
GUSI 2 Reference Manual
Version 2.1

30−May−2000

Author: Matthias Neeracher

blank

GUSI GUSI 2 Reference Manual GUSI

Introduction
GUSI is a POSIX library for MacOS. Its name, which is an acronym for Grand Unified Socket Interface,
hints at its original objective to provide access to all the various communications facilities in MacOS through
a common, file descriptor based, interface.

The current incarnation, GUSI 2, represents a much−needed rewrite of GUSI and introduces support for
POSIX threads.

The most recent version of GUSI may be obtained by anonymous ftp from
ftp://sunsite.cnlab−switch.ch/software/platforms/macos/src/mw_c.

There is also a mailing list devoted to discussions about GUSI. You can join the list by sending a mail to
gusi−request@iis.ee.ethz.ch whose body consists of the word subscribe.

User‘s Manual
For ease of access, the manual has been split up into a number of sections:

 GUSI_Install Installing and using the GUSI headers and libraries
 GUSI_Common Routines common to all file descriptors.
 GUSI_Files Routines specific to disk based file descriptors.
 GUSI_Sockets Routines specific to network descriptors.
 GUSI_Threads Routines to manage multiple threads of execution in a program.
 GUSI_Misc Miscellaneous routines

GUSI User License
My primary objective in distributing GUSI is to have it used as widely as possible, while protecting my
moral rights of authorship and limiting my exposure to liability.

Copyright (C) 1992−2000 Matthias Neeracher

Permission is granted to anyone to use this software for any purpose on any computer system, and to
redistribute it freely, subject to the following restrictions:

 The author is not responsible for the consequences of use of this software, no matter how awful, even
if they arise from defects in it.

 The origin of this software must not be misrepresented, either by explicit claim or by omission.

 You are allowed to distributed modified copies of the software, in source and binary form, provided
they are marked plainly as altered versions, and are not misrepresented as being the original software.

Making Matthias Happy
While I am giving GUSI away for free, that does not mean that I don‘t like getting appreciation for it. If you
want to do something for me beyond your obligations outlined above, you can

 Acknowledge the use of GUSI in the about box of your application and/or your documentation.

 Send me a CD as described in http://www.iis.ee.ethz.ch/~neeri/macintosh/donations.html

Design Objectives
The primary objective of GUSI is to emulate as much as practical of the UNIX 98 API for the use in MacOS
programs. This is in marked contrast to other approaches which at first glance might seem similar:

 GUSI is not designed for optimal performance of network communication (although GUSI][should
be faster than GUSI 1 for many purposes). The design goal is to make the code as fast as possible
without changing the POSIX API (e.g., by exposing interrupt level code to the library user).

 GUSI is not designed for maximal compliance with the POSIX API either. The goal is to provide as
much functionality and as faithful implementation as possible while maintaining a strict library
approach without writing a separate operating system.

While the original GUSI design had to appeal to nebulous "standards" eclectically drawn from POSIX and

30−May−2000 Version 2.1 3

GUSI GUSI 2 Reference Manual GUSI

BSD APIs, the underlying APIs have now evolved into real standards, so GUSI 2 now tries to conform to the
X/Open Single Unix Specification, Version 2 (also known as UNIX 98) as much as possible.

Changes between GUSI 1 and GUSI 2
I‘m sure there must be more incompatibilities. If you find any, let me know.

 The choose() function has been dropped. I don‘t think it ever provided a benefit that outweighed the
namespace intrusion.

 inet_addr() now returns a scalar instead of a string in_addr, correcting a bizzare
misinterpetation of the documentation on my part.

 The BSD only scandir() function has been dropped.

 Many adjustments were made for UNIX 98 compatibility:

select() is now in sys/time.h.
Socket length arguments are now of type socklen_t.

 You no longer have to call the GUSISetup routines directly, GUSI will call them for you and you just
have to link a configuration file.

 The configuration file also handles most of what you needed a configuration resource for, so you
normally no longer use one.

Literature
This manual is by no means a complete reference, let alone a suitable tutorial for the APIs covered. I found
the following books the best texts in their fields:

 For POSIX programming in general:

Advanced Programming in the UNIX Environment
W. Richard Stevens, Addison−Wesley

 For socket programming:

UNIX Network Programming, 2nd ed.
W. Richard Stevens, Prentice Hall

 For threads programming:

Programming with POSIX Threads
David R. Butenhof, Addison−Wesley

 As a comprehensive UNIX 98 reference:

CAE Specification: System Interfaces and Headers Issue 5
The Open Group

A free online version of this document, as well as ordering information for the (expensive) hardcopy
edition, is available at http://www.opengroup.org/pubs/catalog/t912.htm

Acknowledgements
GUSI has over its existence profited from numerous suggestions and code contributions. Where possible, I
have tried to give credit to contributors in the README file.

Although probably no trace of it remains in today‘s code, GUSI grew from a socket library written by
Charlie Reiman.

Many of the header files in the :include: subdirectory are adapted from BSD 4.4−lite.

4 Version 2.1 30−May−2000

Installation and Configuration GUSI 2 Reference Manual Installation and Configuration

Installing and using GUSI
This section discusses how you can install GUSI on your disk and use it for your programs. Experience has
shown that understanding these instructions is an absolutely critical step in using GUSI and that most of
the problems in using it (apart from those due to inadequacies of GUSI itself) are caused by installation and
configuration problems.

Installing GUSI
To install GUSI, simply unpack the distribution archive and put the GUSI folder somewhere on your disk. If
you intend to use GUSI with the MPW shell and/or the SC/SCpp or MrC/MrCpp compilers, run the
GUSI_Install.MPW script from MPW.

To use GUSI in a Metrowerks CodeWarrior project

 Open your project in the CodeWarrior IDE.

 Open the XXX Settings... dialog in the Edit menu and select the Access Paths panel.

 Add the include folder in the GUSI folder at the top of the System Paths section of the panel
(Click in System Paths and click the Add... button). It is very important that this folder appears
above the Metrowerks Standard Library.

 Turn off recursive searching in this folder by clicking on the column to the left of the name to make the
folders icon disappear. This step is crucial.

 Turn on the Interpret DOS and UNIX Paths checkbox in the top right of the panel.

 Add appropriate GUSI libraries to your project, paying careful attention to the link order.

To use GUSI with the Metrowerks compilers for MPW

 Add the include folder to the commandline with

MWCxxx ... −i− −i "{GUSI}include:"

The −i− option should occur after other includes but before other standard include directories listed
on the command line.

 Add the appropriate GUSI libraries to the link.

To use GUSI with the standard MPW compilers (SC/SCpp and MrC/MrCpp

 Add the include folder to the commandline with

(SCxx|MrCxx) ... −includes unix −i "{GUSI}include:"

These options should occur before other standard include directories listed on the command line. The
−includes unix option tells your compiler that headers in subdirectories will be named by UNIX
path name rules.

 Add the appropriate GUSI libraries to the link.

GUSI Header Files
To use GUSI, include one or more of the following header files in your program:

arpa/inet.h
Converting between internet addresses and their numeric string representations.

dirent.h
Routines to access all entries in a directory.

errno.h
The error codes returned by GUSI routines.

30−May−2000 Version 2.1 5

Installation and Configuration GUSI 2 Reference Manual Installation and Configuration

fcntl.h
Operations on files and flag constants for them.

inttypes.h
Integer types with guaranteed sizes.

netdb.h
Looking up TCP/IP host names.

netinet/in.h
The address format for TCP/IP sockets.

pthread.h
Operations on threads.

sched.h
Scheduling operations.

sys/ioctl.h
Codes to pass to ioctl().

sys/socket.h
Data types for socket calls.

sys/stat.h
Getting information about files.

sys/time.h
Operations with time and timers.

sys/types.h
More data types.

sys/uio.h
Data types for scatter/gather calls.

sys/un.h
The address format for Unix domain sockets.

unistd.h
Prototypes for most routines defined in GUSI.

utime.h
Getting the modification time of a file.

GUSI Libraries
At link time, you will have to link with the appropriate GUSI libraries. All of the libraries contain a suffix to
identify the compilers for which they are suitable:

XXX.68K.Lib
Libraries suitable for the Metrowerks 68K C/C++ compilers.

XXX.PPC.Lib
Libraries suitable for the Metrowerks PPC C/C++ compilers.

XXX.SC.Lib
Libraries suitable for the MPW SC/SCpp compilers.

6 Version 2.1 30−May−2000

Installation and Configuration GUSI 2 Reference Manual Installation and Configuration

XXX.MrC.Lib
Libraries suitable for the MPW MrC/MrCpp compilers.

Typically, you should link with three component libraries, in this order:

 A library specifying the output console, such as:

GUSI_MPW.XXX.Lib
For MPW tools.

GUSI_SIOUX.XXX.Lib
For programs writing to the SIOUX console.

 A library specifying the high level stdio library, such as:

GUSI_MSL.XXX.Lib
For programs using the Metrowerks Standard Library stdio.

GUSI_Stdio.SC.Lib
For programs using the MPW stdio. This option is currently only available for SC/SCpp, for
MrC/MrCpp, you have to use the sfio library for stdio support. Alternatively, you can
choose to exclusively use the POSIX layer functions (read/write/close) for sockets and
the stdio functions (fscanf/fwrite/fclose) for files. In this case, be careful never to use
fileno or fdopen.

GUSI_Sfio.XXX.Lib
For programs using the sfio library. sfio is a new I/O library developed by AT&T with a
source compatibility option with stdio. As it covers only the stdio part of the ANSI library,
you will also have to link with standard library for your compiler. Make sure to specify sfio
first in your link order, though.

 The GUSI library itself, i.e.:

GUSI_Core.XXX.Lib

These libraries should appear in this order, before any other libraries. This may sometimes not be
practicable, especially for 68K MPW tools. For this case, it is possible to substitute GUSI_Forward.68K in
the place of GUSI_Core.68K and use GUSI_Core.68K later in the link order (usually last).

Sometimes, you want to use GUSI with threads created by another library, such as PowerPlant. For this
purpose, you can additionally specify the GUSI_ForeignThreads.XXX.Lib library before any other GUSI
library and before ThreadsLib. This is sufficient for CFM applications; for non−CFM 68K applications,
however, you also have to recompile the third party code while including GUSIForeignThreads.h (e.g.,
using a precompiled header). While this state of things is not entirely satisfactory, I don‘t see a better
technique at the moment.

In addition, you will need to link with a considerable list of standard compiler libraries. Since GUSI is
written in C++, you will also need C++ support libraries. As an example, the Open Transport MPW test tools
are linked with the following libraries:

Metrowerks 68K
"{MW68KLibraries}MSL MPWRuntime.68K.Lib"
"{MW68KLibraries}MSL Runtime68K.Lib"
"{MW68KLibraries}MacOS.Lib"
"{MW68KLibraries}MSL C.68K MPW(NL_4i_8d).Lib"
"{MW68KLibraries}MSL C++.68K (4i_8d).Lib"
"{MW68KLibraries}MathLib68K (4i_8d).Lib"
"{MW68KLibraries}ToolLibs.o"
"{MW68KLibraries}PLStringFuncs.glue.lib"

30−May−2000 Version 2.1 7

Installation and Configuration GUSI 2 Reference Manual Installation and Configuration

"{MW68KLibraries}OpenTransportApp.o"
"{MW68KLibraries}OpenTransport.o"
"{MW68KLibraries}OpenTptInet.o"

Metrowerks PPC
"{MWPPCLibraries}MSL MPWCRuntime.Lib"
"{MWPPCLibraries}MSL RuntimePPC.Lib"
"{SharedLibraries}InterfaceLib"
"{MWPPCLibraries}MSL C.PPC MPW(NL).Lib"
"{MWPPCLibraries}MSL C++.PPC (NL).Lib"
"{SharedLibraries}MathLib"
"{SharedLibraries}ThreadsLib"
"{MWPPCLibraries}PPCToolLibs.o"
"{MWPPCLibraries}PLStringFuncsPPC.lib"
"{SharedLibraries}OpenTransportLib"
"{SharedLibraries}OpenTptInternetLib"
"{MWPPCLibraries}OpenTransportAppPPC.o"
"{MWPPCLibraries}OpenTptInetPPC.o"

SC
"{CLibraries}CPlusLib.o"
"{CLibraries}StdCLib.o"
"{Libraries}MacRuntime.o"
"{Libraries}Interface.o"
"{Libraries}IntEnv.o"
"{Libraries}MathLib.o"
"{Libraries}ToolLibs.o"
"{CLibraries}IOStreams.far.o"
"{Libraries}OpenTransport.o"
"{Libraries}OpenTransportApp.o"
"{Libraries}OpenTptInet.o"

MrC
"$(SFIO)lib:Sfio.MrC.Lib"
"{PPCLibraries}MrCPlusLib.o"
"{PPCLibraries}PPCStdCLib.o"
"{PPCLibraries}StdCRuntime.o"
"{PPCLibraries}PPCCRuntime.o"
"{PPCLibraries}PowerMathLib"
"{PPCLibraries}PPCToolLibs.o"
"{SharedLibraries}InterfaceLib"
"{SharedLibraries}ThreadsLib"
"{PPCLibraries}MrCIOStreams.o"
"{SharedLibraries}StdCLib"
"{SharedLibraries}OpenTransportLib"
"{SharedLibraries}OpenTptInternetLib"
"{PPCLibraries}OpenTransportAppPPC.o"
"{PPCLibraries}OpenTptInetPPC.o"

Configuration
You will need to specify what GUSI facilities you want to use in your application. This is done with three
functions calling configuration hooks.

void GUSISetupFactories()
Sets up communications facilities accessible via sockets.

8 Version 2.1 30−May−2000

Installation and Configuration GUSI 2 Reference Manual Installation and Configuration

void GUSISetupDevices()
Sets up facilities accessible via special file names.

void GUSISetupConfig()
Sets up various configuration flags. Use this if you don‘t want to use a configuration resource (See
Resources).

These hooks can conveniently be created and edited via the GUSIConfig application. GUSIConfig saves a
C++ file which you should then compile and link to your application. If you want to write a configuration
file manually, work from the templates in :test:GUSIConfig_MTInet.cp and :test:GUSIConfig_OTInet.cp.

Because the configuration file has to include internal GUSI headers, it should not be compiled when a
precompiled header including any internal GUSI headers or pthread.h is in effect. If necessary, compile your
configuration file in a separate target.

Initializing the Macintosh Toolbox
GUSI expects the Macintosh Toolbox to be initialized. You should initialize the Toolbox in the following
way:

 InitGraf((Ptr) &qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(nil);
 InitCursor();

However, GUSI will initialize QuickDraw automatically, which obviates the need to initialize the Toolbox if
all you want to do is a basic MPW tool.

Resources
Under some (rare) circumstances, you might also want to rez your program with GUSI.r. The section
Resources discusses when and how to add your own configuration resource to customize GUSI defaults.

Warning messages
You will get lots of warning messages about duplicate definitions, but that‘s ok (Which means I can‘t do
anything about it).

30−May−2000 Version 2.1 9

Common Routines GUSI 2 Reference Manual Common Routines

Overview
This section discusses the routines common to all, or almost all communication domains. These routines
return −1 if an error occurred, and set the variable errno to an error code. On success, the routines return
or some positive value.

Here‘s a list of all error codes and their typical explanations. The most important of them are repeated for the
individual calls.

EACCES
Permission denied: An attempt was made to access a file in a way forbidden by its file access
permissions, e.g., to open() a locked file for writing.

EADDRINUSE
Address already in use: bind() was called with an address already in use by another socket.

EADDRNOTAVAIL
Can‘t assign requested address: bind() was called with an address which this socket can‘t assume,
e.g., a TCP/IP address whose in_addr specifies a different host.

EAFNOSUPPORT
Address family not supported: You haven‘t linked with this socket family or have specified a
nonexisting family, e.g., AF_CHAOS.

EALREADY
Operation already in progress, e.g., connect() was called twice in a row for a nonblocking socket.

EBADF
Bad file descriptor: The file descriptor you specified is not open.

EBUSY
Request for a system resource already in incompatible use, e.g., attempt to delete an open file.

ECONNREFUSED
Connection refused, e.g. you specified an unused port for a connect()

EEXIST
File exists, and you tried to open it with O_EXCL.

EHOSTDOWN
Remote host is down.

EHOSTUNREACH
No route to host.

EINPROGRESS
Operation now in progress. This is *not* an error, but returned from nonblocking operations, e.g.,
nonblocking connect().

EINTR
Interrupted system call: The user pressed Command−. or alarm() timed out.

EINVAL
Invalid argument or various other error conditions.

EIO Input/output error.

EISCONN
Socket is already connected.

10 Version 2.1 30−May−2000

Common Routines GUSI 2 Reference Manual Common Routines

EISDIR
Is a directory, e.g. you tried to open() a directory.

EMFILE
Too many open files.

EMSGSIZE
Message too long, e.g. for an UDP send().

ENAMETOOLONG
File name too long.

ENETDOWN
Network is down, e.g., Appletalk is turned off in the chooser.

ENFILE
Too many open files in system.

ENOBUFS
No buffer space available.

ENOENT
No such file or directory.

ENOEXEC
Severe error with the PowerPC standard library.

ENOMEM
Cannot allocate memory.

ENOSPC
No space left on device.

ENOTCONN
Socket is not connected, e.g., neither connect() nor accept() has been called successfully for it.

ENOTDIR
Not a directory.

ENOTEMPTY
Directory not empty, e.g., attempt to delete nonempty directory.

ENXIO
Device not configured, e.g., MacTCP control panel misconfigured.

EOPNOTSUPP
Operation not supported on socket, e.g., sendto() on a stream socket.

EPFNOSUPPORT
Protocol family not supported, i.e., attempted use of ADSP on a machine that has AppleTalk but not
ADSP.

EPROTONOSUPPORT
Protocol not supported, e.g., you called getprotobyname() with neither "tcp" nor "udp" specified.

ERANGE
Result too large, e.g., getcwd() called with insufficient buffer.

30−May−2000 Version 2.1 11

Common Routines GUSI 2 Reference Manual Common Routines

EROFS
Read−only file system.

ESHUTDOWN
Can‘t send after socket shutdown.

ESOCKTNOSUPPORT
Socket type not supported, e.g., datagram PPC toolbox sockets.

ESPIPE
Illegal seek, e.g., lseek() called for a TCP socket.

EWOULDBLOCK
Nonblocking operation would block.

EXDEV
Cross−device link, e.g. FSpSmartMove() attempted to move file to a different volume.

Creating and destroying sockets
A socket is created with socket() and destroyed with close(). In some situations, it‘s useful to create a
pair of connected sockets with socketpair() or pipe(). You can gradually shut down data transfer
with shutdown().

int socket(int af, int type, int protocol)
creates an endpoint for communication and returns a descriptor. af specifies the communication
domain to be used. Valid values are:

AF_UNIX
AF_LOCAL

Communication internal to a single Mac.

AF_INET
TCP/IP, using MacTCP or Open Transport depending on your configuration.

AF_APPLETALK
Appletalk, using the ADSP and DDP protocols (not implemented yet in GUSI 2).

AF_PPC
The Program−to−Program Communication Toolbox.

type specifies the semantics of the communication. The following two types are available:

SOCK_STREAM
A two way, reliable, connection based byte stream.

SOCK_DGRAM
Connectionless, unreliable messages of a fixed maximum length.

protocol would be used to specify an alternate protocol to be used with a socket. In GUSI,
however, this parameter is always ignored.

Error codes:

EINVAL
The af you specified doesn‘t exist.

EMFILE
The descriptor table is full.

12 Version 2.1 30−May−2000

Common Routines GUSI 2 Reference Manual Common Routines

void close(int fd)
removes the access path associated with the descriptor, and closes the file or socket if the last access
path referring to it was removed.

shutdown(int how)
if how is SHUT_RD(0), shut down the socket for reading, for SHUT_WR(1), shut down for writing, and
for SHUT_RDWR, shut down for both reading and writing.

int socketpair(int domain, int type, int protocol, int fds[2])
creates, in fds[0] and fds[1], an unnamed pair if indistinguishable sockets in the indicated
domain (currently only AF_LOCAL is accepted).

int pipe(int fds[2])
is a shorthand notion for

 socketpair(AF_LOCAL, SOCK_STREAM, 0, fds)

but fds[0] will be read−only and fds[1] will be write only.

Establishing connections between sockets
Before you can transmit data on a stream socket, it must be connected to a peer socket. Connection
establishment is asymmetrical: The server socket registers its address with bind(), calls listen() to
indicate its willingness to accept connections and accepts them by calling accept(). The client socket,
after possibly having registered its address with bind() (This is not necessary for all socket families as
some will automatically assign an address) calls connect() to establish a connection with a server.

It is possible, but not required, to call connect() for datagram sockets.

int bind(int s, const struct sockaddr *name, socklen_t namelen)
binds a socket to its address. The format of the address is different for every socket family.

Error codes:

EAFNOSUPPORT
name specifies an illegal address family for this socket.

EADDRINUSE
There is already another socket with this address.

int listen(int s, int qlen)
turns a socket into a listener. qlen determines how many clients can concurrently wait for a
connection.

int accept(int s, struct sockaddr *addr, socklen_t *addrlen)
accepts a connection for a socket on a new socket and returns the descriptor of the new socket. If addr
is not NULL, the address of the connecting socket will be assigned to it.

You can find out if a connection is pending by calling select() to find out if the socket is ready for
reading.

Error codes:

ENOTCONN
You did not call listen() for this socket.

EWOULDBLOCK
The socket is nonblocking and no socket is trying to connect.

30−May−2000 Version 2.1 13

Common Routines GUSI 2 Reference Manual Common Routines

int connect(int s, const struct sockaddr *addr, socklen_t addrlen)
tries to connect to the socket whose address is in addr. If the socket is nonblocking and the
connection cannot be made immediately, connect() returns EINPROGRESS. You can find out if
the connection has been established by calling select() to find out if the socket is ready for writing.

Error codes:

EAFNOSUPPORT
name specifies an illegal address family for this socket.

EISCONN
The socket is already connected.

EADDRNOAVAIL
There is no socket with the given address.

ECONNREFUSED
The socket refused the connection.

EINPROGRESS
The socket is nonblocking and the connection is being established.

Transmitting data between sockets
You can write data to a socket using write(), writev(), send(), sendto(), or sendmsg(). You
can read data from a socket using read(), readv(), recv(), recvfrom(), or recvmsg().

int read(int s, void *buffer, size_t buflen)
reads up to buflen bytes from the socket. read() for sockets differs from read() for files mainly
in that it may read fewer than the requested number of bytes without waiting for the rest to arrive.

Error codes:

EWOULDBLOCK
The socket is nonblocking and there is no data immediately available.

int readv(int s, const struct iovec *iov, int count)
performs the same action, but scatters the input data into the count buffers of the iovÊarray, always
filling one buffer completely before proceeding to the next. iovec is defined as follows:

 struct iovec {
 void * iov_base; /* Address of this buffer */
 size_t iov_len; /* Length of the buffer */
 };

int recv(int s, void *buffer, size_t buflen, int flags)
is identical to read(), except for the flags parameter. If the MSG_OOB flag is set for a stream
socket that supports out−of−band data, recv() reads out−of−band data.

int recvfrom(int s, void *buffer, size_t buflen, int flags, struct
sockaddr *from, socklen_t *fromlen)
is the equivalent of recv() for unconnected datagram sockets. If from is not NULL, it will be set to
the address of the sender of the message.

int recvmsg(int s, struct msghdr *msg, int flags)
is the most general routine, combining the possibilities of readv() and recvfrom(). msghdr is
defined as follows:

 struct msghdr {

14 Version 2.1 30−May−2000

Common Routines GUSI 2 Reference Manual Common Routines

 caddr_t msg_name; /* Like from in recvfrom() */
 int msg_namelen; /* Like fromlen in recvfrom() */
 struct iovec *msg_iov; /* Scatter/gather array */
 int msg_iovlen; /* Number of elements in msg_iov */
 caddr_t msg_accrights; /* Access rights sent/received. Not used in GUSI */
 int msg_accrightslen;
 };

int write(int s, void *buffer, size_t buflen)
writes up to buflen bytes to the socket. As opposed to read(), write() for nonblocking sockets
always blocks until all bytes are written or an error occurs.

Error codes:

EWOULDBLOCK
The socket is nonblocking and data can‘t be immediately written.

int writev(int s, const struct iovec *iov, int count)
performs the same action, but gathers the output data from the count buffers of the iovÊarray,
always sending one buffer completely before proceeding to the next.

int send(int s, void *buffer, size_t buflen, int flags)
is identical to write(), except for the flags parameter. If the MSG_OOB flag is set for a stream
socket that supports out−of−band data, send() sends an out−of−band message.

int sendto(int s, void *buffer, size_t buflen, int flags, struct sockaddr
*to, socklen_t tolen)
is the equivalent of send() for unconnected datagram sockets. The message will be sent to the socket
whose address is given in to.

int sendmsg(int s, const struct msghdr *msg, int flags)
combines the possibilities of writev() and sendto().

I/O multiplexing

int select(int width, fd_set *readfds, fd_set *writefds, fd_set
*exceptfds, struct timeval *timeout)
examines the I/O descriptors specified by the bit masks readfs, writefs, and exceptfs to see if
they are ready for reading, writing, or have an exception pending. width is the number of significant
bits in the bit mask. select() replaces the bit masks with masks of those descriptors which are
ready and returns the total number of ready descriptors. timeout, if not NULL, specifies the
maximum time to wait for a descriptor to become ready. If timeout is NULL, select() waits
indefinitely. To do a poll, pass a pointer to a zero timeval value in timeout. Any of readfds,
writefds, or exceptfds may be given as NULL if no descriptors are of interest.

Error codes:

EBADF
One of the bit masks specified an invalid descriptor.

The descriptor bit masks can be manipulated with the following macros:

 FD_ZERO(fds); /* Clear all bits in *fds */
 FD_SET(n, fds); /* Set bit n in *fds */
 FD_CLR(n, fds); /* Clear bit n in *fds */
 FD_ISSET(n, fds); /* Return 1 if bit n in *fds is set, else 0 */

30−May−2000 Version 2.1 15

Common Routines GUSI 2 Reference Manual Common Routines

Getting and changing properties of sockets
You can obtain the address of a socket and the socket it is connected to by calling getsockname() and
getpeername() respectively. You can query and manipulate other properties of a socket by calling
ioctl(), fcntl(), getsockopt(), and setsockopt(). You can create additional descriptors for a
socket by calling dup() or dup2().

int getsockname(int s, struct sockaddr *name, socklen_t *namelen)
returns in *name the address the socket is bound to. *namelen should be set to the maximum length
of name and will be set by getsockname() to the actual length of the name.

int getpeername(int s, struct sockaddr *name, socklen_t *namelen)
returns in *name the address of the socket that this socket is connected to. *namelen should be set
to the maximum length of name and will be set by getpeername() to the actual length of the
name.

int ioctl(int d, unsigned int request, ...)
performs various operations on the socket, depending on the request. The following codes are valid
for all socket families:

ioctl(d, FIONBIO, int * argp)
Make the socket blocking if the int pointed to by argp is , else make it nonblocking.

ioctl(d, FIONREAD, int * argp)
Set *argp to the number of bytes waiting to be read.

Error codes:

EOPNOTSUPP
The operation you requested with request is not supported by this socket family.

int fcntl(int s, unsigned int cmd, int arg)
provides additional control over a socket. The following values of cmd are defined for all socket
families:

F_DUPFD
Return a new descriptor greater than or equal to arg which refers to the same socket.

F_GETFL
Return descriptor status flags.

F_SETFL
Set descriptor status flags to arg.

The only status flag implemented is O_NONBLOCK (Also known under its older name FNDELAY)
which is true if the socket is nonblocking.

Error codes:

EOPNOTSUPP
The operation you requested with cmd is not supported by this socket family.

int getsockopt(int s, int level, int optname, void *optval, int * optlen)

int setsockopt(int s, int level, int optname, void *optval, int optlen)
are used to get and set options associated with a socket. The following options are implemented (many
of them only for OpenTransport sockets, though):

16 Version 2.1 30−May−2000

Common Routines GUSI 2 Reference Manual Common Routines

Level SOL_SOCKET:
SO_BROADCAST

permit sending of broadcast datagrams.

SO_DONTROUTE
bypass routing table lookup.

SO_ERROR
get pending asynchronous error.

SO_KEEPALIVE
periodically test if connection is still alive.

SO_LINGER
linger on close() if there is data to send.

SO_RCVBUF
manipulates the size of the buffer used for reading data.

SO_SNDBUF
manipulates the size of the buffer used for writing data.

SO_RCVLOWAT
receive low−water mark.

SO_SNDLOWAT
send low−water mark.

SO_REUSEADDR
SO_REUSEPORT

allow local address reuse.

Level IPPROTO_IP:
IP_TOS

type−of−service and precedence.

IP_TTL
time−to−live.

IP_MULTICAST_IF
specify outgoing interface.

IP_MULTICAST_TTL
specify outgoing time−to−live.

IP_MULTICAST_LOOP
specify loopback.

IP_ADD_MEMBERSHIP
join a multicast group.

IP_DROP_MEMBERSHIP
leave a multicast group.

Level IPPROTO_TCP:
TCP_KEEPALIVE

seconds between keepalive probes.

30−May−2000 Version 2.1 17

Common Routines GUSI 2 Reference Manual Common Routines

TCP_MAXSEG
TCP maximum segment size.

TCP_NODELAY
disable Nagle algorithm.

optval is a pointer to an unsigned integer in both cases.

int dup(int fd)
returns a new descriptor referring to the same socket as fd. The old and new descriptors are
indistinguishible. The new descriptor will always be the smallest free descriptor.

int dup2(int oldfd, int newfd)
closes newfd if it was open and makes it a duplicate of oldfd. The old and new descriptors are
indistinguishible.

18 Version 2.1 30−May−2000

Socket Specific Routines GUSI 2 Reference Manual Socket Specific Routines

Socket Family Specific Interfaces

Internet sockets
These are the real thing for real programmers. Out−of−band data only works for sending. Both stream (TCP)
and datagram (UDP) sockets are supported. Internet sockets are also suited for interapplication
communication on a single machine, provided it runs MacTCP or Open Transport.

Internet socket addresses have the following format:

 struct in_addr {
 u_long s_addr;
 };

 struct sockaddr_in {
 u_short sin_family; /* Always C<AF_INET> */
 u_short sin_port; /* Port number */
 struct in_addr sin_addr; /* Host ID */
 char sin_zero[8];
 };

There are many routines to convert between numeric and symbolic addresses.

 Hosts are represented by the following structure:

 struct hostent {
 char *h_name; /* Official name of the host */
 char **h_aliases; /* A zero terminated array of alternate names for the host */
 int h_addrtype; /* Always AF_INET */
 int h_length; /* The length, in bytes, of the address */
 char **h_addr_list; /* A zero terminated array of network addresses for the host */
 };

struct hostent * gethostbyname(char *name)
returns an entry for the host with the given name or NULL if a host with this name can‘t be
found.

struct hostent * gethostbyaddr(const char *addrP, int, int)
returns an entry for the host with the given address or NULL if a host with this name can‘t be
found. addrP in fact has to be a struct in_addr *. The last two parameters are ignored.

char * inet_ntoa(struct in_addr inaddr)
converts an internet address into the usual numeric string representation (e.g., 0x8184023C is
converted to "129.132.2.60")

in_addr_t inet_addr(char *address)
int inet_aton(const char * addr, struct in_addr * ina)

convert a numeric string into an internet address (If x is a valid address,
inet_addr(inet_ntoa(x)) == x).

int gethostname(char *machname, long buflen)
gets our name into buffer.

 Services are represented by the following data structure:

 struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use ("tcp" or "udp") */
 };

30−May−2000 Version 2.1 19

Socket Specific Routines GUSI 2 Reference Manual Socket Specific Routines

void setservent(int stayopen)
rewinds the file of services. If stayopen is set, the file will remain open until
endservent() is called, else it will be closed after the next call to getservbyname() or
getservbyport().

void endservent()
closes the file of services.

struct servent * getservent()
returns the next service from the file of services, opening the file first if necessary. If the file is
not found (/etc/services in the preferences folder), a small built−in list is consulted. If
there are no more services, getservent() returns NULL.

struct servent * getservbyname(const char * name, const char * proto)
 finds a named service by calling getservent() until the protocol matches proto and either
the name or one of the aliases matches name.

struct servent * getservbyport(int port, const char * proto)
finds a service by calling getservent() until the protocol matches proto and the port
matches port.

 Protocols are represented by the following data structure:

 struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list (always NULL for GUSI)*/
 int p_proto; /* protocol number */
 };

struct protoent * getprotobyname(char * name)
finds a named protocol. This call is rather unexciting.

struct protoent * getprotobynumber(int number)
does the reverse lookup. This call is even less exciting.

For OpenTransport TCP/IP sockets, there are a number of ioctl calls to obtain information about the
available interfaces.

SIOCGIFCONF
stores the list of interfaces in the struct ifconf pointed to by the third parameter. Note that
an entry is created for each alias address.

SIOCGIFADDR
Return the address of the interface named by the struct ifreq pointed to by the third
parameter in that structure.

SIOCGIFFLAGS
Return the flags for the interface named by the struct ifreq pointed to by the third
parameter in that structure.

SIOCGIFBRDADDR
Return the broadcast address of the interface named by the struct ifreq pointed to by the
third parameter in that structure.

SIOCGIFNETMASK
Return the subnet mask of the interface named by the struct ifreq pointed to by the third
parameter in that structure.

20 Version 2.1 30−May−2000

Socket Specific Routines GUSI 2 Reference Manual Socket Specific Routines

PPC sockets
These provide authenticated stream sockets without out−of−band data. PPC sockets should work between all
networked Macintoshes running System 7 or later, and between applications on a single Macintosh running
System 7 or later.

PPC socket addresses have the following format:

 struct sockaddr_ppc {
 short family; /* Always AF_PPC */
 LocationNameRec location; /* Check your trusty Inside Macintosh */
 PPCPortRec port;
 };

In addition, the following behavior in PPC sockets differs from the standard:

 connect() will block even if the socket is nonblocking. In practice, however, delays are likely to be
quite short, as it never has to block on a higher level protocol and the PPC ToolBox will automatically
establish the connection.

30−May−2000 Version 2.1 21

File Specific Routines GUSI 2 Reference Manual File Specific Routines

File system calls
Files are unlike sockets in many respects: They can be rewound and re−read several times. write() calls
can directly influence the results of subsequent read() calls. There are also many calls which are specific
to files.

Differences to generic behavior

 The following calls make no sense for files and return an error of EOPNOTSUPP:

 socket()
 bind()
 listen()
 accept()
 connect()
 getsockname()
 getpeername()

 The following calls will work, but might be frowned upon by your friends (besides, UNIX systems
generally wouldn‘t like them):

 recv()
 recvfrom()
 recvmsg()
 send()
 sendto()
 sendmsg()

Routines specific to the file system
In this section, you‘ll meet lots of good old friends. Some of these routines also exist in the standard
compiler libraries, but the GUSI versions have a few differences:

 File names are relative to the directory specified by chdir().

 You can define special treatment for some file names (See below under "Adding your own file
families").

int stat(const char * path, struct stat * buf)
returns information about a file. struct stat is defined as follows:

 struct stat {
 dev_t st_dev; /* Volume reference number of file */
 ino_t st_ino; /* File or directory ID */
 u_short st_mode; /* Type and permission of file */
 short st_nlink; /* Always 1 */
 short st_uid; /* Set to 0 */
 short st_gid; /* Set to 0 */
 dev_t st_rdev; /* Set to 0 */
 off_t st_size;
 time_t st_atime; /* Set to st_mtime */
 time_t st_mtime;
 time_t st_ctime;
 long st_blksize;
 long st_blocks;
 };

st_mode is composed of a file type and of file permissions. The file type may be one of the
following:

22 Version 2.1 30−May−2000

File Specific Routines GUSI 2 Reference Manual File Specific Routines

S_IFREG
A regular file.

S_IFDIR
A directory.

S_IFLNK
A finder alias file.

S_IFCHR
A console file.

S_IFSOCK
A file representing a UNIX domain socket.

Permissions consist of an octal digit repeated three times. The three bits in the digit have the following
meaning:

4 File can be read.

2 File can be written.

1 File can be executed, i.e., its type is ‘APPL’ or ‘appe’. The definition of executability can be
customized with the GUSI_ExecHook discussed in the advanced section.

int lstat(const char * path, struct stat * buf)
works just like stat(), but if path is a symbolic link, lstat() will return information about the
link and not about the file it points to.

int fstat(int fd, struct stat * buf)
is the equivalent of stat() for descriptors representing open files. While it is legal to call fstat()
for sockets, the information returned is not really interesting. The file type in st_mode will be
S_IFSOCK for sockets.

int chmod(const char * filename, mode_t mode)
changes the mode returned by stat(). Currently, the only thing you can do with chmod() is to turn
the write permission off and on. This is translated to setting and clearing the file lock bit.

=ittem int utime(const char * file, const struct utimbuf * tim)

changes the modification time of a file. struct utimbuf is defined as:

 struct utimbuf {
 time_t actime; /* Access time */
 time_t modtime; /* Modification time */
 };

actime is ignored, as the Macintosh doesn‘t store access times. The modification of file is set to
modtime.

int isatty(int fd)
returns 1 if fd represents a terminal (i.e. is connected to "Dev:Stdin" and the like), otherwise.

long lseek(int, long, int)
changes the read/write position in an open file, and will return ESPIPE if called for a socket. If
lseek() sets the position beyond EOF, the gap will be filled with 0 bytes if a write() is
subsequently called at the position.

int remove(const char *filename)
removes the named file. If filename is a symbolic link, the link will be removed and not the file.

30−May−2000 Version 2.1 23

File Specific Routines GUSI 2 Reference Manual File Specific Routines

int unlink(const char *filename)
is identical to remove().

int rename(const char *oldname, const char *newname)
renames and/or moves a file. oldname and newname must specify the same volume, but they may
specify different folders.

int open(const char*, int flags, ...)
opens a named file. The flags consist of one of the following modes:

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for reading and writing.

Optionally combined with one or more of:

O_APPEND
The file pointer is set to the end of the file before each write.

O_RSRC
Open resource fork.

O_CREAT
If the file does not exist, it is created.

O_EXCL
In combination with O_CREAT, return an error if file already exists.

O_TRUNC
If the file exists, its length is truncated to 0; the mode is unchanged.

O_ALIAS
If the named file is a symbolic link, open the link, not the file it points to (This is most likely an
incredibly bad idea).

int creat(const char * name)
is identical to open(name, O_WRONLY+O_TRUNC+O_CREAT). If the file didn‘t exist before,
GUSI determines its file type and creator of the according to rules outlined in the section "Resources"
below.

int faccess(const char *filename, unsigned int cmd, long *arg)
works the same as the corresponding MPW routine, but respects calls to chdir() for partial filenames.

void fgetfileinfo(char *filename, unsigned long *newcreator, unsigned
long *newtype)
returns the file type and creator of a file.

void fsetfileinfo(char *filename, unsigned long newcreator, unsigned long
newtype)
sets the file type and creator of a file to the given values.

24 Version 2.1 30−May−2000

File Specific Routines GUSI 2 Reference Manual File Specific Routines

int symlink(const char* linkto, const char* linkname)
creates a file named linkname that contains an alias resource pointing to linkto. The created file
should be indistinguishible from an alias file created by the System 7 Finder. Note that aliases bear
only superficial resemblances to UNIX symbolic links, especially once you start renaming files.

int readlink(const char* path, char* buf, int bufsiz)
returns in buf the name of the file that path points to.

int truncate(const char * path, off_t length)
causes a file to have a size equal to length bytes, shortening it or extending it with zero bytes as
necessary.

int ftruncate(int fd, off_t length)
does the same thing with an open file.

int access(const char * path, int mode)
tests if you have the specified access rights to a file. mode may be either F_OK, in which case the file
is tested for existence, or a combination of the following:

R_OK
Tests if file is readable.

W_OK
Tests if file is writeable.

X_OK
Tests if file is executable. As with stat(), the definition of executability may be customized.

access() returns 0 if the specified access rights exist, otherwise it sets errno and returns −1.

int mkdir(const char * path, ...)
creates a new directory.

int rmdir(const char * path)
deletes an empty directory.

int chdir(const char * path)
makes all future partial pathnames relative to this directory.

char * getcwd(const char * buf, int size)
returns a pointer to the current directory pathname. If buf is NULL, size bytes will be allocated
using malloc().

Error codes:

ENAMETOOLONG
The pathname of the current directory is greater than size.

ENOMEM
buf was NULL and malloc() failed.

A number of calls facilitate scanning directories. Directory entries are represented by following structure:

 struct dirent {
 ino_t d_ino; /* file number of entry */
 #define MAXNAMLEN 255
 char d_name[MAXNAMLEN + 1]; /* name must be no longer than this */
 };

30−May−2000 Version 2.1 25

File Specific Routines GUSI 2 Reference Manual File Specific Routines

DIR * opendir(const char * dirname)
opens a directory stream and returns a pointer or NULL if the call failed.

struct dirent * readdir(DIR * dirp)
returns the next entry from the directory or NULL if all entries have been processed.

long telldir(const DIR * dirp)
returns the position in the directory.

void seekdir(DIR * dirp, long loc)
changes the position.

void rewinddir(DIR * dirp)
restarts a scan at the beginning.

int closedir(DIR * dirp)
closes the directory stream.

26 Version 2.1 30−May−2000

Threading GUSI 2 Reference Manual Threading

Threading support
One of the major features new to GUSI 2 is a fairly complete implementation of the POSIX threads API on
top of the MacOS thread manager. This section discusses the thread API, but is not intended to be a
comprehensive reference on POSIX threads in general. Refer to the literature list for good books.

Principles of thread support
GUSI threads are based on cooperative MacOS threads. This means that threads will never get preempted
executing a compute−bound loop. The only conditions under which they get preempted are

 When they explicitly request a thread switch by calling sched_yield().

 When they call any GUSI library routine that does not complete immediately.

In practice, the second condition makes GUSI threading appear quite natural, such that, especially in code
like network servers, explicit yields are rarely necessary.

Each thread gets some independent context, including its own stack and its own copies of the errno and
h_errno variables. However, all threads share other resources, including memory, MacOS toolbox
elements, and file descriptors.

Thread Data Types
All thread related data types are opaque. They have no structure known to the public and are only
manipulated through procedure calls.

pthread_t
A thread identifier.

pthread_attr_t
An object collecting attributes specified at the creation of a thread.

pthread_key_t
An identifier for a piece of thread specific data.

pthread_once_t
A flag registering whether a once routine has already executed or not.

pthread_mutex_t
A mutual exclusion variable.

pthread_mutexattr_t
Creation attributes for a pthread_mutex_t.

pthread_cond_t
A condition variable.

pthread_condattr_t
Creation attributes for a pthread_cond_t.

Manipulating Threads

int pthread_create(pthread_t *th, const pthread_attr_t *attr, void
*(*proc)(void *), void *arg)
Create a new thread and make th a reference to it. attr (which can be NULL) specifies creation
attributes, proc specifies the code to execute in the thread, and arg is an initial argument to be
passed to the code.

pthread_t pthread_self()
Returns the currently executing thread.

30−May−2000 Version 2.1 27

Threading GUSI 2 Reference Manual Threading

int pthread_equal(pthread_t t1, pthread_t t2)
Compares two threads for identity.

int sched_yield()
Yields the CPU to the next eligible thread.

int pthread_join(pthread_t th, void **value)
Wait for the thread to die and return its result if value is not NULL.

int pthread_detach(pthread_t th)
Declare that we will never call pthread_join() for this thread and that it simply should go away
when done.

int pthread_exit(void *value)
Terminate the current thread, giving the specified return value.

int pthread_attr_init(pthread_attr_t * attr)
Initialize a thread attribute object with the default settings.

int pthread_attr_destroy(pthread_attr_t * attr)
Delete a thread attribute object.

int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
int pthread_attr_getdetachstate(pthread_attr_t * attr, int * state)

If state is PTHREADS_CREATE_JOINABLE (the default), pthread_join() should eventually
called on the thread. If state is PTHREADS_CREATE_DETACHED, the thread is created detached.

int pthread_attr_setstacksize(pthread_attr_t * attr, size_t size)
int pthread_attr_getstacksize(pthread_attr_t * attr, size_t * size)

Manipulates the size of the stack allocated for the thread (20K default). Be sure to choose this size
carefully and generously, as stack overflows will lead to nasty crashes.

Manipulating Thread Specific Data
Thread specific data makes it possible to have variables whose value differs from thread to thread. Each
piece of thread specific data is identified by a key which has to be allocated once at the beginning of the
program.

int pthread_key_create(pthread_key_t * key, void (*destructor)(void *))
Creates a new key for thread specific data. All existing and new threads initially have a NULL value for
this key until pthread_setspecific() is called. When a thread with a non−NULL value for the
key ends, destructor is called with that value as its argument.

int pthread_key_delete(pthread_key_t key)
Deletes a key, but does not call any destructors for it.

int pthread_setspecific(pthread_key_t key, void * value)
void * pthread_getspecific(pthread_key_t key)

Manipulates the value associated for key in the current thread.

Synchronizing Threads
Two mechanisms are available to coordinate threads: Mutual exclusion and the more complex condition
variables. Furthermore, the once mechanism is available for initialization.

int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t
* attr)
Initialize a mutex variable dynamically. Alternatively, you can initialize it statically with the
declaration:

28 Version 2.1 30−May−2000

Threading GUSI 2 Reference Manual Threading

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_destroy(pthread_mutex_t * mutex)
Destroy a mutex.

int pthread_mutex_lock(pthread_mutex_t * mutex)
Lock the mutex. Until this thread calls pthread_mutex_unlock, no other thread will be able to
lock this mutex. If the mutex was already locked, block until it becomes available.

int pthread_mutex_trylock(pthread_mutex_t * mutex)
If the mutex is unlocked, lock it. If it is locked, return EBUSY.

int pthread_mutex_unlock(pthread_mutex_t * mutex)
Unlock the mutex and if any other threads were blocking for it, lock it for the first of them.

int pthread_mutexattr_init(pthread_mutexattr_t * attr)
Create a default mutex attribute object. Currently, none of the attributes may be changed.

int pthread_mutexattr_destroy(pthread_mutexattr_t * attr)
Destroy a mutex attribute object.

int pthread_cond_init(pthread_cond_t * cond, const pthread_condattr_t *
attr)
Initialize a condition variable. Static initialization is available as

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_destroy(pthread_cond_t * cond)
Destroy a condition variable.

int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex)
Temporarily unlocks mutex (which must have been locked), wait for an event on the condition
variable, and lock mutex again.

int pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t *
mutex, const struct timespec * abstime)
Like pthread_cond_wait(), but only waits for a condition until the absolute time specified by
abstime.

int pthread_cond_signal(pthread_cond_t * cond)
Sends an event to the first thread waiting on the condition variable.

int pthread_cond_broadcast(pthread_cond_t * cond)
Sends an event to all threads waiting on the condition variable.

int pthread_condattr_init(pthread_condattr_t * attr)
Create a default condition attribute object. Currently, none of the attributes may be changed.

int pthread_condattr_destroy(pthread_condattr_t * attr)
Destroy a condition attribute object.

int pthread_once(pthread_once_t * once_block, void (*proc)(void))
If the specified once_block hasn‘t executed yet, execute it. once_block must have been statially
initialized as

pthread_once_t once = PTHREAD_ONCE_INIT;

30−May−2000 Version 2.1 29

Miscellanea GUSI 2 Reference Manual Miscellanea

Miscellaneous APIs

Timing routines
Since the Metrowerks Standard Library defines time_t from an epoch of 1970, GUSI 2 reimplements
time(), mktime(), gmtime(), and localtime() to ensure the traditional MacOS behavior.

GUSI also implements the following timing−related UNIX 98 APIs:

u_int sleep(u_int seconds)
Tries to sleep for the specified number of seconds and returns the remaining number of seconds if
interrupted for any reason.

void usleep(u_int usecs)
Tries to sleep for the specified number of microseconds.

gettimeofday(struct timeval * tv, struct timezone * tz)
Returns time in the same base as time(), but with a higher resolution (theoretically microseconds). If
tz is not NULL, also returns the current time zone and DST flag.

Signal manipulation routines
GUSI makes some attempt to provide a reasonable emulation of UNIX 98 signal handling behavior,
specifically:

 Most of the signal handling API is supported.

 GUSI will generate SIGALRM when the alarm() timer runs out, SIGPIPE when writing to a closed
socket, and SIGINT when the interrupt key (Cmd−.) is pressed.

 In a significant departure from UNIX 98 behavior, signals are not delivered asynchronously, but are
checked only when a thread is about to yield control by calling a blocking system call or
sched_yield().

All signal functionality is defined in the signal.h header. The central data structures for signal handling are
the signal handling function type and the sigaction structure:

 typedef void (*__sig_handler)(int);

 struct sigaction {
 __sig_handler sa_handler; /* signal handler */
 sigset_t sa_mask; /* signal mask to apply */
 int sa_flags; /* see signal options below */
 };

When a signal is raised, the following happens:

 The signals specified in sa_mask are blocked. Furthermore, the siganl currently raised is also blocked
unless SA_RESETHAND or SA_NODEFER are set in sa_flags.

 The signal handler specified in sa_handler is executed, and if SA_RESETHAND is set in
sa_flags, the signal handler is reset to SIG_DFL just before executing the handler.

 If a "slow" system call, i.e., a call that can take an indefinite time to complete, such as a read call on a
socket, is executing, that call is interrupted unless SA_RESTART is set in sa_flags.

The following functions are supported:

int sigaddset(sigset_t * set, int signo)
Adds a signal to a signal set.

int sigdelset(sigset_t * set, int signo)
Deletes a signal from a signal set.

30 Version 2.1 30−May−2000

Miscellanea GUSI 2 Reference Manual Miscellanea

int sigemptyset(sigset_t * set)
Sets a signal set to the empty set.

int sigfillset(sigset_t * set)
Sets a signal set to the set containing all signals.

int sigismember(const sigset_t * set, int signo)
Tests if a signal is a member of the set.

int sigaction(int signo, const struct sigaction * act, struct
sigaction * oact)
Gets and/or sets handling behavior for a signal. If act is not NULL, sets the new behavior. If oact is
not NULL, returns the previous behavior.

__sig_handler signal(int signo, __sig_handler handler)
The historical interface to signal handling, equivalent to sigaction with an empty sa_mask and
SA_RESETHAND set.

int raise(int signo)
Sends a signal to a process. It will be delivered to the first thread that hasn‘t blocked it.

int sigpending(sigset_t * set)
Returns the set of signals pending in the process or the calling thread that are blocked from delivery.

int sigprocmask(int how, const sigset_t * set, sigset_t * oset)
Manipulates the mask of signals to be blocked from delivery in the process. If set is not NULL, the
mask is changed depending on the how parameter:

SIG_BLOCK
The mask is set to the union of its current value and set.

SIG_SETMASK
The mask is set to set.

SIG_UNBLOCK
The mask is set to the intersection of its current value and the complement of set.

If oset is not null, it is set to the previous value of the process mask. In a multithreaded program, the
behavior of sigprocmask is undefined in UNIX 98. GUSI defines this case to do the same as
pthread_sigmask.

int sigsuspend(const sigset_t * set)
Temporarily replace the signal mask by set and then suspend execution until a signal is delivered.

int sigwait(const sigset_t * set, int * signo)
Waits for a signal in set to become pending, then clears it and returns its number in signo. All
signals in set have to be blocked in the calling thread.

int pthread_kill(pthread_t thread, int signo)
Sends a signal to a specific thread (waking it up if it was asleep).

int pthread_sigmask(int how, const sigset_t * set, sigset_t * oset)
Manipulates the signal mask for a thread similar to the way that sigprocset manipulates signal
masks in the singlethreaded case.

void abort()
Raises SIGABRT and quits the process.

30−May−2000 Version 2.1 31

Miscellanea GUSI 2 Reference Manual Miscellanea

unsigned int alarm(unsigned int delay)
If delay is not , arranges to have SIGALRM generated after the number of seconds specified.
Returns the number of seconds that would have remained in the previous call to alarm.

useconds_t ualarm(useconds_t delay, useconds_t interval)
Similar to alarm, but manipulates times specified in microseconds. If interval is not , generates
regular instances of SIGALRM spaced at interval microseconds.

BSD memory routines
If you

 #include <compat.h>

the following routines will be available as macros:

void bzero(void * from, int len)
zeroes len bytes, starting at from.

void bfill(void * from, int len, int x)
fills len bytes, starting at from, with x.

void bcopy(void * from, void * to, int len)
copies len bytes from from to to.

int bcmp(void * s1, void * s2, int len)
compares len bytes at s1 against len bytes at s2, returning zero if the two areas are equal, nonzero
otherwise.

Hooks
You can override some of GUSI‘s behaviour by providing hooks to GUSI. Note that these often get called
from deep within GUSI, so be sure you understand what is required of a hook before overriding it.

GUSI hooks can be accessed with the following routines:

 typedef void (*GUSIHook)(void);
 void GUSISetHook(GUSIHookCode code, GUSIHook hook);
 GUSIHook GUSIGetHook(GUSIHookCode code);

Currently, three types of hooks are defined.

GUSI_SpinHook
This hook is called when the main thread in the GUSI application wants to yield control. To provide
your own hook, call

GUSISetHook(GUSI_SpinHook, (GUSIHook) my_spin_hook);

where my_spin_hook is defined as

void my_spin_hook(bool wait)

where wait is false if the thread has more work to do immediately and just wants to yield control
as a courtesy, and true if the thread is blocked for an indefinite time. Specifying a
GUSI_SpinHook disables the GUSI_EventHook handling described below unless you call
GUSIHandleNextEvent(bool wait).

GUSI_EventHook
If no GUSI_SpinHook is specified, GUSI calls WaitNextEvent() according to rules established
by calling GUSIEventHook+eventCode as follows:

32 Version 2.1 30−May−2000

Miscellanea GUSI 2 Reference Manual Miscellanea

AppleEvents are always enabled and processed, unless you call
GUSISetHook(GUSI_EventHook+kHighLevelEvent, (GUSIHook) −1);

Mouse down events are enabled unless you call
GUSISetHook(GUSI_EventHook+mouseDown, (GUSIHook) −1);

only system clicks are processed unless you call

GUSISetHook(GUSI_EventHook+mouseDown, (GUSIHook) my_mousedown_handler);

where my_mousedown_handler is declared as

void my_mousedown_handler(EventRecord * ev)

and should handle both system and application clicks.

All other events are disabled unless you specify handlers for them.
GUSI_ExecHook

This hook is used by GUSI to decide whether a file or folder is to be considered "executable" or not.
The default hook considers all folders and all applications (i.e., files of type ‘APPL’ and ‘appe’ to
be executable. To provide your own hook, call

 GUSISetHook(GUSI_ExecHook, (GUSIHook) my_exec_hook);

where my_exec_hook is defined as

 Boolean my_exec_hook(const GUSIFileRef & ref);

Resources
The information in this section is likely to change in the near future.

On startup, GUSI looks for a preference resource with type ‘GUZI’ (the ‘Z’ actually must be a capital
Sigma) and ID GUSIRsrcID, which is currently defined as follows:

 #ifndef GUSI_PREF_VERSION
 #define GUSI_PREF_VERSION ’0102’
 #endif

 type ’GUZI’ {
 literal longint text = ’TEXT’; /* Type for creat’ed files */
 literal longint mpw = ’MPS ’; /* Creator for creat’ed files */
 byte noAutoSpin, autoSpin; /* Automatically spin cursor ? */
 #if GUSI_PREF_VERSION >= ’0110’
 boolean useChdir, dontUseChdir; /* Use chdir() ? */
 boolean approxStat, accurateStat; /* statbuf.st_nlink = # of subdirectories ? */
 boolean noTCPDaemon, isTCPDaemon; /* Inetd client ? */
 boolean noUDPDaemon, isUDPDaemon;
 #if GUSI_PREF_VERSION >= ’0150’
 boolean noConsole, hasConsole; /* Are we providing our own dev:console ? */
 #if GUSI_PREF_VERSION >= ’0180’
 boolean autoInitGraf, noAutoInitGraf; /* Automatically do InitGraf ? */
 boolean exclusiveOpen, sharedOpen; /* Shared open() ? */
 boolean noSigPipe, sigPipe; /* raise SIGPIPE on write to closed PIPE */
 #else
 fill bit[3];
 #endif
 #else
 fill bit[4];
 #endif
 literal longint = GUSI_PREF_VERSION;

30−May−2000 Version 2.1 33

Miscellanea GUSI 2 Reference Manual Miscellanea

 #if GUSI_PREF_VERSION >= ’0120’
 integer = @t$$@>Countof(SuffixArray);

 wide array SuffixArray {
 literal longint; /* Suffix of file */
 literal longint; /* Type for file */
 literal longint; /* Creator for file */
 };
 #endif
 #endif
 };

To keep backwards compatible, the preference version is included, and you are free to use whatever version
of the preferences you want by defining GUSI_PREF_VERSION.

The first two fields define the file type and creator, respectively, to be used for files created by GUSI. The
type and creator of existing files will never be changed unless explicitely requested with
fsetfileinfo(). The default is to create text files (type ‘TEXT’) owned by the MPW Shell (creator
‘MPS ’). If you request a preference version of 1.2.0 and higher, you are also allowed to specify a list of
suffixes that are given different types. An example of such a list would be:

 { ’SYM ’, ’MPSY’, ’sade’ }

The autoSpin value, if nonzero, makes GUSI call the spin routine for every call to read(), write(),
send(), or recv(). This is useful for making an I/O bound program MultiFinder friendly without having
to insert explicit calls to SpinCursor(). If you don‘t specify a preference resource, autoSpin is
assumed to be 1. You may specify arbitrary values greater than one to make your program even friendlier;
note, however, that this will hurt performance.

The useChdir flag tells GUSI whether you change directories with the toolbox calls PBSetVol() or
PBHSetVol() or with the GUSI call chdir(). The current directory will start with the directory your
application resides in or the current MPW directory, if you‘re running an MPW tool. If useChdir is specified,
the current directory will only change with chdir() calls. If dontUseChdir is specified, the current
directory will change with toolbox calls, until you call chdir() the first time. This behaviour is more
consistent with the standard MPW library, but has IMHO no other redeeming value. If you don‘t specify a
preference resource, useChdir is assumed.

If approxStat is specified, stat() and lstat() for directories return in st_nlink the number of
items in the directory + 2. If accurateStat is specified, they return the number of subdirectories in the
directory. The latter has probably the best chances of being compatible with some Unix software, but the
former is often a sufficient upper bound, is much faster, and most programs don‘t care about this value
anyway. If you don‘t specify a preference resource, approxStat is assumed.

The isTCPDaemon and isUDPDaemon flags turn GUSI programs into clients for David Petersons
inetd, as discussed below. If you don‘t specify a preference resource, noTCPDaemon and
noUDPDaemon are assumed.

The hasConsole flag should be set if you are overriding the default "dev:console", as discussed below.

GUSI by default spins the cursor to indicate progress, and this will crash unless QuickDraw is initialized.
While previous versions of GUSI required explicit Toolbox initialization, versions 1.8.0 and later will detect
that QuickDraw is uninitialized and call InitGraf before spinning. To disable that behavior, set the
noAutoInitGraf flag.

By default, GUSI opens files with exclusive read/write permissions. If you are sure you can deal with the
consequences, you can request shared permissions by specifying the sharedOpen flag.

If a GUSI client attempts to read from a socket that was closed from the other side, an error code will be
returned. As of version 1.8.0, you can specify the sigPipe flag to request that a SIGPIPE signal be raised
additionally.

34 Version 2.1 30−May−2000

	GUSI
	Introduction
	User`s Manual
	GUSI User License
	Making Matthias Happy
	Design Objectives
	Changes between �GUSI� 1 and �GUSI� 2
	select() is now in sys/time.h.
	Socket length arguments are now of type socklen_t.

	Literature
	Acknowledgements

	GUSI_Install
	Installing and using GUSI
	Installing GUSI
	GUSI Header Files
	arpa/inet.h
	dirent.h
	errno.h
	fcntl.h
	inttypes.h
	netdb.h
	netinet/in.h
	pthread.h
	sched.h
	sys/ioctl.h
	sys/socket.h
	sys/stat.h
	sys/time.h
	sys/types.h
	sys/uio.h
	sys/un.h
	unistd.h
	utime.h

	GUSI Libraries
	XXX.68K.Lib
	XXX.PPC.Lib
	XXX.SC.Lib
	XXX.MrC.Lib
	GUSI_MPW.XXX.Lib
	GUSI_SIOUX.XXX.Lib
	GUSI_MSL.XXX.Lib
	GUSI_Stdio.SC.Lib
	GUSI_Sfio.XXX.Lib
	GUSI_Core.XXX.Lib
	Metrowerks 68K
	Metrowerks PPC
	SC
	MrC

	Configuration
	void GUSISetupFactories()
	void GUSISetupDevices()
	void GUSISetupConfig()

	Initializing the Macintosh Toolbox
	Resources
	Warning messages

	GUSI_Common
	Overview
	EACCES
	EADDRINUSE
	EADDRNOTAVAIL
	EAFNOSUPPORT
	EALREADY
	EBADF
	EBUSY
	ECONNREFUSED
	EEXIST
	EHOSTDOWN
	EHOSTUNREACH
	EINPROGRESS
	EINTR
	EINVAL
	EIO
	EISCONN
	EISDIR
	EMFILE
	EMSGSIZE
	ENAMETOOLONG
	ENETDOWN
	ENFILE
	ENOBUFS
	ENOENT
	ENOEXEC
	ENOMEM
	ENOSPC
	ENOTCONN
	ENOTDIR
	ENOTEMPTY
	ENXIO
	EOPNOTSUPP
	EPFNOSUPPORT
	EPROTONOSUPPORT
	ERANGE
	EROFS
	ESHUTDOWN
	ESOCKTNOSUPPORT
	ESPIPE
	EWOULDBLOCK
	EXDEV
	Creating and destroying sockets
	int socket(int af, int type, int protocol)
	AF_UNIX
	AF_LOCAL
	AF_INET
	AF_APPLETALK
	AF_PPC
	SOCK_STREAM
	SOCK_DGRAM
	EINVAL
	EMFILE
	void close(int fd)
	shutdown(int how)
	int socketpair(int domain, int type, int protocol, int fds[2])
	int pipe(int fds[2])

	Establishing connections between sockets
	int bind(int s, const struct sockaddr *name, socklen_t namelen)
	EAFNOSUPPORT
	EADDRINUSE
	int listen(int s, int qlen)
	int accept(int s, struct sockaddr *addr, socklen_t *addrlen)
	ENOTCONN
	EWOULDBLOCK
	int connect(int s, const struct sockaddr *addr, socklen_t addrlen)
	EAFNOSUPPORT
	EISCONN
	EADDRNOAVAIL
	ECONNREFUSED
	EINPROGRESS

	Transmitting data between sockets
	int read(int s, void *buffer, size_t buflen)
	EWOULDBLOCK
	int readv(int s, const struct iovec *iov, int count)
	int recv(int s, void *buffer, size_t buflen, int flags)
	int recvfrom(int s, void *buffer, size_t buflen, int flags, struct sockaddr *from, socklen_t *fromlen)
	int recvmsg(int s, struct msghdr *msg, int flags)
	int write(int s, void *buffer, size_t buflen)
	EWOULDBLOCK
	int writev(int s, const struct iovec *iov, int count)
	int send(int s, void *buffer, size_t buflen, int flags)
	int sendto(int s, void *buffer, size_t buflen, int flags, struct sockaddr *to, socklen_t tolen)
	int sendmsg(int s, const struct msghdr *msg, int flags)

	I/O multiplexing
	int select(int width, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)
	EBADF

	Getting and changing properties of sockets
	int getsockname(int s, struct sockaddr *name, socklen_t *namelen)
	int getpeername(int s, struct sockaddr *name, socklen_t *namelen)
	int ioctl(int d, unsigned int request, ...)
	ioctl(d, FIONBIO, int * argp)
	ioctl(d, FIONREAD, int * argp)
	EOPNOTSUPP
	int fcntl(int s, unsigned int cmd, int arg)
	F_DUPFD
	F_GETFL
	F_SETFL
	EOPNOTSUPP
	int getsockopt(int s, int level, int optname, void *optval, int * optlen)
	int setsockopt(int s, int level, int optname, void *optval, int optlen)
	Level SOL_SOCKET:
	SO_BROADCAST
	SO_DONTROUTE
	SO_ERROR
	SO_KEEPALIVE
	SO_LINGER
	SO_RCVBUF
	SO_SNDBUF
	SO_RCVLOWAT
	SO_SNDLOWAT
	SO_REUSEADDR
	SO_REUSEPORT
	Level IPPROTO_IP:
	IP_TOS
	IP_TTL
	IP_MULTICAST_IF
	IP_MULTICAST_TTL
	IP_MULTICAST_LOOP
	IP_ADD_MEMBERSHIP
	IP_DROP_MEMBERSHIP
	Level IPPROTO_TCP:
	TCP_KEEPALIVE
	TCP_MAXSEG
	TCP_NODELAY
	int dup(int fd)
	int dup2(int oldfd, int newfd)

	GUSI_Sockets
	Socket Family Specific Interfaces
	Internet sockets
	struct hostent * gethostbyname(char *name)
	struct hostent * gethostbyaddr(const char *addrP, int, int)
	char * inet_ntoa(struct in_addr inaddr)
	in_addr_t inet_addr(char *address)
	int inet_aton(const char * addr, struct in_addr * ina)
	int gethostname(char *machname, long buflen)
	void setservent(int stayopen)
	void endservent()
	struct servent * getservent()
	struct servent * getservbyname(const char * name, const char * proto)
	struct servent * getservbyport(int port, const char * proto)
	struct protoent * getprotobyname(char * name)
	struct protoent * getprotobynumber(int number)
	SIOCGIFCONF
	SIOCGIFADDR
	SIOCGIFFLAGS
	SIOCGIFBRDADDR
	SIOCGIFNETMASK

	PPC sockets

	GUSI_Files
	File system calls
	Differences to generic behavior
	Routines specific to the file system
	int stat(const char * path, struct stat * buf)
	S_IFREG
	S_IFDIR
	S_IFLNK
	S_IFCHR
	S_IFSOCK
	4
	2
	1
	int lstat(const char * path, struct stat * buf)
	int fstat(int fd, struct stat * buf)
	int chmod(const char * filename, mode_t mode)
	int isatty(int fd)
	long lseek(int, long, int)
	int remove(const char *filename)
	int unlink(const char *filename)
	int rename(const char *oldname, const char *newname)
	int open(const char*, int flags, ...)
	O_RDONLY
	O_WRONLY
	O_RDWR
	O_APPEND
	O_RSRC
	O_CREAT
	O_EXCL
	O_TRUNC
	O_ALIAS
	int creat(const char * name)
	int faccess(const char *filename, unsigned int cmd, long *arg)
	void fgetfileinfo(char *filename, unsigned long *newcreator, unsigned long *newtype)
	void fsetfileinfo(char *filename, unsigned long newcreator, unsigned long newtype)
	int symlink(const char* linkto, const char* linkname)
	int readlink(const char* path, char* buf, int bufsiz)
	int truncate(const char * path, off_t length)
	int ftruncate(int fd, off_t length)
	int access(const char * path, int mode)
	R_OK
	W_OK
	X_OK
	int mkdir(const char * path, ...)
	int rmdir(const char * path)
	int chdir(const char * path)
	char * getcwd(const char * buf, int size)
	ENAMETOOLONG
	ENOMEM
	DIR * opendir(const char * dirname)
	struct dirent * readdir(DIR * dirp)
	long telldir(const DIR * dirp)
	void seekdir(DIR * dirp, long loc)
	void rewinddir(DIR * dirp)
	int closedir(DIR * dirp)

	GUSI_Threads
	Threading support
	Principles of thread support
	Thread Data Types
	pthread_t
	pthread_attr_t
	pthread_key_t
	pthread_once_t
	pthread_mutex_t
	pthread_mutexattr_t
	pthread_cond_t
	pthread_condattr_t

	Manipulating Threads
	int pthread_create(pthread_t *th, const pthread_attr_t *attr, void *(*proc)(void *), void *arg)
	pthread_t pthread_self()
	int pthread_equal(pthread_t t1, pthread_t t2)
	int sched_yield()
	int pthread_join(pthread_t th, void **value)
	int pthread_detach(pthread_t th)
	int pthread_exit(void *value)
	int pthread_attr_init(pthread_attr_t * attr)
	int pthread_attr_destroy(pthread_attr_t * attr)
	int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
	int pthread_attr_getdetachstate(pthread_attr_t * attr, int * state)
	int pthread_attr_setstacksize(pthread_attr_t * attr, size_t size)
	int pthread_attr_getstacksize(pthread_attr_t * attr, size_t * size)

	Manipulating Thread Specific Data
	int pthread_key_create(pthread_key_t * key, void (*destructor)(void *))
	int pthread_key_delete(pthread_key_t key)
	int pthread_setspecific(pthread_key_t key, void * value)
	void * pthread_getspecific(pthread_key_t key)

	Synchronizing Threads
	int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * attr)
	int pthread_mutex_destroy(pthread_mutex_t * mutex)
	int pthread_mutex_lock(pthread_mutex_t * mutex)
	int pthread_mutex_trylock(pthread_mutex_t * mutex)
	int pthread_mutex_unlock(pthread_mutex_t * mutex)
	int pthread_mutexattr_init(pthread_mutexattr_t * attr)
	int pthread_mutexattr_destroy(pthread_mutexattr_t * attr)
	int pthread_cond_init(pthread_cond_t * cond, const pthread_condattr_t * attr)
	int pthread_cond_destroy(pthread_cond_t * cond)
	int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex)
	int pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec * abstime)
	int pthread_cond_signal(pthread_cond_t * cond)
	int pthread_cond_broadcast(pthread_cond_t * cond)
	int pthread_condattr_init(pthread_condattr_t * attr)
	int pthread_condattr_destroy(pthread_condattr_t * attr)
	int pthread_once(pthread_once_t * once_block, void (*proc)(void))

	GUSI_Misc
	Miscellaneous APIs
	Timing routines
	u_int sleep(u_int seconds)
	void usleep(u_int usecs)
	gettimeofday(struct timeval * tv, struct timezone * tz)

	Signal manipulation routines
	intsigaddset(sigset_t * set, int signo)
	intsigdelset(sigset_t * set, int signo)
	intsigemptyset(sigset_t * set)
	intsigfillset(sigset_t * set)
	intsigismember(const sigset_t * set, int signo)
	intsigaction(int signo, const struct sigaction * act, struct sigaction * oact)
	__sig_handler signal(int signo, __sig_handler handler)
	int raise(int signo)
	intsigpending(sigset_t * set)
	intsigprocmask(int how, const sigset_t * set, sigset_t * oset)
	SIG_BLOCK
	SIG_SETMASK
	SIG_UNBLOCK
	intsigsuspend(const sigset_t * set)
	int sigwait(const sigset_t * set, int * signo)
	int pthread_kill(pthread_t thread, int signo)
	int pthread_sigmask(int how, const sigset_t * set, sigset_t * oset)
	void abort()
	unsigned int alarm(unsigned int delay)
	useconds_t ualarm(useconds_t delay, useconds_t interval)

	BSD memory routines
	void bzero(void * from, int len)
	void bfill(void * from, int len, int x)
	void bcopy(void * from, void * to, int len)
	int bcmp(void * s1, void * s2, int len)

	Hooks
	GUSI_SpinHook
	GUSI_EventHook
	AppleEvents are always enabled and processed, unless you call
	Mouse down events are enabled unless you call
	All other events are disabled unless you specify handlers for them.
	GUSI_ExecHook

	Resources

