
fixed_point Library
John McFarlane

CppCon2016
2016-06-08

u8:8 = Unsigned, 8 Integer Digits, 8 Fractional Digits

Anatomy of a Fixed-Point Number

I I I I I I I I F F F F F F F F

12
8 64 32 16 8 4 2 1 1/2 1/4 1/8 1/1

6
1/3

2
1/6

4
1/1

28
1/2

56

.

2a-2-b

256 - 1/256 = 255.99609375

= 65535 / 256

2

What’s Wrong With Floating-Point?

3

http://www.pathengine.com/Contents/
Overview/FundamentalConcepts/Wh
yIntegerCoordinates/page.php

https://blogs.msdn.microsoft.com/dwa
yneneed/2010/05/06/fun-with-floating
-point/

http://minecraft.gamepedia.com/File:
Far_Lands_Cartograph.png

http://www.pathengine.com/Contents/Overview/FundamentalConcepts/WhyIntegerCoordinates/page.php
http://www.pathengine.com/Contents/Overview/FundamentalConcepts/WhyIntegerCoordinates/page.php
http://www.pathengine.com/Contents/Overview/FundamentalConcepts/WhyIntegerCoordinates/page.php
http://www.pathengine.com/Contents/Overview/FundamentalConcepts/WhyIntegerCoordinates/page.php
https://blogs.msdn.microsoft.com/dwayneneed/2010/05/06/fun-with-floating-point/
https://blogs.msdn.microsoft.com/dwayneneed/2010/05/06/fun-with-floating-point/
https://blogs.msdn.microsoft.com/dwayneneed/2010/05/06/fun-with-floating-point/
https://blogs.msdn.microsoft.com/dwayneneed/2010/05/06/fun-with-floating-point/
http://minecraft.gamepedia.com/File:Far_Lands_Cartograph.png
http://minecraft.gamepedia.com/File:Far_Lands_Cartograph.png
http://minecraft.gamepedia.com/File:Far_Lands_Cartograph.png

fixed_point.h (version 0)
#include <cinttypes>

using u8_8 = std::uint16_t;

constexpr u8_8 float_to_fixed(float f)
{
 return f*256;
}

constexpr float fixed_to_float(u8_8 i)
{
 return i/256.f;
}

constexpr u8_8 add(u8_8 a, u8_8 b)
{
 return a+b;
}

constexpr u8_8 multiply(u8_8 a, u8_8 b)
{
 return (uint32_t(a)*uint32_t(b))/256;
}

4

Criticisms?
● Type Safety - float and fixed values have different meanings
● Generality - only u8.8 supported
● Usability - arithmetic operators might be nice
● Overflow Safety - 255 * 255 = ?
● Fidelity - rounding tends towards zero or negative infinity
● Predictability - types keep changing to int under our noses
● Portability - because int isn’t a known size, behavior may vary

5

Criticisms (that cannot also be levelled at integers)?
● Type Safety - float and fixed values have different meanings
● Generality - only u8.8 supported
● Usability - arithmetic operators might be nice
● Overflow Safety - 255 * 255 = ?
● Fidelity - rounding tends towards zero or negative infinity
● Predictability - types keep changing to int under our noses
● Portability - because int isn’t a known size, behavior may vary

6

Hypothesis
Most problems with C++’s built-in fixed-point types can best be addressed individually.

Details:
1. Each solution involves a literal class template.
2. They can be instantiated with build-in types to produce numeric types which solve a

single problem.
3. They can be combined to instantiate types which are responsible for addressing

multiple problems.
4. This can be done at zero run-time cost.
5. This approach can minimize compile-time cost.

Suggestions
checked_integer<> - throws on errors, e.g. overflow

widening_integer<> - results of arithmetic operations widened

rounded_integer<> - better results from operations and cast from floating-point

fixed_point<> - sub-unit precision

sg14::fixed_point<> Class Template
Paper: P0037
Library: https://github.com/johnmcfarlane/fixed_point

Definition:

namespace sg14 {
 template<class Rep = int, int Exponent = 0>
 class fixed_point;
}

Usage:

#include <sg14/fixed_point.h>
using u8_8 = sg14::fixed_point<uint16_t, -8>;

9

Arithmetic Operators - The ‘Multiply Problem’
What should decltype(fixed_point<R, E>()*fixed_point<R, E>()) be?
● Truncate:

○ drop lower bits
■ Good for make_fixed<0, N>
■ Bad for make_fixed<N, 0>

○ drop higher bits
■ Bad for make_fixed<0, N>
■ Good for make_fixed<N, 0>

○ match operands:
■ fixed_point<decltype(R()*R()), E>::value

● Widen:
○ Powerful - greatly reduced risk of overflow
○ Astonishing - novel types created frequently
○ Complicated - bits must be counted, compile time suffers
○ Limited - assignment to pre-ordained type truncates

10

Arithmetic Functions
// this variable uses all of its capacity
auto x = fixed_point<uint8_t, -4>{15.9375};

// 15.9375 * 15.9375 = 254.00390625 ... overflow!
cout << fixed_point<uint8_t, -4>{x*x} << endl; // "14" instead!

// fixed-point multiplication operator widens result
auto xx = x*x;

// x * x has type fixed_point<uint16_t, -8>
static_assert(is_same<decltype(xx), fixed_point<uint16_t, -8>>::value, "");
cout << setprecision(12) << xx << endl; // "254.00390625" - correct

// for maximum efficiency, use named functions:
auto named_xx = multiply(x, x);

// multiply result is same as underlying representation's operation
static_assert(is_same<decltype(named_xx), fixed_point<int, -8>>::value, "");
cout << named_xx << endl; // "254.00390625" - also correct but prone to overflow

11

Composition
// define an unsigned type with 400 integer digits and 400 fractional digits
// and use boost::multiprecision::uint128_t as the archetype for the Rep type
using big_number = make_ufixed<400, 400, boost::multiprecision::uint128_t>;
static_assert(big_number::digits==800, "");

// a googol is 10^100
auto googol = big_number{1};
for (auto zeros = 0; zeros!=100; ++zeros) {
 googol *= 10;
}

// "1e+100"
cout << googol << endl;

// "1e-100" although this calculation is only approximate
cout << big_number{1}/googol << endl;

12

Elastication™
// Consider an integer type which keeps count of the bits that it uses.
auto a = elastic_integer<6, int8_t>{ 63 };

// Results of its operations widen as required.
auto aa = a*a;
static_assert(is_same<decltype(aa), elastic_integer<12, int8_t >> ::value, "");

// Obviously, this type no longer fits in a byte.
static_assert(sizeof(aa)==2, "");

// Addition requires smaller results
auto a2 = a+a;
static_assert(is_same<decltype(a2), elastic_integer<7, int8_t >> ::value, "");

13

Elastication™ + fixed_point
// Such a type can be used to specialize fixed_point.
template<int IntegerDigits, int FractionalDigits, typename Archetype>
using elastic = fixed_point<elastic_integer<IntegerDigits+FractionalDigits,
Archetype>, -FractionalDigits>;

// Now arithmetic operations are more efficient and less error-prone.
auto b = elastic<4, 28, unsigned>{15.9375};
auto bb = b*b;

cout << bb << endl; // "254.00390625"
static_assert(is_same<decltype(bb), elastic<8, 56, unsigned>>::value, "");

14

Safety
// a safe, 8-bit fixed-point type with range -8 <= x < 7.9375
using safe_byte = make_fixed<3, 4, boost::numeric::safe<int>>;

// prints "-8"
try {
 auto a = safe_byte{-8};
 cout << a << endl;
}
catch (std::range_error e) {
 cout << e.what() << endl;
}

// prints "Value out of range for this safe type"
try {
 auto b = safe_byte{10};
 cout << b << endl;
}
catch (std::range_error e) {
 cout << e.what() << endl;
}

15

Language Features
C++11/14

● constexpr - literal classes
● auto - novel types as results of arithmetic operations
● decltype - API authoring
● user-defined literals?

C++17

● template argument deduction?

C++??

● concepts

