
Meta-Programming Techniques for
Distributed Real-time and Embedded Systems

Joseph K. Cross
Lockheed Martin Tactical Systems

P.O. Box 64525, M.S. U2X26
St. Paul, MN 55164-0525, USA

(651) 456-7316
joseph.k.cross@lmco.com

Douglas C. Schmidt
Electrical & Computer Engineering Dept.

University of California, Irvine
Irvine, CA 92697-2625, USA

schmidt@uci.edu

Abstract
Commercial off-the-shelf (COTS) middleware increasingly offers not only functional support for standard interfaces, but also
the ability to optimize their resource consumption patterns. For example, a COTS real-time object request broker (ORB) may
permit users to configure its server-side thread pooling policies. On one hand, this flexibility makes it possible to use
standard functional interfaces in applications where they were not applicable previously. On the other hand, the non-
standard nature of the optimization mechanisms – i.e., the "knobs and dials" – acts against the very product-independence
that standardized COTS interfaces are intended to provide.

This paper provides two contributions to the study of mechanisms for reducing the life-cycle costs of distributed real-time and
embedded (DRE) systems. First, we present a mechanism–called a Quality Connector–that enables applications to specify
the qualities of service that they require from their infrastructure, and then manages the operations that optimize the
middleware to implement those requirements. Second, we show how Quality Connectors are being applied in practice to
allocate communication resources automatically for real-time CORBA event propagation. Although middleware that
configures itself in response to quality of service (QoS) requests has been investigated and applied in general-purpose
computing contexts, we believe that the present work is among the first to put such capabilities into mission-critical DRE
systems with stringent QoS requirements.

1 Introduction

1.1 Emerging Trends
New and planned commercial and military distributed
real-time and embedded (DRE) systems take input from
many remote sensors, and provide geographically-
dispersed operators with (1) the ability to interact with the
collected information and (2) to control remote effectors.
In circumstances where the presence of a human in the
loop is either too expensive or too slow, these systems
must respond autonomously and flexibly to unanticipated
combinations of events at run-time. Moreover, these
systems are increasingly networked to form long-lived
“systems of systems” that must run unobtrusively and
autonomously, shielding operators from unnecessary
details, while simultaneously communicating and
responding to mission-critical information at heretofore
infeasible rates. In such environments, it is hard to
enumerate, even approximately, all possible physical
system configurations or workload mixes a priori.

It is possible in theory to develop these types of complex
DRE systems from scratch. However, contemporary
economic and organizational constraints, as well as
increasingly complex requirements and competitive
pressures, make it infeasible to do so in practice. The
proportion of DRE systems made up of “commercial-off-
the-shelf” (COTS) hardware and middleware has
therefore increased dramatically, which helps reduce the
initial non-recurring cost of these systems. In the context

of this paper, middleware is software that functionally
bridges the gap between application programs and the
lower-level underlying operating systems and network
protocol stacks. It therefore provides services whose
qualities are critical to DRE systems [5].

1.2 Problems: COTS Refresh Costs and Lack
of Standard Configuration/Control Interfaces
In many commercial application domains, such as e-
commerce or consumer electronics, application software
evolves faster than middleware. As a result, most
mainstream COTS middleware products focus on
presenting a powerful set of services that are attractive to
new applications, so that existing applications can evolve
freely. Long-lived DRE systems, however, often have the
reverse problem, i.e., how to write applications that can
remain stable, while permitting and exploiting the
relatively rapid evolution of the underlying infrastructure.

In the DRE domain, applications are often maintained
over long periods, e.g., 20 to 30 years. When combined
with free-market economics, this simple fact has far-
reaching technical consequences. For example, consider
the Theater Air Planner (TAP), which is the air tasking
order generation function of the US Department of
Defense (DoD) Theater Battle Management Core Systems
(TBMCS). TAP is currently using version 7 of a popular
COTS database product, which is the same version that
was used when TAP was first written in 1995. Since then,
there have been two major releases of this database

http://www.afmc.wpafb.af.mil/organizations/HQ-AFMC/PA/news_sou/00news/December/HanscomTBMCS.htm

product – version 8 in 1998 and recently version 9 – and
these revisions provide functionality that would
significantly enhance TAP.

Unfortunately, TAP cannot be upgraded to use these
newer products cost-effectively due to a complex web of
dependencies among its infrastructure components:

• The database
• The OS it runs on
• The implementation of the display widgets and
• The supporting Government-standard product set

defined by the Defense Information Infrastructure
Common Operating Environment (DII COE).

Notice that these dependencies were present even though
the system is architected with open standard interfaces
and components. When the consequences of all of these
dependencies are taken into account, what might seem to
be a simple version replacement actually requires a large-
scale, prohibitively expensive effort.1

Moreover, if COTS components are available only
through proprietary interfaces, DRE application
developers system will be locked into using a particular
set of COTS products. While proprietary COTS may still
decrease initial system costs, it can increase maintenance
and evolution costs. These costs can be non-trivial for
long-lived systems since the typical cost to maintain a
software product is from 60% to 80% of total life cycle
costs [1]. Using COTS products via vendor-specific
interfaces is therefore not generally in the long-term best
interest of DRE system owners.2

Fortunately, the powerful new capabilities of COTS
components are increasingly available to DRE
applications through open standard interfaces, such as
Real-time CORBA [11], Real-time Java, and Real-time
POSIX. These standards enable system integrators to
choose among various COTS implementations, which can
reduce the on-going, recurring cost of these systems.
Regrettably, however, the capabilities of COTS
components to optimize their performance and resource
consumption are not generally available through open
standard interfaces. Instead, these capabilities are
provided via ad hoc proprietary configuration and control
parameters. This situation results in DRE systems that are

1 Not surprisingly, these types of problems are also found
in long-lived commercial systems, such as complex
telecom switches, as well as military systems.
2 The use of proprietary interfaces in commercial products
impose significant additional costs on product vendors
compared with similar products with an open interface,
since proprietary vendors are responsible for the expenses
of requirements analysis, documentation, and training,
which cannot be amortized by other companies or
individuals participating in broader open standardization
efforts.

once again locked in to using a single product, which
significantly weakens the recurring cost advantage of
COTS, often to the point where life-cycle system costs
actually increase by using COTS.

1.3 Solution: Meta-Programming Techniques
for DRE Middleware
Recent advances in fundamental software technologies,
such as aspect-weaving software [12] and adaptive and
reflective middleware, are beginning to address the
problems outlined above. Adaptive middleware [6, 7, 20]
is software whose functional and/or quality of service
(QoS)-related properties can be modified either:

• Statically, e.g., to reduce footprint or to use and
configure resources that can optimized a priori in
deeply embedded systems; or

• Dynamically, e.g., in response to changes in
environmental conditions or requirements, such as
changing component interconnection topologies;
component failure or degradation; changing power
levels; changing CPU demands; changing network
bandwidth and latencies; and changing priority,
security, and dependability needs.

In DRE systems, adaptive middleware is required to make
such modifications while still meeting stringent end-to-
end QoS requirements.
Reflective middleware [21, 22, 23, 24, 25] permits
programmatic examination of the capabilities it offers,
and then permits programmatic adjustment of those
capabilities. Reflective middleware supports a more
advanced form of adaptive behavior, in that the necessary
adaptations can be performed autonomously (or semi-
autonomously) based on conditions within the system, in
the system's environment, or in the doctrine defined by
system operators and/or administrators. Such automatic
adaptations must be implemented carefully to ensure that
distributed optimizations retain system stability and
converge rapidly.

This paper describes the goals, technical approach, and
initial results of an ongoing research project called
MINERS (Meta-INterface for Real-time Embedded
Systems). MINERS is investigating the use of meta-
programming techniques to provide DRE applications
with an open interface through which they can configure
and control the underlying middleware as they require.
This goal is achieved in MINERS as follows:

• DRE applications are built to use open, standard
COTS interfaces. In addition to the functional
software that uses these interfaces, applications
specify their required qualities of service (QoS), such
as latency of event delivery and capacity of a wireless
link. These QoS requirements are stated in a
declarative form and cannot depend on middleware
implementation details, e.g., they cannot assume that
inter-process communication is implemented by
sockets.

http://diicoe.disa.mil/coe/
http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/035GZ013DOC.HTM#T2

• A new meta-interface mechanism, operating
automatically during system development and at run-
time, uses the configuration/control interfaces of the
(necessarily adaptive and reflective) middleware to
monitor and enforce the qualities of service specified
by DRE applications.

In the MINERS project, we call this meta-interface
mechanism a Quality Connector.

The rest of this paper is organized as follows: Section 2
describes the motivation for–and an overview of–Quality
Connectors; Section 3 provides a detailed description of
this concept and illustrates how we are applying it to DRE
middleware and applications; Section 4 compares the
MINERS project with related work; and Section 5
presents concluding remarks and a synopsis of the current
and future directions of the MINERS project.

2 Applying Quality Connectors to Optimize
DRE Middleware Declaratively

2.1 Background and Motivation
As commercial and military information technology users
transition from a platform-centric to network-centric
paradigm, an important challenge for researchers is to
develop and evolve assurable, adaptable, and affordable
standards-based DRE middleware that can be configured
to implement required end-to-end QoS properties, such as
predictable latency/jitter/throughput, scalability,
dependability, and security. The functional interface to
DRE middleware products can be–and increasingly is–
standardized, yielding well recognized benefits. In
addition, many middleware products that implement
standard functional interfaces are adaptive and reflective
in the sense described in Section 1, i.e., they permit their
qualities of service to be manipulated programmatically.
However, the interface through which such reflection and
adaptation is accomplished, namely, the quality interface,
is not yet standardized. Consequently, any system that
uses the quality interface–as DRE systems in general
must–loses its infrastructure independence.

Before describing how we’re addressing this problem on
the MINERS project, we first describe the two levels at
which an application can lose its infrastructure
independence.

2.1.1 Primary Dependency of DRE Applica-
tions on Middleware
Primary dependency of DRE applications on middleware
arises when applications are designed and written to use a
single infrastructure product, as shown in Figure 1.
Traditionally, such unique infrastructure products were
created as part of the same effort that produced the
applications. Two (historically valid) reasons have been
used to justify the development of custom application
infrastructure:

1. The system required qualities of service (e.g.,
latency or reliability) that were not available from
any existing functionally appropriate COTS
infrastructure component; and

2. No existing functionally appropriate COTS
infrastructure components would execute on the
lower levels of infrastructure.

An example, taken from a production DRE system
development effort, is as follows:

• A custom-built database was required because the
operating system was custom-built and no existing
database would run on it,

• Likewise, the operating system was custom-built
because the hardware was custom-built and no
existing operating system would run on it, and

• Likewise, the hardware was custom-built because,
among other reasons, no existing hardware could
provide the required I/O throughput.

Although the initial, non-recurring costs of such systems
were high, the maintenance costs could be low, simply
because little maintenance was required: if no
enhancements to such a system were needed, then it could
continue to run for many years, subject only to the
availability of replacement hardware. Unfortunately, these
systems were often brittle, in the sense that a small
modification to the software, or a small modification to
the function of the hardware, would require large-scale
software changes. Moreover, these systems could not be
evolved to leverage rapid improvements in COTS
hardware and infrastructure software.

Today, the procurement costs of such systems—
particularly mission-critical DRE systems—are often
unacceptable due to budgetary constraints. Moreover,
brittle end products are often unacceptable due to

1. The rapidly changing nature of mission-critical
requirements and

2. The expanding universe of what is possible. In
particular, if DRE systems can now support rapid
response to an international humanitarian crisis,
commercial aviation free-flight, and coordination of
autonomous entities to clean up environmentally
toxic situations, then those possibilities must not be
foreclosed by the high cost of evolving software.

Figure 1. Historical Primary Dependencies

hardware & OS

application

non-standard
interface

custom
middleware
designed into
application

Fortunately, the primary dependence of applications on
middleware can largely be avoided today by adopting
open standard interfaces for DRE middleware, such as
Real-time CORBA [11]. For example, Real-time CORBA
implementations [19] can now be selected and configured
such that their resource-consumption overheads are low
enough and their qualities of service are high enough for
all but the most demanding DRE applications.

2.1.2 Secondary Dependency of DRE Applica-
tions on Middleware
Secondary dependency of applications on middleware
arises precisely from the process of optimizing the
middleware by selecting implementation and
configuration options for open standard DRE middleware,
as illustrated in Figure 2.

In this paper, we call these user-selectable values the

properti
a distrib
the COR
program
since th
market
Howeve

• Tra
• Sup
• OR
• Effi

par
• Effi
• Thr
• Buf

han
Note th
end-to-e
middlew

Moreov
properti

idiosyncratic mechanisms, such as compilation options,
link options, run-time environment variables, parameters
passed to the ORB at initialization, and run-time
interfaces for property value alteration. For example,
consider the large-scale, HLA/RTI distributed interactive
simulation environment described in [2]. In that work,
numerous critical event-distribution optimizations are
defined, and the mechanisms by which they were
implemented are described. Examples of these
optimizations include

1. Sophisticated event filtering to limit execution
overhead and unnecessary data traffic

2. Selectable locking strategies for use when the
implementation is iterating over a set of consumers
that are to receive an event and

3. Selectable strategies for the choice of thread that is to
dispatch an event to a consumer.

Although these optimizations may be critical to the
performance of an end system, they are not controllable
through open standard interfaces. Consequently, DRE
applications that require specific qualities of services—
even through open standard interfaces—must still be built
to use specific products, thereby reducing the recurring
cost savings from using COTS.

In general, the process of tuning middleware components
to provide specified qualities of service is hard. The more
flexibility that a middleware component or framework
provides, the higher the level of skill required to configure
its properties. The difficulty of obtaining the required QoS
for applications in mission-critical DRE systems is
compounded by the fact that the association of required
qualities with services may change dynamically when the
system mode changes, i.e., when some set of events has
caused a significant change in the operational

middleware interface standard
(functional only)

hardware & OS
middleware

application
middleware
configuration/control
interface is
not standardized

Figure 2. Secondary Dependencies

es of middleware services. For example, consider
uted application program that is designed to use
BA Event Service [2] for data distribution. This

 has avoided the primary dependency problem,
ere are many products available on the open
that implement the CORBA Event Service.
r, these products differ in their properties, such as
nsports and protocols supported
port for fault tolerance
B initialization options
ciency of marshalling and de-marshalling event
ameters
ciency of de-multiplexing incoming method calls
ead and thread priority utilization
fer sizes, flow control, and buffer overflow
dling
at these properties may be critical to the correct
nd behavior of the DRE system in which the
are is embedded.

er, for certain CORBA ORBs, some of these
es will be controllable by the application through

characteristics of the system.

In DRE systems the time allotted to respond to mode
changes may be very short. In fact, this requirement is one
of the key technical differences between mission-critical
DRE applications and mainstream commercial business
applications. This issue is discussed further in Section
3.1.2, System Modes, below.

2.2 Overview of the Quality Connector
To address the primary and secondary dependency
challenges described above, the MINERS project is
developing a meta-programming mechanism called a
Quality Connector. This mechanism allows applications
to specify the qualities of service they require from their
middleware. In this way, applications behave analogously
to an executive who gives a package to his staff with
direction that it must be delivered within a specified time.
The Quality Connector acts, analogously to the staff, by
selecting mechanisms for transport and setting the
controllable parameters of those mechanisms. The
position of the Quality Connector in a DRE system is
illustrated in Figure 3.

Figure 4 illustrates the means by which a Quality
Connector fulfills its role. That figure shows application
programs with associated specifications of their QoS
requirements, the ingestion of those requirements by the
Quality Connector, and the adjustment of middleware
"knobs and dials" by the Quality Connector. Note that the
applications do not directly manipulate—and thus do not
depend on—the quality interface to the DRE middleware
components.

applications specify
required QoS

quality connector sets the
attributes of the middleware

components to provide
the required QoS

App App

Operating System

Network

DRE
middleware

layer

Figure 4. The Operation of a Quality Connector
in DRE Systems

Quality connectors are implemented in the MINERS
project as follows.

1. First, we select a standard middleware service, such
as the CORBA Event Service, where significant
variability in QoS is possible across implementations
of the standard interface. For this middleware service
we define a set of qualities, such as the end-to-end
latency of event delivery, that are important to the
functioning of DRE applications.

2. We then define a small language in which acceptable
values (or sets of acceptable values) of these qualities
can be specified, and we permit the values specified
to depend on the system mode. We define this

language using XML so that it can be understood
readily by humans and parsed easily by COTS tools.

3. Finally, we provide code-authoring-time, build-time,
and run-time tools to check for feasibility and
consistency of the requested quality values, and to set
the properties of the middleware components to
provide the required qualities.

The following section describes Quality Connectors in
more depth.

3 Detailed Description of the Quality
Connector
The implementation of Quality Connectors differs
significantly depending on which middleware component
and which of its interface functions is being addressed. To
focus the discussion, we will pick one example and
describe its specification and implementation, indicating
how the specification and implementation might differ in
other cases. The example middleware component we use
is CORBA and the CORBA Event Service, the interface
function we address is the event channel push(), and
the property of that interface that we set through the
Quality Connector is event delivery latency. It will be
readily apparent that the techniques described here can be
applied, mutatis mutandis, to many middleware services
in addition to the CORBA Event Service.

3.1 Components of a Quality Connector

The CORBA Event Service Quality Connector, like most
Quality Connectors, is implemented by several related but
separate software components shown in Figure 5.

These components behave as follows:
1. The Static Application Connector component acts on

the application source code before it is compiled.

hardware & OS

Quality
Connector

application
QoS-based
middleware
configuration/control
interface

Figure 3. Role of the Quality Connector
in DRE Systems

Figure 5. Components of a Quality Connector

application

running
system

infrastructure

static
application
connector

static
infrastructure
connector

software
development

link &
load

dynamic
connector

This component is akin to “aspect weaving”tools,
such as AspectJ [12]. For example, this component
can insert calls to run-time quality management
functions following the creation of a consumer proxy.

2. The Static Infrastructure Connector component acts
on the underlying middleware components before
they are linked into the deployed system. For
example, this component may set values for options
before compiling the ORB itself, and it may select
appropriate infrastructure components from ORB
run-time libraries.

3. The Dynamic Connector component is linked in with
the application and acts during its operation. For
example, this component allocates resources, such as
ATM circuits, processors, and radios, to each event
flow.

In addition to the preceding essential components of the
CORBA Event Service Quality Connector, there are
several optional support components, such as

• Configuration tools that assist system engineers in
selecting compatible sets of infrastructure
components that implement required services and

• Simulation tools to determine whether locally
specified qualities of service will combine to meet
system-level requirements.

These support components will not be further addressed
in this paper.

3.2 Background
This section provides a brief overview of event channels,
which are a key component in the CORBA Event Service.
We emphasize the choices and properties open to a DRE
application implementation. In addition, the concept of
system mode is described in more depth.

3.2.1 Synopsis of the CORBA Event Channel
CORBA event channels provide decoupled
communications between suppliers and consumers of
data, as shown in Figure 6. An event channel logically
mediates the communication from each supplier to all
consumers, e.g., the actual communication can use
multicast. In many implementations, however, event
channels physically mediate these communications, e.g.,
all events are routed through a separate process where an
event channel resides. In either case, the communication
between suppliers and consumers is “decoupled” in the
sense that

1. It is asynchronous, i.e., consumers will receive data
after a supplier has completed its push() operation,
and

2. The suppliers and consumers need not be aware of
each other's identities.

There is no pre-defined limit on the number of suppliers
and consumers that can be connected to an event channel
at any time. Moreover, they can connect and disconnect at

any time. There may be many event channels active at one
time in a DRE system.

Supplier 1

Supplier 2

Consumer 1

Consumer 2

Consumer 3

Event C
hannel

push()
Proxy

Consumer

Proxy
Consumer

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

push()

push()

push()

push()

Figure 6. A Simple CORBA Event Channel

In this paper, we emphasize the “push” model of event
delivery, where a supplier invokes a push(data)
method to supply any type of data, and the event channel
causes push(data) methods to be invoked on all
consumers registered with that event channel. In addition
to the “push” model, there is also a “pull” mode of event
delivery, which we do not address further in this paper.

The CORBA specification leaves many aspects of event
channel behavior unspecified intentionally. For example,
the following properties of event delivery are not
specified:

1. Latency of event delivery
2. Where and how often event data are copied
3. Threading and synchronization policies for event

dispatching
4. What communication mechanism is used to convey

the event data from the supplier to the consumers;
e.g., which of several radio channels will be used

5. How and where event data are buffered, and how
big event data buffers are

6. What happens when an event data buffer overflows
7. Reliability of event delivery
8. Whether events from one supplier will be delivered

to each consumer in the order in which they were
supplied

9. If supplier Alpha supplies an event E1 to an event
channel, and only after consuming E1 does Beta,
who is both a supplier and consumer, supply an
event E2 to the same event channel, and if consumer
Omega consumes both events, must Omega receive
E1 before E2?

10. If a consumer connects to an event channel, and if
an event is supplied to that channel one minute later,
will that consumer receive that event? Does the
answer depend on whether the supplier and
consumer are on different continents?

Different implementations of the CORBA Event Service
[2] provide different APIs for controlling the various
properties outlined above. Applications that do not
address these variations are therefore prone to the
secondary dependencies described in Section 2.1.2.

3.2.2 Mission-Critical System Modes
Mission-critical systems are often characterized as a
hierarchy of parts, which we call configuration items. A
configuration item may be small (such as a board in a
computer) or large (such as a ship). A configuration item
may exist statically (as does a router) or may be created
and destroyed dynamically (as is a thread within a
process). Configuration items may contain other
configuration items; this containment relation forms a
directed acyclic graph.3

We assume that every configuration item is always in one
of a fixed, finite set of states. For example, a workstation
may be in a training state or an operational state, and a
radar may be in a search state, tracking state, self-test
state, or off-line state. The state of a configuration item
may (but need not) be a function of the states of its
contained configuration items.

Now we can define a system mode as a Boolean function
on the states of its constituent configuration items. For
example, “the ship is in battle state” is a mode, and “all
ATM backbone configuration items are in their
operational states” is a mode. The value of a mode can
change abruptly. For example, the failure of a component
can affect modes.

The qualities of distributed communication services that
applications require will differ in different modes. For
example, a crew entertainment video that is distributed
over a shipboard backbone network requires a low jitter,
and therefore constitutes a high priority4 flow of
information. However, when the platform enters battle
mode due to the detection of an incoming anti-ship cruise
missile, then the priority of the crew entertainment video
must drop rapidly. Similarly, the importance of processes
within a nuclear reactor control system might be expected
to change when the reactor enters the “over-temperature”
mode. The mode-change problem is addressed by
permitting applications to specify QoS as a function of
mode. The result is that resource allocations can be made
in advance of their need.

3 The containment relation on configuration items need
not form a tree or set of trees since some configuration
items may be part of several others; e.g., a LAN may be
part of the combat system configuration item and part of
the command and control system configuration item.
4 This notion of priority will be refined in Section 3.3
below, where we call this property of the video flow its
urgency.

A related problem arises when a mode changes but QoS
requirements do not change. When the failure of a
resource, such as a LAN, occurs and requirements which
that LAN had been supporting remain in effect, then new
resources must be identified and configured into operation
as quickly as possible. This operation is often called “fault
reconfiguration.”

3.3 Quality Connector QoS Specification
The problem of how to specify the required QoS is
surprisingly subtle, even when the quality in question is
simple, such as latency. “Worst case” bounds are the
obvious choice. But if “worst case” is interpreted
literally–for example, that the latency of message delivery
will never, under any circumstances, exceed a specified
time limit–then such bounds are clearly not feasible in
practice because no infrastructure is infinitely reliable.
Moreover, many infrastructure components have no fixed
response time, but rather a distribution of response times,
which often has a long tail, as shown in Figure 7.

This distribution applies to operations such as task
dispatching (due to such influences as priority inversions
and interrupt lockout by device drivers), and even to
straight-line code execution (due to cache state). If
resources were allocated to support the actual worst case,
then resource utilization would inevitably be very low,
which can render a DRE system ineffective in practice.

If there is a primary factor that distinguishes the QoS
requirements of DRE systems from those of “best-effort”
commercial systems, it is this: best-effort commercial
systems are concerned primarily with average values of
qualities of service, while DRE systems are concerned
with extreme values of their distributions.

Instead of worst case bounds, therefore, we assume that
latencies will be constrained by a conjunction of one or
more conditions of the form “<proportion> of latencies
shall be less than or equal to <time-interval>.” For
example, a QoS specification for latency might be “99%

Figure 7. Problem with "Worst Case" Analysis

proportion
of trials

time for operation

long tail, showing
operation times occasionally
much longer than the average

100%

of latencies less than or equal to 1.0 seconds and 99.99%
of latencies less than or equal to 4.0 seconds.”

It should be noted that the preceding is a special case of a
much more general and powerful technique, which we
call probability assertions. A probability assertion about a
distribution of values is the assertion that the cumulative
density function of the distribution in question lies
entirely between an upper bounding function and a lower
bounding function. In the preceding example, only an
upper bounding function is specified, and that is a step
function. Since the generality of probability assertions is
not essential to the present discussion, this subject will not
be treated in detail here.

In addition to specifying the QoS required from the
middleware service, the application must also bound the
load that it will impose on the service. Such a bound is
necessary not only to assess whether the service can
handle the load at the specified QoS, but also to determine
whether future service requests can share resources with
the current service request. For a CORBA Event Service,
the load consists of the distribution of event sizes in bytes
and the distribution of inter-service-request times.

A convenient choice for specifying the distribution of
inter-event times is to use token buckets [3], which are a
means to express constraints on sequences of events in
time. A token bucket constraint is specified in terms of a
container of fixed size – the bucket – into which tokens
periodically fall. No event can take place until an
appropriate number of tokens are present in the bucket.

Although token bucket specifications are simple, portable,
and define realistic traffic distributions, they are not
sufficiently expressive for our purposes. For example, one
cannot use token buckets to specify either a strictly
periodic load nor a purely random, Poisson-distributed,
load, both of which are important in the DRE domain.
Fortunately, probability assertions are adequate, e.g., a
probability assertion on the inter-event time distribution
can specify that events will be no more frequent than
Poisson-distributed with a mean of 4 events per second,
and no two consecutive events will be closer together than
0.01 seconds. Again, this generality is not essential to the
present subject, and only simple special cases will be used
here. For a reason that will be clear shortly, the
combination of a mode, a QoS specification, and a load
specification is called a “proposal.” Figure 8 presents the
proposal alluded to above, expressed in XML.

The proposal in Figure 8 applies only when either of a
pair of tactical military or emergency response team
radios is on-line. In that case, the time between a
supplier's push() call and all consumers' corresponding
push() calls for every event are to be less than 1.0
second 99% of the time and less than 4 seconds 99.99%
of the time. The sizes of the event data are always at most
256 bytes, and 50% of the time are less than or equal to
32 bytes. The supplier's push() calls occur periodically,

once per second. Note that the priority of the request
consists of two integral values: urgency and importance:

• The urgency of a request determines which of several
eligible requests will get access to a shared resource.
For example, if either of two packets of data could be
sent over a communication link, the packet with the
higher urgency will be sent.

• The importance of a request determines which of two
requests (both of which cannot be supported) will be
accepted. For example, if both of two requests for
event data propagation cannot be supported on the
present infrastructure, then the request with the
higher importance will be accepted and the other will
be rejected. Moreover, if a new request for service is
received, and that request can be accommodated only
if some currently operating, lower importance service
is shut down, then that will be done; in this case, we
say that the lower importance request are abrogated.

<proposal>

<mode>
<or>

<ci name=
<ci name=

</or>
</mode>
<QoS type="late

<upperPoint
<upperPoint

</QoS>
<load type="int

<upperPoint
<lowerPoint

</load>
<load type="mes

<upperPoint
<upperPoint

</load> <load t
<urgency val
<importance

</load>

</proposal>

Figure 9

3.4 Interaction
Interactions with a Q
points in time. The s
occur as early as sys
execution time, as
determination of w
provided cannot occ
the possibility that a
due to failure or res
request for a QoS ha
later have to be
unavailability, as note

3.4.1 Execution

Figure 9. Interac

Application

Middleware
Service

Aspect
Weaving

Tools

Requests
Service

se

gene

Service
Implementation
Proposal applies in this
mode

"radioVHF" state="onLine"/>
"radioUHF" state="onLine"/>

ncy">
secs="1.0
secs="4.0

erMessage
secs="1.0
secs="1.0

sageSize"
bytes="25
bytes="32
ype="prio
="10"/>
val="2"/>

. A Propo

uality Conn
pecification
tem design
 shown i
hether a

ur before e
component
ource preem
s been agre
 abrogate
d above.

-Time Inte

tions with

T
t

P
t
w

Pro
Gene

Specif

Ru
Com

Specifies
QoS

lects

rates
here are QoS types other
han latency -- e.g., jitter

" prob="0.99"/>
" prob="0.9999"/>

Time">
" prob="0.0001"/>
" prob="0.9999"/>

>
6" prob="1.0"/>
" prob="0.5"/>
rity">

F
riority determines how
his request will compete
ith others for resources
sal in X

ector can
 of the re
 time or a
n Figure
requested

xecution t
 may be u

ption. M
ed to, that
d, due

raction

 a Quali

gram
ration
ications

Quality Co

ntime
ponents

C

gener
low is periodic
ML

 occur at several
quired QoS may
s late as system
 9. The final
 QoS can be
ime, because of
navailable, e.g.,
oreover, after a
 agreement may
to component

ty Connector

Configuration
Parameters

nnector

ross-Cutting
Policies

ates

configures

At execution time, DRE application software generally
submits its proposal to a Quality Connector before
making any use of the associated service, such as the
CORBA Event Service. If the Quality Connector
determines that the requested QoS can be provided, then
the Quality Connector sets whatever control parameters
are necessary to configure the middleware service, and
returns an indication of acceptance to the application.
Thereafter, the application can use the service and receive
the QoS it requires. If the Quality Connector determines
that the requested QoS cannot be provided, it returns an
indication of rejection to the application.

Although it would be possible to apply a QoS property,
such as end-to-end latency, to an event channel as a
whole, this would not be acceptable in applications with a
wide variation in propagation distances. For example,
consider a coordinated group of autonomous vehicles that
supply "Here I am" messages to an event channel. It
might generally be desirable that these messages be
received quickly by other vehicles in the group. A much
larger latency might be permitted, however, to messages
received at a central monitoring function, located several
satellite hops away. As a result, we permit different QoS
values to be specified at each supplier and consumer
proxy. In the autonomous vehicles example, for instance,
suppliers would specify no latency, consumers on the
vehicles would specify a short latency, and the consumer
at the central monitoring function would specify a longer
latency.

Note that there is no conflict possible between different
QoS values set at suppliers and consumers. If a supplier
requests a latency of 1 second, and a consumer on the
same event channel requests a latency of 2 seconds, and if
the Quality Connector accepts both proposals, then both
proposals must be honored. In this case, the latency from
the supplier to consumer must not exceed 1 second.

3.4.2 Program-Generation-Time Interaction
For the preceding run-time interaction between the
application and a Quality Connector to occur, application
software must be modified somehow. In particular, the
QoS proposal must be delivered to the Quality Connector
run-time component at some point between the creation
of an event channel proxy and the supplying or
consuming of an event through that proxy. In our
implementation, aspect-oriented programming (AOP)
techniques [4, 26] are the means by which system
designers specify the following information to a Quality
Connector:

1. The identity of the push() call to which a proposal
applies and

2. The modifications that the Quality Connector must
apply to the generated application.

In our work thus far, the following AOP features of
AspectJ [12] appear to be adequate for the applications
envisioned in MINERS:

• Join points are the mechanism used in AspectJ to
select locations in the program source code at which
to apply designated modifications to the code.

• After advice is one style of such modification, which
takes the form of adding code following the selected
locations.

3.5 Implementation
Implementing end-to-end QoS guarantees for a service
requires that all components that participate in providing
the service be represented by software avatars. An avatar
is a software object that represents a component to the
Quality Connector function of the middleware, as shown
in Figure 10.

Hence an avatar must be able to report what QoS the
component is presently providing, and what QoS the
component would provide if a specified additional load
were added. In addition, an avatar provides the interface
through which the Quality Connector function configures
the properties of the component.

The use of avatars to support run-time negotiations for
QoS-constrained DRE application services was
demonstrated by one of us (Cross) using the Real-time
CORBA ORB [19] implemented by the other (Schmidt).
We provided an interface through which suppliers and
consumers of events to a real-time event channel could
request specific qualities, such as latency, of the push
event delivery service. That request was forwarded to the
event channel object itself, which negotiated with the
available avatars to obtain the requested QoS. The result –
success or failure – of those negotiations was then
returned to the application-level requestors.

Note that the greater the configurability that the
components provide, the greater the opportunity for
middleware to support changing conditions, where such

CI CI

CI CI

Configuration
Object

CI CI

CI CI

Configuration
Object

Runtime Quality
Connector Component

Application

Interface
component A

va
ta

r

Interface
component A

va
ta

r
Resource

A
va

ta
r

Resource

A
va

ta
r

Resource

A
va

ta
r

Resource

A
va

ta
r

reflective data

• In-band operations are fast
• Out-of-band operations are

slower, which is okay for most
embedded applications

• Late Binding, for optimization
and fault tolerance

mode change
notifications

Figure 10. Avatars Represent Components

changes may take place over periods of milliseconds,
days, or even years. Conversely, the absence of
configuration control capabilities and information about
service components, such as an ORB that cannot be told
how big to make its buffers or how big its default buffer
sizes will be, has the result that no QoS can be guaranteed
for services that use the component.

In the present example, we are concerned with the
configurability of a CORBA Event Service. Such
configuration may involve ORB parameters that are

1. Set on ORB initiation
2. Changed during execution and
3. Included in interface calls, such as on event channel

creation and on a push() invocation.
Clearly, more detailed discussion of these configuration
issues depends entirely on the ORB implementation that
is used.

4 Related Work
Our work on Quality Connectors complements the work
being done by the DARPA Quorum program [5].
Quorum’s goal is to develop technologies to allow tactical
applications with mission-critical performance
requirements to dynamically access distributed COTS
resources with guaranteed quality of service. Applications
negotiate service contracts with the system, which are
then enforced through layered resource management
mechanisms and maintained through continual
monitoring, adaptation, and feedback control.

The BBN Quality Objects (QuO) framework [6] is a
Quorum project that uses QoS definition languages [7]
that are based on the separation of concerns promoted by
AOP [4] (see below). A significant difference between the
MINERS approach and that of QuO is that MINERS
relies on an explicit specification of resource
requirements against system state to provide immediate
access to those resources when a change occurs, rather
than relying on the gradual adaptation of resource
allocations to changing demand.

The Distributed Multimedia Research Group at Lancaster
University has proposed and implemented a prototype of
next-generation reflective middleware [21, 22] called
Adapt. Their middleware model concentrates on dynamic
composition of objects through open-binding, which (1)
allows object implementations to be configured
dynamically and (2) determines various aspects of object
implementations, such as adding or removing methods
from an object. The Adapt project model also facilitates
QoS properties management and monitoring. Compared
to the Adapt project, MINERS concentrates on identifying
and using meta-programming techniques to implement
and improve the implementation of an existing
middleware standard (CORBA), whereas the Adapt
project defines and implements the meta-space of a new
middleware framework at a higher level.

The Real-time (RT) CORBA 1.0 specification [11]
extends the Object Management Group (OMG) CORBA
standard to support real-time distributed, object-oriented
applications. The initial 1.0 version of the RT CORBA
specification focuses on fixed-priority applications to
ensure end-to-end predictable behavior for information
that flows between distributed objects. It does this by
giving developers explicit control over allocation and use
of the following resources:

• Processor resources are configured and controlled
using thread pools, priority control and
synchronization mechanisms.

• Communication resources are managed through the
ability to specify protocol properties and by making
explicit bindings to communication resources.

• Memory resources are managed through buffering
requests and limiting thread pool sizes.

• A global scheduling service is also available [20].

In addition to RT CORBA, the CORBA Notification
Service incorporates important QoS and filtering features
into the previously defined CORBA Event Service. These
middleware capabilities, appearing in an open
specification that is independent of platform, OS, and
vendor-specific communication mechanisms, offer a solid
foundation for an open implementation of meta-
programming interfaces.

The dynamic TAO [23] and Reflective CCM [24] projects
have demonstrated that CORBA can be reconfigured at
run-time by dynamically linking and unlinking certain
components. Similarly, AspectIX [25] is a novel
CORBA-compliant middleware architecture that defines
and describes QoS requirements on a per-object basis
independently from functional interfaces. Clients in
AspectIX systems are allowed to set the QoS aspects of
objects. Systems may adapt, report aspect changes back to
clients, or reflect to clients on how to adapt. The MINERS
work, however, also focuses on QoS adaptation as a
deployable entity in the system to standardize and
automate the server-side QoS control/adaptation issues.

Our approach to specifying QoS at the application level in
a form that is relatively independent of the functional
behavior of the application is facilitated by the emerging
research in Aspect Oriented Programming (AOP) [26].
Work in this area is underway in various places, including
Xerox PARC [4], IBM [13], MCC [14, 15], Northeastern
University [16], and the University of Twente [17]. We
have chosen to use AspectJ [12], which is an aspect-
oriented extension to the Java programming language.
AspectJ addresses the problem of crosscutting concerns
by extending Java with constructs that can be used to
implement such concerns in a modular way. AspectJ is in
the late beta stages of development, yet promises to
provide more generalized aspects than much of the related
work being done in this area.

A related area of research is Generative Programming
[18], which is an approach to constructing systems that
involves modeling an entire family of systems. Given
requirements for a particular member of that family, this
approach generates that member as a composition of
elementary components. Both AOP and Generative
Programming are being explored in the context of the
DARPA PCES program [27]. The IETF has specified
mechanisms for scalable differentiated [8, 9] and
integrated [10, 3] classes of service on the Internet.

A number of enabling technologies are emerging that will
make it possible to implement meta-interface mechanisms
more easily in the future. Available at different levels,
including the middleware itself, these technologies
provide various forms of support for QoS.

• Differentiated services (DiffServ) provide QoS using
a small, well-defined set of building blocks from
which a variety of aggregate behaviors may be built.
Service characteristics may be specified in
quantitative or statistical terms of throughput, delay,
jitter, and/or loss, or they may be specified in terms
of priority of access to network resources. A small
bit-pattern in each packet is used to mark the packet
to receive a particular forwarding treatment, or per-
hop behavior, at each network node along its path.
The DiffServ specifications provide a common
understanding of the use and interpretation of this bit-
pattern. Sophisticated classification, marking,
policing, and shaping operations can now be
implemented at network boundaries or hosts.
Network resources are allocated to traffic streams by
service provisioning policies which govern how
traffic is marked and conditioned upon entry to a
differentiated services-capable network, and how that
traffic is forwarded within that network.

• Integrated services (IntServ) provides the ability to
transport audio, video, real-time, and data traffic
within a single packet switched network
infrastructure. IntServ defines a minimal set of global
requirements and services which transition the
Internet into an integrated-service communications
infrastructure. It includes interfaces to specify an
application’s end-to-end QoS requirements.

5 Concluding Remarks and Future Directions
COTS middleware has become more capable and the
proportion of mission-critical system requirements that
cannot be met using COTS middleware is shrinking
dramatically. This trend applies even to mission-critical
DRE systems, such as ship-board combat systems and
commercial avionics mission computing systems, that are
subject to stringent reliability and quality of service (QoS)
requirements. The result is a reduction in the initial, non-
recurring cost of these systems.

COTS middleware is playing an increasingly important
role in developing mission-critical DRE systems due to

• Economic and organizational constraints, such as
severely constrained procurement budgets, and the
movement toward prime-vendor support contracts
that allocate the uncertainty in system maintenance
costs to the developing contractor;

• Increasingly complex system requirements, such as
Global Air Traffic Management (GATM)
requirements for military aircraft that fly in
commercial airspace; and

• Competitive pressures, such as enticements for
scientists and engineers from many sectors of the
global economy.

Thus, the potential affordability gains offered by COTS
middleware have become strategically important.
Without a product- and component-independent
mechanism for optimally configuring COTS middleware,
however, this affordability gain is threatened.

Our experience developing previous generations of
complex DRE systems [2, 5, 19, 20] illustrates that
effective operation, interoperability, and integration
requires more than individual COTS standards and tools.
Instead, it requires that adaptability, assurability, and
affordability be designed into DRE system/network
architectures a priori. Researchers have a pressing need,
therefore, to coordinate individual advances in the COTS
solution space that are being addressed by different
sectors of the R&D community.

The problems faced by researchers and developers of
DRE systems are highly challenging, with many
interlocking aspects. Unless pieces of the emerging,
independently developed, COTS solutions can be
delivered to application designers as coordinated,
integrated packages, their value will be diminished and
may in fact make matters worse instead of better, e.g., due
to excessive costs for COTS refresh and integration. This
paper proposes a meta-programming mechanism called
Quality Connectors that allow a variety of separately
developed, and continuously evolving, tools and
components to appear to application designers as an
integrated, coordinated, and stable infrastructure. A
Quality Connector provides this appearance by
encapsulating the various configuration and control
mechanisms provided by COTS middleware, and
exposing a stable, QoS-based interface to applications.

Implementation of the capabilities described in this paper
is underway in the MINERS project at Lockheed Martin
Tactical Systems, in Eagan, Minnesota, as part of the
DARPA PCES Program [27]. We are using the TAO RT
CORBA ORB [19], which is a highly configurable
middleware component designed to support DRE
applications with demanding QoS requirements. In the
longer term, if the mission-critical, real-time embedded
system community can achieve a shared understanding of
what qualities of services need to be specified and how to
specify them, then we envision the availability of DRE
middleware that is designed to be configured to meet such

requirements, and the development of applications that
include their QoS requirements as part of their design.
Such applications should be be far more stable over
evolving infrastructure than current applications.
Moreover, such applications might be verifiable
independently of any infrastructure, based on their QoS
requirements, which will substantially reduce costs in
mission-critical DRE applications.

Bibliography

[1] Guidelines for Successful Acquisition and Management
of Software Intensive Systems: Volume 1 -- Version 3.0,
May 2000, Department of the Air Force, Software
Technology Support Center.
http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/0
35GZ013DOC.HTM#T2

[2] Carlos O'Ryan, Douglas C. Schmidt, and David Levine,
“Applying a Scalable CORBA Events Service to Large-
scale Distributed Interactive Simulations,” Proceedings
of the IEEE 5th Workshop on Object-oriented Real-time
Dependable Systems, Montery, CA, November, 1999.

[3] General Characterization Parameters for Integrated
Service Network Elements,
TOKEN_BUCKET_TSPEC. IETF Integrated Services,
RFC 2215 (section 3.6.)
http://www.ietf.org/rfc/rfc2215.txt?number=2215.

[4] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin, “Aspect Oriented
Programming.” Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997.
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/
Kiczales-ECOOP97/for-web.pdf, and also
http://www.parc.xerox.com/csl/projects/aop/.

[5] The Quorum Project, DARPA Information Technology
Office.
http://www.darpa.mil/ito/research/quorum/index.html

[6] Quality Objects website, BBN Technologies.
http://www.dist-systems.bbn.com/tech/QuO/

[7] Pal PP, Loyall JP, Schantz RE, Zinky JA, Shapiro R,
Megquier J. “Using QDL to Specify QoS Aware
Distributed (QuO) Application Configuration.
Proceedings of ISORC 2000,” The Third IEEE
International Symposium on Object-Oriented Real-time
Distributed Computing, March 15-17, 2000, Newport
Beach, CA.

[8] Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers. IETF
Differentiated Services.
http://www.ietf.org/rfc/rfc2474.txt?number=2474

[9] An Architecture for Differentiated Services. IETF
Differentiated Services.
http://www.ietf.org/rfc/rfc2475.txt?number=2475

[10] Specification of Guaranteed Quality of Service, IETF
Integrated Services, RFC 2212.
http://www2.ietf.org/rfc/rfc2212.txt

[11] Real-time CORBA (Chapter 24). Common Object
Request Broker Architecture v2.4.2.
http://www.omg.org/cgi-bin/doc?formal/01-02-60

[12] The AspectJ website at http://aspectj.org.
[13] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. "N

Degrees of Separation: Multi-Dimensional Separation
of Concerns." Proceedings of the International
Conference on Software Engineering (ICSE'99), May,
1999.
http://www.acm.org/pubs/articles/proceedings/soft/3024
05/p107-tarr/p107-tarr.pdf

[14] Robert E. Filman, Stuart Barrett, Diana D. Lee, Ted
Linden, “Inserting Ilities by Conrolling
Communications,” Communications of the ACM, in
press.
http://ic-
www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-
cacm-final.pdf.

[15] Robert E. Filman, “Applying Aspect-Oriented
Programming to Intelligent Synthesis,” Research
Institute for Advanced Computer Science, NASA Ames
Research Center. June 2000.

[16] The Demeter Project homepage at
http://www.ccs.neu.edu/research/demeter/

[17] TRESE Aspects and advanced separation of concerns
homepage
http://trese.cs.utwente.nl/aspects_asoc/index.htm

[18] K. Czarnecki and U. Eisenecker, "Generative
Programming : Methods, Tools, and Applications."
Addison-Wesley, June 2000.

[19] Douglas C. Schmidt, David Levine, and Sumedh
Mungee "The Design and Performance of Real-Time
Object Request Brokers," Computer Communications,
Elsivier, Vol. 21, No. 4, April 1998.

[20] Chris Gill, David Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-time CORBA
Scheduling Service,” Real-time Systems, Kluwer, Vol.
20, No. 2, March, 2001.

[21] Gordon S. Blair, G. Coulson, P. Robin, and M.
Papathomas, "An architecture for next generation
middleware," in Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing, Springer-Verlag, London, 1998.

[22] Fabio M. Costa and Gordon S. Blair, "A Reflective
Architecture for Middleware: Design and
Implementation," in ECOOP'99 PhDOOS Workshop,
Lisbon, Portugal, 1999.

[23] F. Kon and R. H. Campbell, "Supporting Automatic
Configuration of Component-Based Distributed
Systems," in Proceedings of the 5th Conference on
Object-Oriented Technologies and Systems, (San
Diego, CA), USENIX, May 1999.

http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/035GZ013DOC.HTM#T2
http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/035GZ013DOC.HTM#T2
http://www.ietf.org/rfc/rfc2215.txt?number=2215
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/Kiczales-ECOOP97/for-web.pdf
http://www.parc.xerox.com/spl/groups/eca/pubs/papers/Kiczales-ECOOP97/for-web.pdf
http://www.parc.xerox.com/csl/projects/aop/
http://www.darpa.mil/ito/research/quorum/index.html
http://www.dist-systems.bbn.com/tech/QuO/
http://www.ietf.org/rfc/rfc2474.txt?number=2474
http://www.ietf.org/rfc/rfc2475.txt?number=2475
http://www2.ietf.org/rfc/rfc2212.txt
http://www.omg.org/cgi-bin/doc?formal/01-02-60
http://aspectj.org/
http://www.acm.org/pubs/articles/proceedings/soft/302405/p107-tarr/p107-tarr.pdf
http://www.acm.org/pubs/articles/proceedings/soft/302405/p107-tarr/p107-tarr.pdf
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf
http://www.ccs.neu.edu/research/demeter/
http://trese.cs.utwente.nl/aspects_asoc/index.htm

[24] Nanbor Wang, Douglas C. Schmidt, Kirthika
Parameswaran, and Michael Kircher, “Towards a
Reflective Middleware Framework for QoS-enabled
CORBA Component Model Applications,” IEEE
Distributed Systems Online special issue on Reflective
Middleware, 2001.

[25] F. J. Hauck, U. Becker, M. Geier, E. Meier, U.
Rastofer, and M. Steckermeier, “The AspectIX
Approach to Quality-of-Service Integration into
CORBA,” Technical Report TR-I4-99-09, Operating
Systems Dept., Friedrich-Alexander University,
Erlangen-Nürnberg, Germany, 1999.

[26] G. Kiczales, "Aspect-Oriented Programming," in
Proceedings of the 11th European Conference on
Object-oriented Programming, June, 1997.

[27] The Programmable Composition of Embedded
Software (PCES) Project, DARPA Information
Technology Office.

 http://www.dsic-web.net/ito/programs/pces/.

http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.computer.org/dsonline/
http://www.computer.org/dsonline/middleware/RM.htm
http://www.computer.org/dsonline/middleware/RM.htm
http://www.dsic-web.net/ito/programs/pces/

	Abstract
	I
	Introduction
	Emerging Trends
	Problems: COTS Refresh Costs and Lack of Standard Configuration/Control Interfaces
	Solution: Meta-Programming Techniques for DRE Middleware

	Applying Quality Connectors to Optimize DRE Middleware Declaratively
	Background and Motivation
	Primary Dependency of DRE Applica-tions on Middleware
	Secondary Dependency of DRE Applica-tions on Middleware

	Overview of the Quality Connector

	Detailed Description of the Quality Connector
	Components of a Quality Connector
	Background
	Synopsis of the CORBA Event Channel
	Mission-Critical System Modes

	Quality Connector QoS Specification
	Interaction
	Execution-Time Interaction
	Program-Generation-Time Interaction

	Implementation

	Related Work
	Concluding Remarks and Future Directions

