�
Chapter One - Overview

Wecome to “Developing C++ Frameworks”, where I hope to give you some insights into the blood and glory involved in the development of a large scale set of C++ class libraries that encapsulate a modern operating system and provide a fully object oriented, generally portable, set of standard functionality for general purpose applications development. Whew, that was a mouthful and probably a run on sentence I know, but pretty much sums it up. If you didn’t understand any of the buzz words in that opening sentence, you might want to read ahead to the section on this book’s target audience and see if its really for you. This book picks up where a lot of C++ development books leave off, and you would want to cover the prerequisite territory before digging in most likely.

From the developer’s perspective, C++ framework development often seems to involve a lot more blood than glory, and perhaps that is true. It is extraordinarily difficult these days to push anything into the marketplace without massive clout behind you. Even a technically questionable system like Microsoft’s MFC is more likely to prosper because of its wealthy parents. Personally though, I’ve found that my work in this area, though commercially unlikely to make me the next Bill Gates, has broadened and deepened my experience as a software engineer more so than anything I’ve ever done. Technically superior, full bore mondo frameworks projects are rare in the commercial world, and the lofty job of designing them are expontentially more rare, and the people genuinely qualified to run them are ever rarer still. So getting that experience on your own time is often a prerequisite to getting paid for it. Its the usual problem of not being able to get the job because of lack of experience, but you have to have done it in order to get the experience.

I have done it, and yes it is pretty bloody. So this book comes with fully functional source code for all of the concepts discussed. The code is not playtoy stuff written just to demonstrate those concepts. Nor is the code just a set of disjoint demonstrations of particular ideas. It represents a fully coherent, consistent, and interoperable set of C++ frameworks. The code was written first, and was the primary objective. This book was written to explain the design points that drove the development effort. Partly the objective is to teach you about general object oriented framework design, partly to teach you specific C++ tricks and techniques, and partly to provide a tutorial for the class libraries themselves so that you can make good use them. The code is a freeware project called “The CIDLib Class Libraries”, and some history about the project is provided later in this chapter.

Like any such non-commercial software project, and particularly one with a single author, the provided frameworks do not pretend to cover every possible requirement of a wide range of general purpose applications; however, they are decidedly non-trivial and quite well written. Providing other specialized functionality is, as they say, left as an exercise for the reader; though, of course, CIDLib will continue to evolve and information for downloading future versions is provided later. And, if you have extensive expertise in a particular area not covered in CIDLib and would like to contribute to the project, please contact me and lets discuss it.

Portability issues are stressed in this book, so that CIDLib can be ported forward as new operating systems come onto the scene. CIDLib began its life under OS/2, so it has already been ported once to its current host OS of Microsoft’s Windows NT 4.0. Many of its portability issues were dealt with during that port. Of course it’s not going to port to your toaster or a Thinking Machine’s massively parallel machine particularly well. Its designed for the capabilities of the modern PC architectures represented by OS/2 and NT, and would port most cleanly to a host operating system similar to them in style and capabilities. Extremely broad portability implies a least common denominator approach that I did not want to take.

So, lets get into it. This first chapter just gets some preliminary information out of the way, such as who this book is targeted for, what its about, required software and hardware, suggested reading and the like.

Intended Audience

This book covers a relatively advanced range of topics related to object oriented design and development. It assumes that you understand all of the fundamental and most advanced issues of general C++ design and implementation. If you are very familiar with some other object oriented language, then you would still have some difficulty extracting the maximum benefit of this book, since it concentrates on very nitty gritty, language specific, design and implementation issues. Such issues are always, to one degree or another, mired in the strengths, weaknesses, and otherwise natural flow of a language. Also, since it concentrates on larger scale development, it must start significantly beyond the language tutorial level, otherwise it would require a forklift to transport.

Overall, I would say that you should have designed and developed at least one medium scale application or subsystem in C++ - or very closely participated in one or more large scale efforts - if you want to fully benefit from this book. Of course, that’s not intended to be any kind of line drawn in the sand. Any C++ developer will find pearls of wisdom here. Its just that everyone, at a particular point in his or her development as a software developer, is looking for a book that begins at just this or that level, thus wasting the least of their time and expanding their horizons the maximum amount possible. If you are a very experienced C++ developer and are ready to take on a large scale project, either commercially or for your own self edification, this book will likely be on exactly the level you need.

Large scale frameworks development moves beyond the details of class design - though good class design is obviously still the foundation of any C++ system - where ‘infrastructure’ becomes an issue. Such infrastructure has little to nothing to do with any application specific requirements. Instead it is concerned more with the interactions of two or more classes to provide a certain amount of synergy, in which the sum is greater than the parts. Where good class design is often driven by the language itself, large scale frameworks development is much more ‘open territory’ where the designer is expected to present his or her own coherent vision, and implement that vision such that it is easily and safely leveraged by the end user, striking an elegant balance between flexibility and complexity. The C++ language generally does not imply or impose any large scale vision upon the designer of such a system, nor do most other languages, though it and other languages definitely drive the details and thus the ‘flavor’ of the overall system.

Even if you are a skilled C++ developer, you will definitely want to read through the chapter “CIDLib Orthodoxy”, which covers the “religious” design decisions that drive the CIDLib architecture. There are many, many ways to use any language on the large scale, so a good design will codify and consistently implement a subset of the possibilities. This kind of pruning serves to make life easier on the users and developers of any system by insuring consistency of style and substance throughout.

Consistency is an often ignored goal in my opinion, as it maximizes the developer’s and user’s ability to leverage previous experience when exploring new regions of the system. In multi-person development efforts the payback is much multiplied; but, the difficulty of doing so are probably even more greatly amplified. It takes a strong, and technically competent, person to impose a new way of life upon developers coming from disparate backgrounds. In many cases, there are no technical arguments for a particular convention, as they are sometimes arbitrary or chosen purely to fit within a larger picture. Having your water fowl arranged in a linear fashion on the real technical issues, and having strong arguments for the ones that really are technically based, will serve you well in such a position. The Orthodoxy chapter contains my arguments and reasoning for the conventions used in the CIDLib code.

“Appendix B” documents the stylistic guidelines that are used consistently within the CIDLib code. Code style is of course another - some would say even more - religious issue than architecture. And, if you fancy yourself a knowledgeable coder, you will likely find any other person’s style grotesque and worthy only of pity. Since style is generally pretty arbitary, though often based upon strong feelings on the part of the coder, the arguments become pretty useless. In a multi-person development effort, a set of styles should be agreed upon and followed. The style should though be based upon coherent and understood criteria and not just pulled out of a hat, since it does affect the readability of the code. The style guidlines presented in Appendix B are “explained”, but not argued. I present my reasons, but don’t attempt to convince you that they are right or wrong.

Since the style used in the CIDLib system is quite aggressive and well defined, it will likely magnify your feelings of nausea. Regardless of your feelings for any particular style, don’t ever doubt the power of a well defined and consistently implemented set of stylistic guidelines. Too often, in my opinion, software development organizations knuckle under to developers and do not have the spine required to set a comprehensive style and enforce it. The resulting code is generally the ultimate demonstration of this lacking. Unorganized code can often be a sign of unorganized architecture and development management.

If you make a quick scan of these two chapters, and find that it makes good sense to you - or that you feel you have sound reasons for disagreeing with them, then probably this book is for you. If not, then you might want to check out the “Suggested Reading” section below, where I list the books which influenced me in my development as a software engineer.

What is This Book About?

This book is about ‘frameworks.’ If you are not familiar with that term, then you’ve definitely missed out on the true promise of object oriented software. There are two slightly different ways in which the term framework can be used, both of which I’ll discuss. These two meanings are often used rather loosely and interchangeably since they can both apply to the same code, and because we wouldn’t want people on the outside to understand what we are talking about, now would we?

In one sense, any standard set of classes that are packaged together and designed to basically work together, providing a reasonably full amount of general purpose functionality, will often be refered to as a framework. As such, a system like Microsoft’s MFC or IBM’s ‘Open Class’ (part of the Visual Age C++ product) are considered C++ frameworks. They are intended to be object oriented ‘virtual operating systems’ which (theoretically) provide all of the functionality, packaged as classes, to create an application without using any underlying C runtime or operating system calls directly. They do so by encapsulating these other APIs in object oriented frillies. The code provided with this book certainly fits this definition of a framework, though its functionality is somewhat less broad than these two commercial systems. To be fair though, in many ways, the CIDLib code is more highly integrated and less fragmented architecturally and stylistically, as well as more exploitative of the newest C++ mechanisms.

Another, more useful and exciting, meaning of the term framework is a small set of classes which are designed to work very closely together to encapsulate a relatively high level blob of generic logic, and which rely heavily on polymorphism to allow the user to easily harness this generic logic for a specific task. Very often such frameworks have a central class which encapsulates the generic logic. This class is not intended to be derived from and is used as is. However, it will often be written in terms of one or more pure virtual ancillary classes. By deriving concrete classes from these ancillary classes, and ‘plugging them into’ an instance of the central class, the user can very simply get the generic logic of the central class to perform its work upon some specific implementation.

A Framework Example

Lets look at a simple example. Lets say that we want to create a framework for routing incoming network messages to a destination. The logic for such a subsystem can be expressed very generically via a few abstractions:

A means to obtain incoming messages via some message mechanism, e.g. a pipe, socket, queue, etc...

A means manipulate messages. This includes the means to query information, such as the target address, from the incoming message.

A means to find the optimum outgoing route for the message to reach its destination.

A means to push the message back out via the appropriate outgoing message mechanism.

Each of these bulleted items respresents an abstraction, and of course an abstraction usually represents an abstract base class in C++. These abstract classes are generally pure virtual classes which represent a ‘potential interface’, potential because there is no implementation behind it. A message router class could be implemented which works purely in terms of these interfaces, in other words it would define a base class for a message source, a message, a means to look up an outgoing route, and a message target. It does not care how messages get in and out, what the contents of a message is, or whether a RDBMS or an in memory lookup table is used to find the best outgoing route.

Given these abstract classes we can now write a TRouter class, which is written purely in terms of these abstractions. It would have, as private data members, pointers to an object of each of these interfaces. Its constructor would take pointers to actual concrete derivatives of these classes and store them, performing its work via the base abstract interfaces. It deals purely in abstract logic that - if well designed - never has to change over tens or even hundreds of specific implementations of message routing. It just performs its logic and handles error conditions and perhaps provides other abstract interfaces for administration and error reporting. Of course such frameworks are often shipped with some default implementations of these abstractions, to make life easier for the developer. These are usually a simple derivative of the central class that just has constructors that set up the specific instances of the ancillary classes.

This example both over simplies and over complicates things. From the standpoint of the designer of this router, a great burden exists to balance the performance and flexibility of the router. Abstraction, no matter what some spin doctors of object orientation may have told you, has a price over hand hewn, application specific code. This new routing framework must be flexible enough to meet enough specific needs to amortize the complexity and performance costs. If its not flexible enough, then users might feel forced to reimplement their own home grown solutions. If its too flexible, none of its potential users might be able to stomach its slothenly performance.

From the user’s point of view on the other hand, if the designer and implementor did a good job, the above description makes it sound more complex than it is. Given a good description of the constraints upon and requirements of each of the abstractions, a user can pretty quickly whip up a very robust and powerful router with minimal coding and effort. The user also gains significant flexibility as well, since it merely requires a new implementation of the lookup scheme to change from that in memory table to the RDBMS. No change to the rest of the system is required, and therefore no bugs can be introduced into those unchanged parts.

Obviously many examples of the second type of framework will often be embedded within a larger system of the first type. That is the case with the CIDLib code presented within this book, which attempts where possible to create frameworks of the second sort, because of their power and flexibility. Many workaday classes are not appropriately structured as complex frameworks, so there are still many standalone single classes that represent some very specific concept or real world data type. Any large object oriented system will likely contain classes along a range of complexity and interoperability. Still, a good object oriented system will still allow most classes to take part in one or more magical operations, often accomplished via multiple inheritance. All of these concepts will be discussed ad nauseum later in this book, so read on.

Pros and Cons of Frameworks

The pros of using such frameworks is pretty obvious. They, theoretically, provide a consistent, typesafe, object oriented, and powerful way to build software systems. Are there any problems in this paradise? Of course there are, because there is never any free lunch.

Such systems are often not well suited to small applications, except under specific conditions, because they tend to be far larger than the application itself. A large, object oriented subsystem often takes a long time to load, making small applications painfully slow to start. Anyone who compares say a small application, written in tight C or assembler and statically linked to its supporting code, to a small application written to a large, DLL based framework will see the obvious difference. The former applications will often leap onto the screen so fast that the startup is not noticeable. The later type of applications will often grind and wheeze for a few seconds before even appearing. The reason for this lack of nimbleness is most often that a significant amount of initialization is done by a large framework, preparing - in this case - for future work that might never even get done. Any large system has a certain amount of ‘bootstrapping’ work that it has to do to insure that critical functionality is ready to go when its needed. If the program just uses a small amount of functionality and exits very quickly, all of that work will have been for naught. Techniques exist to ‘fault in’ such functionality only when its needed, and they will be discussed, but they often can just exacerbate things for applications that load and quickly do use a significant amount of functionality. And they raise issues in a multi-threaded environment and for memory leak testing.

However, this ‘spin up’ problem is not always a total disaster, due to the way that modern operating systems work. When OS/2 and Win 3.0 were being developed, it became obvious to their developers that it should be possible for multiple programs to share common code in memory. Their answer was the Dynamic Link Library, or DLL, which is a group of code segments that is compiled into a file that can be loaded and shared by any program that uses that code. If a DLL based framework is used by a signficant number of applications, or even by the operating system or GUI itself, then it will already be loaded. Any other applications that load will use this existing code, though some initialization will still be done for each new process that connects to the loaded framework, because of the fact that only code is shared but not usually data.

Another downside to large scale frameworks is their medium to massive complexity, and sheer volume of functionality. Their very flexibility means that they often require the user to learn books of information to use them safely and efficiently. Well written frameworks will help the user as much as possible by providing default functionality and being very much more typesafe than the typical C language runtime or host OS interface. But still, a larger gun often just allows the careless (or even the careful) developer to shoot a much bigger hole in his or her own foot. Here again, the tradeoff is between the flexibility to suite many user’s needs, and simplicity and ease of use for each individual user. Each user only uses some percentage of a framework’s capabilities, so having to learn lots of unrelated facts in order to get to the desired goodies is a pain. Every framework will fall somewhere on this scale. I guess the trick is knowing where you want it to fall and making sure that it falls where you intended it to.

So what are the benefits? In my opinion, the benefits only begin to show when the framework is used to create an application of a medium to large scale, and/or a suite of interacting applications. The developers of such projects will almost always have a need for more infrastructure than that provided by the language runtime and host OS services. In the old PC days of course, this mid-level functionality was almost always written expressly for the application at hand. If the company had a suite of applications, it would try to bring as much common functionality as possible into a shared set of code libraries; but, for the most part, each application rolled its own. Since the development of a common code base only becomes financially feasible for most application development companies after they have a number of successful applications written in the wild west cowboy manner, this consolidation was often extended and painful.

These days, a number of third party C++ frameworks are available out of the box. Such frameworks can massively reduce the effort of applications development, and massively improve the consistency and interoperability of suites of applications based upon them. Once the size of the application reaches that critical ‘break point’, then the overhead of learning a large framework is dwarfed by the benefits of having that existing code base to start from. Such frameworks often take much of the burden of printing, networking, file management, screen management, and so forth off the shoulders of the application developer, allowing him or her to concentrate on the details specific to the application at hand.

Of course, nothing is never really that perfect. Where there is money there is politics, and there is always big money involved when there is big software development in the wind. Joe’s Software, by basing its office suite upon the FooBar Frameworks, is putting the FooBar company in a powerful position because it controls the foundation upon which Joe’s software is based. If the FooBar company goes under, then Joe’s company is up the creek without any updates. And the sword cuts both ways. If Joe’s company starts selling its office suite by the truck load, then it will become a large vendor of the FooBar frameworks. When Joe says jump, the owners of FooBar will have to calculate how high. Joe’s company will often begin to influence the FooBar Frameworks, usually for the worse in my opinion. If it comes down between pissing off its biggest customer, and standing up for the more general useability and stability of its frameworks, we can all guess who will lose that battle.

These days, sadly, such politics means that almost every application on the planet is based on MFC, the Borg of frameworks. Microsoft’s marketing power and dominance in the marketplace make MFC an obvious choice for the weak of heart. Since Microsoft is already basically running your life, giving it control of your future by basing your application on MFC is hardly going to make things significantly worse, right? I will spare you my massive rant on the technical merits (or lack thereof) of MFC, since its not my business and I don’t have as many lawyers as they do. And, to be fair, technical superiority is probably not the factor driving its success, unfortunate but true. Between us software designers though, technical correctness does count for something and you should learn to do it right before you are assimilated go off and work for Microsoft.

Prerequisite Hardware and Software

If you wish to actually work along with this book, building the code, running the demos, and debugging the system, you will need a certain amount of hardware and software. Development of larger scale C++ software is not ‘light work’ by any means. Modern C++ development environments are pretty large, and can be very piggy on less than stellar hardware.

I will tell you what my development system is like, and what I would think the minimally tolerable system would require. You tolerance level will determine where you fall in this range. Using a large scale framework is different from developing one yourself. When you use one, you only recompile and link your application or your own higher level DLLs, at the tip end of the food chain. When you develop the frameworks yourself, modification of fundamental files often means relatively long and boring rebuilds. And even a fast rebuild seems long and boring if you have to do it too many times. The faster your CPU and disk subsystem, the more tolerable this edit/build/test cycle becomes. In your case, the pain should be minimal since you are starting with a fully designed and built system; but, if you want to make changes to the system yourself, you have to rebuild it as necessary.

The code is designed for Microsoft’s NT operating system, version 4.0 or higher. So obviously you will require the NT operating system. The development environment is Microsoft’s Visual C++ 5.0 product, or higher. Visual C++ is not anyone’s answer to large scale, multi-person development, in my opinion, but its wide spread use made it an obvious choice for my work. I have reservations about Microsoft’s domination of our industry, but unfortunately cannot do anything about it. No other software is required, though any experienced developer will have his or her own bag of tools to speed the process. All development is done within the Visual C++ IDE, so you will have to get used to that environment. Having been a hard core command line jockey all my life, this was a bitter pill to swallow. But I wanted to make the product as easy to build and use as possible, and many people are familiar with this environment.

My own hardware development system, as of this writing, is a dual 200Mhz Pentium Pro system with 64MB of memory, a PCI based UltraSCSI disk subsystem with a 4Gig Barracuda drive, and a 4MB PCI Matrox Millenium video board. This is obviously an optimum system (though even its a little short on memory because I use NT Server), and you certainly don’t need this size system to do good work. The one attribute that I’d definitely recommend is the 64MB of memory, since most modern compilers are written to assume lots of memory - letting the swap file handle the overflow when its not there. Many of the demonstration programs provided are graphics oriented and can use lots of memory. Having them running along side the development environment can easily chew up lots of memory. Next in line would be the speed of the disk subsystem. No matter now much memory the compiler has available, compilation is still a disk intensive task.

A number of the demo and utility programs are related to the CIDLib ray tracing and fractal generation subsystems, as well as its other graphics related capabilities. These all assume that you have 24 bit graphics. If you don’t it won’t stop you from using these neat goodies, but you will not be seeing the actual output. NT will reduce the actual 24 bit images to the closest colors that your system will support. This can cause from mild to massive degradation of the image. 16 bit (hicolor) systems will do relatively well, but there is still a huge jump between 64K colors and 16 million. Of course much of CIDLib has nothing to do with graphics and a 256 color system will be quite acceptible. You should be aware though that NT is inherently RGB (24 bit) oriented anyway, so you might as well convice your significant other to let you upgrade. Once you’ve been there, you’ll never go back because of the ability to have multiple photorealistic images on screen without any palette manipulation and the associated wierd screen flickering and redrawing.

As to the minimal system, NT itself sets the bar to a large degree. NT is not a light system and its probably only tolerable on a Pentium machine or higher. The CIDLib software itself does have some small amounts of assembly code, which does use some Pentium specific instructions. So you would have to make some small changes to use those subsystems on a 486, primarily the fractal generation subsystem. As it is delivered, the Visual C++ projects are all set up to optimize for the Pentium Pro. Hey, I payed a raft of money for those two Pro CPUs, so I want to get the most out of them! If you have a regular Pentium, you will want to go through all the projects in the main workspace and reduce the optimization level. This will only take a few moments to do, then rebuild the system.

As to disk space, of course Visual C++ takes a significant amount of space. The CIDLib source code takes around 10MB and the output files can take up to 150MB or more, for the debug versions at least, because of the size of debug databases, Obj files, DLLs and so on. If you just want to use the CIDLib code, then you only need the headers, the optimized DLLs, and the Lib files. This configuration only takes 15MB or so. CIDLib does not come with any prebuilt versions. Since you need the development environment anyway, and the source code is distributed, you build your own so you can just choose not to build the debug versions.

Suggested Reading

If you found much of the preceeding discussion to sound like bad alien speak, or if you just want to explore more of the good reading materials out there, I offer you a list of suggested reading. These are the books that I have found helpful in my own career and personal development. Some of them are about object oriented software and C++ in particular, some are about graphics in general, and some are about specific graphics topics like ray tracing, fractals, and chaos.

C++ Books

"Taligent's Guide to Designing Programs", ISBN: 0-201-40888-0

"Effective C++, 50 Specific Ways to Improve Your Programs", ISBN: 0-201-56364-9

"The Design and Evolution of C++", ISBN: 0-201-54330-3

"The C++ Programming Language", ISBN: 0-201-53992-6

“The Annotated C++ Reference Manual”, ISBN: 0-201-51459-1

Graphics Books

"Practical Ray Tracing In C", ISBN: 0-471-57301-9

"Chaos and Fractals, New Frontiers of Science", ISBN: 0-387-97903-4

"Fractal Creations", ISBN: 1-878739-34-4

"Computer Graphics", ISBN: 0-201-12110-7

"Fundamentals of 3D Computer Graphics", ISBN: 0-201-15442-0

"3-D Computer Animation", ISBN: 0-201-62756-6

"An Introduction to Ray Tracing", ISBN: 0-12-286160-4

“Number By Colors”, ISBN: 0-387-94685-3

“Advanced Animation and Rendering Techniques”, ISBN: 0-201-54412-1

Internationalization/Localization Books

"The Unicode Standard, Version 2.0", ISBN: 0-201-48345-9

“Developing International Software”, ISBN: 1-55616-840-8

Definitely read "The Design and Evolution of C++", in my opinion. Understanding the historical (hysterical?) reasons why the language is the way it is helped me immensely in my understanding of how to use it effectively. Its just a good read regardless, giving a birds eye view of the science and politics of language design.

I found Taligent's style guide book to be quite useful in its non-nonsense coverage of important aspects of framework design and practicalities of use C++ for such. I work at Taligent at the time of this writing, but my continued employment did not depend upon this endorsement! The author, David Goldsmith, unfortunately moved on just before I came to Taligent, so I never got to meet him.

"The C++ Programming Language" is a good book to read all the way through once you are pretty adept at C++. Until then use it as a reference book for particular problems. After that, pick it up randomly and flip somewhere and start reading at the next major section. Understand the particular concept being discussed at that point and think over its relevance to your code. The language (and large scale design therein) are complex enough that you can easily fall into a stale set or pattern of ideas. Such random mental applications of a particular concept or implementation to your code can kick off many ideas. I find that about 80% of the time I still can manage to land on something I've not totally thought through in my own system.

"Effective C++" is a great book for the more experienced C++ developer. It provides advice in little, standalone chunks. Its actually a good way to do spot checks on your code. Pick a module then randomly flip to a page in this book. Read the adivce and see how that module deals with the particular subject being discussed. Do this regularly and your code will probably benefit. This book though is definitely not any kind of coherent tutorial on C++. There are some newer versions of this book out there now also I believe.

The Annotated Reference Manual (the ARM as its called) is of course the bible but its out of date in many ways to the standard as of this writing. Get the latest version available to insure that you get as much information about the latest language standard as feasible. The newest revision of the standard is provided online, but it is a dry and unannotated version. Also the latest version of the language standard and what you get in your compiler, MS Visual C++ for us, ain’t the same thing. All compilers are generally behind the standard in one way or another.

I would definitely want to give "Practical Ray Tracing" and "Fractal Creations" the credit they deserve. These fine books gave me my start down the road of exporing fractals and ray tracing and I am in great debt to them. They are excellently written and very informative. I wasted much time with both these products, learning about fractals and ray tracing and being amazed with the whole subject.

"Chaos and Fractals" is a voluminous book that covers the art of fractals from a very, very fundamental level to its heights. Its not for the light of heart, but well worth getting. If you have some math skills (more than me unfortunately) you can really get a lot more out of this book than I did, and I got a lot.

“Number By Colors” is a well written book about color theory, and I recommend it very much. Color and optics tie in heavily with ray tracing and with the physics of light, so to me its doubly interesting. You’d never guess how much thought has gone into these areas, all the way from the Renaissance onward.

The internationalization and localization books are optional, but these days it does not pay to take on any significant project without considering these issues. CIDLib is totally Unicode oriented and provides localization services, which are discussed in a number of places later in this book, so understanding the issues are important. My boss’s boss at Taligent, Mark Davis, had a significant hand in the Unicode standard’s development and the above mentioned book and is on the UNICode standards committee.

The CIDLib Story

This section gives you some history on the long CIDLib saga, so you that will have a feel for where its come from and where its going to. And it tells you a bit about me, where you can reach me, and where you can find the latest and greatest versions of the code, which might be signficantly more recent than the version you receive with this book. This chapter is certainly not required for optimal use of the CIDLib code, or to get the maximum benefit from this book, so skip it if you are in a hurry. Its just here to provide some humanity to an otherwise very technical book. And for me to primp a bit and to provide a little gossip material. I would suggest though that you, at some point, get the latest code and drop me a line to let me know what you think and give me any suggestions you might have.

Some History

CIDLib is the product of a long - seems long to me anyway - history of interest in the development of general purpose code on my part. In my early DOS days, I quickly gravitated towards the development of a small library of code for serial port control, threading, text windowing, etc... It just seems to be where I naturally want to live, development wise. Of course, in those days it was a lot of assembler code, with C code on top. DOS was an interesting place to grow up, because it allowed almost total control of the machine by a knowledgeable developer. Its lack of pretty much all standard functionality forced me to learn a lot about the inner workings of the Intel architecture. I don’t use that knowledge as much these days, but I still do a little assembler language where necessary. For instance, the ASM versions of the fractal generation routines in CIDFractal.Dll are up to 10 times faster than their C code counterparts.

Eventually I began to move my stuff towards the early 16 bit OS/2 arena, getting rid of most of the assembler code and moving to pure C. OS/2 was the obvious choice in those days, since both Microsoft and IBM still backed it and promised that it was the future. We all know the story I guess, that IBM forced the issue of its initial development on the 16 bit 286 processor. IBM had lots of such hardware out there and considered it a necessary compromise. Of course no one knew that the 286 would be obsolete so fast, but Chairman Bill obvious forsaw it. He saw this move as a disaster and the fractures in the relationship began to become obvious. Microsoft went forward with its Windows 386, and took its core OS/2 code to start the Windows NT project. In retrospect, Mr. Bill was correct and NT has come out on top. To be fair though, NT would have come out on top even if it was a disaster because Microsoft seems to be able to market sand in the desert while IBM would have trouble marketing water.

Anyway, about 7 years ago - as of this writing - I started studying C++ in earnest, and began some early work moving to 16 bit C++ on OS/2. That was a big learning curve, as it is for anyone making the move from hard core procedural development to object orientation. Much of that early work went the way of the buffalo, and for good reason. When 32 bit OS/2 C++ environments came out, I moved to that world and began earnest development of what became the current incarnation of the CIDLib Class Libraries. First I used Borland’s system, then IBM’s Visual Age C++. By this time, my object oriented brain washing was becoming pretty complete, and the vestiges of this early work still exist in CIDLib, though much polished and refined.

I had public 2 beta releases on OS/2, and the next release would have been the release candidate. However, when the oft announced death of OS/2 finally became a practical reality due to its constant pronouncement in the press, I decided to move the system to NT. Given the heavy abstraction from the host OS of CIDLib, this was more of a religious conversion than an architectural one. OS/2, despite a few internal inadequacies, has a far better organized and implemented API. Win32 seems horrendously inconsistent and full of evolutionary baggage to me. But, since my contact with the host operating system API is light anyway, its not a huge concern. The bulk of the CIDLib code was ported quite quickly and easily. However, the addition of new C++ language functionality now available to me, some fundamental improvements made along the way, and some Visual C++’isms like lack of covariant returns took a bit of time to incorporate.

As far as capabilities go, NT and OS/2 are about the same so my experience has translated pretty well. The obvious exceptions are SMP and security, which OS/2 do not support currently - actually it supports SMP but not in the newest versions. SMP is a very important issue, and CIDLib is very much designed to take advantage of multiple CPUs. The NT security system is not currently supported in CIDLib. Perhaps it will be in a future release, but the issues for portability are pretty significant so I will have to think hard about its implementation. I do clearly understand the usefulness of security and am studying the situation.

By the time you read this book, IBM’s Visual Age C++ development environment will have come up to parity with Visual C++ as far as ANSI C++ language standard support, but at the time of the port to NT, it did not support namespaces, bool keyword, the mutable keyword and so on. The ability to take advantage of these new language features makes a big difference in the cleanliness of my code. To be fair though, Visual C++ still does not support something as fundamental as covariant return types. This is a massive pain but there is nothing to be done about it until Visual C++ catches up with the rest of the world on that issue.

About the Author

My name is Dean Roddey. I’m a software engineer - suprise - and I work at the time of this writing for Taligent, Inc. a subsidiary of IBM Corporation. I live in Mountain View, CA in the heart of Silicon Valley and try to never wear anything more formal than shorts and a t-shirt, which is considered dressing up out here for the most part. My test for whether you are valley developer is if your footwear collection consists of a pair of sandals and a pair of ‘dress sandals’. Having come from the southeast, I have to say I really enjoy the nice boring weather.

I’ve been a software engineer since around 1984. Well, I guess I should say that I’ve been developing software since then, though I was not doing it professionally until a couple years later. I always feel funny calling myself an ‘engineer’ anyway. Personally, I consider myself an artist, though I know many in this field frown up that attitude. Maybe I think of myself this way because my college experience was as a classical guitar performance major. I will freely admit that a whole industry of ‘software artists’ would make for a less than optimal situation; but, we definitely need a core of visionary people who are looking further down the road than the next major product release, and for whom its more than a matter of bits and bytes. This is not in any way to diminish the role of the person who comes in, writes his or her code, then goes home to his or her family. We need all kinds as long as they are conscientious and intelligent coders. But we need a core of people who are concerned with the big picture, who have no social life, and who want to move the industry forward a major step. These people need to have a deeper commitment to and understanding of the larger issues. Hopefully the financial renumeration will be sufficient to balance this life of celibacy and devotion.

The CIDLib project, and this book, were done on my own time as self education projects. My ambitions over the long haul are to be a lead architect on some large scale frameworks development project. Since its very hard to get experience in this area, at least from the big picture standpoint, I felt it necessary to do it myself so that I could rightly claim that I have put in the hard time. And, to be honest, I actually enjoy this kind of work. Most of us who develop software for money never get to have our own say, to do what we feel is technically right without political complications, and have final say in all design and implementation questions. Instead we are farmed out small pieces of a much larger system, and work within often quite politically and technically constrained requirements. So, to me, the CIDLib project is a very refreshing experience. Its a chance to do it my way, and to take the time to redo it until I think its right. That’s how one learns the optimimum path, but its difficult to do this in a commercial environment where just getting it out the door on time is often challenging enough.

I don’t mean to imply that any one person can understand every single detail of a large scale, general purpose framework. There are many details that only subsystem specialists will have the opportunity to explore in a single lifetime. The framework designer’s job should be to set the overall architecture and style of the system, and particularly in the area of framework wide infrastructure. If these issues are under control, well documented, and the developers fully aware of them, then each specialist can work his or her magic while still creating a very consistent and beautifully integrated software monument. Though the emphasis in this book is on gaining a wide understanding of an entire software framework, no man or woman is an island and the creation of any significantly sized software system will be a cooperative effort among many people. Rallying those many people to a common architectural vision, backed by a broad and deep understanding of the technical issues, is the secret to implementing your vision.

Anyway, enough about me, lets talk about how you can reach me. You can e-mail me via the internet. And you can stop by my home page to pick up the latest versions of the software, or any other goodies I might have available by that time. My e-mail and home page URL are at this time:

droddey@ng.netgate.net

http://ng.netgate.net/~droddey/

Drop me a line any time with comments or suggestions. I’d love to hear from you so that I can know that I’m not doing all of this work for nothing. Check out the home page regularly in order to get new versions or patches or read other people’s comments, which I will incorporate as long as they are not massive flames or illegally obscene. I will try to respond to any suggestions or inquiries in as timely a manner as possible, though I cannot promise that I will meet any particular turn around time. I don’t have much of a life, but occasionally I have something else to do besides sit at the computer.

The Next Step

Whither now? I would suggest that you read the “CIDLib Orthodoxy” chapter, which covers the major architectural and religious issues that are represented in the CIDLib system. This chapter will provide you with the bird’s eye architectural view needed to best understand and make use of the CIDLib system, and provides probably the most concentrated C++ architecture wisdom - or lack thereof if you disagree with my decisions.

After that, the next steps depend upon whether you are the deliberate type or the itchy, wanna-get-going type. If you are the former, then just read on. Subsequent chapters will start to provide an overview of the major system components and then details on each of them. At some point you will feel like its time to install the code and start playing with it. Definitely by the time you get to the sections on the demo programs you should install the software so that you can follow the discussion and play with the programs. At that point you should jump to the appendices to read the installation and configuration chapter. It will get you set up and working, assuming you have NT and Visual C++ already installed and in working condition. You might want to glance throught the “Style Guidelines” Appendix to better interpret the code you are seeing, but that’s probably not necessary if you are a jaded C++ jockey.

If you just wanna dive in, then go ahead and read the installation and configuration appendix and get the code on your machine and built. You can also use the “Quick Start” link from my home web page for quick start instructions. You can then go to the appendix chapter on the demo programs and start playing with the demos. Once you get a feel for what is going on, and want to get into the details, come back to the next chapter and start reading from there. As you get into the chapters on each CIDLib subsystem, go back to a demo program that you find interesting and which uses that subsystem, and start debugging through it go see the discussed code in
