Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

A Support Environment for
MAC-8 Systems

By H. D. ROVEGNO
(Manuscript received January 27, 1978)

|}

An integrated sofiware system based on the UNIX* system has been
developed for support of the Bell Laboratories 8-bit microprocessor,
MAC-8. This paper discusses the UNIX influence on the MAC-8 project,
the MAC-8 architecture, the software development and hardware proto-
typing system, and MAC-8 designer education.

I. INTRODUCTION

Today’s microprocessors perform functions similar to the equip-
ment racks of yesterday. Microprocessor devices are causing a
dramatic shift in the economics of computer-controlled systems:
product costs and schedules are influenced more by the system
architecture and support environment than by the cost or speed of
the microprocessor itself. In recognition of this phenomenon, Bell
Laboratories has recently introduced a complete set of development
support tools based on the UNIX system for its 8-bit microprocessor,
MAC-8.1-2 This paper presents an overview of the MAC-8 architec-
ture and development system.?

Development of a microprocessor-based application consists of
two activities:

(/) Design, construction, and test of the application’s hardware.
(i/) Design, construction, and test of the application’s software.

* UNIX is a trademark of Bell Laboratories.

2251

The development support system described here assists the applica-
tion designers in both areas. For the hardware designers, a proto-
typing system that permits emulation as well as stand-alone monitor-
ing of the application’s hardware is provided. For the software
designers, a high-level language (C), flexible linker-loader, and
source-oriented symbolic debugging are supplied. The combination
of these tools provides the application designer with a complete and
integrated set of tools for system design.

Il. WHY UNIX?

At the outset of the MAC-8 development, it was recognized that
use of an embedded microprocessor would increase the complexity
and the scope of applications rather than simply lowering their costs.
The tools of the future were going to be programming, documenta-
tion, and simulation tools. Considered in this light, a UNIX4 S sup-
port environment was a natural choice. UNIX possessed many desir-
able attributes of a “host” environment by providing sophisticated
tools for program development and documentation in a cost-
effective and highly interactive system. There was already
widespread use of the UNIX system not only as a development vehi-
cle in the Business Information Systems Program,® but also as part
of many “embedded” applications.

Il. WHY C?

While the choices of host system and programming language(s)
are conceptually independent, there is obvious merit in the con-
sistency of languages and systems. The C language’ was an obvious
choice because it offers high-level programming features, yet also
allows enough control of hardware resources to be used in the
development of operating systems.

IV. MAC-8

The MAcC-8 is a low-cost, single-chip, bus-structured, CMOS
microprocessor, whose architecture (Fig. 1) was inflyenced by the C
language. Its major features are:

(/) MAcC-8 chip, packaged in a 40-pin DIP (dual in-line package),
which measures 220x%230 mils and uses over 7000 transistors.
The chip combines the low power dissipation of CMOS with

2252 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

CONTROL /
LOGIC 1 i N ALU
ARRAY LOGIC
N7 V] ARRAY
INTERNAL CONTROL IR I [CR A
Z = L
F u
L
oaTa /N DATABUS c
BUS LATCH/ INTERNAL DATA BUS G 0
NV DRIVE N
J T
D/s R
______ _I O
L
| PC ALU -
16 |
pata AN OFF—CHIP PN P N
BUS WORKING || AAU
N"V| REGISTERS| | RP
(RAM) | N~ 1
: 4 |7 T16

(ir)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)

- OPCODE

7

ADDRESS EUSJ

Fig. 1 —MAc-8 block diagram.

the gate density of pseudo-NMOS (NMOS with a shared p-
channel load transistor).

16 registers in RAM (random access memory) that are pointed
to by the register pointer (a MAC-8 on-chip register). Because
of this, the full set of registers can be set aside and a new set
“created” by executing only two MAC-8 instructions, which is
particularly useful to compiler function-call protocol.

65K bytes addressable memory space with DMA (direct
memory access) capability.

Flexible addressing modes: register, indirect, direct, auto-
increment, immediate, and indexed.

Communication-oriented cPU (central processing unit) with a
wide variety of 8- and 16-bit monadic and dyadic instructions,
including arithmetic, logical, and bit-manipulation instruc-
tions.

Flexible branch, trap, and interrupt handling.

Processor status brought out to pins, which permits monitor-
ing of CPU activity.

Internal or external clock.

Figure 1 is a block diagram of control. The major blocks are:

(i)

Control Logic Array directs the CPU circuitry through the vari-
ous states necessary to execute an instruction.

MAC-8 SYSTEMS 2253

(ii) 4LU, or Arithmetic Logic Unit, performs arithmetic and logi-
cal operations.

(iii) ALU Logic Array controls the operation of the ALU, managing
the condition register (CR) flags.

(iv) 44U, or Address Arithmetic Unit, computes the address in
parallel with the ALU operations.

(v) Programmable registers include the program counter (PC),
stack pointer (SP), condition register (CR), and register
pointer (RP).

(vi) Internal registers include instruction register (IR),
destination/source register (D/S), and temporary storage regis-
ter (T16).

V. DEVELOPMENT ENVIRONMENT

The MAC-8, development system (Fig. 2) is an integrated set of
software tools, including a C compiler, a structured assembler, a
flexible linking loader, a source-oriented simulator, and a source-
oriented debugger. All the tools except the debugger reside on

c ASSEMBLER
SOURCE SOURCE
COMPILER ASSEMBLER

— ——

RELOCATABLE OBJECT MODULES
L . L

i ’ > LINKER
MEMORY LAYQUT * RUN TIME LIBRARY
DIRECTIVES

LOAD MODULE

Y \ \ R

SIMULATOR PLAID

Fig. 2—Mac-8 development system.

2254 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

UNIX; the debugger resides on a hardware prototyping system called
PLAID (Program Logic Aid).

The following sections present a brief discussion of each of those
tools.

There is a consistent user interface to all the tools that includes C
syntax input language, UNIX file-oriented inter-tool communication,
and names analogous to those of the corresponding UNIX tools, e.g.,
m8cc and m8as.

5.1 MAC-8 C compiler

The MAC-8 C compiler permits the construction of readable and
modular programs, due to its structured programming constructs,
high-level data aggrepates, and a powerful set of operators. C is a
good language for microprocessors® because it gives control over
machine resources by use of primitive data types such as register,
character, and pointer variables, and “machine-level” operators such
as indirection, “address of,” and post/pre- increment/decrement.

5.2 MAC-8 assembler

The MAC-8 assembler is a conventional assembler in that it per-
mits the use of all hardware instructions; it differs from conven-
tional assemblers in the following ways:

(i) The language has C-like syntax as illustrated in Fig. 3. For

#define NBYTES 100
char array[NBYTES];

[
+ Calculates sum of array elements
«/
sum()
{
b0 = &array;
al = 0;
for (a2 = 0; a2 < NBYTES; ++a2) {
al =+ bO;
++b0;

Fig. 3—Mac-8 assembler example.

MAC-8 SYSTEMS 2255

example, a move instruction looks like a C-like assignment
statement. Data layout is accomplished by C-like declarations.
(i/) The language has structured programming constructs (e.g.,
if-else, for, do, while, switch) that permit one to write read-
able, well-structured code at the assembly level. Each con-
struct usually generates more than one machine instruction.

The reserved words in the language identify the MAC-8 registers
and also include many of the reserved words of the C language.
The #define and #include, as well as the other features of the C
preprocessor, are supported by the assembler.

5.3 MAC-8 loader

The diverse nature of microprocessor applications with their
different types of memories and, often, noncontiguous address
spaces requires a flexible loader. Besides performing the normal
functions such as relocation and resolution of external references,
the MAC-8 loader has the following features:

(/) Definition of a unit of relocation (section).

lowmem { f4.o(text))

text {.=0x100}
.data { .=0x5000 }
bss [.=0x8000 }
fl.o
f2.0
bss {
.=(.+ 7) & Oxfff8
_RPORG =.
f3.0(.bss)
_SPORG = —1
}
highmem {
.=0xa000
f3.o(.data)

Fig. 4—Input specification.

2256 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(i) Assignment of values to unresolved symbols.
(iii) Control of the location counter within sections.

These additional features are specified by an input language that
has C-like syntax. For example, the input specification of Fig. 4 will
take the relocatable object files (output of the compiler or of the
assembler) of Fig. 5a and create the absolute binary output files
depicted in Fig. 5b. Fig. 5a consists of four files, the first three con-
taining three sections each, namely .text, .data, and .bss, and the
last just .text. _RPORG and _SPORG are unresolved symbols that will

f1.
2 0000
text 14,0 (.text)
.data —_—
—
-
.bss ~ 0100
~
A f1.0 (.text)
f2.0 (.t
f2.0 o (-text)
.text 3.0 (.text)
.data e — — — —
bss 5000
1.0 (.data)
2.0 (.data)
f3.0
text 8000
1.0 (.bss)
.data —_ T T e
2.0 {.bss)
.bss ~~ RPORG
3.0 (.bss)
~=SPORG
4.
° a000
4
-~ 3.0 (.data)
(a) | .text - (b)
—_—
FFFF

Fig. 5—Loader example.

MAC-8 SYSTEMS 2257

when (23'funct || glo == 4) {
if (flag'funct) {
display i, w;
userblock;
continue;

}
else display ar'[0] : arln]l, m'+86;

Fig. 6—MAcC-8 simulator example.

determine initial values of the register pointer and stack pointer,
respectively. The expression .= (.+ 7) & Oxfff8 aligns the f3.0
(.bss) on a 8-byte boundary.

5.4 MAC-8 simulator

The MAC-8 simulator runs on the UNIX host system and permits
debugging of MAC-8 programs without using MAC-8 hardware. The
simulator is “source-oriented” and “symbolic,” which means that
programs can be debugged by referencing variables and function line
numbers in terms used on the source listing (compiler or assem-
bler). The symbolic debugging permits the debugging of a C pro-
gram without worrying about the code generated by the compiler, as
illustrated in Fig. 6. The simulator also allows conditional execution
of pre-stored procedures of commands and the specification of C
expressions containing both user-program and debug symbols, mak-
ing possible the composition of debugging experiments in an interac-
tive fashion. The C-like input language minimizes the difficulties in
changing from one software tool to another. The major features of
the MAC-8 simulator are:

() Loading a program and specifying a memory boundary.
(ii) Conditional execution of code and semantic processing when
a break point is encountered.
(iiif) Referencing C identifiers (both local and global) and C
source-line numbers on a per-function basis.
(iv) Defining a command in terms of other commands to mini-
mize typing.
(v) Displaying timing information.
(vi) Displaying items in various number bases.
(vii) Allocating non-program, user-defined identifiers.

2258 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(viii) Execution of input commands read from a file on an interac-
tive basis.

(ix) Some structured programming constructs, including if-else
and while.

The command illustrated in Fig. 6 will cause a break point when
the program executes line 23 of function func1 or
the global variable glo is equal to 4.

When the break point occurs, if the value of local variable flag of
function func1 is non-zero, the values of local variable i and global
variable w are printed, the user-defined block userblock is exe-
cuted, and execution continues; otherwise the contents of local array
ar for subscripts 0 through » and the value of the expression m'+6
are printed.

5.5 Utilities

Utilities and a library are necessary parts of a support system. The
MAC-8 system not only has utilities (like the UNIX system) for deter-
mining the size of an object file and the contents of the symbol
table, but also a disassembler, a function line-number listing pro-
gram, and a program to format an object file to permit “down-line™
loading into the MAC-8-based application.

5.6 PLAID

A microcomputer-based application or target system typically
differs from the host system on which it was developed, particularly
in its periphery. Development of a microprocessor application
requires hardware/software tools that allow development and debug-
ging in real-time of the target processor and the periphery of its
application. The PLAID (Program Logic Aid) system described
below is such a tool.

The PLAID hardware includes two MAC-8 systems, each with full
memory, and an associated hardware monitor system in a
configuration that permits one MAC-8 system (the master) to closely
monitor and control the other MAC-8 (the slave). Each MAC-8 has
separate 1/0, allowing connection to various peripheral devices from
the master, and to the application hardware from the slave. The
monitor hardware includes various debugging aids, as well as the
MAC-cable that allows in-circuit control of any MAC-8 system.

MAC-8 SYSTEMS 2259

SLAVE MAC-8 MASTER MAC-8

fe—— UNIX
OMA SPS
MAC -
CABLE USER
USER PROGRAM TGO
SYSTEM
HARDWARE M8db
lt—m USER
65K TERMINAL
1/0 DEVICES

Fig. 7—Level-1 PLAID.

The PLAID software system includes the Satellite Processor System
(sps), which communicates with a host UNIX system, performing
operating system functions for the master and monitor hardware,
and m8db, a source-oriented symbolic debugger whose capability is
similar to the MAC-8 simulator with the addition of real-time break
points by use of the PLAID monitor system.

In the early stages of development, a fully-instrumented MAC-8
within the PLAID serves as the processor for the target machine,
where in later stages, the PLAID monitors and controls the prototype
system. Level-1 PLAID is illustrated in Fig. 7. Work is being done
on level-2 PLAID, illustrated in Fig. 8. The fundamental difference
in hardware between levels 1 and 2 is in the master system, which
in level 1 contains a 32K PROM (programmable read-only memory)
and a 16K RAM, while level 2 contains a 65K RAM and a dual-drive
double-density floppy disk. The sPs executive is replaced in level 2
by a single-user UNIX system; the debugger can be swapped in from
the floppy disk, as can other tools.

The satellite processing system of level 1, which is functionally
similar to the system described in Ref. 9, resides in the master and
controls the flow of program execution. SPS permits communication
with a host UNIX system via a dial-up connection, and performs the
operating system functions for m8db, such as control of the master
and monitor hardware. Any UNIX command can be entered at the
user terminal (see Fig. 7) and sPS determines whether the command
will be processed by PLAID or must be transmitted to UNIX. The SPS
interface to m8db consists of UNIX-like system calls.

The PLAID-resident symbolic debugger, m8db, has a command
language which is a superset of the MAC-8 simulator. The additions
to the language permit the referencing of the PLAID monitor system

2260 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

SLAVE MAC-8 MASTER MAC-8

SINGLE UNIX
oM | Unix
MAC
CABLE USER
USER <— pROGRAM
SYSTEM MONITOR
HARDWARE
fa—s USER
65K TERMINAL
1/0 DEVICES FLOPPY DISK

Fig. 8—Level-2 PLAID.

hardware to establish real-time breakpoints. m8db has all the
features mentioned in Section 5.4, as well as facilities to help debug
programs in real time.

The MAcC-cable is the channel of communication between the
PLAID and the application hardware, and permits control of the
MAC-8-based system. During the initial stages in the development
of an application, the MAC-cable permits testing out of the slave’s
MAC-8 and memory, while using the application’s I/0. As the
development progresses, the MAC-cable permits testing the
application’s hardware, including its MAC-8 and memory.

The PLAID monitor system keeps track of the actions of the slave
or user system enabling the debugging of MAC-8 applications in a
real-time environment. The major features of the PLAID monitor
system include:

(i) Memory monitor contains a 65K by 4-bit dynamic RAM that
enables trapping (“break-pointing”) on a variety of conditions
such as:

(a) Memory read, write, or reference.
(b) Arbitrary 8-bit pattern in memory.
(ii) Register monitor enables “break-pointing” on a read, write, or
reference of any of the MAC-8 off-chip registers (see Fig. 1).
(iii) cPU monitor contains shadow registers that hold the current
values of the slave/user MAC-8 on-chip registers (CR, SP, RP,
PC), as shown in Fig. 1.
(iv) Event counters consist of three 16-bit counters and one 32-bit
counter that enable “break-pointing” on a variety of events.
The events include:

MAC-8 SYSTEMS 2261

(a) Slave/user interrupt acknowledge.
(b) Slave cpu clock output.
(¢) Slave/user memory read, write, or reference.
(d) Opcode fetch.
(e) Trap.
() User-supplied backplane signal.
(v) Jump trace contains a history table of the last 32 program
counter discontinuities.

(vi) Instruction trace consists of a 64-entry trace table of the last 64
cycles executed by the slave.

(vii) Memory access circuitry permits the selective specification, on
a block (256 bytes) basis, of read/write protection. Memory
timing characteristics can also be specified on a block basis.

(viii) Clock frequency for the slave can be selected from a list of
predefined frequencies.

VI. DESIGNER EDUCATION

Because of the nature of microprocessor applications, designers
must have both hardware and software expertise. Many hardware
designers must write programs for the first time, which poses an
interesting educational problem. C is a difficult language for
nonprogrammers because it is both powerful and concise. This
problem can be partially remedied by giving seminars and supplying
tutorials on C and on programming style. Offering workshops on
the hardware and software aspects of the MAC-8 has also helped.

The MAC-tutor, an “electronic textbook,” enables the designer to
learn MAC-8 fundamentals. The MAC-tutor is a single-board com-
puter with I/O and can be communicated with by a 28-function
keypad or by a terminal. A connection to a UNIX system can also be
established for use in loading programs and data into the MAC-tutor
memory. The MAC-tutor also includes an executive to control
hardware functions, 1K RAM expandable to 2K, sockets for three 1K
PROMS, eight 7-segment LED displays, a PROM programming socket,
and peripheral interfaces to a terminal and a cassette recorder. The
tutor, besides being an educational tool, may be used to develop
small MAC-8-based applications.

Vil. SUMMARY

The MAC-8 was designed together with an integrated support sys-
tem. The MAC-8 architecture was influenced by the C language, and

2262 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the support tools were influenced by UNIX. The consistent use of
C-like language syntax permits easy transition from one tool to
another. Software tools that began, in many cases, as spinoffs of
existing UNIX tools have evolved to meet the needs of microproces-
sor applications. The MAC-8 support system continues to evolve to
meet the growing needs of microprocessor-based applications.

Vill. ACKNOWLEDGMENTS

The design and development of the MAC-8 and its support system
required the cooperative efforts of many people over several years.
The author wishes to acknowledge the contributions of all the team
members whose work is summarized here.

REFERENCES

1. J. A. Cooper, J. A. Copeland, R. H. Kranbeck, D. C. Stanzione, and L. C. Tho-
mas, “A cMos Microprocessor for Telecommunications Applications,” 1EEE Intl.
Solid-State Circuits Conf. Digest, XX (February 17, 1977), pp. 138-140.
2. H. H. Winfield, “mMac-8: A Microprocessor for Telecommunications,” The Western
Electric Engineer, special issue (July 1977), pp. 40-48.
3. I. A. Cermak, “An Integrated Approach to Microcomputer Support Tools,” Elec-
tro Conference Record, session 16/3 (April 1977), pp. 1-3.
4. D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T 1., this
issue, pp. 1905-1929.

. M. Ritchie, “unix Time-Sharing System: A Retrospective,” B.S.T.J., this issue,
pp. 1947-1969.

. A. Dolotta, R. C. Haight, and J. R. Mashey, “unix Time-Sharing System: The
Programmer's Workbench,” B.S.T.J., this issue, pp. 2177-2200.

. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “UNIx Time-
?ggil'ig%lgystem: The C Programming Language,” B.S.T.J., this issue, pp.

. D. Rovegno, “Use of the C Language for Microprocessors,” Electro Confer-
ence Record, session 24/2 (April 1977), pp. 1-3.

9. H. Lycklama and C. Christensen, “Unix Time-Sharing System: A Minicomputer
Satellite Processor System.” B.S.T.J., this issue, pp. 2103-2113.

A
o 4 T O

o
jas}

MAC-8 SYSTEMS 2263

