Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

The UNIX Operating System as a
Base for Applications

By G. W. R. LUDERER, J. F. MARANZANO, and B. A. TAGUE
(Manuscript received March 9, 1978)

The intent of this paper is twofold: first, to comment on the general
properties of the UNIX* operating system as a tool for software product
development and as a basis for such products; and second, to introduce
the remaining papers of this issue.

I. A BRIEF HISTORY

Bell Laboratories has employed minicomputers in laboratory work
since they first became available. By the early 1970s, several hun-
dred minicomputers were controlling experiments, supporting
machine-aided design, providing remote-job-entry facilities for com-
putation centers, and supplying peripheral support for Electronic
Switching Systems laboratories. The availability of the C-language
version of the UNIX system in 1973 coincided with the emergence of
several new factors related to minicomputers at Bell Laboratories:

(/) The cost, reliability, and capacity of minicomputers—
especially improvements in their peripherals—made applica-
tions possible that were previously not economical.

(ii) Minicomputer-based systems were being selected for installa-
tion in operating telephone companies to assist in the
administration and maintenance of the telephone plant.

* uNIX is a trademark of Bell Laboratories.

2201



(iii) Many such projects were started in a period of a few months,
which meant that many engineers were suddenly shifted into
minicomputer software development.

(iv) The pressures to develop and install these systems rapidly
were very great,

Needless to say, the same factors applied to the laboratory uses of
minicomputers, but not on the same scale. Product planning esti-
mates suggested that over 1500 such minicomputer-based support
systems would be installed in the Bell System by the early 1980s.

The developers of each of these early minicomputer-based pro-
jects had to either write their own operating system or find a suitable
system elsewhere. The UNIX operating system had become available
from the Bell Laboratories computing research organization, and
projects were encouraged to use it for their software development.
Most projects originally planned to use the UNIX system to develop
their own special-purpose operating systems for deployment with
their applications. However, all projects were encouraged to con-
sider the UNIX system for deployment with their applications as well.
These early projects found that the UNIX operating system provided
excellent programming and documentation tools, and was
significantly better than the vendor-supplied alternatives then avail-
able; the C language and the UNIX system provided a means to rapid
development, test, and installation of their software products. Most
of these projects found that the UNIX system, with some local
modifications, could be used not only for program development, but
also as the base for the product itself.

No central support of the UNIX system—i.e., counseling, training,
bug fixing, etc. —was available or promised to these pioneer projects.
Documentation, aside from a good user’s reference manual and the
C language listings, was also lacking. The first projects were handi-
capped by having to supply their own UNIX system support. In spite
of this added load, the UNIX system still proved a better choice than
the vendor-supported alternatives. Central support and improved
documentation were subsequently provided in 1974.

Many requests for improvements to the UNIX system came from
telephone-related development projects using it as the base for their
products. These projects wanted increased real-time control capabili-
ties in the UNIX system, as well as improved reliability. Even
though the systems produced by these projects were ancillary to the
telephone plant, Bell System operating telephone companies increas-
ingly counted on them for running their business. Reliability of

2202 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



these systems became an important issue, and significant support
effort was devoted to improving the detection of hardware failures
by the operating system. Mean-time-to-failure was generally ade-
quate for most projects; mean-time-to-repair was the problem.

Improvements were made that allow UNIX processes to communi-
cate and synchronize in real time more easily. However, additional
real-time features were needed to control the scheduling and execu-
tion of processes. In another research organization, H. Lycklama
and D. L. Bayer developed the MERT (Multi Environment Real-
Time) operating system. MERT supports the UNIX program-
development and text-processing tools, while providing many real-
time features. Some projects found MERT to be an attractive alterna-
tive to the UNIX system for their products. This led, in 1978, to the
support of two versions of UNIX: the time-sharing version (UNIX/TS)
and the real-time version (UNIX/RT). UNIX/TS is based on the
research version of the UNIX system with additional features found
to be useful in a time-sharing environment. UNIX/RT is based on
MERT and is tailored to the needs of projects with real-time require-
ments. The centrally supported UNIX/TS will become the basis for
PWB/UNIX as described by Dolotta et al.,, and will provide
computation-center UNIX service. Real-time projects are currently
evaluating UNIX/RT, and real-time features for UNIX are still a matter
for continuing investigation and study.

The UNIX and MERT operating systems have found wide accep-
tance both within the Bell System and without. There are currently
48 Bell Laboratories projects using the UNIX system and 18 using
MERT. Some 24 of these projects are developing products for use by
the Bell System operating telephone companies and have already
installed over 300 UNIX system-based products, with the installation
rate still accelerating. In addition, another 10 projects are using
PWB/UNIX, and many operating companies are evaluating PWB/UNIX
for programming and text-processing tasks within their companies.
Outside the Bell System, over 300 universities and commercial insti-
tutions are using the UNIX operating system. An important by-
product of university use is the growing availability of trained UNIX
programmers among computer science graduates.

II. WHY UNIX AND C?

Each of the following papers suggests why the UNIX system was
selected for a particular purpose, but some common themes are
worth emphasizing. As was suggested above, development projects

UNIX AS AN APPLICATIONS BASE 2203



initially selected the UNIX system as a program-development
environment. The earlier paper by Dolotta et al. admirably summar-
izes the general case for using the UNIX system. Minicomputer-
based projects, however, also have incorporated the UNIX system in
their final product, and this usage raised new requirements and con-
cerns. We shall attempt to categorize briefly these new require-
ments and explore their implications.

First, and most obvious, the products of many projects could be
considered simply a specialized use of a dedicated time-sharing ser-
vice; because the UNIX system appeared to be the most efficient
available minicomputer time-sharing system, it was an obvious
choice for such projects. Its flexibility, generality, and multipro-
gramming efficiency were just as advantageous for the applications
programs as for program developers. Even the existing scheduling
and priority mechanisms were adequate for some applications.

Because it was designed for the programming of the UNIX system
itself, the C language could also be used to implement even the
most complex subsystems. While almost all applications must com-
municate with special devices unique to their projects, C has an
elegant mechanism for solving this problem without special language
extensions. It depends upon the fact that the PDP-11 architecture
presents all device data and control registers as part of the operating
system’s virtual address space. These registers can be accessed by
assigning absolute constants to pointer variables defined and mani-
pulated by standard C programs.

Ill. EXTENSIONS FOR REAL-TIME APPLICATIONS

Most projects with real-time applications found the UNIX system
wanting in several areas:

(i) Interprocess communication.
(ii) Efficient handling of large files with known structure.
(iii) Communication with special terminals, or using special line
protocols. .
(iv) Priority scheduling of real-time processes.

The general theme is time efficiency; the standard UNIX system
already provides all the required functions in some form. What was
needed was the ability to “tune” and control these functions in the
context of each application. The papers that follow provide three
different answers to this problem:

2204 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



(i) Modify and extend the standard UNIX system to provide the
additional function or efficiency required.
(ii) Adopt MERT, which is a version of the UNIX system restruc-
tured to include many real-time functions.
(iii) Distribute the application between a central standard UNIX
operating system and coupled microprocessors or minicomput-
ers that handle the real-time activities.

Design of real-time applications is a very difficult area, and we
expect to see continuing controversy over the best way to handle
such applications. The paper by Cohen and Kaufeld argues elo-
quently why extending the UNIX system was the proper answer for
the Network Operations Control System project, while the paper by
Nagelberg and Pilla is equally persuasive in arguing that adoption of
MERT was the right answer for the Record Base Coordination System
project. The papers by Wonsiewicz et al. and Rovegno both describe
successful delegation of the real-time aspects of the application to
microprocessors connected to the standard UNIX configuration.

The project described by Wonsiewicz et al. is especially relevant.
The designers originally selected MERT for their central machine, but
in the end they did not use its real-time features. They were able to
put all time-sensitive processing into LSI-11 microprocessors in the
individual laboratories, and then switched from the MERT system to
the UNIX system on their central machine to gain the greater robust-
ness and reliability of UNIX (the MERT system is newer than the
UNIX system, more complex, and less well-shaken-down by users).

IV. RELIABILITY AND PORTABILITY

Anything written on minicomputer applications in the telephone
system would be remiss if it did not mention the issues of reliability
and software portability. The introduction of commercial minicom-
puter hardware with its 5-year support horizons into the telephone
plant that has a 40-year-support tradition raises some obvious ques-
tions in the area of reliability and field support. The Bell System
investment in applications software must be preserved over long
periods of time in the face of rapid evolution of the underlying
hardware technology and economics.

The basic reliability of the UNIX software is very good. Note, for
example, the comments in Section 8.1 of the paper by Dolotta et al.
Using an operating system other than that supplied by the vendor
complicates hardware maintenance by the vendor. Effort has been

UNIX AS AN APPLICATIONS BASE 2205



expended in making the UNIX system report errors to the vendor’s
field engineers in the language and formats that are used by their
own diagnostic software. The UNIX system is being improved in its
ability to report its own hardware difficulties, but this cannot be car-
ried very far without redesigning the hardware. None of the current
UNIX-based systems in the Bell System operating telephone com-
panies directly handle customer traffic, which significantly reduces
the reliability requirements of these systems. To achieve the relia-
bility required of Bell System electronic switching offices would
necessitate a large and carefully coordinated hardware and software
effort.

One of the goals in using the UNIX operating system in telephone
applications is to insulate the applications code as much as possible
from hardware variations that are driven by the vendors’ marketing
goals and convenience. By controlling the UNIX system, applications
code can be largely protected from the vagaries of the underlying
hardware. Such hardware independence is clearly a matter of
degree, although full portability of the UNIX system across several
different hardware architectures without affecting applications is the
ultimate goal. Currently, the UNIX applications code moves quite
easily across the PDP-11 line. Experiments are under way to move
UNIX to different vendors’ hardware, as described by Johnson and
Ritchie earlier in this issue. It is already clear that projects must
exercise care in how applications are written if they are to move
easily from one vendor’s architecture to another. Fortunately, much
of the needed “care” is simply good C coding style, but unfor-
tunately, precise, complete rules that guarantee portability are prov-
ing both complex and a bit slippery. However, the basic idea of
using UNIX as an insulating layer continues to be the most attractive
option for preserving minicomputer applications software in the face
of hardware changes.

V. THE UNIX APPLICATION PAPERS

The six papers that follow describe a spectrum of applications built
upon the UNIX and MERT operating systems. The first paper, by
Wonsiewicz et al., describes a system handling the automation of a
number of diverse instruments in a materials-science research
laboratory. In the second paper, Fraser describes a UNIX system
used to build an engineering design aid for fast development of cus-
tomized electronic apparatus. The user works at an interactive
graphics terminal with a data base of standard integrated circuit

2206 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



packages, generating output ready to drive an automatic wiring
machine. The system makes judicious use of special hardware and
software facilities available in only two of the large Bell Laboratories
computation centers, which are accessed via communication links.
In the application described in the third paper, by Rovegno, the
UNIX system is used both as a tool and as a model for the develop-
ment of microprocessor support software, Whereas a UNIX system
was initially used to generate and load microprocessor software in a
time-sharing mode, many of its features were then carried over into
a small, dedicated microprocessor-based support system. The fourth
paper, by Pekarich, shows the use of a UNIX system in a develop-
ment laboratory for electronic switching systems. It replaces the
control portion of a large switching machine, illustrating the ease of
interfacing to several specialized devices in the telephone plant.
Whereas these four papers deal with one-of-a-kind systems in
research or development environments, the last two papers describe
the UNIX system-based products that are replicated throughout the
Bell System. The paper by Nagelberg and Pilla describes the MERT-
based Record Base Coordination System, which coordinates the
activities of several diverse data base systems. Ease of change, even
in the field, is the overriding requirement here; this pertains to the
interfaces as well as to the algorithms, which are all implemented in
the UNIX command language (shell). The paper by Cohen and
Kaufeld deals with the Network Operations Control System. It
represents the top level of a hierarchy of systems that collect tele-
phone traffic data and control the switching network. Characterized
by well-defined and stable interfaces and stringent performance
requirements, the design of this system exemplifies how real-time
requirements can be met by modifying the UNIX operating system.

Vi. SUMMARY

The UNIX system has proven to be an effective production
environment for software development projects. It has proven to be
an appropriate base for dedicated products as well, though it has
often required modification and extension to be fully effective. The
near future promises better real-time facilities and some significant
portability advantages for the UNIX development community.

UNIX AS AN APPLICATIONS BASE 2207



I —




