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Abstract 
Commercial off-the-shelf (COTS) middleware increasingly offers not only functional support for standard interfaces, but also 
the ability to optimize their resource consumption patterns. For example, a COTS real-time object request broker (ORB) may 
permit users to configure its server-side thread pooling policies. On one hand, this flexibility makes it possible to use 
standard functional interfaces in applications where they were not applicable previously. On the other hand, the non-
standard nature of the optimization mechanisms – i.e., the "knobs and dials" – acts against the very product-independence 
that standardized COTS interfaces are intended to provide. 

This paper provides two contributions to the study of mechanisms for reducing the life-cycle costs of distributed real-time and 
embedded (DRE) systems. First, we present a mechanism–called a Quality Connector–that enables applications to specify 
the qualities of service that they require from their infrastructure, and then manages the operations that optimize the 
middleware to implement those requirements. Second, we show how Quality Connectors are being applied in practice to 
allocate communication resources automatically for real-time CORBA event propagation. Although middleware that 
configures itself in response to quality of service (QoS) requests has been investigated and applied in general-purpose 
computing contexts, we believe that the present work is among the first to put such capabilities into mission-critical DRE 
systems with stringent QoS requirements.   

1 Introduction 

1.1 Emerging Trends 
New and planned commercial and military distributed 
real-time and embedded (DRE) systems take input from 
many remote sensors, and provide geographically-
dispersed operators with (1) the ability to interact with the 
collected information and (2) to control remote effectors. 
In circumstances where the presence of a human in the 
loop is either too expensive or too slow, these systems 
must respond autonomously and flexibly to unanticipated 
combinations of events at run-time.  Moreover, these 
systems are increasingly networked to form long-lived 
“systems of systems” that must run unobtrusively and 
autonomously, shielding operators from unnecessary 
details, while simultaneously communicating and 
responding to mission-critical information at heretofore 
infeasible rates.  In such environments, it is hard to 
enumerate, even approximately, all possible physical 
system configurations or workload mixes a priori. 

It is possible in theory to develop these types of complex 
DRE systems from scratch. However, contemporary 
economic and organizational constraints, as well as 
increasingly complex requirements and competitive 
pressures, make it infeasible to do so in practice.  The 
proportion of DRE systems made up of “commercial-off-
the-shelf” (COTS) hardware and middleware has 
therefore increased dramatically, which helps reduce the 
initial non-recurring cost of these systems. In the context 

of this paper, middleware is software that functionally 
bridges the gap between application programs and the 
lower-level underlying operating systems and network 
protocol stacks. It therefore provides services whose 
qualities are critical to DRE systems [5]. 

1.2 Problems: COTS Refresh Costs and Lack 
of Standard Configuration/Control Interfaces 
In many commercial application domains, such as e-
commerce or consumer electronics, application software 
evolves faster than middleware. As a result, most 
mainstream COTS middleware products focus on 
presenting a powerful set of services that are attractive to 
new applications, so that existing applications can evolve 
freely. Long-lived DRE systems, however, often have the 
reverse problem, i.e., how to write applications that can 
remain stable, while permitting and exploiting the 
relatively rapid evolution of the underlying infrastructure.  

In the DRE domain, applications are often maintained 
over long periods, e.g., 20 to 30 years. When combined 
with free-market economics, this simple fact has far-
reaching technical consequences. For example, consider 
the Theater Air Planner (TAP), which is the air tasking 
order generation function of the US Department of 
Defense (DoD) Theater Battle Management Core Systems 
(TBMCS). TAP is currently using version 7 of a popular 
COTS database product, which is the same version that 
was used when TAP was first written in 1995. Since then, 
there have been two major releases of this database 

http://www.afmc.wpafb.af.mil/organizations/HQ-AFMC/PA/news_sou/00news/December/HanscomTBMCS.htm


product – version 8 in 1998 and recently version 9 – and 
these revisions provide functionality that would 
significantly enhance TAP.  

Unfortunately, TAP cannot be upgraded to use these 
newer products cost-effectively due to a complex web of 
dependencies among its infrastructure components:  

• The database 
• The OS it runs on  
• The implementation of the display widgets and 
• The supporting Government-standard product set 

defined by the Defense Information Infrastructure 
Common Operating Environment (DII COE).  

Notice that these dependencies were present even though 
the system is architected with open standard interfaces 
and components. When the consequences of all of these 
dependencies are taken into account, what might seem to 
be a simple version replacement actually requires a large-
scale, prohibitively expensive effort.1 

Moreover, if COTS components are available only 
through proprietary interfaces, DRE application 
developers system will be locked into using a particular 
set of COTS products. While proprietary COTS may still 
decrease initial system costs, it can increase maintenance 
and evolution costs. These costs can be non-trivial for 
long-lived systems since the typical cost to maintain a 
software product is from 60% to 80% of total life cycle 
costs [1]. Using COTS products via vendor-specific 
interfaces is therefore not generally in the long-term best 
interest of DRE system owners.2   

Fortunately, the powerful new capabilities of COTS 
components are increasingly available to DRE 
applications through open standard interfaces, such as 
Real-time CORBA [11], Real-time Java, and Real-time 
POSIX. These standards enable system integrators to 
choose among various COTS implementations, which can 
reduce the on-going, recurring cost of these systems. 
Regrettably, however, the capabilities of COTS 
components to optimize their performance and resource 
consumption are not generally available through open 
standard interfaces. Instead, these capabilities are 
provided via ad hoc proprietary configuration and control 
parameters. This situation results in DRE systems that are 

                                                 
1 Not surprisingly, these types of problems are also found 
in long-lived commercial systems, such as complex 
telecom switches, as well as military systems. 
2 The use of proprietary interfaces in commercial products 
impose significant additional costs on product vendors 
compared with similar products with an open interface, 
since proprietary vendors are responsible for the expenses 
of requirements analysis, documentation, and training, 
which cannot be amortized by other companies or 
individuals participating in broader open standardization 
efforts. 

 

once again locked in to using a single product, which 
significantly weakens the recurring cost advantage of 
COTS, often to the point where life-cycle system costs 
actually increase by using COTS. 

1.3 Solution: Meta-Programming Techniques 
for DRE Middleware  
Recent advances in fundamental software technologies, 
such as aspect-weaving software [12] and adaptive and 
reflective middleware, are beginning to address the 
problems outlined above.  Adaptive middleware [6, 7, 20] 
is software whose functional and/or quality of service 
(QoS)-related properties can be modified either:  

• Statically, e.g., to reduce footprint or to use and 
configure resources that can optimized a priori in 
deeply embedded systems; or 

• Dynamically, e.g., in response to changes in 
environmental conditions or requirements, such as 
changing component interconnection topologies; 
component failure or degradation; changing power 
levels; changing CPU demands; changing network 
bandwidth and latencies; and changing priority, 
security, and dependability needs. 

In DRE systems, adaptive middleware is required to make 
such modifications while still meeting stringent end-to-
end QoS requirements.   
Reflective middleware [21, 22, 23, 24, 25] permits 
programmatic examination of the capabilities it offers, 
and then permits programmatic adjustment of those 
capabilities. Reflective middleware supports a more 
advanced form of adaptive behavior, in that the necessary 
adaptations can be performed autonomously (or semi-
autonomously) based on conditions within the system, in 
the system's environment, or  in the doctrine defined by 
system operators and/or administrators. Such automatic 
adaptations must be implemented carefully to ensure that 
distributed optimizations retain system stability and 
converge rapidly.  

This paper describes the goals, technical approach, and 
initial results of an ongoing research project called 
MINERS (Meta-INterface for Real-time Embedded 
Systems). MINERS is investigating the use of meta-
programming techniques to provide DRE applications 
with an open interface through which they can configure 
and control the underlying middleware as they require. 
This goal is achieved in MINERS as follows: 

• DRE applications are built to use open, standard 
COTS interfaces. In addition to the functional 
software that uses these interfaces, applications 
specify their required qualities of service (QoS), such 
as latency of event delivery and capacity of a wireless 
link. These QoS requirements are stated in a 
declarative form and  cannot depend on middleware 
implementation details, e.g., they cannot assume that 
inter-process communication is implemented by 
sockets. 

http://diicoe.disa.mil/coe/
http://web2.deskbook.osd.mil/reflib/DAF/035GZ/013/035GZ013DOC.HTM#T2


• A new meta-interface mechanism, operating 
automatically during system development and at run-
time, uses the configuration/control interfaces of the 
(necessarily adaptive and reflective) middleware to 
monitor and enforce the qualities of service specified 
by DRE applications. 

In the MINERS project, we call this meta-interface 
mechanism a Quality Connector.   

The rest of this paper is organized as follows: Section 2 
describes the motivation for–and an overview of–Quality 
Connectors; Section 3 provides a detailed description of 
this concept and illustrates how we are applying it to DRE 
middleware and applications; Section 4 compares the 
MINERS project with related work; and Section 5 
presents concluding remarks and a synopsis of the current 
and future directions of the MINERS project. 

2 Applying Quality Connectors to Optimize 
DRE Middleware Declaratively  

2.1 Background and Motivation 
As commercial and military information technology users 
transition from a platform-centric to network-centric 
paradigm, an important challenge for researchers is to 
develop and evolve assurable, adaptable, and affordable 
standards-based DRE middleware that can be configured 
to implement required end-to-end QoS properties, such as 
predictable latency/jitter/throughput, scalability, 
dependability, and security. The functional interface to 
DRE middleware products can be–and increasingly is–
standardized, yielding well recognized benefits.  In 
addition, many middleware products that implement 
standard functional interfaces are adaptive and reflective 
in the sense described in Section 1, i.e., they permit their 
qualities of service to be manipulated programmatically.  
However, the interface through which such reflection and 
adaptation is accomplished, namely, the quality interface, 
is not yet standardized. Consequently, any system that 
uses the quality interface–as DRE systems in general 
must–loses its infrastructure independence.  

Before describing how we’re addressing this problem on 
the MINERS project, we first describe the two levels at 
which an application can lose its infrastructure 
independence. 

2.1.1 Primary Dependency of DRE Applica-
tions on Middleware 
Primary dependency of DRE applications on middleware 
arises when applications are designed and written to use a 
single infrastructure product, as shown in Figure 1.  
Traditionally, such unique infrastructure products were 
created as part of the same effort that produced the 
applications. Two (historically valid) reasons have been 
used to justify the development of custom application 
infrastructure: 

1. The system required qualities of service (e.g., 
latency or reliability) that were not available from 
any existing functionally appropriate COTS 
infrastructure component; and 

2. No existing functionally appropriate COTS 
infrastructure components would execute on the 
lower levels of infrastructure.  

An example, taken from a production DRE system 
development effort, is as follows:  

• A custom-built database was required because the 
operating system was custom-built and no existing 
database would run on it,  

• Likewise, the operating system was custom-built 
because the hardware was custom-built and no 
existing operating system would run on it, and  

• Likewise, the hardware was custom-built because, 
among other reasons, no existing hardware could 
provide the required I/O throughput. 

Although the initial, non-recurring costs of such systems 
were high, the maintenance costs could be low, simply 
because little maintenance was required: if no 
enhancements to such a system were needed, then it could 
continue to run for many years, subject only to the 
availability of replacement hardware. Unfortunately, these 
systems were often brittle, in the sense that a small 
modification to the software, or a small modification to 
the function of the hardware, would require large-scale 
software changes. Moreover, these systems could not be 
evolved to leverage rapid improvements in COTS 
hardware and infrastructure software. 

Today, the procurement costs of such systems—
particularly mission-critical DRE systems—are often 
unacceptable due to budgetary constraints. Moreover, 
brittle end products are often unacceptable due to  

1.  The rapidly changing nature of mission-critical 
requirements and  

2.  The expanding universe of what is possible. In 
particular, if DRE systems can now support rapid 
response to an international humanitarian crisis, 
commercial aviation free-flight, and coordination of 
autonomous entities to clean up environmentally 
toxic situations, then those possibilities must not be 
foreclosed by the high cost of evolving software. 

Figure 1.  Historical Primary Dependencies 
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Fortunately, the primary dependence of applications on 
middleware can largely be avoided today by adopting 
open standard interfaces for DRE middleware, such as 
Real-time CORBA [11]. For example, Real-time CORBA 
implementations [19] can now be selected and configured 
such that their resource-consumption overheads are low 
enough and their qualities of service are high enough for 
all but the most demanding DRE applications. 

2.1.2 Secondary Dependency of DRE Applica-
tions on Middleware 
Secondary dependency of applications on middleware 
arises precisely from the process of optimizing the 
middleware by selecting implementation and 
configuration options for open standard DRE middleware, 
as illustrated in Figure 2.  

In this paper,  we call these user-selectable values the 
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idiosyncratic mechanisms, such as compilation options, 
link options, run-time environment variables, parameters 
passed to the ORB at initialization, and run-time 
interfaces for property value alteration. For example, 
consider the large-scale, HLA/RTI distributed interactive 
simulation environment described in [2]. In that work, 
numerous critical event-distribution optimizations are 
defined, and the mechanisms by which they were 
implemented are described. Examples of these 
optimizations include  

1. Sophisticated event filtering to limit execution 
overhead and unnecessary data traffic 

2.  Selectable locking strategies for use when the 
implementation is iterating over a set of consumers 
that are to receive an event and  

3. Selectable strategies for the choice of thread that is to 
dispatch an event to a consumer.  

Although these optimizations may be critical to the 
performance of an end system, they are not controllable 
through open standard interfaces. Consequently, DRE 
applications that require specific qualities of services—
even through open standard interfaces—must still be built 
to use specific products, thereby reducing the recurring 
cost savings from using COTS. 

In general, the process of tuning middleware components 
to provide specified qualities of service is hard. The more 
flexibility that a middleware component or framework 
provides, the higher the level of skill required to configure 
its properties. The difficulty of obtaining the required QoS 
for applications in mission-critical DRE systems is 
compounded by the fact that the association of required 
qualities with services may change dynamically when the 
system mode changes, i.e., when some set of events has 
caused a significant change in the operational 
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Figure 2. Secondary Dependencies
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characteristics of the system.  

In DRE systems the time allotted to respond to mode 
changes may be very short. In fact, this requirement is one 
of the key technical differences between mission-critical 
DRE applications and mainstream commercial business 
applications. This issue is discussed further in Section 
3.1.2, System Modes, below. 

2.2 Overview of the Quality Connector  
To address the primary and secondary dependency 
challenges described above, the MINERS project is 
developing a meta-programming mechanism called a 
Quality Connector.  This mechanism allows applications 
to specify the qualities of service they require from their 
middleware. In this way, applications behave analogously 
to an executive who gives a package to his staff with 
direction that it must be delivered within a specified time. 
The Quality Connector acts, analogously to the staff, by 
selecting mechanisms for transport and setting the 
controllable parameters of those mechanisms. The 
position of the Quality Connector in a DRE system is 
illustrated in Figure 3. 



Figure 4 illustrates the means by which a Quality 
Connector fulfills its role. That figure shows application 
programs with associated specifications of their QoS 
requirements, the ingestion of those requirements by the 
Quality Connector, and the adjustment of middleware 
"knobs and dials" by the Quality Connector. Note that the 
applications do not directly manipulate—and thus do not 
depend on—the quality interface to the DRE middleware 
components.  
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Figure 4. The Operation of a Quality Connector 
in DRE Systems 

Quality connectors are implemented in the MINERS 
project as follows.  

1. First, we select a standard middleware service, such 
as the CORBA Event Service, where significant 
variability in QoS is possible across implementations 
of the standard interface. For this middleware service 
we define a set of qualities, such as the end-to-end 
latency of event delivery, that are important to the 
functioning of DRE applications.   

2. We then define a small language in which acceptable 
values (or sets of acceptable values) of these qualities 
can be specified, and we permit the values specified 
to depend on the system mode. We define this 

language using XML so that it can be understood 
readily by humans and parsed easily by COTS tools.  

3. Finally, we provide code-authoring-time, build-time, 
and run-time tools to check for feasibility and 
consistency of the requested quality values, and to set 
the properties of the middleware components to 
provide the required qualities. 

The following section describes Quality Connectors in 
more depth. 

3 Detailed Description of the Quality 
Connector 
The implementation of Quality Connectors differs 
significantly depending on which middleware component 
and which of its interface functions is being addressed. To 
focus the discussion, we will pick one example and 
describe its specification and implementation, indicating 
how the specification and implementation might differ in 
other cases. The example middleware component we use 
is CORBA and the CORBA Event Service, the interface 
function we address is the event channel push(), and 
the property of that interface that we set through the 
Quality Connector is event delivery latency. It will be 
readily apparent that the techniques described here can be 
applied, mutatis mutandis, to many middleware services 
in addition to the CORBA Event Service. 

3.1 Components of a Quality Connector 

The CORBA Event Service Quality Connector, like most 
Quality Connectors, is implemented by several related but 
separate software components shown in Figure 5.  
 

These components behave as follows: 
1. The Static Application Connector component acts on 

the application source code before it is compiled. 
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This component is akin to “aspect weaving”tools, 
such as AspectJ [12]. For example, this component 
can insert calls to run-time quality management 
functions following the creation of a consumer proxy. 

2. The Static Infrastructure Connector component acts 
on the underlying middleware components before 
they are linked into the deployed system. For 
example, this component may set values for options 
before compiling the ORB itself, and it may select 
appropriate infrastructure components from ORB 
run-time libraries. 

3. The Dynamic Connector component is linked in with 
the application and acts during its operation. For 
example, this component allocates resources, such as 
ATM circuits, processors, and radios, to each event 
flow. 

In addition to the preceding essential components of the 
CORBA Event Service Quality Connector, there are 
several optional support components, such as  

• Configuration tools that assist system engineers in 
selecting compatible sets of infrastructure 
components that implement required services and  

• Simulation tools to determine whether locally 
specified qualities of service will combine to meet 
system-level requirements.  

These support components will not be further addressed 
in this paper. 

3.2 Background 
This section provides a brief overview of event channels, 
which are a key component in the CORBA Event Service. 
We emphasize the choices and properties open to a DRE 
application implementation. In addition, the concept of 
system mode is described in more depth. 

3.2.1 Synopsis of the CORBA Event Channel 
CORBA event channels provide decoupled 
communications between suppliers and consumers of 
data, as shown in Figure 6. An event channel logically 
mediates the communication from each supplier to all 
consumers, e.g., the actual communication can use 
multicast. In many implementations, however, event 
channels physically mediate these communications, e.g., 
all events are routed through a separate process where an 
event channel resides. In either case, the communication 
between suppliers and consumers is “decoupled” in the 
sense that  

1. It is asynchronous, i.e.,  consumers will receive data 
after a supplier has completed its push() operation, 
and  

2. The suppliers and consumers need not be aware of 
each other's identities.  

There is no pre-defined limit on the number of suppliers 
and consumers that can be connected to an event channel 
at any time. Moreover, they can connect and disconnect at 

any time. There may be many event channels active at one 
time in a DRE system. 

Supplier 1

Supplier 2

Consumer 1

Consumer 2

Consumer 3

Event C
hannel

push()
Proxy

Consumer

Proxy
Consumer

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

push()

push()

push()

push()

 
Figure 6. A Simple CORBA Event Channel 

In this paper, we emphasize the “push” model of event 
delivery, where a supplier invokes a push(data) 
method to supply any type of data, and the event channel 
causes push(data) methods to be invoked on all 
consumers registered with that event channel. In addition 
to the “push” model, there is also a “pull” mode of event 
delivery, which we do not address further in this paper. 

The CORBA specification leaves many aspects of event 
channel behavior unspecified intentionally. For example, 
the following properties of event delivery are not 
specified: 

1. Latency of event delivery 
2. Where and how often event data are copied 
3. Threading and synchronization policies for event 

dispatching 
4. What communication mechanism is used to convey 

the event data from the supplier to the consumers; 
e.g., which of several radio channels will be used 

5. How and where event data are buffered, and how 
big event data buffers are 

6. What happens when an event data buffer overflows 
7. Reliability of event delivery 
8. Whether events from one supplier will be delivered 

to each consumer in the order in which they were 
supplied 

9. If supplier Alpha supplies an event E1 to an event 
channel, and only after consuming E1 does Beta, 
who is both a supplier and consumer, supply an 
event E2 to the same event channel, and if consumer 
Omega consumes both events, must Omega receive 
E1 before E2? 

10. If a consumer connects to an event channel, and if 
an event is supplied to that channel one minute later, 
will that consumer receive that event? Does the 
answer depend on whether the supplier and 
consumer are on different continents? 



Different implementations of the CORBA Event Service 
[2] provide different APIs for controlling the various 
properties outlined above. Applications that do not 
address these variations are therefore prone to the 
secondary dependencies described in Section 2.1.2. 
 
3.2.2 Mission-Critical System Modes 
Mission-critical systems are often characterized as a 
hierarchy of parts, which we call configuration items. A 
configuration item may be small (such as a board in a 
computer) or large (such as a ship). A configuration item 
may exist statically (as does a router) or may be created 
and destroyed dynamically (as is a thread within a 
process). Configuration items may contain other 
configuration items; this containment relation forms a 
directed acyclic graph.3  

We assume that every configuration item is always in one 
of a fixed, finite set of states. For example, a workstation 
may be in a training state or an operational state, and a 
radar may be in a search state, tracking state, self-test 
state, or off-line state. The state of a configuration item 
may (but need not) be a function of the states of its 
contained configuration items. 

Now we can define a system mode as a Boolean function 
on the states of its constituent configuration items. For 
example, “the ship is in battle state” is a mode, and “all 
ATM backbone configuration items are in their 
operational states” is a mode. The value of a mode can 
change abruptly. For example, the failure of a component 
can affect modes. 

The qualities of distributed communication services that 
applications require will differ in different modes. For 
example, a crew entertainment video that is distributed 
over a shipboard backbone network requires a low jitter, 
and therefore constitutes a high priority4 flow of 
information. However, when the platform enters battle 
mode due to the detection of an incoming anti-ship cruise 
missile, then the priority of the crew entertainment video 
must drop rapidly. Similarly, the importance of processes 
within a nuclear reactor control system might be expected 
to change when the reactor enters the “over-temperature” 
mode. The mode-change problem is addressed by 
permitting applications to specify QoS as a function of 
mode. The result is that resource allocations can be made 
in advance of their need. 

                                                 
3 The containment relation on configuration items need 
not form a tree or set of trees since some configuration 
items may be part of several others; e.g., a LAN may be 
part of the combat system configuration item and part of 
the command and control system configuration item. 
4 This notion of priority will be refined in Section 3.3 
below, where we call this property of the video flow its 
urgency. 

A related problem arises when a mode changes but QoS 
requirements do not change. When the failure of a 
resource, such as a LAN, occurs and requirements which 
that LAN had been supporting remain in effect, then new 
resources must be identified and configured into operation 
as quickly as possible. This operation is often called “fault 
reconfiguration.” 

3.3 Quality Connector QoS Specification 
The problem of how to specify the required QoS is 
surprisingly subtle, even when the quality in question is 
simple, such as latency. “Worst case” bounds are the 
obvious choice. But if “worst case” is interpreted 
literally–for example, that the latency of message delivery 
will never, under any circumstances, exceed a specified 
time limit–then such bounds are clearly not feasible in 
practice because no infrastructure is infinitely reliable. 
Moreover, many infrastructure components have no fixed 
response time, but rather a distribution of response times, 
which often has a long tail, as shown in Figure 7. 

This distribution applies to operations such as task 
dispatching (due to such influences as priority inversions 
and interrupt lockout by device drivers), and even to 
straight-line code execution (due to cache state). If 
resources were allocated to support the actual worst case, 
then resource utilization would inevitably be very low, 
which can render a DRE system ineffective in practice. 

If there is a primary factor that distinguishes the QoS 
requirements of DRE systems from those of “best-effort” 
commercial systems, it is this: best-effort commercial 
systems are concerned primarily with average values of 
qualities of service, while DRE systems are concerned 
with extreme values of their distributions. 

Instead of worst case bounds, therefore, we assume that 
latencies will be constrained by a conjunction of one or 
more conditions of the form “<proportion> of latencies 
shall be less than or equal to <time-interval>.” For 
example, a QoS specification for latency might be “99% 

Figure 7. Problem with "Worst Case" Analysis 
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of latencies less than or equal to 1.0 seconds and 99.99% 
of latencies less than or equal to 4.0 seconds.” 

It should be noted that the preceding is a special case of a 
much more general and powerful technique, which we 
call probability assertions. A probability assertion about a 
distribution of values is the assertion that the cumulative 
density function of the distribution in question lies 
entirely between an upper bounding function and a lower 
bounding function. In the preceding example, only an 
upper bounding function is specified, and that is a step 
function. Since the generality of probability assertions is 
not essential to the present discussion, this subject will not 
be treated in detail here. 

In addition to specifying the QoS required from the 
middleware service, the application must also bound the 
load that it will impose on the service. Such a bound is 
necessary not only to assess whether the service can 
handle the load at the specified QoS, but also to determine 
whether future service requests can share resources with 
the current service request. For a CORBA Event Service, 
the load consists of the distribution of event sizes in bytes 
and the distribution of inter-service-request times.  

A convenient choice for specifying the distribution of 
inter-event times is to use token buckets [3], which are a 
means to express constraints on sequences of events in 
time. A token bucket constraint is specified in terms of a 
container of fixed size – the bucket – into which tokens 
periodically fall. No event can take place until an 
appropriate number of tokens are present in the bucket.  

Although token bucket specifications are simple, portable, 
and define realistic traffic distributions, they are not 
sufficiently expressive for our purposes. For example, one 
cannot use token buckets to specify either a strictly 
periodic load nor a purely random, Poisson-distributed, 
load, both of which are important in the DRE domain. 
Fortunately, probability assertions are adequate, e.g., a 
probability assertion on the inter-event time distribution 
can specify that events will be no more frequent than 
Poisson-distributed with a mean of 4 events per second, 
and no two consecutive events will be closer together than 
0.01 seconds. Again, this generality is not essential to the 
present subject, and only simple special cases will be used 
here. For a reason that will be clear shortly, the 
combination of a mode, a QoS specification, and a load 
specification is called a “proposal.” Figure 8 presents the 
proposal alluded to above, expressed in XML. 

The proposal in Figure 8 applies only when either of a 
pair of tactical military or emergency response team 
radios is on-line. In that case, the time between a 
supplier's push() call and all consumers' corresponding 
push() calls for every event are to be less than 1.0 
second 99% of the time and less than 4 seconds 99.99% 
of the time. The sizes of the event data are always at most 
256 bytes, and 50% of the time are less than or equal to 
32 bytes. The supplier's push() calls occur periodically, 

once per second. Note that the priority of the request 
consists of two integral values: urgency and importance: 

• The urgency of a request determines which of several 
eligible requests will get access to a shared resource. 
For example, if either of two packets of data could be 
sent over a communication link, the packet with the 
higher urgency will be sent.  

• The importance of a request determines which of two 
requests (both of which cannot be supported) will be 
accepted. For example, if both of two requests for 
event data propagation cannot be supported on the 
present infrastructure, then the request with the 
higher importance will be accepted and the other will 
be rejected. Moreover, if a new request for service is 
received, and that request can be accommodated only 
if some currently operating, lower importance service 
is shut down, then that will be done; in this case, we 
say that the lower importance request are abrogated. 

<proposal>

<mode>
<or>

<ci name=
<ci name=

</or>
</mode>
<QoS type="late

<upperPoint
<upperPoint

</QoS>
<load type="int

<upperPoint
<lowerPoint

</load>
<load type="mes

<upperPoint
<upperPoint

</load> <load t
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At execution time, DRE application software generally 
submits its proposal to a Quality Connector before 
making any use of the associated service, such as the 
CORBA Event Service. If the Quality Connector 
determines that the requested QoS can be provided, then 
the Quality Connector sets whatever control parameters 
are necessary to configure the middleware service, and 
returns an indication of acceptance to the application. 
Thereafter, the application can use the service and receive 
the QoS it requires. If the Quality Connector determines 
that the requested QoS cannot be provided, it returns an 
indication of rejection to the application. 

Although it would be possible to apply a QoS property, 
such as end-to-end latency, to an event channel as a 
whole, this would not be acceptable in applications with a 
wide variation in propagation distances. For example, 
consider a coordinated group of autonomous vehicles that 
supply "Here I am" messages to an event channel. It 
might generally be desirable that these messages be 
received quickly by other vehicles in the group.  A much 
larger latency might be permitted, however, to messages 
received at a central monitoring function, located several 
satellite hops away. As a result, we permit different QoS 
values to be specified at each supplier and consumer 
proxy. In the autonomous vehicles example, for instance, 
suppliers would specify no latency, consumers on the 
vehicles would specify a short latency, and the consumer 
at the central monitoring function would specify a longer 
latency.  

Note that there is no conflict possible between different 
QoS values set at suppliers and consumers. If a supplier 
requests a latency of 1 second, and a consumer on the 
same event channel requests a latency of 2 seconds, and if 
the Quality Connector accepts both proposals, then both 
proposals must be honored. In this case, the latency from 
the supplier to consumer must not exceed 1 second. 

3.4.2 Program-Generation-Time Interaction 
For the preceding run-time interaction between the 
application and a Quality Connector to occur, application 
software must be modified somehow. In particular, the 
QoS proposal must be delivered to the Quality Connector 
run-time component  at some point between the creation 
of an event channel proxy and the supplying or 
consuming of an event through that proxy. In our 
implementation, aspect-oriented programming (AOP) 
techniques [4, 26] are the means by which system 
designers specify the following information to a Quality 
Connector: 

1. The identity of the push() call to which a proposal 
applies and  

2. The modifications that the Quality Connector must 
apply to the generated application.  

In our work thus far, the following AOP features of 
AspectJ [12] appear to be adequate for the applications 
envisioned in MINERS: 

• Join points are the mechanism used in AspectJ to 
select locations in the program source code at which 
to apply designated modifications to the code.  

• After advice is one style of such modification, which 
takes the form of adding code following the selected 
locations. 

3.5 Implementation 
Implementing end-to-end QoS guarantees for a service 
requires that all components that participate in providing 
the service be represented by software avatars. An avatar 
is a software object that represents a component to the 
Quality Connector function  of the middleware, as shown 
in Figure 10.  

 

Hence an avatar must be able to report what QoS the 
component is presently providing, and what QoS the 
component would provide if a specified additional load 
were added. In addition, an avatar provides the interface 
through which the Quality Connector function configures 
the properties of the component.  

The use of avatars to support run-time negotiations for 
QoS-constrained DRE application services was 
demonstrated by one of us (Cross) using the Real-time 
CORBA ORB [19] implemented by the other (Schmidt). 
We provided an interface through which suppliers and 
consumers of events to a real-time event channel could 
request specific qualities, such as latency, of the push 
event delivery service. That request was forwarded to the 
event channel object itself, which negotiated with the 
available avatars to obtain the requested QoS. The result – 
success or failure – of those negotiations was then 
returned to the application-level requestors. 

Note that the greater the configurability that the 
components provide, the greater the opportunity for 
middleware to support changing conditions, where such 
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changes may take place over periods of milliseconds, 
days, or even years. Conversely, the absence of 
configuration control capabilities and information about 
service components, such as an ORB that cannot be told 
how big to make its buffers or how big its default buffer 
sizes will be, has the result that no QoS can be guaranteed 
for services that use the component. 

In the present example, we are concerned with the 
configurability of a CORBA Event Service. Such 
configuration may involve ORB parameters that are 

1. Set on ORB initiation 
2. Changed during execution and 
3. Included in interface calls, such as on event channel 

creation and on a push() invocation.  
Clearly, more detailed discussion of these configuration  
issues depends entirely on the ORB implementation that 
is used. 

4 Related Work 
Our work on Quality Connectors complements the work 
being done by the DARPA Quorum program [5]. 
Quorum’s goal is to develop technologies to allow tactical 
applications with mission-critical performance 
requirements to dynamically access distributed COTS 
resources with guaranteed quality of service. Applications 
negotiate service contracts with the system, which are 
then enforced through layered resource management 
mechanisms and maintained through continual 
monitoring, adaptation, and feedback control.  
 
The BBN Quality Objects (QuO) framework [6] is a 
Quorum project that uses QoS definition languages [7] 
that are based on the separation of concerns promoted by 
AOP [4] (see below). A significant difference between the 
MINERS approach and that of QuO is that MINERS 
relies on an explicit specification of resource 
requirements against system state to provide immediate 
access to those resources when a change occurs, rather 
than relying on the gradual adaptation of resource 
allocations to changing demand.  
  
The Distributed Multimedia Research Group at Lancaster 
University has proposed and implemented a prototype of 
next-generation reflective middleware [21, 22] called 
Adapt. Their middleware model concentrates on dynamic 
composition of objects through open-binding, which (1) 
allows object implementations to be configured 
dynamically and (2) determines various aspects of object 
implementations, such as adding or removing methods 
from an object. The Adapt project model also facilitates 
QoS properties management and monitoring. Compared 
to the Adapt project, MINERS concentrates on identifying 
and using meta-programming techniques to implement 
and improve the implementation of an existing 
middleware standard (CORBA), whereas the Adapt 
project defines and implements the meta-space of a new 
middleware framework at a higher level. 

 
The Real-time (RT) CORBA 1.0 specification [11] 
extends the Object Management Group (OMG) CORBA 
standard to support real-time distributed, object-oriented 
applications. The initial 1.0 version of the RT CORBA 
specification focuses on fixed-priority applications to 
ensure end-to-end predictable behavior for information 
that flows between distributed objects. It does this by 
giving developers explicit control over allocation and use 
of the following resources: 

•  Processor resources are configured and controlled 
using thread pools, priority control and 
synchronization mechanisms.  

• Communication resources are managed through the 
ability to specify protocol properties and by making 
explicit bindings to communication resources.  

• Memory resources are managed through buffering 
requests and limiting thread pool sizes.  

• A global scheduling service is also available [20]. 
 
In addition to RT CORBA, the CORBA Notification 
Service incorporates important QoS and filtering features 
into the previously defined CORBA Event Service. These 
middleware capabilities, appearing in an open 
specification that is independent of platform, OS, and 
vendor-specific communication mechanisms, offer a solid 
foundation for an open implementation of meta-
programming interfaces. 
 
The dynamic TAO [23] and Reflective CCM [24] projects 
have demonstrated that CORBA can be reconfigured at 
run-time by dynamically linking and unlinking certain 
components. Similarly, AspectIX [25] is a novel 
CORBA-compliant middleware architecture that defines 
and describes QoS requirements on a per-object basis 
independently from functional interfaces. Clients in 
AspectIX systems are allowed to set the QoS aspects of 
objects. Systems may adapt, report aspect changes back to 
clients, or reflect to clients on how to adapt. The MINERS 
work, however, also focuses on QoS adaptation as a 
deployable entity in the system to standardize and 
automate the server-side QoS control/adaptation issues. 
 
Our approach to specifying QoS at the application level in 
a form that is relatively independent of the functional 
behavior of the application is facilitated by the emerging 
research in Aspect Oriented Programming (AOP) [26]. 
Work in this area is underway in various places, including 
Xerox PARC [4], IBM [13], MCC [14, 15], Northeastern 
University [16], and the University of Twente [17]. We 
have chosen to use AspectJ [12],  which is an aspect-
oriented extension to the Java programming language. 
AspectJ addresses the problem of crosscutting concerns 
by extending Java with constructs that can be used to 
implement such concerns in a modular way.  AspectJ is in 
the late beta stages of development, yet promises to 
provide more generalized aspects than much of the related 
work being done in this area. 
 



A related area of research is Generative Programming 
[18], which is an approach to constructing systems that 
involves modeling an entire family of systems. Given 
requirements for a particular member of that family, this 
approach generates that member as a composition of 
elementary components. Both AOP and Generative 
Programming are being explored in the context of the 
DARPA PCES program [27]. The IETF has specified 
mechanisms for scalable differentiated [8, 9] and 
integrated [10, 3] classes of service on the Internet.  
 
A number of enabling technologies are emerging that will 
make it possible to implement meta-interface mechanisms 
more easily in the future. Available at different levels, 
including the middleware itself, these technologies 
provide various forms of support for QoS. 

• Differentiated services (DiffServ) provide QoS using 
a small, well-defined set of building blocks from 
which a variety of aggregate behaviors may be built. 
Service characteristics may be specified in 
quantitative or statistical terms of throughput, delay, 
jitter, and/or loss, or they may be specified in terms 
of priority of access to network resources.  A small 
bit-pattern in each packet is used to mark the packet 
to receive a particular forwarding treatment, or per-
hop behavior, at each network node along its path. 
The DiffServ specifications provide a common 
understanding of the use and interpretation of this bit-
pattern. Sophisticated classification, marking, 
policing, and shaping operations can now be 
implemented at network boundaries or hosts.  
Network resources are allocated to traffic streams by 
service provisioning policies which govern how 
traffic is marked and conditioned upon entry to a 
differentiated services-capable network, and how that 
traffic is forwarded within that network. 

• Integrated services (IntServ) provides the ability to 
transport audio, video, real-time, and data traffic 
within a single packet switched network 
infrastructure. IntServ defines a minimal set of global 
requirements and services which transition the 
Internet into an integrated-service communications 
infrastructure. It includes interfaces to specify an 
application’s end-to-end QoS requirements. 

5 Concluding Remarks and Future Directions 
COTS middleware has become more capable and the 
proportion of mission-critical system requirements that 
cannot be met using COTS middleware is shrinking 
dramatically. This trend applies even to mission-critical 
DRE systems, such as ship-board combat systems and 
commercial avionics mission computing systems, that are 
subject to stringent reliability and quality of service (QoS) 
requirements.  The result is a reduction in the initial, non-
recurring cost of these systems. 

COTS middleware is playing an increasingly important 
role in developing mission-critical DRE systems due to 

• Economic and organizational constraints, such as 
severely constrained procurement budgets, and the 
movement toward prime-vendor support contracts 
that allocate the uncertainty in system maintenance 
costs to the developing contractor; 

• Increasingly complex system requirements, such as 
Global Air Traffic Management (GATM) 
requirements for military aircraft that fly in 
commercial airspace; and  

• Competitive pressures, such as enticements for 
scientists and engineers from many sectors of the 
global economy.  

Thus, the potential affordability gains offered by COTS 
middleware have become strategically important. 
Without a product- and component-independent 
mechanism for optimally configuring COTS middleware, 
however, this affordability gain is threatened.  

Our experience developing previous generations of 
complex DRE systems [2, 5, 19, 20] illustrates that 
effective operation, interoperability, and integration 
requires more than individual COTS standards and tools.  
Instead,  it requires that adaptability, assurability, and 
affordability be designed into DRE system/network 
architectures a priori. Researchers have a pressing need, 
therefore, to coordinate individual advances in the COTS 
solution space that are being addressed by different 
sectors of the R&D community.   

The problems faced by researchers and developers of 
DRE systems are highly challenging, with many 
interlocking aspects.  Unless pieces of the emerging, 
independently developed, COTS solutions can be 
delivered to application designers as coordinated, 
integrated packages, their value will be diminished and 
may in fact make matters worse instead of better, e.g., due 
to excessive costs for COTS refresh and integration. This 
paper proposes a meta-programming mechanism called 
Quality Connectors that allow a variety of separately 
developed, and continuously evolving, tools and 
components to appear to application designers as an 
integrated, coordinated, and stable infrastructure. A 
Quality Connector provides this appearance by 
encapsulating the various configuration and control 
mechanisms provided by COTS middleware, and 
exposing a stable, QoS-based interface to applications.

Implementation of the capabilities described in this paper 
is underway in the MINERS project at Lockheed Martin 
Tactical Systems, in Eagan, Minnesota, as part of the 
DARPA PCES Program [27]. We are using the TAO RT 
CORBA ORB [19], which is a highly configurable 
middleware component designed to support DRE 
applications with demanding QoS requirements.  In the 
longer term, if the mission-critical, real-time embedded 
system community can achieve a shared understanding of 
what qualities of services need to be specified and how to 
specify them, then we envision the availability of DRE 
middleware that is designed to be configured to meet such 



requirements, and the development of applications that 
include their QoS requirements as part of their design. 
Such applications should be be far more stable over 
evolving infrastructure than current applications. 
Moreover, such applications might be verifiable 
independently of any infrastructure, based on their QoS 
requirements, which will substantially reduce costs in 
mission-critical DRE applications. 
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