Append A - Style Guidelines

This chapter describes the stylistic guidelines followed by the CIDLib source code. Because CIDLib is written by a single author, the style is very strictly defined and consistently implemented, far more so than any commercial, multi-person software project would ever likely be.

�Basic Formatting

This section covers the simple formatting conventions, such as tab usage, comma placement, whitespace, wrapping, etc... Some folks probably consider this kind of stuff to be a sign of major anal retentiveness, but I consider it quite important and follow it to a letter whenever possible.

Braces

Braces are always vertically aligned and on a line of their own. This improves readability in my opinion, though it does cost more lines. But, given that monitors are getting bigger and bigger, I put code maintenance issues much higher up on the list than getting the most code on the screed at once.

// Don’t do this

if (Something){

}

// Do this

if (Something)

{�}

If a statement takes more than a single line to make, then it must use braces even though the language does not require it. This avoids mistakes where the actual body of a block is missed because of the amount of stuff that made up the opening statement of the block.

// Doesn’t legally require braces but use them

if ((c4XExtent == c4OrgXExtent)

&& (c4YExtent == c4OrgYExtent)

|| !bIsStupid)

{

 // Do something�}

If one of the blocks of a compound statement requires braces, because it has multiple statements, then use them on all of the statements for consistency. This does waste lines but it makes it easy to see what is going on and avoids maintenance errors.

if (eValue == tFooBar::EValues_First)

{

 // Have to have braces here legally

 i4Value = i4X;

 i4Time = i4OldTime;�}

 else

{

 // Don’t legally need them here but use them

 i4Value = i4Y;

}

Comments

Only C++ style comments are used. Comments are never out at the end of something, always above it. Putting comments at the end of things always tends to make for cryptic comments in order to avoid line length restrictions. And they become a pain when you have to go back and edit the text.

Comments are always indented to the level of what they are commenting. If more than one line is required, then ‘spacing’ comment lines are used above and below.

// This is a comment

tCIDLib::TInt4 i4Val; // Never do this

//

// If more than one line is required in a comment, then always

// use an empty line above and below it to make it easy to pick

// the comment out.

//

Line Length

CIDLib code tries to stick strictly within the 80 column limit though it might occasionally stray over by a character or two. But nothing more than that.

Parenthensis

Formulas are always explicitly parenthesized, and generally should not depend upon the language specific evaluation rules. Yes we know that you know the evaluation rules, but someone reading it later cannot tell if you knew or not. Explicit parenthesization leaves no room for guessing, and says exactly what you meant to happen.

Tabs

Hard tabs are used, with 4 spaces being inserted for a tab character. Soft tabs save space but cause inconsistent results when displayed, and they make it difficult to backspace quickly without making mistakes.

White Space

Generally, all operators and their operands and comma separated lists of things are separated by spaces for easier Ctrl-Arrow movement through a line of text. There are no requirements for spaces before or after opening or closing braces or parentheses.

// Separate operands but don’t worry about before/after parens

tCIDLib::TFloat8 f8Tmp = ((1.25 * kCIDLib::f8PI) / 0.81;

// Separate things in comma separated list by a space

objSomeThing.Foo(str1, area2, i4Value);

Wrapping Lines

Multiple parameters passed to anything (which are too long for a single line) are wrapped in ways that might seem peculiar to you at first. They tend to take the 'scope block' approach to wrapping, and use the 'leading' style for operators, commas, logical operations, etc... Here are some examples from the actual code.

In this case, values of some sort are being returned. The first is a cast of a set of enums into a single enum value. The second is a function call that returns a value and has enough parameters that it must be wrapped.

// Cast a set of bit mapped enums flags

tCIDLib::eFooSet eSet = tCIDLib::eFooSet

(

 tCIDLib::eFooSet_Flag1

 | tCIDLib::eFooSet_Flag2

 | tCIDLib::eFooSet_Flag3

);

// Call a function with too many parms for a single line

tCIDLib::TFloat8 f8Tmp = _f8Noise

(

 f8X * 4 * f8Freq

 , f8Y * 4 * f8Freq

 , f8Z * 4 * f8Freq

);

In this case, when some kind of operator is used in a compound statement and it cannot be put on one line without violating the column widget rules, it will be wrapped so that the logical operators are under the if and the indentation of the parts of the statement indicate the nesting.

if ((f8NoiseVal >= pbandCur->f8StartVal)

&& (f8NoiseVal <= pbandCur->f8EndVal))

{

 blah blah blah

}

Note that those methods below that have parameters are wrapped around somewhat like an if statement. They use leading commas and everything is columnarized exactly the same.

class TWndBorder : public TCIDObject, public MDuplicable

{

 public :

 // --

 // Constructors and Destructors

 // --

 TWndBorder();

 TWndBorder

 (

 const TWndBorder& wbordToCopy

);

 ~TWndBorder();

 // --

 // Public, virtual methods

 // --

 virtual tCIDLib::TCard4 c4Width() const = 0;

 virtual tCIDLib::TVoid Depress() = 0;

 virtual tCIDLib::TVoid DrawBorder

 (

 const TWindow& wndTarget

 , TPaintBrush& ptbToUse

 , const TArea& areaBorder

) = 0;

 virtual tCIDLib::TVoid Raise() = 0;

};

This case shows how class initializers are wrapped in the constructors for all classes. They are always wrapped even if they could possibly fit onto the same line as the function parameters. The parameters are strictly columnarized, and both the parameters and the initializers use the leading style commas.

TBandItem::TBandItem(const tCIDLib::TFloat8 f8End

 , const tCIDLib::TFloat8 f8Start

 , const TFRGBClr& frgbEnd

 , const TFRGBClr& frgbStart) :

 f8EndVal(f8End)

 , f8StartVal(f8Start)

 , frgbEndClr(frgbEnd)

 , frgbStartClr(frgbStart)

{

}

�Naming Conventions

This section covers the conventions for the naming of variables, constants, functions, types, etc... This is strictly followed in order to gain maximum consistency and self documentation.

Note that the naming conventions for the files that make up a facility (a Dll or Exe) are covered in a separate section since they are a subject unto themselves. This section just covers the contents of those files.

General Philosophy

The names of almost everything should mixed case. Mixed case is more compact as fixed case names with underscores, and just as readable (and much more attractive in my opinion.) Names should not be abbreviated unless the length would be burdensome. If abbreviated, then consistency is the selection of abbreviations is very important.

Type Names

There are just a few rules for types names. The only real exception to the general rules are classes used for multiple inheritance and template classes. Here are the rules.

All non-enumeration type names start with a 'T' as the first letter. This includes class names as well as fundamental types. It stands for ‘T’ype. C for Class might have been better but MFC already uses that.

Enumeration types start with an 'E' as their first character, as do the values that make up the enumeration. The name of the enumeration should be plural if it represents multiple values (as it usually does.) Each value of the enumeration should use a singular version of the type name as a prefix.

'Mix In' classes, classes designed for use via multiple inheritance, all start with a 'M' as the first letter.

Class names should be non-trivial and descriptive, though 64 characters or less is preferable, don’t get crazy.

All non-class type names should be placed within a namespace or class scope so as to avoid pollution of the global space and prevent clashes.

Here are some examples:

//

// Enum type names are generally plural, and the values

// themselves use a singular version (though sometimes

// abbreviated) of the name as a prefix.

//

enum EFooCounters

{

 EFooCounter_Burgers

 , EFooCounter_Chips

 , EFooCounter_Coke

};

//

// Here are some standard CIDLib classes used to create some

// legally named objects.

//

TArea areaWindow;

TPoint pntOrigin;

TBag<TPoint> colOfPoints;

// Create a class derived from the base object and a mixin

class TFoo : public TCIDObject, public MStreamable

{

 // blah blah blah

};

Variable Names

Variables (whether fundamental or object) always begin with their respective hungarian prefix. The prefix is followed by a mixed case name. The prefix for each class is noted in the header file and in the class reference for that class.

CIDLib does not use any raw C++ or OS types. Instead it typedefs all of the fundamental types it uses. All of these fundamental types have their own prefixes, which are indicated where the type is defined.

Objects use a ‘family prefix’. I call it a 'family prefix' because generally all classes derived from some basic class will use the base class' prefix (because all classes derived from it are really just variations of that basic type.) For instance, all windows use 'wnd' and all strings use 'str' etc... Only when, in rare cases, a derivative becomes extremely specialized will it be given its own prefix.

All enumeration variables begin with a lower case ‘e’, which is the counterpart to the upper case ‘E’ used by enumeration types.

Here are some examples:

tCIDLib::TCard4 c4FooCount;

tCIDLib::EMonths eThisMonth(tCIDLib::EMonth_January);

TArea areaOfFoo(10, 10, 100, 200);

Variables (not class members which are covered in the next section but which have similar rules) outside of any class or namespace are named such that their scope is indicated. Global variables are named normally. Variables which are static to a file scope use a double underscore, much like a private class member does. Variables which are globally used but only within the DLL or Exe have a single underscore, much like a protected class member.

// This one is publically exported by a header somewhere so its global

tCIDLib::TFloat4	f4Public;

// This one is exported only within this DLL or Exe facility

tCIDLib::Float4	_f4IntraFacility;

// This one is just within this file

static tCIDLib::TFloat4	__f4Static;

�Class Member Guidelines

This section describes the stylistic rules followed by CIDLib for all of the methods and members of a class. It follows these rules quite strictly.

Unless there is a major justification to do so, all data members are to be private. The only exception is that it is acceptible to have public const static data members (unless you with to hide the representation of that member of course.) Very occasionally protected members might be used so that derived classes have high speed access to the data.

Order of Declaration

Class members are always in the same order. The order of the implementation within the Cpp files follows the same ordering as the order of declaration within the Hpp file. There might always be the occasional special case that is not covered here.

 Public Section

 	Public, class specific types

 	Public const data members.

 	Public constructors and destructors

 	Public operators

 	Public, inherited methods

 	Public, virtual methods

 	Public, non-virtual methods

 Protected Section

 	Friends

	Protected class specific types

 	Hidden constructors and operators

 	Protected, inherited methods

 	Protected, virtual methods

 	Protected, non-virtual methods

 	Protected data members (should be rare)

 Private Section

 	Unimplemented constructors and operators

 	Private, inherited methods

 	Private, virtual methods

 	Private, non-virtual methods

 	Private data members

	Magic macros

Note that CIDLib does not use the convention of breaking up the members and methods into related sections, using multiple public, protected and private sections. This kind of association can be done in the documentation if desired, but keeping the class declarations simple, consistent and well ordered makes things easier in the end. Within each inner section, methods are arranged alphabetically. Data members are also unless there are order of initialization issues (remember that order of declaration controls order of initialization.)

Naming Conventions

Class members have slightly different naming conventions that other nameable entities, because of their special place in our hearts :-)

Public methods and members have no special naming conventions. They just follow the normal variable naming conventions.

Protected methods and members have a single underscore, unless they cannot have one due to conflicts with the languge (such as constructors and operators.)

Private members have two leading underscores.

The 'virtual' keyword is applied only to a method when it is 'first' declared, i.e. in the lowest level class that implements it. When a class overrides a method, it is put into the section that denotes it is an inherited method, but it is not given the virtual keyword explicitly.

Inlines

This section covers the special issues involved with inlines, and what the range of options are. Inlines are somewhat of a necessary evil with lots of special considerations, which are different according to the kind of code you are writing. If you are writing your own code, and recompiling the code base when an inline changes is easy, then the binary compatibility worries do not apply. If you are writing code for others to use and want to maintain some release to release binary compatibility, then you must be more careful.

CIDLib does not attempt this sort of binary release compabilitity at this time, though it might in the future. C++ is just not the kind of language that makes this kind of thing simple. And, if you want to take advantage of the performance advantages that C++ provides (and which make large scale OO applications tolerably performing), you really find yourself walking a tight rope and having to make life and death decisions about every inline or template you use.

So anyway, given all of that, there are some guidelines that all CIDLib code follows.

Stylistically, inlines should conform to the same format as it would if written out of line.

All inlines should be done outside of the class definition itself. They should generally just be done at the bottom of the header.

Only very trivial operations should be done as inlines. Very occasionally a more non-trivial operation can be justified, when its called often but from few places and the performance considerations are paramount.

Keep in mind that inlines are compiled into client code and cannot generally be changed without recompilation of all code that depends upon it. This can lead to long rebuilds for trivial changes.

There are situations where, once some other situation has forced you to expose some implementation detail (to be frowned on, but let's be realistic), you might be able to inline some other code without further penalty if a useful performance gain could be had. Once you've paid the devil, get what's coming to you :-)

�File, Function, Class Headers

CIDLib uses a consistent set of headers for all files, and the methods and functions in those files, and for classes. They are used consistently and even though its a pain for me.

Note that methods and functions only have headers if they are private methods or file scope static methods, i.e. when they are not documented in the online class and member documentation. For public and protected members and methods, the class and member documentation already has all of the information so put it there and don’t use method headers for them.

You can obviously still use comments inside these public and protected methods and functions in order to document purely internal implementation details, but you don’t need to have this kind of formal header information for that.

File Header

//

// NAME:

//

// DESCRIPTION:

//

//

// AUTHOR:

//

// CREATE DATE:

//

// COPYRIGHT: 1992..1997, MyCompany

//

// CAVEATS/GOTCHAS:

//

Function/Method Header

//

// FUNCTION/METHOD NAME:

//

// DESCRIPTION:

//

// ---------------------------------------

// INPUT: None

//

// OUTPUT: None

//

// RETURN: None

//

Class Header

// ---

// CLASS: TFoo

// PREFIX: foo

// ---

�General Guidelines

This section gives some common advice that is followed by all CIDLib code and recommended for user code based upon it. These are just quick reminders. These concepts will be discussed in more depth in other places.

1.	All classes should either explicitly declare default and copy constructors and assignment operators, or hide them by explicitly declaring them in the private section of the class and not implementing them. CIDLib provides specific sections in its class definitions for unimplemented constructors and operators.

2.	Make all method and function parameters const that can be const and still have the method or function do what it needs to do. This applies even to by value fundamental values. Even though these parameters are copied onto the stack the conceptual consistency is important. And it insures that input parameters are always the same throughout the life of the function or method. Not realizing that a parameter has been used as a temporary variable can be a source of maintenance errors.

3.	In even more general terms, use const wherever it is possible without constricting the code such that it cannot do what it is supposed to. Const can be used in many places and it catches sooo many errors that would otherwise silently occur.

4.	Avoid global objects. Global objects can be a source of very obscure bugs. They can be used (particularly objects of very fundamental class types) but thought should be given to another means of implementation. Some obvious exceptions are things like semaphores which must exist before any code can attempt to lock them, ect... In particular don't have any global object depend upon the existence of any other global object (unless that other object is in an underlying Dll, in which case its constructor should have already occured.)

	If you want to lazily create statics, by making them a pointer and allocating them only when you need them, use the IBaseLock class to synchronize the lazy creation of the objects.

5.	When possible, always write reentrant code. Just always think that way. However, that does not mean making every single object multi-thread safe. Doing so is just too much of a burden for most apps. This is an important design tightrope to walk.

6.	It is acceptible to return references or pointers to members of an object; however, they should return constant pointers or references when possible. When non-const access is required, try to provide const and non-const versions of methods or operators that do this. This will allow the compiler to pick the most restrictive one possible for the circumstances at hand.

7.	Unless very difficult to do otherwise, always design classes so that they have a reasonable default construction. This is required if the class is streamable (though it can be a protected default constructor if you use the BefriendFactory() macro.)

8.	Unless very difficult to do otherwise, always fully construct objects during construction. For instance, windows are first constructed then created. This avoids a big problem with virtual methods during construction. Another reason you might not do this is when the object will lazily construct some of its higher overhead members if they are actually used.

9.	When possible, prefer the use of janitors over the use of try/catch blocks. CIDLib provides a nice variety of janitorial objects so make use of them.

10.	Use pure exception based error handling always. CIDLib is fundamentally based on the exception scheme and provides lots of janitor types classes to make it safe and effectively for you to do the same.

11.	Where possible, use very simple, 'by value' semantics for classes. Only avoid this when the overhead becomes too high to afford or polymorphism is required. Classes with by value semantics are very natural to work with and don't cause so many potential memory leak problems.

12.	Only use inlines when it makes good sense, i.e. for very trivial operations such as 'pass through' inlines or 'getter' methods.

�Facility File Naming Conventions

Each CIDLib facility follows a strict set of file naming conventions. Documenting and strictly adhering to a set of file naming standards greatly decreases the complexity of the system for developers and user alike. These standards insure that particular things are always found in particular files, in every facility.

All of the examples below will use a fictional FooBar facility. So all names will be in terms of this pretend facility. Substitute your own facility’s name.

The Public Header - FooBar.Hpp

This is the main file from the point of view of a user of a facility. The public header is the one and only header file that a user of the facility requires. It subincludes any other public headers of the facility, so that including it gives the user access to all of the facility’s functionality.

The public header uses a conditional compilation token to avoid multiple inclusion of its contents (or those parts that need to be.) This in turn prevents multiple inclusion of all of its sub-included headers, so there is only a need for one guard token per project.

The public header also provides the import/export define for the facility. This is a define that controls whether classes and objects are being imported or exported. It uses a define that is set in the project’s settings to know whether it is being compiled into its own facility or by a client. Here is a sample:

#if defined(PROJ_FOOBAR)

#define FOOBAREXP DLLEXPORT

#else

#define FOOBAREXP DLLIMPORT

#endif

If the token PROJ_FOOBAR is defined, then the FOOBAREXP token resolves to DLLEXPORT, because it is being compiled into its own facility and this compilation needs to generate exports for all the exportable entites in the DLL. Otherwise, it resolves to DLLIMPORT, because its being compiled into client code and that client wants to generate imports for all of the facility’s importable entities. The PROJ_FOOBAR define is set in the facility’s project settings, and each facility has its own such define to control its import/export keywords.

The DLLEXPORT and DLLIMPORT values are themselves defines. They are provided by the CIDKernel.Dll facility and will resolve to the correct import/export keywords for the platform.

The Private Header - FooBar_.Hpp

The private header, also called the ‘intrafacility header’ is the internal version of the public header. Instead of each facility Cpp file including any internal headers they need, they just include the private header. The private header includes the public header (so that all the modules can access the public functionality of the facility), and then includes any internal only headers.

This file also contains any intracility externs for exporting stuff within the facility. And it contains the private constants and types namespaces, if the facility needs one.

The Main Cpp File - FooBar.Cpp

This file contains the initialization code. For DLLs it contains the DLL init code and for Exes it contains the main thread code. DLL initialization is a very formal process and is discussed in the “CIDLib Orthodoxy” chapter.

The main file often also provides a little bit of implementation code for classes that are all inlined except for some trivial amount of stuff. Instead of making a Cpp file just a single RTTI macro or static value, the main file can be used for that stuff when it makes sense to do so.

The Message Text File - FooBar.MsgText

This is the file that contains the text for the errors and messages that the facility supports. This file is compiled into a binary message file, from which the facility loads any text that it will display to the user. This is part of the multi-language support scheme. The compilation of this file will produce two files into the project source directory, FooBar_ErrorIds.Hpp and FooBar_MessageIds.Hpp. These files are discussed below.

Other Cpp/Hpp Modules - FooBar_xxx.Hpp and FooBar_xxx.Cpp

The other Cpp/Hpp modules of the facility always use the facility name as a prefix, followed by an underscore and then the actual name of the file. This makes it obvious what facility the file belongs to and avoids name clashes when the header files are all copied to a common directory for a release.

Id Headers - FooBar_MessageIds.Hpp and FooBar_ErrorIds.Hpp

The compilation of the MsgText file, if the project has one, will produce these two files (assuming you use the message compiler as suggested), which contain the ids for messages and errors. These files just contain namespaces (also generated by the MsgText compiler) that keep the facility’s error and message ids out of the global namespace.

In general, the facility’s error id header is exported, since the outside world needs to be able to check caught exceptions against the exceptions error values. But the message id header is generally not exported, since usually the outside world does not need to load a facility’s messages. However, you could create a ‘message DLL’ facility that just holds message text and a facility object by which to load them. In that case you would obviously have to export the message ids so the outside world could use them.

Resource Script Files - FooBar.Rc and FooBar_ResourceIds.Hpp

The facility should have, it it has any resources at all, at least a main resource script file, FooBar.Rc in our example facility. If the facility has simple resource needs it can certainly put all of the resources into this file.

The resource ids header file should be renamed from the (stupid) ‘resource.h’ name that VC++ gives it by default. If you leave it set to that name, then you cannot export it because every facility will try to export the same file name. This requires a little change in the Rc file and a rename of the .H file. Its a pain, but as long as VC++ is too stupid to let you name this file, its kind of required.

Of course if, you are doing an Exe or you don’t plan to export the resource ids header, then you could get away with it. Its often a good idea not to export the resource ids anyway, but often not doing so kind of prevents the outside world from using them reasonably. Of course, the outside world should never have to load these resources directly, the use resource objects instead, but they still have to indicate what resource they want the resource object to load.

The ids in the resource header should always use a ‘facility prefix’ to make sure that the ids, which are just old world style #define values, are unique. I’d love to write my own resource system, and use fully C++ enabled, const namespace based values, but for now we have to live with the cave tools that Microsoft provides us.

