
Model-based Software Tools for Configuring and Customizing
Middleware for Distributed Real-time and Embedded Systems∗

Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt
{arvindk,turkaye,gokhale,schmidt}@dre.vanderbilt.edu

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN

Abstract

Middleware is increasingly been used to develop and deploy
large-scale distributed real-time and embedded (DRE) systems
in domains ranging from avionics to industrial process control
and financial services. Applications in these DRE systems re-
quire various levels and types of quality of service (QoS) from
the middleware, and often run on heterogeneous hardware,
OS, and compiler platforms. To support a wide range of DRE
systems with diverse QoS needs, middleware platforms often
provide scores of options and configuration parameters that
enable it to be customized and tuned for different use cases.
Supporting this level of flexibility, however, can significantly
complicate middleware and application configuration. This
problem is exacerbated for developers of DRE systems by the
lack of documented patterns of middleware configuration and
customization.

This paper provides three contributions based on model-
driven generative programming techniques that can be used by
middleware developers to codify reusable patterns of middle-
ware configuration and customization. First, we describe the
Options Configuration Modeling Language (OCML), which is
a Model-Driven Middleware (MDM) tool that simplifies the
specification and validation of complex DRE middleware and
application configurations. Second, we describe the Bench-
mark Generation Modeling Language (BGML), which is an
MDM tool that synthesizes benchmarking testsuites to em-
pirically analyze the QoS performance of OCML-configured
DRE systems and feedback results into OCML models to help
optimize domain-specific configurations and customizations.
Third, we qualitatively and quantitatively evaluate our OCML
and BGML MDM tools in the context of different DRE system
scenarios that help the middleware developers to codify the
configuration and customization patterns of reuse. Our results
indicate that a model-driven approach results in comparable
accuracy and correctness to a handcrafted approach, while
simultaneously reducing the time spent on these activities by

∗This work was sponsored in part by AFRL Contract#F33615-03-C-4112
for DARPA PCES Program, NSF ITR CCR-0312859 and a grant from
Siemens.

X%.
Keywords: QoS-enabled Middleware, Model-based Soft-

ware Development, Middleware Configuration, Empirical Val-
idation.

1 Introduction

1.1 Emerging Trends and Challenges

Over the past several years, many R&D efforts [1, 2, 3, 4, 5]
have focused on developingquality of service (QoS)-enabled
middlewareas a means to enhance the development, time-
to-market, and reuse of distributed real-time and embedded
(DRE) systems, such as hot rolling mills, tele-immersion en-
vironments, fly-by-wire aircraft, and total ship computing en-
vironments. QoS-enabled middleware is systems software that
resides between the applications and the underlying operating
systems, network protocol stacks, and hardware and isolates
DRE applications from lower-level infrastructure complexi-
ties, such as heterogeneous platforms and error-prone network
programming mechanisms.

An inherent quality of QoS-enabled middleware is its high
degree offlexibility, which stems from the need to support a
wide range of DRE systems that need to (1) run on many hard-
ware and OS platforms, (2) interoperate with many versions
of related software frameworks and tools, and (3) provide
support forend-to-end QoS properties, such as low latency
and bounded jitter; fault propagation/recovery across distribu-
tion boundaries; authentication and authorization; and weight,
power consumption, and memory footprint constraints. These
requirements of DRE systems must be met via compile- and
run-time selection and fine tuning of the middleware configu-
ration options, which are used for fine tuning QoS properties
of the middleware, and customization options, which are used
for trading off functionality and footprint of the middleware to
suit the DRE system requirements. For example, web servers
(e.g., Apache [6]), object request brokers (e.g., TAO [7]), and
databases (e.g., Oracle [8]) have scores of configuration op-
tions and customization parameters that can be used to tailor

1



middleware so that the desired QoS properties are delivered to
the applications.

The first generation of QoS-enabled middleware (such as
Real-time CORBA [9]) have been applied successfully to
small- and medium-scale DRE systems, such as avionics mis-
sion computing [10, 11, 12], dynamic mission replanning [13],
distributed interactive simulation [14], and multimedia stream
dissemination [5]. These successes – coupled with the rapidly
expanding pressures to control physical processes with soft-
ware [15] – are now motivating the use of QoS-enabled mid-
dleware to develop much larger mission-critical DRE systems,
such as commercial air traffic control, electrical power grids,
and network-centric defense systems.

Until recently, however, developing large-scale mission-
critical DRE systems with QoS-enabled middleware was be-
yond the realm of serious contemplation. One major reason
for this stemmed from the accidental complexities incurred
in configuring and customizing QoS-enabled middleware for
large-scale DRE systems. This problem is further exacerbated
by the emergence of more sophisticated and flexible QoS-
enabled component middleware [1]. For this middleware to
be used effectively for large-scale DRE systems, R&D activ-
ities must alleviate the accidental complexities incurred when
configuring and customizing QoS-enabled middleware, while
also validating these configurations and customizations.

A promising way to address the problems outlined above
is for middleware developers to document reusable patterns
of middleware configuration and customization [16] that the
DRE system developers can use in their operational context
and environment. We use the termmiddleware configuration
and customization patternto mean a set of semantically com-
patible middleware configuration and customization options
that can be used to tailor the functionality and fine-tune QoS
properties of middleware. These sets are considered as pat-
terns since they can often be used to support similar QoS needs
of middleware-based DRE applications in a range of domains.

1.2 Documenting Middleware Configuration
and Customization Patterns via Model-
driven Generative Technologies

This paper describes our R&D on model-driven generative
programming techniques that middleware developers can use
to codify middleware configuration and customization (C&C)
patterns. Our R&D approach comprises the application of the
following two steps:

• Model-Driven Middleware (MDM) technologies [17],
which minimize the effort associated with develop-
ing and validating middleware by capturing key prop-
erties of middleware within higher-level models and
synthesizing/generating middleware configurations and

deployments from these models [18]. We have devel-
oped an MDM tool suite called CoSMIC [19], which
consists of an integrated collection of modeling, analy-
sis, and synthesis tools that address key lifecycle chal-
lenges of DRE middleware and applications. This paper
focuses on MDM tools we developed for (1) configuring
and customizing QoS-enabled middleware (described in
Section 2.1) and (2) generating testsuites for empirically
benchmarking the configured middleware to evaluate its
QoS (described in Section 2.2).

• Distributed Continuous Quality Assurance (DCQA)
technologies, which help improve software quality and
performance iteratively, opportunistically, and efficiently
around-the-clock in multiple, geographically distributed
locations. We have developed a DCQA framework called
Skoll [20], which is an environment for executing QA
tasks continuously across a grid of computers distributed
throughout the world. This paper describes our approach
to validating C&C patterns using Skoll (Section 2.3) and
experimentally evaluating a C&C pattern (Section 3).

Our prior published work on Skoll and CoSMIC presented
(1) the syntax and semantics of the Options Configuration
Modeling Language (OCML) [21], which is an MDM tool that
simplifies the specification and validation of complex DRE
middleware and application configurations, and (2) the Bench-
mark Generation Modeling Language (BGML) [22], which is
an MDM tool that synthesizes benchmarking testsuites to em-
pirically analyze the QoS performance of OCML-configured
DRE systems and feedback results into OCML models to help
optimize domain-specific configurations. Our prior work also
showed how these MDM tools were integrated with the Skoll
framework to quantify the variability in QoS measures on a
range of hardware, OS, and compiler platforms [22].

This paper enhances our earlier work by focusing on how
middleware developers can use (1) the generative capabilities
of the OCML and BGML MDM tools to identify and codify
reusable patterns of middleware configuration and customiza-
tion and (2) validate these patterns by empirically evaluat-
ing the generative capabilities using the Skoll framework in
an experimentation testbed for the ACE [23], TAO [24], and
CIAO [25] QoS-enabled middleware. Our results indicate that
a generative approach to middleware configuration and bench-
marking results in comparable accuracy and correctness to a
handcrafted approach, while simultaneously reducing the time
spend on these activities by X%.

1.3 Paper Organization

This remainder of this paper is organized as follows: Section 2
describes key challenges for QoS-enabled middleware and il-
lustrates how our OCML and BGML MDM tools can help

2



resolve these challenges; Section 3 qualitatively and quanti-
tatively evaluates our MDM tools; Section 4 compares our re-
search with related work; and Section 5 presents concluding
remarks.

2 Addressing Key QoS-enabled Mid-
dleware Configuration and Cus-
tomization Challenges

This section describes key middleware configuration and cus-
tomization challenges faced by developers of large-scale DRE
systems. These challenges have been the key motivation to
have middleware developers document reusable middleware
C&C patterns. To alleviate the middleware C&C challenges
and provide middleware developers with the mechanisms to
discover, validate and document middleware C&C patterns,
this section describes how we are using our model-driven
generative tools in combination with a distributed continuous
quality assurance (DCQA) framework using the two step pro-
cess described in Section 1.2.

The model driven generative tools calledOptions Config-
uration Modeling Language (OCML)and Benchmark Gen-
eration Modeling Language (BGML)we used to address the
middleware C&C challenges are part of an open-source1

Model-Driven Middleware (MDM) [17] toolchain called CoS-
MIC [26]. MDM is an emerging paradigm that combines
the strengths of model driven generative techniques and QoS-
enabled middleware to support large-scale DRE systems.

The modeling languages and generative technologies
embodied by our OCML and BGML MDM tools have
been developed using the Generic Modeling Environment
(GME) [27], which is meta programmable environment for
creating domain-specific modeling languages and generative
tools. GME is programmed viametamodelsand model in-
terpreters. The metamodels define the syntax, semantics and
constraints of the modeling languages (also called paradigms).
These include the modeling elements supported by the lan-
guage, their properties, and their relationships. Model in-
terpreters are software artifacts that can be associated with a
modeling paradigm inside the GME environment. Interpreters
can be used to traverse the paradigm’s modeling elements, per-
forming analysis and generating code.

This section outlines how OCML (Section 2.1) and BGML
(Section 2.2) can be integrated with the Skoll framework (Sec-
tion 2.3) to resolve key middleware configuration and vali-
dation challenges. Section 3 then presents a case-study that
demonstrates the reusability of these tools in the context of
several representative large-scale DRE systems, which helps
in codifying and validating a C&C pattern.

1These tools are available atwww.dre.vanderbilt.edu/cosmic/ .

2.1 Challenge 1: Configuring and Customizing
QoS-enabled Middleware for DRE Systems

Context. QoS-enabled middleware often provides a range of
configuration options that can be used to customize and tune
the QoS properties of the middleware. For example, ACE and
TAO [23, 24] are widely-used QoS-enabled middleware that
provide∼500 configuration options to tune middleware be-
havior2

Problems. A vexing challenge when using QoS-enabled
middleware arises from the explosion of theconfiguration
space. For example, DRE system developers can now config-
ure and fine-tune the performance of middleware at multiple
levels, including the Object Request Broker (ORB), reusable
services, and lower-level messaging and transport mecha-
nisms. Examples of middleware configuration options include
selecting internal request buffering strategies, request demulti-
plexing and dispatching strategies, data marshaling strategies,
concurrency strategies, end-to-end network connection man-
agement strategies, and end-to-end priority propagation strate-
gies, among many others.

This large number of configuration options greatly compli-
cates the activities of DRE system developers, who must care-
fully choose the configuration options for their applications.
This problem is exacerbated by the fact that not all combi-
nations of options form a semantically compatible set. DRE
system developers today must therefore have significant ex-
pertise and understanding of the middleware to determine the
appropriate set of semantically-compatible configurations to
use. Today’sad hoctechniques that choose these configuration
parameters manually are tedious and error-prone, and have no
systematic basis for analytically validating the correctness of
the resulting system configurations.

Solution → Resolving middleware configuration chal-
lenges via the Options Configuration Modeling Language.
Addressing the challenges described above requires princi-
pled, analytical and empirical methods to configure, cus-
tomize, and validate QoS-enabled middleware for DRE sys-
tems. These methods must enforce the physical constraints of
DRE systems, as well as satisfy stringent end-to-end system
QoS requirements. Model-based techniques are a promising
way to resolve these challenges since they raise the level of
abstraction used to develop and validated DRE systems and
are amenable to automated model checking [28].

Our solution to these challenges is based on the generative
properties of theOptions Configuration Modeling Language
(OCML) [21]. OCML is a GME-based modeling paradigm for
configuring QoS-enabled middleware and alleviating various
accidental complexities. OCML is designed for use by both

2A list of the options for TAO is available fromwww.cs.wustl.edu/
∼schmidt/ACE wrappers/TAO/docs/Options.html .

3



(1) middleware developers, who use OCML to define the con-
straints and dependencies of the middleware options, and (2)
application developers, who use OCML and its constraints to
specify semantically compatible middleware configuration op-
tions. OCML provides the following key benefits to its users:

• definesstandard configurationsthat application develop-
ers can use to choose the configuration sets that suit their
components.

• enforcesdependency rulesthat prevent application devel-
opers from choosing invalid combinations of configura-
tion sets that could result in incorrect/undefined behavior.

• generatesoptions documentationso it is automatically in
sync with the features provided by the middleware.

• generatessyntactically correct and semantically consis-
tent configuration filesthat can be used to customize the
middleware.

Below we outline the OCML tool workflow, describe its
novel features, and illustrate how it can be applied to resolve
accidental complexities that arise when validating configura-
tion options in middleware, such as ACE+TAO.
• OCML use cases. Figure 1 shows how OCML is used
both by DRE system developers and middleware developers.
Each step in this figure is explained below:

Figure 1:OCML Workflow

• Step 1: Model the options using OCML.A middleware
developer uses OCML to model the options, categorize
them in a hierarchical order, and define the rules govern-
ing their dependencies. The constraints on option values
and rules on valid combinations of options are defined
in this step by middleware developers as visual logic ex-
pressions. OCML also allows options to be categorized
hierarchically intooption categories. Each option cate-
gory and its associated options contain a description at-
tribute that can include hypertext information, which will
be used in the generation of HTML documentation. At

this stage, thus, OCML is used as a modeling language to
create a model that is customized for a particular middle-
ware platform.

• Step 2: Generate the documentation and the Config-
uration File Generator. When the middleware OCML
model is interpreted by the OCML interpreter it produces
HTML documentation and the configuration file gener-
ator (CFG) application source code. During the model
interpretation process the constraints that were modeled
in Step 1 are converted into C++ code,i.e., each logical
expression is encoded as a C++ function that is compiled
into native executable code and linked with the generated
CFG application. The middleware configuration layer
(steps 1 and 2 in Figure 1) is hidden from DRE system
developers, who only use the generated files.

• Step 3: Use the CFG to specify desired options.De-
velopers of DRE application use the generated CFG ap-
plication to initialize the configuration for a specific ap-
plication (the generated HTML documentation can be
used as a reference). The resulting designs are then
checked against the constraints defined by rules encoded
in OCML models by middleware developers (in Step 1),
which minimizes the risk of choosing the wrong set of
options.

• Step 4: Configure the middleware. The selected op-
tions are exported into files that contain configuration and
customization metadata, which is used by the middleware
to customize the system during the initialization process.

• OCML generative tools. As shown in Figure 1, OCML
generates the following types of files:

• Configuration files that are parsed by the middleware
to apply the requested strategy for various mechanisms
(e.g., concurrency strategies and component communica-
tion properties) and manage internal resources (e.g., lock-
ing mechanisms and internal table and cache sizes).

• Documentation filesthat explain the proper content of
the configuration files and which are used as a reference
by application developers. The generated HTML docu-
mentation includes information about every option and
cross-references for option dependencies. The HTML
documentation contains the collection of these descrip-
tions in a human readable format that can be rendered in
an HTML browser. The documentation also displays the
cross-references for the dependent objects, together with
the textual representation of the rules.

•Using CFG for middleware configuration and customiza-
tion. We now describe how the OCML generated artifacts
can be used to model sets of middleware-specific valid config-
uration and customization options. We envision the middle-
ware developers to use these features to codify these sets into
C&C patterns.

4



As explained earlier, the OCML model interpreter emits
source code for theconfiguration file generator(CFG). CFG is
a GUI-based application that application developers (or mid-
dleware developers who are documenting C&C patterns for
their middleware) will use to select the desired set of options
for their applications, subject to the restriction that the selected
options conform to the constraints defined in the OCML model
rules. These constraints ensure that application developers
only select valid combinations of options.

When an application developer configures a group of op-
tions, the CFG application uses the constraint checking C++
functions to check whether the options’s values conform to the
constraints of the OCML model’s rules. Only valid configura-
tions are allowed thereby preventing mistakes resulting from
combining incompatible options.

• Applying OCML to ACE+TAO Middleware. As dis-
cussed in thecontext discussion at the beginning of this sec-
tion, ACE and TAO provide a large set of configuration op-
tions. During application initialization time, TAO parses an
XML configuration file (calledsvc.conf ) containing val-
ues for various middleware options and uses these values to
configure the ORB strategies to meet various QoS require-
ments, such as latency, memory footprint, and throughput.
Figure 1 illustrates the following the step-by-step process of
using OCML to configure TAO options:

• Step 1: Model the TAO options using OCML. The
TAO options are expressed in OCML using a hierar-
chical model that allows the options to be categorized
into different option categories. This design simplifies
the navigation of the documentation and makes the CFG
application more intuitive for application developers.
For example, the-ORBConnectionCacheMax option
used to configure the maximum value of the transport
cache resides in theResource Factorycategory and the
-ORBConcurrency option used to specify the ORB’s
concurrency strategy resides in theStrategy Factorycat-
egory. In this step the OCML rules are specified as con-
straints for combining various options using the visual
logical expressions shown in the Figure 2.

Figure 2:Expressing OCML Option Rules Visually

• Step 2: Generate the TAO options documentation and
the CFG. After the OCML model of the TAO options is
complete the OCML model interpreter is run to generate
the documentation for the TAO options in HTML and the
CFG application.

• Step 3: Use the CFG to specify desired options. The
CFG application is used by application developers to
assign values for different options required for the ap-
plication they are developing. For example, the CFG
allows application developers to enter an integer value
for the-ORBConnectionCacheMax option described
above. Likewise, it provides several choices for the
-ORBConcurrency option, includingreactive for a
purely reactor-driven concurrency strategy orthread-per-
connectionto create a new thread to service each con-
nection. Only the specified options are written to the
svc.conf file – other options are assigned default val-
ues.

• Step 4: Configure the middleware. Finally, the
svc.conf file for TAO is generated by the CFG appli-
cation and used subsequently to configure the DRE mid-
dleware and application during system initialization.

2.2 Challenge 2: Evaluating the QoS of Se-
lected Middleware Configurations

Context. QoS-enabled middleware runs on a multitude of
hardware, OS, and compiler platforms. Developers often use
trial-and-error methods of selecting the set of configuration
options that maximizes the QoS characteristics provided by
the middleware. For example, CIAO [25] is widely-used QoS-
enabled middleware that implements the CORBA Component
Model (CCM) and provides configuration options and policies
to provision components end-to-end when assembling a DRE
system.

Problems. QoS-enabled middleware is often used by appli-
cations with stringent QoS requirements, such as low latency
and bounded jitter. The QoS delivered to a DRE system is
influenced heavily by factors such as

• The configuration options set by users to tune the under-
lying hardware/software platform (e.g., the concurrency
architecture and number of threads used by an application
significantly affects its throughput, latency, and jitter) and

• Characteristics of the underlying platform itself, (e.g.the
jitter on a real-time OS should be much lower than on a
general-purpose OS).

Managing these variable platform aspects effectively requires
analysis that precisely pinpoint the consequences of mixing
and matching middleware configuration options at multiple
layers on various platforms.

5



Addressing the QoS-evaluation challenges of DRE systems
fielded in a particular environment requires a suite of bench-
marking tests that are customized to the system’s environment.
These benchmarks must test the different configurations of the
fielded system and analyze the empirical results for evaluat-
ing the QoS delivered to the DRE system. It is tedious and
error-prone, however, to develop such benchmarking testsuites
manually. In a typical analysis process, for example, creating a
benchmarking experiment to measure QoS properties requires
middleware developer to write (1) the header files and source
code, that implement the functionality, (2) the configuration
and script files that tune the underlying middleware and auto-
mate the task of running tests and output generation, and (3)
project build files (e.g., makefiles) required to generate the ex-
ecutable code. Our experience in earlier work [20] revealed
how tedious and error-prone this process is since it requires
many manual steps to generate benchmarks.

Solution → resolving QoS evaluation challenges using
the Benchmark Generation Modeling Language. To over-
come the limitations with manually developing custom bench-
marking suites, we have used model-driven generative tech-
niques to develop theBenchmark Generation Modeling Lan-
guage(BGML). BGML is a GME-based modeling paradigm
for (1) modeling how distributed system components inter-
act with each other and (2) representing metrics that can
be applied to specific configuration options and platforms.
BGML uses visual representation techniques to define enti-
ties and their interactions in an application domain. Middle-
ware/application developers3 can use BGML to graphically
model interaction scenarios of interest. Given a model, BGML
generates the scaffolding code needed to run experiments,
which typically includes scripts that start daemon processes,
launch components on various distributed system nodes, run
the benchmarks, and analyze/display the results.

Below we outline the BGML tool workflow, describe its
novel features, and illustrate how it can be applied to re-
solve accidental complexities involved in evaluating the per-
formance and QoS of applications that run atop CIAO.

• BGML use cases. Figure 3 shows how the BGML tool
is typically applied. As shown in this figure, the following
steps are required to model experiments to evaluate QoS met-
rics:

• Step 1: Model the interaction scenario.Users apply the
BGML modeling paradigm to compose experiments (a
detailed description on experimentation modeling using
BGML appears in Section 3.2).

• Step 2: Associate QoS metrics with model.In the mod-
eled experiment, users associate the QoS characteristic

3We henceforth use the termusersto refer to both middleware and appli-
cation developers.

Component Interaction


Experimenter


BGML


Model

Experimet


Associate

QoS


Characteristics


Synthesize

&


Execute

Feedback


Test bed


1
 2


3
4


IDL
 .cpp


Script

files


Figure 3:BGML Workflow

(e.g., roundtrip latency) that is the subject of the experi-
ment.

• Step 3: Synthesize benchmarking code.BGML inter-
preters then use the modeled experiment to generate the
code required to set-up, run, and tear-down the experi-
ment. The files generated include component implemen-
tation files (.h, .cpp), IDL files (.idl), component IDL
files (.cidl), and benchmarking code (.cpp) files. The
generated file is executed on a testbed (such as Emu-
labwww.emulab.net ) and the QoS characteristics are
measured.

• Step 4: Refine configuration models.The results are
then fed-back into the models to provide information on
the consequences of mixing and matching configuration
options at design time.

• BGML generative tools. The BGML model interpreter
parses models and synthesizes the code required to benchmark
modeled configurations via the following code generation en-
gines:

• Benchmark code engine, which generates source code
to run an experiment. The generated code includes header
and implementation files to execute and profile the appli-
cations and to summarize the results. This engine relies
on themetrics aspect, where users specify the metrics to
collect during the experiment.

• Interface definition language (IDL) engine, which gen-
erates the IDL files forming the contract between client
and server. These files are parsed by an IDL compiler
that generates the “glue-code” needed by the benchmark-
ing infrastructure. This engine relies on theconfiguration
aspect, where users specify the data exchanged between
the communication entities.

• Script engine, which generates the script files used to run
the experiment in an automated manner. In particular, the
scripts start and stop the server/client, pass parameters,

6



and display the experimentation results. This engine is
associated with theinterconnection aspect, where com-
ponent interactions are specified.

• Applying BGML to CIAO. BGML is designed to re-
duce the effort of conducting performance evaluation and tun-
ing for DRE applications. Below, we describe how BGML
helps alleviate key sources of complexity in a representative
DRE application based on the CIAO QoS-enabled component
middleware. In particular, BGML model interpreters generate
the following scaffolding code that the developers traditionally
had to write manually:

1. Data exchange informationthat forms the contract be-
tween clients and servers. The generated file adheres to the
syntax of CORBA IDL and is parsed by the CIAO IDL com-
piler to generate the stubs and skeletons to (de)marshal data
types modeled in the experiment. This information is gener-
ated from theinterface component in the BGML models.
Auto-generation of CORBA IDL eliminates need for users to
understand the syntax of CORBA IDL (which is rather low-
level), thereby improving productivity. Section 3.2.2 presents
code generation metrics for the BGML tool.

2. Component description informationthat describe com-
ponents, such as the facets/receptacles that a component ex-
ports. The format used to depict this information is CORBA
3.x IDL, which is a component-based extension of CORBA
2.x IDL. In CIAO, the generated component implementation
files (.cidl) are parsed by CIAO’s CCM component implemen-
tation definition language (CIDL) compiler to generate glue-
code that simplifies component implementations. By gener-
ating the .cidl files for CIAO, BGML, obviates the need for
users to understand the convoluted syntax of CORBA 3.x IDL
since BGML generates syntactically and semantically correct
files from higher-level models.

3. Component implementation information that map the
CCM entities to their corresponding programming features.
This step implicitly maps the component entities (e.g., event-
sources/-sinks) to their corresponding programming language
(e.g., C++, Java, or C) constructs. This mapping entails gen-
eration of the corresponding header and implementation files
calledexecutors. The implementation (.cpp) files generated is
a template that provides a no-op implementation for all opera-
tions specified in the component description information. This
information is generated from components modeled in BGML.
By generating component implementation information, users
are shielded from the complex mapping of CORBA IDL to
programming language(s), which is delegated to the BGML
model interpreters.

4. Benchmarking information that contains the code to
run the experiment, measure the QoS metric, and display re-
sults. This step embellishes the component implementations
(in CIAO these files correspond to *exec.cpp) with the bench-

marking code that uses the specified number of iterations to
warm-up the system, high-resolution timers that timestamp
pre- and post-invocation of the operations being tested, and
generate the required metric. This step automates the task
of writing repetitive source code to perform the benchmark.
Moreover, the displayed statistics can be generated in a for-
mat parsable by tools in the CoSMIC toolsuite and fed-back to
user-developed models [22].

Figure 4 shows how BGML’s MDM approach enhances
the component-based approach by generating all the scaf-
folding code required to synthesize benchmarks from higher
level models. In this scenario, all the required files are auto-

Figure 4:Code Generation Comparison in the Handcrafted
vs. MDM Approaches

generated, thereby relieving the user from error-prone low-
level code details, including programming languages, IDL
syntax, XML syntax, and details of the underlying middle-
ware, which are often proprietary in QoS-enabled middleware.

2.3 Challenge 3: Validating Middleware Con-
figuration and Customization Pattern

Context. QoS-enabled middleware run on varied hardware,
OS and compiler platforms. To support the needs of DRE sys-
tems, portions of the middleware may need to be customized
for each platform on which it runs. For example, middle-
ware features using asynchronous I/O are natively supported
in Win32 but may not be available (or may be poorly imple-
mented) on other platforms. In other cases, features such as
thread pools might be supported on a wide range of platforms.
Certain C&C patterns may be platform-specific, though still
applicable to a variety of DRE domains, whereas others may

7



be applicable across several platforms. Middleware developers
will therefore need to validate the C&C patterns across differ-
ent platforms.

Problems. The OCML tool described in Section 2.1 reduces
the accidental complexity in configuring QoS-enabled mid-
dleware. However, middleware and application developers
alike must still rediscover the appropriate set of configura-
tion options for each platform using trial-and-error. A com-
mon approach is to test configuration options across a range
of relevant platforms. The BGML tool described in Sec-
tion 2.2 resolves accidental complexities and costs associated
with evaluating QoS characteristics across different configu-
rations. However, testing every combination of configuration
options on each platform leads to an explosion in the configu-
ration space. For example, the ACE, TAO, and CIAO middle-
ware provides well over∼500 configuration options. If each
option was binary (which is a very conservative estimate), the
size of configuration space is∼2500. Discovering, validating
and documenting C&C patterns is thus a daunting task.

Solution → resolving validation challenges by document-
ing C&C patterns using Distributed Continuous Quality
Assurance (DCQA) Techniques. To address the C&C pat-
tern validation problems described above requires capturing
and documenting recurring sets of middleware configuration
and customization options that maximize QoS across a range
of hardware, OS, and compiler platforms. In DRE systems
based on QoS-enabled middleware, these recurring configura-
tions are tied to the operational context of objects and com-
ponents. To address the challenges caused by the explosion
of the software configuration space and the limitations of in-
house QA processes, we have developed theSkoll [20] DCQA
environment to prototype and evaluate tools necessary to per-
form “around-the-world, around-the-clock” DCQA processes
to improve quality of software. The Skoll infrastructure per-
forms its distributed QA tasks, such as testing, capturing us-
age patterns, and measuring system performance, on a grid
of computing nodes. Skoll decomposes QA tasks into sub-
tasks that perform part of a larger task. In the Skoll grid,
computing nodes are machines provided by the core develop-
ment group and volunteered by end-users and core develop-
ers. These nodes request work from a server when they wish
to make themselves available.

Figure 5, depicts how the OCML and the BGML tools are
used in concert with the Skoll DCQA environment to help
identify recurring C&C patterns for different combinations of
configuration options. Each of these steps is discussed below:

A. At the highest level, users employ the modeling environ-
ment to depict the interaction between their components and
objects. It is in this model that the configuration information
for the individual components and the QoS criteria to be mea-
sured are captured.

OCML


BGML


Skoll


Benchmark

Information


IDL
 .cpp


Script

files


Service

Config


files
 Internet


distribu

ted
syste

m


Target

Machine


A


B


C


D


E


F


Model


Configuration

Information


Figure 5:Alleviating C&C Patterns Validation Challenges
via DCQA Processes

B & C. The OCML and BGML model interpreters traverse
the models to synthesize the configuration and experimenta-
tion code. The OCML paradigm interpreter parses the mod-
eled configuration options and generates the required configu-
ration files to configure the underlying component implemen-
tation. The BGML paradigm interpreter then generates the
required benchmarking code,i.e., scaffolding code to set-up,
run and tear down the experiment.

D. The configured experimentation code can next be fed to
the Skoll DCQA environment. Remote clients register with
Skoll and request periodic software to run using spare CPU
cycles on local machines.

E & F. The Skoll then iteratively and continuously runs the
benchmark on various clients to observe behavior across var-
ied range of hardware, OS, and compiler platforms. A client
executes the experiment and returns the result to a Skoll server,
which updates its internal database. This information then can
be used by the users to select configurations that maximize
QoS across various platforms.

Section 3 discusses a case study detailing how the OCML
and BGML tools can be integrated to identify C&C patterns.

3 Experimental Evaluation of Model-
Driven Middleware Configuration
and Customization

To determine whether a given set of middleware C&C options
can be codified as a reusable C&C pattern requires empirical
evaluation of the DRE system using these middleware C&C
sets in different DRE domains. This section describes our ap-
proach to such an empirical evaluation via a case study that

8



uses our Model-Driven Middleware (MDM) generative tools
and benchmarking environment to validate QoS delivered by a
selected C&C set. Our approach to validating whether a C&C
options set is a C&C pattern consists of the following steps:

1. Determine the QoS guarantees desired from the middle-
ware

2. Select a set of middleware C&C options using the OCML
tool (Section 2.1) that are expected to provide these QoS
guarantees. It is assumed that the middleware develop-
ers will have the appropriate insights to select the right
options.

3. Use the BGML tool (Section 2.2) to generate a testsuite
for evaluating QoS delivered by the middleware.

4. Assign a value for each of the selected options in the
C&C set. Once again OCML is used to select the values
for each option in the set. The challenges arising from the
explosion in the C&C space can be alleviated using prun-
ing techniques discussed in our related research [20, 29].

5. for each such constrained C&C set of step 4, run the gen-
erated benchmarking tests to evaluate QoS

6. repeat steps 4-5 for DRE systems in different domains
and possibly different environments to determine if a par-
ticular constrained C&C option set delivers similar QoS
properties to DRE systems. In this case, the C&C set is
thus a good candidate for consideration as a C&C pattern.

This section illustrates this process by a case study. Sec-
tion 3.1 describes the evaluation testbed and our DRE systems
in two different domains. Section 3.2 then illustrates results
of running the benchmarks on a constrained C&C option set
that led us to codify it as a C&C pattern. Our experiments are
performed in the context of the CIAO [25] middleware, which
is a QoS-enabled CORBA Component Model (CCM) imple-
mentation. We envision middleware developers to adopt this
practice to document C&C patterns for their middleware.

3.1 Evaluation Platform

The QoS requirements of different DRE systems vary. For
example, DRE systems involving audio streams require pre-
dictable end-to-end latencies and jitter, whereas video streams
often require significant bandwidth. QoS-enabled middleware
should therefore be configured appropriately to deliver the de-
sired QoS to the target DRE systems. To demonstrate the con-
figuration of a DRE application, we use a navigation display
simulation based on the Boeing Bold Stroke avionics mission
computing architecture [12] that receives the global positions
from a GPS device and displays them at a GUI display in
a timely manner. The desired data request and the display
frequencies are fixed at 40 Hz. The BoldStroke architecture
uses apush event/pull datapublisher/subscriber communica-
tion paradigm.

The component interaction for the navigation display exam-
ple is depicted in Figure 6. The scenario shown in Figure 6 be-

Figure 6:Navigation Display Collaboration Example

gins with the GPS being invoked by the TAO Real-time Event
Service [30] (shown as a Timer component). On receiving a
pulse event from the Timer, the GPS generates its data and is-
sues a data available event. The Real-time Event Service then
forwards the event on to theAirframe component, which
retrieves the data from theGPScomponent, updates its state
and issues a data available event. The Event Service forwards
the event to theNav Display component, which in turn re-
trieves the data from theGPS, updates its state and displays
it.

Each of the components in the scenario of Figure 6 has the
following QoS requirements:

• The GPScomponent serves as the source for multiple
components requiring position updates at a regular inter-
val. This component’s concurrency mechanism should
therefore be tuned to serve multiple requests simultane-
ously in parallel, thereby reducing the overhead of pro-
cessing these requests.

• The Airframe component serves as the recipient of GPS
position updates and feeds these updates to the Display
Unit. The role played by this component therefore does
not require[d any concurrency since the Airframe pulls
data from the GPS component and pushes this data onto
the display, which can be serialized.

• The Display component receives updates events from
the Airframe component and refreshes its display. The
Display component also receives other updates, such as
changes in altitude, flying speed, and pressure4. The con-
currency mechanism for this component therefore needs
to handle multiple concurrent refreshes from a predefined
set of components.

To discover and document the middleware C&C pattern appli-
cable in this scenario, the middleware developer may decide
to vary the concurrency configuration mechanism provided
by the middleware so that the desired QoS,e.g., maximiz-
ing throughput or minimizing latency and jitter, is achieved.
Thus, each application QoS for the components can be mapped
to several well-defined concurrency mechanisms provided by
QoS-enabled component middleware, such as in our Compo-
nent Integrated ACE ORB (CIAO) [1], including:

4These components are not explicitly defined in the scenario.

9



• The thread pool concurrency mechanism, where a pool
of threads are used to service requests in parallel. This
approach is most suitable for the GPS component.

• The single-threadedconcurrency mechanism, where a
single-thread for servicing requests. This approach is best
used for components that have no concurrent jobs to per-
form, which makes it most suitable for the Airframe com-
ponent.

• The thread-per-connection concurrency mechanism,
where the server uses a separate thread to service requests
from each client. This approach is most suitable for the
Navigation component since it needs to obtain refreshes
from a predefined set of components.

The desired data request frequency for theAirframe com-
ponent is 40 Hz, which is the same value with the desired up-
date frequency of theNav Display component. We use the
modeling paradigms OCML and BGML to define various con-
figurations, model experiments and generate the benchmark-
ing applications, and compare the results of the benchmarks
and decided the configuration that suits the performance re-
quirements. The step-by-step process is explained next.

3.2 Study Execution

This section describes a case study that assesses the implemen-
tation effort and the effectiveness of the OCML and BGML
MDM tools described in Section 2.

3.2.1 Subject Application

We used ACE v5.4 + TAO v1.4 + CIAO v0.4 for this study.
CIAO [1] is a QoS-enabled implementation of CCM being
developed at Washington University, St. Louis and Van-
derbilt University to extend TAO [31] so it supports com-
ponents, which simplifies the development of DRE applica-
tions by enabling developers to declaratively provision QoS
policies end-to-end when assembling a system. TAO is
an open-source, high-performance, highly configurable Real-
time CORBA ORB designed to meet the demanding QoS re-
quirements of DRE systems. TAO is developed atop lower-
level middleware called ACE [32, 33] that implements core
concurrency and distribution patterns [34] for communication
software.

3.2.2 Empirically Validating Configuration Options

We now present the results of experiments that quantitatively
evaluate OCML and BGML in the context of DRE system sce-
narios that help the middleware developers to codify the con-
figuration and customization patterns of reuse. In particular
we present the following analyses:

• Code generation analysis, which illustrates the number
of lines of code auto-generated by the Model-interpreters
that otherwise would have to be handwritten,

• Configuration pattern analysis, which explores the
configuration space for theNavigation display com-
ponent and empirically validates the configuration that
maximizes the end-to-end latency for the scenario and

• Code execution analysis, which compares our genera-
tive approach with that of a handcrafted approach for ex-
ecution efficiency and accuracy.

Code generation analysis. Table 1 summarizes the code
generation metrics for the individual tools.

Files Number Source Lines of Code (SLOC)
IDL (*.idl) 5 125

Executor IDL (*E.idl) 4 40
Comp. IDL (*.cidl) 4 56

Source (.cpp) 4 525
Header (.h) 4 230

Config (svc.conf) 4 28
Benchmark (.cpp) 2 90

Table 1: Generated Code Summary for MDM Approach

Table 1 shows how our MDM approach auto-generates the
required scaffolding code required to start up and run the ex-
periment, capture the QoS metric, and tear down the set-up
when the experiment is complete. For the testbed scenario
the SLOC generated was∼1000, which shows that to com-
pose a simple five component experiment incurs a non-trivial
overhead in terms of handcrafting boiler-plate code to run an
experiment. The use of our modeling tool resolves this com-
plexity by generating both syntactically and semantically cor-
rect code, thereby increasing end-user productivity. Although
a highly efficient handcrafted code could reduce the SLOC
needed to run the experiment, it would require a laborious pro-
cess for every interaction scenario.
Configuration pattern analysis. In this experiment we em-
pirically show how our MDM tools work together to empir-
ically validate C&C patterns. Table 2 describes the testbed
used for the generation of results along with the deployment
information for the four components described in the testbed.

DOC ACE Tango

CPU AMD AMD Intel
Type Athlon Athlon Xeon
CPU Speed (GHz) 2 2 1.9
Memory (KB) 512 512 2048
Compiler (gcc) 3.2.2 3.3 3.3.2
OS (Linux) Red Hat 9 Red Hat 8 Debian
Kernel 2.4.20 2.4.20 2.4.23
Deployment Trigger BMDevice BMClosed

BMDisplay

Table 2:Testbed & Deployment Summary

10



This configuration simulates a deployment scenario where
these components will be deployment on different nodes or
embedded within processor boards. For this configuration, we
choose theNavigation Display component and identify
the configuration space based on its operational context de-
fined in the aforementioned section. This selection enables
the ensuing discussion to be intuitive, however, our discussion
can be generalized to any of the components in the testbed
scenario. In the testbed application, theDisplay compo-
nent acts a “thick client” retrieving GPS updates from the
Airframe component. For this role played by the compo-
nent, Table 3.2.2 summarizes the configuration space provided
by the CIAO middleware to tune the QoS of this component.

Notation Option Name Option Settings
o1 ORBProfileLock {Thread, Null}
o2 ORBClientConnectionHandler {RW, ST}
o3 ORBTransportMuxStrategy {EXCLUSIVE, MUXED}
o4 ORBConnectStrategy {reactive, LF}

Table 3: Configuration Space for CIAO Client side Com-
ponent

As shown in Table 3.2.2, we use the notationo11, o12,
etc. to identify the individual options within each category.
For example, theThread value for theORBProfile lock
option is denoted aso11 and null value aso12. For a
comprehensive discussion of the semantics of the configura-
tion options appears inwww.cs.wustl.edu/ ∼schmidt/
ACEwrappers/TAO/docs . For this configuration space,
our goal is to identify the configuration,i.e., options category
along with its value, that maximizes the end-to-end latency for
the scenario. The following steps were used to identify the
candidate configuration:

1. Model each permutation of this configuration space using
the OCML tool to generate the configuration files for the
Navigation component.

2. Use default configuration for all other components to iso-
late QoS improvements accrued from refining configura-
tion for theNavigation component.

3. Use the scaffolding code generated via BGML along with
the configuration file to run the experiment. Note, mod-
eling the same scenario enables us to use the code gener-
ated by BGML for all configurations.

4. Capture the latency information for each case and analyze
results to identify candidate solution.

Table 3.2.2, depicts the variation of latency across the entire
configuration space.

As shown in Table 3.2.2, the topmost configuration mini-
mizes the average latency for the scenario and is our candidate
solution that corresponds to settingORBProfile=null ,

Option Configuration Latency QoS (msecs)
(o12 o22 o31 o42) 35.58
(o12 o22 o31 o41) 77.13
(o11 o22 o32 o41) 173.03
(o11 o21 o32 o41) 214.6
(o12 o21 o31 o41) 280.18
(o12 o21 o31 o42) 559.0
(o11 o21 o31 o42) 585.003
(o11 o21 o32 o42) 597.5
(o12 o21 o32 o42) 684.7
(o12 o21 o32 o41) 771.047
(o12 o22 o32 o42) 833.6
(o12 o22 o32 o41) 1077.725
(o11 o22 o32 o42) 1217.3
(o12 o21 o31 o41) 1258.8
(o11 o22 o31 o42) 1506.4
(o11 o22 o31 o41) 1589.4

Table 4:Variation of QoS across the configuration space

ORBClientConnectionHandler=RW ,
ORBTransportMuxStrategy=EXCLUSIVE , and
ORBConnectStrategy=Reactive . The table also
presents an hierarchical classification of the latencies from
best to worst. Each configuration therefore represents a
one-step,i.e., successive refinement over the configuration
below it. A similar technique can be used for the other
components to identify the configuration space corresponding
to their operation context and using successive refinement
techniques to identify target configurations that maximize the
QoS.

The empirical identification and validation of the solution
permits its reuse across similar operations contexts, in our
case, a component playing a role of a pure client. This con-
figuration then represents a C&C pattern re-usable across do-
mains.

Code execution analysis. Figure 7 compares the execution
correctness of our MDM approach vs. a handcrafted approach.
For this experiment, the configuration (o12 o22 o31 o41)
(from Table 3.2.2) was chosen for theNavigation compo-
nent. As shown in this figure, the latency measures from both
the approaches are comparable. In particular, a deeper anal-
ysis from the individual samples also showed that the varia-
tion within the two data sets is also comparable. Though we
present only a particular case, a generalization can be made for
all the cases as (1) BGML tool only generates the implemen-
tation templates while the logic is still written by the end-user
and (2) OCML tool generates the exact XML configuration
files as the handcrafted approach, as in CIAO configurations
are (name, value) pairs. The results show that an MDM ap-
proach does not incur any additional overhead than a hand-
crafted approach.

11



ORB
0

20

40

60

80

100

L
at

en
cy

 (
m

.s
)

Handcrafted
Model-Integrated

Average

ORB
0

2

4

6

8

10

L
at

en
cy

 (
u.

s)

Standard Deviation

Figure 7:Execution Comparison

4 Related Work

This section compares our work on model-driven techniques
in OCML and BGML with other related research efforts in-
cluding Distributed Continuous Quality Assurance (DCQA)
environments, middleware configuration techniques, and gen-
erative techniques for empirical QoS evaluation.
DCQA environments. The VTK project uses a DCQA en-
vironment called Dart [35], which supports a continuous build
and test process that starts whenever repository check-ins oc-
cur. In earlier work [20, 22], we developed a prototype
of a DCQA environment called Skoll [36] that overcomes
the limitations of earlier in-the-field quality assurance ap-
proaches. Skoll provides anIntelligent Steering Agentthat
controls the QA process across configuration spaces by de-
composing anomaly detection, QoS evaluation, and integra-
tion testing QA processes into multiple tasks and then dis-
tributing/executing these tasks continuously on a grid of com-
puting resources contributed by end-users and distributed de-
velopers around the world.
Techniques for middleware configuration. A number of
ORBs (such as VisiBroker, ORBacus, omniORB, and CIAO)
provide mechanisms for configuring and customizing the mid-
dleware. For example, CIAO uses the ACE Service Configura-
tor framework [33], which framework that can be used to stat-
ically and dynamically configure components into middleware
and applications. Likewise, Java provides an API for configur-
ing applications based onXML property files. Key/value pairs
for specific options are stored in an XML-formatted files and
read by applications using XML parsers or a provided API.

The Microsoft .Net platform provides a similar approach to
the Java XML property files named.Net configuration files.
The System.Configuration API can be used to read
the configuration. Using this API, .Net provides access to
three different information: (1)machine configuration files,
which control machine-wide assembly binding and remoting

channels, (2)application configuration files, which control
application-specific configurations, such as assembly binding
policies and remoting objects, and (3)security configuration
files, which contain security information for applications.

Editing text configuration files formatted with XML is com-
mon for .Net, Java, and various CORBA and CCM implemen-
tations. OCML enhances the configuration of various middle-
ware platforms by providing an MDM methodology. From
these OCML models, documentation about the configuration
of the middleware and a GUI interface for middleware config-
uration can be generated automatically.

Empirical QoS Evaluation. There have been several initia-
tives that use generative techniques similar to BGML to gen-
erate testcases and benchmarks for performance evaluation.
ForeSight [37] uses an empirical benchmarking engine to cap-
ture QoS information for component middleware. The results
are used to build mathematical models to predict performance.
ForeSight uses a three-pronged approach of (1) creating a per-
formance profile of how components in a middleware affect
performance, (2) constructing a reasoning framework to un-
derstand architectural trade-offs,i.e., know how different QoS
attributes interact with one another, and (3) feeding this config-
uration information into generic performance models to pre-
dict the configuration settings required to maximize perfor-
mance.

SoftArch/MTE [38] provides a framework for system ar-
chitects to define higher level abstractions of their system by
specifying characteristics such as middleware, database tech-
nology, and client requests. SoftArch/MTE then generates an
implementation of the system along with the performance tests
that measure these system characteristics. These results are
then displayed back,i.e., annotated in the high level diagrams,
using tools such as Microsoft Excel, thereby allowing archi-
tects to refine the design for system deployment.

BGML is related to the ForeSight and SoftArch tools de-
scribed above. However, both these tools lack DCQA envi-
ronments to accurately capture QoS variations on a range of
varied hardware, OS and compiler platforms. Rather than us-
ing a generic mathematical models to predict performance, the
BGML tools use feedback-driven approach [22], wherein the
DCQA environment is used to empirically evaluate the QoS
characteristics offline. This information can then be used to
provide modelers with accurate system information. More-
over, platform-specific optimization techniques can be applied
to enhance system performance.

5 Concluding Remarks

QoS-enabled middleware addresses key aspects of the DRE
application development and deployment and also provides

12



policies and mechanisms for specifying and enforcing large-
scale DRE application QoS requirements. Historically, it has
been hard to customize and tune QoS-enabled middleware due
to accidental complexities associated with validating and op-
timizing middleware configurations. This paper describes a
pair of generative tools – the Options Configuration Modeling
Language (OCML) and the Benchmarking Generation Mod-
eling Language (BGML) – that help alleviate the complex-
ity of (1) choosing syntactically- and semantically-compatible
sets of middleware configurations for specific application use
cases and (2) evaluating the specified configurations and as-
sisting middleware and application developers in deciding ap-
propriate configurations for their QoS requirements, respec-
tively. These tools help decrease accidental complexity by au-
tomatically generating various parts of the middleware, appli-
cation, and benchmarking code, in addition to configuration
data.

The concept of configuration and customization (C&C) pat-
terns represent common configuration schemas shared across
various application domains. By using the OCML and BGML
tools, C&C patterns can be defined, validated, and stored for
reuse in similar scenarios. OCML and BGML are a part
of the CoSMIC toolsuite. The latest information and source
code can be obtained from CoSMIC website atwww.dre.
vanderbilt.edu/cosmic . The CoSMIC tool suite is de-
veloped in association with the CIAO QoS-enabled component
middleware, which is available atwww.dre.vanderbilt.
edu/CIAO .

We have used the Model-Driven Middleware approach pre-
sented in this paper to design and evaluate C&C patterns for a
specific set of middleware,i.e., ACE, TAO, and CIAO. In fu-
ture work we plan to generalize these tools to support a broader
range of middleware platforms and C&C patterns using tech-
niques from an Integrated Concern Modeling and Manipula-
tion Environment (ICMME) [39]. The ICMME ...

References
[1] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.

Loyall, R. E. Schantz, and C. D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications(Q. Mahmoud, ed.), New York: Wiley
and Sons, 2003.

[2] T. Ritter, M. Born, T. Unterscḧutz, and T. Weis, “A QoS Metamodel
and its Realization in a CORBA Component Infrastructure,” in
Proceedings of the36th Hawaii International Conference on System
Sciences, Software Technology Track, Distributed Object and
Component-based Software Systems Minitrack, HICSS 2003,
(Honolulu, HW), HICSS, Jan. 2003.

[3] D. Conan, E. Putrycz, N. Farcet, and M. DeMiguel, “Integration of
Non-Functional Properties in Containers,”Proceedings of the Sixth
International Workshop on Component-Oriented Programming
(WCOP), 2001.

[4] M. A. de Miguel, “QoS-Aware Component Frameworks,” inThe10th

International Workshop on Quality of Service (IWQoS 2002), (Miami
Beach, Florida), May 2002.

[5] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro,
C. Rodrigues, M. Atighetchi, and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” inProceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21),
pp. 625–634, IEEE, Apr. 2001.

[6] R. Thau, “Design Considerations for the Apache Server API,” in
Proceedings of the Fifth International World Wide Web Conference on
Computer Networks and ISDN Systems, pp. 1113–1122, Elsevier
Science Publishers B. V., 1996.

[7] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”IEEE Communications Magazine,
vol. 37, Apr. 1999.

[8] B. Laskey and D. C. Kreines,Oracle Database Administration: The
Essential Reference. Sebastopol, CA: O’Reilly, 1999.

[9] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[10] D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” inProceedings of the 10th Annual
Software Technology Conference, Apr. 1998.

[11] D. C. Sharp, “Avionics Product Line Software Architecture Flow
Policies,” inProceedings of the 18th IEEE/AIAA Digital Avionics
Systems Conference (DASC), Oct. 1999.

[12] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,” inProceedings of the Workshop
on Model-Driven Embedded Systems in RTAS 2003, May 2003.

[13] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E. Schantz,
M. Atighetchi, and D. C. Schmidt, “Integrated Adaptive QoS
Management in Middleware: An Empirical Case Study,” in
Proceedings of the 10th Real-time Technology and Application
Symposium (RTAS ’04), Embedded Applications Track, (Toronto, CA),
IEEE, May 2004.

[14] R. Noseworthy, “IKE 2 – Implementing the Stateful Distributed Object
Paradigm ,” in5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2002), (Washington, DC),
IEEE, Apr. 2002.

[15] C. on Networked Systems of Embedded Computers,Embedded,
Everywhere: A Research Agenda for Networked Systems of Embedded
Computers. Washington, D.C.: National Academies Press, 2001.

[16] S. Berczuk and B. Appleton,Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. Addison-Wesley,
2003.

[17] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N. Wang,
“Model Driven Middleware,” inMiddleware for Communications
(Q. Mahmoud, ed.), New York: Wiley and Sons, 2003.

[18] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,”Proceedings of the IEEE,
vol. 91, pp. 145–164, Jan. 2003.

[19] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. Krishna,
G. T. Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt,
“Model Driven Middleware: A New Paradigm for Deploying and
Provisioning Distributed Real-time and Embedded Applications,”The
Journal of Science of Computer Programming: Special Issue on Model
Driven Architecture, 2004.

[20] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and
B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,” in
Proceedings of the 26th IEEE/ACM International Conference on
Software Engineering, (Edinburgh, Scotland), IEEE/ACM, May 2004.

[21] E. Turkaye, A. Gokhale, and B. Natarajan, “Addressing the
Middleware Configuration Challenges using Model-based Techniques,”
in Proceedings of the 42nd Annual Southeast Conference, (Huntsville,
AL), ACM, Apr. 2004.

[22] A. S. Krishna, D. C. Schmidt, A. Porter, A. Memon, and
D. Sevilla-Ruiz, “Improving the Quality of Performance-intensive
Software via Model-integrated Distributed Continuous Quality
Assurance,” inProceedings of the 8th International Conference on
Software Reuse, (Madrid, Spain), ACM/IEEE, July 2004.

13



[23] Institute for Software Integrated Systems, “The ADAPTIVE
Communication Environment (ACE).” www.dre.vanderbilt.edu/ACE/,
Vanderbilt University.

[24] Institute for Software Integrated Systems, “The ACE ORB (TAO).”
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[25] Institute for Software Integrated Systems, “Component Integrated ACE
ORB (CIAO).” www.dre.vanderbilt.edu/CIAO, Vanderbilt University.

[26] Institute for Software Integrated Systems, “Component Synthesis using
Model Integrated Computing (CoSMIC).”
www.dre.vanderbilt.edu/cosmic, Vanderbilt University.

[27] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific Design
Environments,”IEEE Computer, Nov. 2001.

[28] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena: An
Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” inProceedings of the 25th International
Conference on Software Engineering, (Portland, OR), May 2003.

[29] C. Yilmaz, A. S. Krishna, A. Memon, A. Porter, D. C. Schmidt,
A. Gokhale, and B. Natarajan, “A Model-based Distributed Continuous
Quality Assurance Process to Enhance the Quality of Service of
Evolving Performance-intensive Software Systems,” inSubmitted to
the 12th International Symposium on the Foundations of Software
Engineering, (Newport Beach, CA), IEEE/ACM, Nov. 2004.

[30] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, Oct. 1997.

[31] A. S. Krishna, D. C. Schmidt, R. Klefstad, and A. Corsaro, “Real-time
CORBA Middleware,” inMiddleware for Communications
(Q. Mahmoud, ed.), New York: Wiley and Sons, 2003.

[32] D. C. Schmidt and S. D. Huston,C++ Network Programming, Volume
1: Mastering Complexity with ACE and Patterns. Boston:
Addison-Wesley, 2002.

[33] D. C. Schmidt and S. D. Huston,C++ Network Programming, Volume
2: Systematic Reuse with ACE and Frameworks. Reading,
Massachusetts: Addison-Wesley, 2002.

[34] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[35] “public.kitware.com.” http://public.kitware.com.

[36] A. Porter, D. C. Schmidt, A. Memon, C. Yilmaz, B. Natarajan, and
D. Hinton, “Skoll – a distributed continuous quality assurance
environment.” www.cs.umd.edu/projects/skoll.

[37] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, “Designing a Test
Suite for Empirically-based Middleware Performance Prediction,” in40
th International Conference on Tenchnology of Object-Oriented
Languages and Systems, Sydney Australia, Australian Computer
Society, Aug. 2002.

[38] J. Grundy, Y. Cai, and A. Liu, “Generation of Distributed System
Test-beds from High-level Software Architecture Description,” in16 th
International Conference on Automated Software Engineering, Linz
Austria, ACM SIGSOFT, Sept. 2001.

[39] A. Nechypurenko, D. C. Schmidt, T. Lu, G. Deng, A. Gokhale, and
E. Turkay, “Concern-based Composition and Reuse of Distributed
Systems,” inThe 8th International Conference on Software Reuse,
(Madrid, Spain), ACM/IEEE, July 2004.

14


