
Page-Flip Technology for use
within the Networking Linux Stack

Authors:
Jesse Brandeburg

John Ronciak
Ganesh Venkatesan

Intel Corporation

Agenda

● Background and Problem Statement
● Solution Design and Implementation
● Hardware and System Assumptions
● Test Methodology
● Results
● Surprises
● Conclusions
● Current Issues with Implementation
● Next Steps

Background

● High Speed Networking Needs a Mechanism to
Avoid Data Copies in the Kernel and Stack

● Device DMA and Kernel Space/User Space
Boundary Copy

● Zero-Copy Mechanisms Avoid Kernel/User Copy
● DDP and RDMA are Zero-Copy mechanisms –

Complicated and Cumbersome to Use

Background (cont.)

● Assumed that Page-Flip is Less Complicated and
More Efficient

● Dislike of TOE and RDMA due to Complexity
– Lack of Intra-Stack Access

● Dave Miller Discussions (netdev and lkml)
● FreeBSD Work on Page-Flip Mechanisms

Problem Statement

● Assumed Kernel and Stack Need a Zero-Copy
Kernel-Space to User-Space Mechanism

● High Speed Networking Will Probably Require
Performance Enhancements (i.e. 10 Gbps Ethernet)
that Includes a Zero-Copy Mechanism

Implementation
● Decided on Using 2.6.4 Kernel

– Better Memory Management Mechanism than 2.4
● Modified Driver to Split Protocol Headers from

Payload Data
● Flag SKB to Indicate HW/Driver Prepared a

Page-Flippable SKB
● Modified “skb_copy_datagram_iovec()” to

Support New “flip_page_mapping()” Function
● Modify SKB Free Routine to support Frags with

Null Addresses

Assumptions
● Temporary Measures Due To HW Limitations

– Application Needs to Allocate Data Receive Area in
4KByte Multiples (i.e. PAGE_SIZE)

– Area Must be PAGE_SIZE Aligned
– Modified 'nttcp-1.4.7' to Use “vmalloc()” for Above

Application Requirements
● MTU of 4KB or 8KB Used
● 2.6.4 Kernel Used 4KB Page Size
● No Debug Options Enabled

Platform Hardware

● Test Platform
– Dual Processor 1.8 and 2.4 Ghz Pentium® 4
– Hyper-Thread Technology Disabled
– 512 Mbytes RAM
– NIC Support of Split Header and Protocol Checksum

Verification

Test Methodology

● Measured Performance of “Page-Flip” against
“Copy-Once” (Current) Mechanisms

● Two Major Test Runs
– Application Never Touched Data
– Application Touched Data Forcing Data into Cache and

Validating Received Data
● Each Instance of Test had 3 Runs with Results

Averaged

Test Methodology (cont.)

● Oprofile Used to Locate “Hot-Spots”
● CPU and Network Utilization Measured with 'sar'

– Corrected Version of 'sar' Used to Measure CPU
Utilization Correctly

Results

● Graphs Show Resultant Data
● Touched Packet Data On Slower Processors Shows

Slight CPU Reduction from Page-Flip Mechanism
w/ Decrease in Throughput

● Efficiency (Mbits/CPU = efficiency) is Lower for
All Cases Using Page-Flip

Results

Results

Surprises

● Results Were Unexpected
● Expected Some Benefit from Page-Flip (Gain in

Efficiency)
● Some Benefit from Copy Mechanism (Cache

Warming w/ Packet Data) Which Data Confirms

Oprofile Results

● Locks Associated with Page-Flip Code Accounts
for Majority of Stalls

● Stalls Associated with TLB (Translation Look-
aside Buffer) Flush is Very Painful

Conclusions

● Page-Flip Mechanism Offers Little (or no)
Performance Enhancements for Zero-Copy
Receive Due To:
– Cache Issues (Obvious from Touched Data Results)
– Heavy Cost to Prepare and Complete Page-Flip

● Possible Use Could Still be Embedded
Environments (or Slower Processor
Environments)

● Page-Flip Won't Scale with Processor Speed

Current Issues

● Lack of Commercial NIC HW that Supports
Header Splitting

● Lack of Any HW that is Ideal (Dave Miller Ideal
Version) which Supplies Flow Identification

● Current Code has a Bug when 'clone_skb()' is Used
 (Freeing Issue of Cloned SKB)

● Assumptions Made to Enable this Testing Limits
it's Usefulness Outside Academic Use

Next Steps

● Do We Try to Optimize Page-Flip Code Path?
– VM Locking Issues
– Optimize TLB Flushes

● What About Application API Changes?
– What's needed here? receive_file() API?

● Look to Other Zero-Copy Mechanisms?

Contact Information

● John Ronciak - john.ronciak@intel.com
● Jesse Brandeburg - jesse.brandeburg@intel.com
● Ganesh Venkatesan -

ganesh.venkatesan@intel.com

● Code for Kernel Patch and Driver Mods are
Available from our Sourceforge Site:
sf.net/projects/e1000

