

Internationali-Internationali-
zationzation

Asmus FreytagAsmus Freytag

Overview

• Background

• Requirements

• Approaches
– Character Encoding (internal/external)

– Locale Support

– AWT: Input, Fonts, Localizing Applets

– HotJava

• Delivery Stages

Background

• Users have easy access to documents
worldwide, in any character set

• Servers can be accessed by users from
anywhere, speaking any language

• Software can no longer be targeted to
a single national market

˜ The Internet pushes the envelope on
 Internationalization

User Requirements

• Display text data from any source

• Run localized apps/applets
– Access localized web pages and applets

by language

Programmer Requirements

• Create internationalized Apps/Applets

• Localize Apps/Applets easily

Char Data Type and
Identifiers

• Java’s character data type is Unicode™

• Identifiers: any Unicode letter or digit
– Currently spec'd as Unicode 1.1

– Will be Unicode 2.0 as of JDK 1.1

• Remove limitations:
– Current limit: 0000-00FF in PrintStream

• Deprecate:
– Small # of APIs assume ‘byte[]’ as text

Character Encoding

• External data are not all in Unicode

• Class CharacterEncoding
– Conversion functions for most common

character sets

• Extensible

• Add: Character code conversion in
– DataInputStream.readChar

– DataOutputStream.writeChars

 Locale

• Flexible locale model

• NOT global, but object-oriented

• Hierarchy of services rooted in Class
LocaleDependent

• Allows definition of generic locale
dependent services

• AWT Components carry locale
designation

 Fonts

• Currently only Latin 1 fonts.

• Abstract font names for native fonts:
– For font name "Serif", Java runtime will try

to use Serif type platform fonts for all
Unicode glyphs.

– If the glyph is not available, Java will
display a substitute character.

• Future: provide combining fonts APIs

Input Method

• Java will support native Input Methods
via native widgets used by awt.

• Future: access via Java specific rich text
widgets, possibly API

• Future: support for platform indepen-
dent input method desirable

User Interface Localization

• Original java UI approach wraps code
and localizable data
– Very flexible, but broken for localization.

• Short term: use property sheets

• Long term: JavaSoft is working with
licensees to define a common, sharable
serialization of classes, so GUI builders
can support localization tools

HotJava

• HotJava strings and messages are kept
in property files

• Currently displays HTML or
documents encoded in ISO 8859-1

• HotJava 1.0 will be based on JDK 1.1
and leverage new i18n features to
support display of multilingual text

• HotJava will support localized applets

 Staged Release

• Java i8n features will be released in
stages

• '1.1' :
– CharacterSet support and Locale Model

– Initial input and font support

• Future: UI localization, rich text, etc..

 Summary

• Minimal subset immediatly

• Rich support later in stages

• Working with licensees to define and
implement support

• Thank you. Any Questions?

