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The development of new programs on the UNIX* system is facilitated by
tools for language design and implementation. These are frequently pro-
gram generators, compiling into C, which provide advanced algorithms in
a convenient form, while not restraining the user to a preconceived set of
jobs. Two of the most important such tools are Yacc, a generator of
LALR(1) parsers, and Lex, a generator of regular expression recognizers
using deterministic finite automata. They have been used in a wide
variety of applications, including compilers, desk calculators, typesetting
languages, and pattern processors.

I. INTRODUCTION

On the UNIX system, an effort has been made to package language
development aids for general use, so that all users can share the
newest tools. As a result, these tools have been used to design
pleasant, structured applications languages, as well as in their more
traditional roles in compiler construction. The packaging is crucial,
since if the underlying algorithms are not well packaged, the tools
will not be used; applications programmers will rarely spend weeks
learning theory in order to use a tool.

Traditionally, algorithms have been packaged as system commands
(such as sort), subroutines (such as sin), or as part of the sup-
ported features of a compiler or higher level language environment

* UNIX is a trademark of Bell Laboratories.
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(such as the heap allocation in Algol 68). Another way of packag-
ing, which is particularly appropriate in the UNIX operating system, is
as a program generator. Program generators take a specification of a
task and write a program which performs that task. The program-
ming language in which this program is generated (called the host
language) may be high or low level, although most of ours are high
level. Unlike compilers, which typically implement an entire
general-purpose source language, program generators can restrict
themselves to doing one job, but doing it well.

Program generators have been used for some time in business
data processing, typically to implement sorting and report generation
applications. Usually, the specifications used in these applications
describe the entire job to be done, and the fact that a program is
generated is important, but really only one feature of the implemen-
tation of the applications package. In contrast, our program genera-
tors might better be termed module generators; the intent is to pro-
vide a single module that does an important part of the total job.
The host language, augmented perhaps by other generators, can pro-
vide the other features needed in the application. This approach
gains many of the advantages of modularity, as well as the advan-
tages which the advanced algorithms provide. In particular:

(/) Each generator handles only one job, and thus is easier to
write and to keep up to date.

(i) The user can select exactly the tools needed; one is not forced
to accept many unwanted features in order to get the one
desired.

(iiiy The user can also select what manuals have to be read; not
only is an unused tool not paid for, but it also need not be
learned.

(iv) Portability can be enhanced, since only the host language
compiler must know the object machine code.

(v) Since the interfaces between the tools are well-defined and the
output of the tools is in human-readable form, it is easy to
make independent changes to the tools and to determine the
source of difficulty when a combination of tools fails to work.

Obviously, this all depends on the specific tools fitting together well,
so that several can be used in a job. On the UNIX system, this is
achieved in a variety of ways. One is the use of filters, programs
that read one input stream and write one output stream. Filters are
easy to fit together; they are simply connected end to end. On the
UNIX system, the command line syntax makes it easy to specify a

2156 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



SPECIFICATION —-I GENERATOR — SOURCE

SOURCE — I HOST COMPILER 1 — EXECUTABLE OBJECT

DATA  —#| EXECUTABLE OBJECT |—- ouTPUT

Fig. 1 —Program generator.

sequence of commands, each of which uses as its input the output
of the preceding command. An example appears in typesetting:

refer source—files | tbl | eqn | troff ..

where refer processes the references, tbl the tables, eqn the equa-
tions, and finally troff the text.! Each of the first three programs is
really a program generator writing code in the host language troff,
which in turn produces “object code™ in the form of typesetter
device commands.

This paper focuses on Yacc and Lex. A detailed description of
the underlying theory of both programs can be found in Aho and
Ullman’s book,? while the appropriate users’ manual can be con-
sulted for further examples and details.3- 4

Since program generators have output which is in turn input to a
compiler and the compiler output is a program which in turn may
have both input and output, some terminology is essential. To clar-
ify the discussion, throughout this paper the term specification will
be used to refer to the input of Yacc or Lex. The output program
generated then becomes the source, which is compiled by the host
language compiler. The resulting executable object program may
then read data and produce ourpur. To use a generator:

(i) The user writes a specification for the generator, containing
grammar rules (for Yacc) or regular expressions (for Lex).

(i) The specification is fed through the generator to produce a
source code file.

(iii) The source code is processed by the compiler to produce an
executable file.

(iii) The user’s real data is processed by the executable file to pro-
duce the real output.

This can be diagrammed as shown in Fig. 1. Both Yacc and Lex
accept both C and Ratfor’ as host languages, although C is far more
widely used.

The remainder of this paper gives more detail on the two main
program generators, Yacc in Section II and Lex in Section III.
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Section IV describes an example of the combined use of both gen-
erators to do a simple job, reading a date (month, day, year) and
producing the day of the week on which it falls. Finally, Section V
contains more general comments about program generators and host
languages.

ll. THE YACC PARSER GENERATOR

Yacc is a tool which turns a wide class of context-free grammars
(also known as Backus-Naur Form, or BNF, descriptions) into
parsers that accept the language specified by the grammar. A simple
example of such a description might look like

date : month day year ;

month: "Jan" | "Feb" | "Mar" |
"Apr" | "May" | "Jun" |
"Jul" | "Aug" | "Sep" |
"Oct" | "Nov" | "Dec" ;
1
day: number ; '

year: " number | ;

number: DIGIT |
number DIGIT ;

In words, this says that a date is a month, day, and year, in that
order; in the Yacc style of writing BNF, colons and semicolons are
syntactic connectives that aren’t really included in the actual descrip-
tion. The vertical bar stands for “or,” so a month is Jan or Feb,
and so on. Quoted strings can stand for literal appearances of the
quoted characters. A day is just a number (discussed below). A
year is either a comma followed by a number, or it can in fact be
missing entirely. Thus, this example would allow as a date either Ju/
4, 1776, or Jul 4.

The two rules for number say that a number is either a single
digit, or a number followed by a digit. Thus, in this formulation,
the number 723 is made up of the number 12, followed by the digit
3: the number 12 is made up of the number I followed by the digit
2: and the number / is made up simply of the digit /.

Using Yacc, an action can be associated with each of the BNF
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rules, to be performed upon recognizing that rule. The actions can
be any arbitrary program fragments. In general, some value or
meaning is associated with the components of the rule and part of
the job of the action for a rule is to compute the value or meaning
to be associated with the left side of the current rule. Thus, a
mechanism has been provided for these program fragments to
obtain the values of the components of the rule and return a value.
Using the number example above, suppose a value has been associ-
ated with each possible DIGIT; the value of [ is 1, etc. The rules
describing the structure of numbers can be followed by associated
program fragments which compute the meaning or value of the
numbers. Assuming that numbers are decimal, then the value of a
number which is a single digit is just the value of the digit, while the
value of a number which is a number followed by a digit is 10 times
the value of the number, plus the value of the digit. In order to
specify the values of numbers, we can write:

number : DIGIT
{ 3 = 31; )
| number DIGIT

[ 8 = 10 » $1 + $2; }
Notice that the values of the components of the right-hand sides of
the rule are described by the pseudo-variables $1, $2, etc. which
refer to the first, second, etc. elements of the right side of the rule.
A value is returned for the rule by assigning to the pseudo-variable
$$. After writing the above actions, the other rules which use
number will be able to access the value of the number.

Recall that the values for the digits were assumed known. In
practice, BNF is rarely used to describe the complete structure of the
input. Usually a previous stage, the lexical analyzer, is responsible
for actually reading the input characters and assembling them into
tokens, the basic input units for the BNF specification. Lex,
described in the next section, is used to help build lexical analyzers;
among the issues usually dealt with in the Lex specification are the
assembly of alphabetic characters into names, the recognition of
classes of characters (such as DIGITs), and the treatment of blanks,
newlines, comments, and other similar issues. In particular, the lex-
ical analyzer will be able to associate values to the tokens which it
represents, and these values will be accessible in the BNF
specification.

The programs generated by Yacc, called parsers, read the input
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data and associate the rules and actions of the BNF to this input, or
report an error if there is no correct association. If the above BNF
example is given to Yacc, together with an appropriate lexical
analyzer, it will produce a program that will read dates and only
dates, report error if something is read that does not fit the BNF
description of a date, and associate the correct actions, values, or
meanings to the structures encountered during input.

Thus, parsing is like listening to prose; programmers say, “I’ve
never parsed a thing!” but, in fact, every Fortran READ statement
does parsing. Fortran FORMAT statements are simply parser
specifications. BNF is very powerful, however, and, what is impor-
tant in practice, many BNF specifications can be turned automatically
into fast parsers with good error detection properties.

Yacc provides a number of facilities that go beyond BNF in the
strict sense. For example, there is a mechanism which permits the
user some control over the behavior of the parser when an error is
encountered. Theoretically, one may be justified in terminating the
processing when the data are discovered to be in error, but, in prac-
tice, this is unduly hostile, since it leads to the detection of only one
error per run. To use such a parser to accept input interactively is
totally unacceptable; one often wants to prompt the naive user if
input is in error, and encourage correct input. The Yacc facilities
for error recovery are used by including additional rules, in addition
to those which specify the correct input. These rules may use the
special token error. When an error is detected, the parser will
attempt to recover by behaving as if it had just seen the special error
token immediately before the token which triggered the error. It
looks for the “nearest” rule (in a precise sense) for which the error
token is legal, and resumes processing at this rule. In general, it is
also necessary to skip over a part of the input in order to resume
processing at an appropriate place; this can also be specified in the
error rule. This mechanism, while somewhat unintuitive and not
completely general, has proved to be powerful and inexpensive to
implement. As an example, consider a language in which every
statement ends with a semicolon. A reasonable error recovery rule
might be

o

statement : error ’;

which, when added to the specification file, would cause the parser
to advance the input to the next semicolon when an error was
encountered, and then perform any action associated with this rule.
One of the trickiest areas of error recovery is the semantic recovery:
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how to repair partially built symbol table entries and expression trees
that may be left after an error, for example. This problem is
difficult and depends strongly on the particular application.

Yacc provides another very useful facility for specifying arithmetic
expressions. In most programming languages, there may be a
number of arithmetic operators, such as +, —, /, etc. These typi-
cally have an ordering, or precedence, associated with them. As an
example, the expression

a+ bs=sc
is typically taken to mean
a+ (b=c)

because the multiplication operator (*) is of higher precedence or
binding power than the addition operator (+). In pure BNF,
specification of precedence levels is somewhat indirect and requires
a technical trick which, while easy to learn, is nevertheless unintui-
tive. Yacc provides the ability to write simple rules that specify the
parsing of arithmetic expressions except for precedence, and then
supply the precedence information about the operators separately.
In addition, the left or right associativity can be specified. For
example, the sequence

%left '+’ '—’
%left '« '/

indicates that addition and subtraction are of lower precedence than
multiplication and division, and that all are left associative operators.
This facility has been very successful; it is not only easier for the
nonspecialist to use, but actually produces faster, smaller parsers.57

Yacc provides a case history of the packaging of a piece of theory
in a useful and effective way. For one thing, while BNF is very
powerful it does not do everything. It is important to permit escapes
from BNF, to permit real applications that can take advantage of the
power of BNF, while having some relief from its restrictions. Allow-
ing a general lexical analyzer and general C programs as actions
serves this purpose in Yacc. This in turn is made possible by the
packaging of the theory as a program generator; the Yacc system
does not have to make available to the user all facilities for lexical
analysis and actions, but can restrict itself to building fast parsers,
and let these other issues be taken care of by other modules.

It is also possible to enclose the Yacc-generated parser in a larger
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program. Yacc translates the user’s specification into a program
named yyparse. This program behaves like a finite automaton that
recognizes the user’s grammar; it is represented by a set of tables
and an interpreter to process them. If the user does not supply an
explicit main program, yyparse is invoked and it reads and parses
the input sequence delivered by the lexical analyzer. If the user
wishes, however, a main program can be supplied to perform any
desired actions before or after calling the parser, and the parser may
be invoked repeatedly. The function value returned by yyparse
indicates whether or not a legal sentence in the specified language
was recognized.

It is also possible for the user to introduce his own code at a lower
level, since the Yacc parser depends on a routine yylex for its input
and lexical analysis. This subroutine may be written with Lex (see
the next section) or directly by the user. In either case, each time it
is called it must return a lexical token name to the Yacc parser. It
can also assign a value to the current token by assigning to the vari-
able yylval. Such values are used in the same way as values
assigned to the $$ variables in parsing actions.

Thus the user’s code may be placed (/) above the parser, in the
main program; (ii) in the parser, as action statements on rules;
and/or (iii) below the parser, in the lexical analyzer. All of these
are in the same core load, so they may communicate through exter-
nal variables as desired. This gives even the fussiest programmers
enough rope to hang themselves. Note, however, that despite the
presence of user code even within the parser, both the finite auto-
maton tables and the interpreter are entirely under the control of,
and generated by, Yacc, so that changes in the automaton represen-
tation need not affect the user.

In addition to generality, good packaging demands that tools be
easy to use, inexpensive, and produce high quality output. Over the
years, Yacc has developed increased speed and greater power, with
little negative effect on the user community. The time required for
Yacc to process most specifications is faster than the time required
to compile the resulting C programs. The parsers are also compar-
able in space and time with those that may be produced by hand,
but are typically very much easier to write and modify.

To summarize, Yacc provides a tool for turning a wide class of
BNF descriptions into efficient parsers. It provides facilities for error
recovery, specification of operator precedence, and a general action
facility. It is packaged as a program generator, and requires a lexical
analyzer to be supplied. The next section will discuss a
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complementary tool, Lex, which builds lexical analyzers suitable for
Yacc, and is also useful for many other functions.

ll. THE LEX LEXICAL ANALYZER GENERATOR

Lex is similar in spirit to Yacc, and there are many similarities in
its input format as well. Like Yacc, Lex input consists of rules and
associated actions. Like Yacc, when a rule is recognized, the action
is performed. The major differences arise from the typical input
data and the model used to process them. Yacc is prepared to
recognize BNF rules on input which is made up of tokens. These
tokens may represent several input characters, such as names or
numbers, and there may be characters in the input text that are
never seen by the BNF description (such as blanks). Programs gen-
erated by Lex, on the other hand, are designed to read the input
characters directly. The model implemented by Lex is more power-
ful than Yacc at dealing with local information — context, character
classes, and repetition — but is almost totally lacking in more global
structuring facilities, such as recursion. The basic model is that of
the theory of regular expressions, which also underlies the UNIX text
editor ed and a number of other UNIX programs that process text.
The class of rules is chosen so that Lex can generate a program that
is a deterministic finite state automaton; this means that the result-
ing analyzer is quite fast, even for large sets of regular expressions.
The program fragments written by the user are executed in the
order in which the ¢orresponding regular expressions are matched in
the input stream.

The lexical analysis programs written with Lex accept ambiguous
specifications and choose the longest match possible at each input
point. If necessary, substantial look-ahead is performed on the
input, but the input stream will be backed up to the end of the final
string matched, making this look-ahead invisible to the user.

For a trivial example, consider the specification for a program to
delete from the input text all appearances of the word theoretical.

D/DD/D

theoretical ;
This specification contains a %% delimiter to mark the beginning of
the rules, and one rule. This rule contains a regular expression
which matches precisely the string of characters “theoretical.” No

action is specified, so when these characters are seen, they are
ignored. All characters which are not matched by some rule are
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copied to the output, so all the rest of the text is copied. To also
change theory to practice, just add another rule:

%%
theoretical ;
theory printf( "practice" };

The finite automaton generated for this source will scan for both
rules at once, and, when a match is found, execute the desired rule
action.

Lex-generated programs can handle data that may require substan-
tial lookahead. For example, suppose there were a third rule,
matching the, and the input data was the text string theoretician.
The automaton generated by Lex would have to read the initial
string theoretici before realizing that the input will not match
theoretical. It then backs up the input, matching the, and leaving
the input poised to read oretician. Such backup is more costly than
the processing of simpler specifications.

As with Yacc, Lex actions may be general program fragments.
Since the input is believed to be text, a character array (called
yytext) can be used to hold the string which was matched by the
rule. Actions can obtain the actual characters matched by accessing
this array.

The structure of Lex output is similar to that of Yacc. A function
named yylex is produced, which contains tables and an interpreter
representing a deterministic finite automaton. By default, yylex is
invoked from the main program, and it reads characters from the
standard input. The user may provide his own main program, how-
ever. Alternatively, when Yacc is used, it automatically generates
calls to yylex to obtain input tokens. In this case, each Lex rule
which recognizes a token should have as an action

return ( roken-number )

to signal the kind of token recognized to the parser. It may also
assign a value to yylval if desired.

The user can also change the Lex input routines, so long as it is
remembered that Lex expects to be able to look ahead on and then
back up the input stream. Thus, as with Yacc, user code may be
above, within, and below the Lex automaton. It is even easy to
have a lexical analyzer in which some tokens are recognized by the
automaton and some by user-written code. This may be necessary
when some input structure is not easily specified by even the large
class of regular expressions supported by Lex.
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The definitions of regular expressions are very similar to those in
ged?® and the UNIX text editor ed? A regular expression specifies a
set of strings to be matched. It contains text characters (which
match the corresponding characters in the strings being compared)
and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer
matches the string integer wherever it appears and the expression
ab7D

looks for the string a57D. It is also possible to use the standard C
language escapes to refer to certain special characters, such as \n for
newline and \t for tab. The operators may be used to:

(i) Specify a repetition of 0 or more, or 1 or more repetitions of
a regular expression: * and +.

(ii) Specify that an expression is optional: ?.

(i) Allow a choice of two or more patterns: |.

(iv) Match the beginning or the end of a line of text: ~ and $.

(v) Match any non-newline character: . (dot).

(vi) Group sub-expressions: ( and ).

(vii) Allow escaping and quoting special characters: \ and " .
(viii) Define classes of characters: [ and ].

(ix) Access defined patterns: { and }.

(x) Specify additional right context: /.

Some simple examples are
[0—9]
which recognizes the individual digits from 0 through 9,
[0—9]+
which recognizes strings of one or more digits, and
—2[0—9l+

which recognizes strings of digits optionally preceded by a minus
sign. A more complicated pattern is

[A—Za—z][A—Za—z0—9]+

which matches all alphanumeric strings with a leading alphabetic
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character. This is a typical expression for recognizing identifiers in
computer programming languages.

Lex programs go beyond the pure theory of regular expressions in
their ability to recognize patterns. As one example, Lex rules can
recognize a small amount of surrounding context. The two simplest
operators for this are " and $. If the first character of an expression
is ”, the expression will only be matched at the beginning of a line
(after a newline character, or at the beginning of the input stream).
If the very last character is $, the expression will only be matched at
the end of a line (when immediately followed by a newline). The
latter operator is a special case of the / operator, which indicates
trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Left context is
handled in Lex by start conditions. In effect, start conditions can be
used to selectively enable or disable sets of rules, depending on
what has come before.

Another feature of Lex is the ability to handle ambiguous
specifications. When more than one expression can match the
current input, Lex chooses as follows:

(/) The longest match is preferred.
(ii) Among rules which matched the same number of characters,
the rule given first is preferred.

Thus, suppose the rules

integer keyword action ..;
[a—z]+ identifier action ...

to be given in that order. If the input is integers, it is taken as an
identifier, because [a-z]+ matches 8 characters while integer
matches only 7. If the input is integer, both rules match 7 charac-
ters, and the keyword rule is selected because it was given first.
Anything shorter (e.g., int) will not match the expression integer
and so the identifier interpretation is used.

Note that a Lex program normally partitions the input stream,
rather than search for all possible matches of each expression. This
means that each character is accounted for once and only once.
Sometimes the user would like to override this choice. The action
REJECT means “go do the next alternative.” It causes to be executed
whatever rule was next choice after the current rule. The position
of the input pointer is adjusted accordingly. In general, REJECT is
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LEXICAL GRAMMAR
RULES RULES

LEX

INPUT —=| YYLEX —_— YYPARSE |—= PARSED INPUT
Fig. 2—Yacc and Lex cooperating.

useful whenever the purpose of a Lex program is not to partition
the input stream but to detect all examples of some items in the
input, and the instances of these items may overlap or include each
other.

IV. COOPERATION OF YACC AND LEX: AN EXAMPLE

This section gives an example of the cooperation of Yacc and Lex
to do a simple program which, nevertheless, would be difficult to
write directly in many high-level languages. Before the specific
example, however, let us summarize the various mechanisms avail-
able for making Lex- and Yacc-generated programs cooperate.

Since Yacc generates parsers and Lex can be used to make lexical
analyzers, it is often desirable to use them together to make the first
stage of a language analyzer. In such an application, two
specifications are needed: a set of lexical rules to define the input
data tokens and a set of grammar rules to define how these tokens
may appear in the language. The input data text is read, divided up
into tokens by the lexical analyzer, and then passed to the parser
and organized into the larger structures of the input language. In
principle, this could be done with pipes, but usually the code pro-
duced by Lex and Yacc are compiled together to produce one pro-
gram for execution. Conventionally, the Yacc program is named
yyparse and it calls a program named yylex to obtain tokens; there-
fore, this is the name used by Lex for its output source program.
The overall appearance is shown in Fig. 2.

To make this cooperation work, it is necessary for Yacc and Lex
to agree on the numeric codes used to differentiate token types.
These codes can be specified by the user, but ordinarily the user
allows Yacc to choose these numbers, and Lex obtains the values by
including a header file, written by Yacc, which contains the
definitions. It is also necessary to provide a mechanism by which
Yacc can obtain the values of tokens returned from Lex. These
values are passed through the external variable yylval.

Yacc and Lex were designed to work together, and are frequently
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used together. The programs using this technology include the port-
able C compiler and the C language preprocessor.

As a simple example, we shall specify a complete program which
will allow the input of dates, such as

July 4, 1776

and it will output the days of the week on which they fall. The pro-
gram will also permit dates to be input as three numbers, separated
by slashes:

7/4/1776
and in European format:
4 July 1776

Moreover, the month names can be given by their common abbrevi-
ations (with an optional ‘.’ following) or spelled in full, but nothing
in between.

Conceptually, there are three parts of the program. The Yacc
specification describes a list of dates, one per line, in terms of the
two tokens DIGIT and MONTH, and various punctuation symbols such
as comma and newline. The Lex specification recognizes MONTHS
and DIGITs, deletes blanks, and passes other characters through to
Yacc. Finally, the Yacc actions call a set of routines which actually
carry out the day of the week computation. We will discuss each of
these in turn.

%token DIGIT MONTH
%%
input : /= empty file is legal */
| input date '\n’
| input error ‘\n’
{ yyerrok; /= ignore line if error s/ }

date : MONTH day ‘', year
{ date( $1, $2, $4 ); )
| day MONTH vyear
{ date( $2, $1, $4); )
| number '/ number '/ number
| date( $1, $3, $5 ); }

day number

'
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year number

number : DIGIT
| number DIGIT
[ 8% = 10 » $1 + $2; }
The Yacc specification file is quite simple. The first line declares the
two names DIGIT and MONTH as tokens, whose meaning is to be sup-
plied by the lexical analyzer. The %% mark separates the declara-
tions from the rules. The input is described as either empty or
some input followed by a date and a newline. Another rule specifies
error recovery action in case a line is entered with an illegally
formed date; the parser is to skip to the end of the line and then
behave as if the error had never been seen.

Dates are legal in the three forms discussed above. In each case,
the effect is to call the routine date, which does the work required
to actually figure out the day of the week. The syntactic categories
day and year are simply numbers; the routine date checks them to
ensure that they are in the proper range. Finally, numbers are
either DIGITs or a number followed by a DIGIT. In the latter case, an
action is supplied to return the decimal value of the number. In the
case of the first rule, the action

[ %% = $1; )

is the implied default, and need not be specified.

Note that the Yacc specification assumes that the lexical analyzer
returns values 0 through 9 for the DIGITS, and a month number from
1 to 12 for the MONTHS.

We turn now to the Lex specification.

%{

# include "y.tab.h"

extern int yylval;

# define MON(x) [yylval= x; return(MONTH);)
%)

%%

Jan("."|uary)? MON(1);
Feb("."|ruary)? MON(2);
Mar(".*|ch)? MON(3);
Apr("."|in? MON(4);
May MON(5);
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Jun(""|e)? MON(8);

Jul(""|y)? MON(7);

Aug("."|ust)? MON(8);

Sep("."|"t"|"t" |tember) ? MON(9);

Oct(""|ober)? MON(10);

Nov("."|ember) ? MON(11);

Dec("."|ember)? MON(12);

[0-9] {  yylval = yytext[0] ‘— ‘0’;
return( DIGIT ); }

[1] { ; /= delete blanks */ }

u\n-. I

{ return( yytext[0] ); /+ return
single characters s/ }

The Lex specification includes the file y.tab.h which is produced by
Yacc; this defines the token names DIGIT and NUMBER, so they can
be used by the Lex program. The variable yylval is defined, which
is used to communicate the values of the tokens to Yacc. Finally, to
make it easier to return the values of MONTHs the macro MON is
defined which assigns its argument to yylval and returns MONTH.

The next portion of the Lex specification is concerned with the
mionth names. Typically, the full month name is legal, as well as
the three-letter abbreviation, with or without a following period.
The action when a month name is recognized is to set yylval to the
number of the month, and return the token indication MONTH; this
tells Yacc that a MONTH has been seen. Similarly, the digits 0
through 9 are recognized as a character class, their value stored into
yylval, and the indication DIGIT returned. The remaining rules serve
to delete blanks, and to pass all other characters, including newline,
to Yacc for further processing.

Finally, for completeness, we present the subroutine date which
actually carries out the computation. A good fraction of the logic is
concerned with leap years, in particular the rather baroque rule that
a year is a leap year if it is exactly divisible by 4, and not exactly
divisible by 100 unless it is also divisible by 400. Notice also that
the month and day are checked to ensure that they are in range.

/= here are the routines that really do the work */
# include <stdio.h>
int noleap [] {
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0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
B
int leap[] {
0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
)
char + dayname[] {
"Sunday”,
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
)
date( month, day, year }{ /* this routine does the real work »/
int =daysin;
daysin = isleap( year ) ? leap : noleap;
/#= check the month =/
if( month < 1 || month > 12 ){
printf( "month out of range\n" );
return;
)
/*= check the day of the month »/
if( day < 1 || day > daysin[month] ){
printf( "day of month out of range\n" );
return;
)
/= now, take the day of the month,
add the days of previous months =/
while( month > 1 ) day += daysin[ —— month I;
/* now, make day (mod 7) offset from Jan 1, 0000 =/
if( year > 0 )
——vyear; /+ make corrections for previous years */
day += year; /+ since 365 = 1 (mod 7) #*/
/#= leap year correction =/
day += year/4 — year/100 + year/400;
}
/#= Jan 1, 0000 was a Sunday, so no correction needed =/
printf( " %s\n", daynamelday%7] );
}
isleap( year ){
if( year % 4 != 0 ) return( 0 ); /» not a leap year */
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if( year % 100 != 0 ) return( 1 ); /+ is a leap year =/
if( year % 400 != 0 ) return( 0 ); /* not a leap year /
return( 1 ); /+ a leap year s/

}

Some of the Lex specification (such as the optional period after
month names) might have been done in Yacc. Notice also that
some of the things done in Yacc (such as the recognition of
numbers) might have been done in Lex. Moreover, additional
checking (such as ensuring that days of the month have only one or
two digits) might have been placed into Yacc. In general, there is
considerable flexibility in dividing the work between Yacc, Lex, and
the action programes.

As an exercise, the reader might consider how this program might
be written in his favorite programming language. Notice that the
Lex program takes care of looking ahead on the input stream, and
remembering characters that may delimit tokens but not be part of
them. The Yacc program arranges to specify alternative forms and
is clearly easy to expand. In fact, this example uses none of the pre-
cedence and little of the powerful recursive features of Yacc.
Finally, languages such as Snobol in which one might reasonably do
the same things as Yacc and Lex do, for this example, would be
very unpleasant to write the date function in. Practical applications
of both Yacc and Lex frequently run to hundreds of rules in the
specifications.

V. CONCLUSIONS

Yacc and Lex are quite specialized tools by comparison with some
“compiler-writing” systems. To us this is an advantage; it is a deli-
berate effort at modular design. Rather than grouping tools into
enormous packages, enforcing virtually an entire way of life onto a
user, we prefer a set of individually small and adaptable tools, each
doing one job well. As a result, our tools are used for a wider
variety of jobs than most; we have jocularly defined a successful tool
as one that was used to do something undreamed of by its author
(both Yacc and Lex are successful by this definition).

More seriously, a successful tool must be used. A form of
Darwinism is practiced on our UNIX system; programs which are not
used are removed from the system. Utilities. thus compete for the
available jobs and users. Lex, for example, seems to have found an
ecological niche in the input phase of programs which accept
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complex input languages. Originally it had been thought that it
would also be employed for jobs now handled by editor scripts, but
most users seem to be sticking with the various editors. Some par-
ticularly complicated rearrangements (those which involve
memory), however, are done with Lex. Data validation and statis-
tics gathering is still an open area; the editors are unsuitable, and
Lex competes with C programs and a new language called awk,!?
with no tool having clear dominance. Yacc has a secure role as the
major tool now used for the first pass of compilers. It is also used
for complex input to many application programs, including Lex, the
desk calculator bec, and the typesetting language eqn. Yacc is also
used, with or without Lex, for some kinds of syntactic data valida-
tion.

Packaging is very important. Ideally, these tools would be avail-
able in several forms. Among the possible modes of access to an
algorithm might be a subroutine library, a program generator, a
command, or a full compiler. Of these, the program generator is
very attractive. It does not restrict the user as much as a command
or full compiler, since it is mixed with the user’s own code in the
host language. On the other hand, since the generator has a reason-
able overview of the user’s job, it can be more powerful than a sub-
routine library. Few operating systems today make it possible to
have an algorithm available in all forms without additional work,
and the program generator is a suitable compromise. The previous
compiler-compiler system on UNIX was a more restrictive and
inclusive system, TMG,!! and it is now almost unused. All the users
seem to prefer the greater flexibility of the program generators.

The usability and portability of the generators, however, depend
on the host language(s). The host language has a difficult task: it
must be a suitable target for both user and program generator. It
also must be reasonably portable; otherwise, the generator output is
not portable. Efficiency is important; the generator must write
sufficiently good code that the users do not abandon it to write their
own code directly. The host language must also not constrain the
generator unduly; for example, mechanically generated gotos are
not as dangerous as hand-written ones and should not be forbidden.
As a result, the best host languages are relatively low level.
Another way of seeing this is to observe that if the host language
has many complex compiling algorithms in it already, there may not
be much scope left for the generator. On the other hand if the
language is too low level (after all, the generators typically would
have little trouble writing in assembler), the users cannot use it.
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What is needed is a semantically low-level but syntactically con-
venient (and portable) language; C seems to work well.

Giving machine-generated code to a compiler designed for human
use sometimes creates problems, however. Compiler writers may
limit the number of initializers that can be written to several hun-
dred, for example, since “clearly” no reasonable user would write
more than that number of array elements by hand. Unfortunately,
Yacc and Lex can generate arrays of thousands of elements to
describe their finite automata. Also, if the compiler lacks a facility
for adjusting diagnostic line numbers, the error messages will not
reflect the extra step in code generation, and the line numbers in
them may be unrelated to the user’s original input file. (Remember
that, although the generated code is presumably error-free, there is
also user-written code intermixed).

Other difficulties arise from built-in error checking and type han-
dling. Typically, the generator output is quite reliable, as it often is
based on a tight mathematical model or construction. Thus, often
one may have nearly perfect confidence that array bounds do not
overflow, that defaults in switches are never taken, etc. Neverthe-
less, compilers which provide such checks often have no way of
selectively, or generally, overriding them. In the worst case, this
checking can dominate the inner loop of the algorithm embodied in
the generated module, removing a great deal of the attractiveness of
the generated program.

We should not exaggerate the problems with host languages: in
general, C has proven very suitable for the job. The concept of
splitting the work between a generator and a host language is very
profitable for both sides; it relieves pressure on the host language to
provide many complex features, and it relieves pressure on the pro-
gram generators to turn into complete general-purpose languages. It
encourages modularity; and beneath all the buzzwords of “top-down
design” and “structured programming,” modularity is really what
good programming is all about.
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