

Returns:
The TransactionControl control for the transaction that is associated with the thread, or null if no
transaction is associated with the thread.

• getStatus

public abstract int getStatus()

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. The values of the transaction status are defined in the javax.jts.Status class.
If no transaction is associated with the current thread, this method returns the Status.NoTransaction
value.

• resume

public abstract void
resume(TransactionControl suspended)

 throws IllegalArgumentException

Resume association of a transaction with the current thread.

Parameters:
suspended

A TransactionControl obtained previously by the current thread via the suspend or getControl
method.

Throws: IllegalArgumentException
Thrown if the TransactionControl is invalid for the current thread (i.e. it was not obtained via the
suspend or getControl method.

• rollback

public abstract void rollback()
 throws IllegalStateException, SecurityException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• rollbackOnly

public abstract void rollbackOnly()
 throws IllegalStateException

Enterprise JavaBeans

Sun Microsystems Inc. 166 February 4, 1998

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• setTransactionTimeout

public abstract void
setTransactionTimeout(int seconds)

Modify the value of the timeout value that is associated with the transactions started by the current thread
with the begin method.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds

The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value.

• suspend

public abstract TransactionControl suspend()

Suspend the association of the current thread with a transaction. When this method completes, the thread
becomes associated with no transaction.

The returned TransactionControl can be used later by the thread as an argument to the resume method.

Returns:
The TransactionControl control for the transaction that was associated with the thread, or null if no
transaction was associated with the thread.

Enterprise JavaBeans

Sun Microsystems Inc. 167 February 4, 1998

Interface TransactionControl

public interface javax.jts. TransactionControl
{
}

The TransactionControl interface represents a transactions. It does not define any methods that would allow
the application to directly manipulate the transaction.

Enterprise JavaBeans

Sun Microsystems Inc. 168 February 4, 1998

Class Status

public class javax.jts. Status
 extends java.lang. Object
{
 public final static int Active ;
 public final static int Committed ;
 public final static int Committing ;
 public final static int MarkedRollback ;
 public final static int NoTransaction ;
 public final static int Prepared ;
 public final static int Preparing ;
 public final static int RolledBack ;
 public final static int RollingBack ;
 public final static int Unknown;
}

The class Status defines the values of a transaction status.

Variables

• Active

public final static int Active

A transaction is associated with the target object and it is in the active state. An implementation returns this
status after a transaction has been started and prior to a Coordinator issuing any prepares unless the transac-
tion has been marked for rollback.

• Committed

public final static int Committed

A transaction is associated with the target object and it has been committed. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and NoTransaction returned.

• Committing

public final static int Committing

A transaction is associated with the target object and it is in the process of committing. An implementation
returns this status if it has decided to commit, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• MarkedRollback

public final static int MarkedRollback

A transaction is associated with the target object and it has been marked for rollback, perhaps as a result of a
rollback_only operation.

• NoTransaction

public final static int NoTransaction

No transaction is currently associated with the target object. This will occur after a transaction has com-
pleted.

Enterprise JavaBeans

Sun Microsystems Inc. 169 February 4, 1998

• Prepared

public final static int Prepared

A transaction is associated with the target object and has been prepared, i.e. all subordinates have responded
Vote.Commit. The target object may be waiting for a superior's instruction as how to proceed.

• Preparing

public final static int Preparing

A transaction is associated with the target object and it is in the process of preparing. An implementation
returns this status if it has started preparing, but has not yet completed the process, probably because it is
waiting for responses to prepare from one or more Resources.

• RolledBack

public final static int RolledBack

A transaction is associated with the target object and the outcome has been determined as rollback. It is
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction returned.

• RollingBack

public final static int RollingBack

A transaction is associated with the target object and it is in the process of rolling back. An implementation
returns this status if it has decided to rollback, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• Unknown

public final static int Unknown

A transaction is associated with the target object and, but its current status cannot be determined. This is a
transient condition and a subsequent invocation will ultimately return a different status.

Enterprise JavaBeans

Sun Microsystems Inc. 170 February 4, 1998

Class HeuristicCommitException

public class javax.jts. HeuristicCommitException
 extends java.rmi. RemoteException
{
 public HeuristicCommitException ();
 public

HeuristicCommitException (String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was made
and that all relevant updates have been committed.

Constructors

• HeuristicCommitException

public HeuristicCommitException()

• HeuristicCommitException

public HeuristicCommitException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 171 February 4, 1998

Class HeuristicException

public class javax.jts. HeuristicException
 extends java.rmi. RemoteException
{
 public HeuristicException ();
 public HeuristicException (String msg);
}

This exception indicates that indicates that one or more participants in a transaction has made a unilateral
decision to commit or roll back updates without first obtaining the outcome determined by the transaction
service.

Heuristic decisions are normally made only in unusual circumstances, such as communication failures, that
prevent normal processing. When a participant makes a heuristic decision, there is a risk that the decision
will differ from the consensus outcome, potentially resulting in loss of data integrity.

The subclasses of this exception provide more specific reporting of the incorrect heuristic decision or the
possibility of incorrect heuristic decision.

Constructors

• HeuristicException

public HeuristicException()

• HeuristicException

public HeuristicException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 172 February 4, 1998

Class HeuristicMixedException

public class javax.jts. HeuristicMixedException
 extends java.rmi. RemoteException
{
 public HeuristicMixedException ();
 public

HeuristicMixedException (String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates have
been committed and others have been rolled back.

Constructors

• HeuristicMixedException

public HeuristicMixedException()

• HeuristicMixedException

public HeuristicMixedException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 173 February 4, 1998

Class HeuristicRollbackException

public class javax.jts. HeuristicRollbackException
 extends java.rmi. RemoteException
{
 public HeuristicRollbackException ();
 public

HeuristicRollbackException (String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and that all
relevant updates have been rolled back.

Constructors

• HeuristicRollbackException

public HeuristicRollbackException()

• HeuristicRollbackException

public HeuristicRollbackException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 174 February 4, 1998

Class TransactionRequiredException

public class javax.jts. TransactionRequiredException
 extends java.rmi. RemoteException
{
 public TransactionRequiredException ();
 public

TransactionRequiredException (String msg);
}

This exception indicates that a request carried a null transaction context, but the target object requires an
activate transaction.

Constructors

• TransactionRequiredException

public TransactionRequiredException()

• TransactionRequiredException

public TransactionRequiredException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 175 February 4, 1998

Class TransactionRolledbackException

public class javax.jts. TransactionRolledbackException
 extends java.rmi. RemoteException
{
 public TransactionRolledbackException ();
 public

TransactionRolledbackException (String msg);
}

This exception indicates that the transaction associated with processing of the request has been rolled back,
or marked to roll back. Thus the requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be fruitless

Constructors

• TransactionRolledbackException

public TransactionRolledbackException()

• TransactionRolledbackException

public TransactionRolledbackException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 176 February 4, 1998

Class InvalidTransactionException

public class javax.jts. InvalidTransactionException
 extends java.rmi. RemoteException
{
 public InvalidTransactionException ();
 public

InvalidTransactionException (String msg);
}

This exception indicates that the request carried an invalid transaction context. For example, this exception
could be raised if an error occured when trying to register a resource.

Constructors

• InvalidTransactionException

public InvalidTransactionException()

• InvalidTransactionException

public InvalidTransactionException(String msg)

Enterprise JavaBeans

Sun Microsystems Inc. 177 February 4, 1998

Appendix F: Revision history

F.1 Changes since Release 0.8

Removedjava.ejb.BeanPermission from the API. This file was incorrectly included in
the 0.8 specification.

Renamed packages tojava.ejb and javax.ejb.deployment. The Enterprise JavaBeans
API is packaged as a standard extension, and standard extensions should be prefixed
with javax. Also renamedjava.jts to javax.jts.

Made clear that a container can support multiple EJB classes. We renamed thejav-
ax.ejb.Containerto javax.ejb.EJBHome.Some reviewers pointed out that the use of the
term “Container” for the interface that describes the life cycle operations of an EJB
class as seen by a client was confusing.

Folded the factory and finder methods into the enterprise bean’shome interface. This
reduces the number of Java classes per EJB class and the number of round-trips be-
tween a client and the container required to create or find an EJB object. It also simpli-
fies the client view API.

Removed the PINNED mode of a session bean. Many reviewers considered this mode
to be “dangerous” since it could prevent the container from efficiently managing its
memory resources.

Clarified the life cycle of a stateless session bean.

Added a chapter with the specification for exception handling.

We have renamed the contract between a component and its container tocomponent
contract. The previously used termcontainer contract confused several reviewers.

Added description of finder methods.

Modified the entity create protocol by breaking theejbCreate method into two:ejbCre-
ate andejbPostCreate. This provides a cleaner separation of the discrete steps involved
in creating an entity in a database and its associated middle-tier object.

Added more clarification to the description of the entity component protocol.

Added more information about the responsibilities of the enterprise bean provider and
container provider.

RenamedSessionSynchronization.beginTransaction() to SessionSynchronization.af-
terBegin() to avoid confusion withCurrentTransaction.begin().

Added the specification of isolation levels for container-managed entity beans.

