Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

Statistical Text Processing

By L. E. MCMAHON, L. L. CHERRY, and R. MORRIS
{Manuscript received December 5, 1977)

Several studies of the statistical properties of English text have used the
UNIX* system and UNIX programming tools. This paper describes several
of the useful UNIX facilities for statistical studies and summarizes some
studies that have been made at the character level, the character-string
level, and the level of English words. The descriptions give a sample of
the results obtained and constitute a short introduction, by case-study, on
how to use UNIX tools for studying the statistics of English.

I. INTRODUCTION

The UNIX system is an especially friendly environment in which to
do statistical studies of English text. The file system does not
impose arbitrary limits on what can be done with different kinds of
files and allows tools to be written to apply to files of text, files of
text statistics, etc. Pipes and filters allow small steps of processing
to be combined and recombined to effect very diverse purposes,
almost as English words can be recombined to express very diverse
thoughts. The C language, native to the UNIX system, is especially
convenient for programs which manipulate characters. Finally, an
accidental but important fact is that many UNIX systems are heavily
used for document preparation, thus ensuring the ready availability
of text for practicing techniques and sharpening tools.

This paper gives short reports on several different statistical

* yNIX is a trademark of Bell Laboratories.

2137

projects as examples of the way UNIX tools can be used to gather
statistics describing text. A section describing briefly some of the
more important tools used in all the projects is followed by three
sections dealing with a variety of studies. The studies are divided
according to the level of atomic unit they consider: characters, char-
acter strings, and English words. The order of sections is also in
almost the chronological order of when the projects were done;
future work will almost surely push forward toward more and more
meaningful treatment of English.

Il. TOOLS FOR GATHERING STATISTICS

2.1 Word breakout

Throughout this paper, word means a character string. Different
words are made up of different characters or characters in a different
order. For example, man and men are different words; cat and cat’s
are different words. We have arbitrarily taken hyphens to be word
delimiters, so that single-minded is two words: single and minded. An
apostrophe occurring within an alphabetic string is part of the word,
an apostrophe before or after a word is not. Digits are discarded.
Upper- and lower-case characters are considered to be identical, so
that The and the are the same word. All these decisions could be
made differently; the authors believe that the events are rare enough
that no substantive conclusions would be changed.

The program that implements the definition of word just given is
prep. It takes a file of text in ordinary form and converts it into a
file containing one word per line. Throughout the rest of this paper,
“word” will mean one line of a prep output file.

Optionally, prep will split out only words on a given list, or all the
words not on a given list:

only option: prep -o list
ignore option: prep -i list

Another option which will be referred to below is the -d option,
which gives the sequence number of each output word in the run-
ning input text.

2.2 Sorting

Central to almost all the examples in the rest of the paper is the

2138 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

sort program. sort is implemented as a filter; that is, it takes its
input from the standard input, sorts it, and writes the sorted result
to the standard output. The ability to send sorted output easily to a
terminal, a file, or through another program is essential to make
statistics-gathering convenient. The same sort program works on
either letters or numbers. Among the many other features of the
sort program which are used in the following are the flags:

-n: sort a leading field numerically
-r: sort in reverse order (largest first)
-u: discard duplicate lines

The sorting method used is especially well adapted to the kind of
files dealt with in statistical investigations of text. Its skeleton,
which decides which elements to compare, takes advantage of
repetition of values in the file to be sorted. The algorithm used for
in-core sorting is a version of Quicksort which has been modified to
run faster when values in the input are repeated. The standard ver-
sion of Quicksort requires nlog n comparisons, where n is the
number of input items; the UNIX version requires at most nlog m
comparisons, where m is the number of distinct input values.

2.3 Counting

Another tool of interest for many statistics-gathering processes is
a program named uniq. Its fundamental action is to take a sorted
file and produce an output containing exactly one instance of each
different line in the file. (This process simply duplicates the action
of sort with the -u option; it runs much more quickly if a sorted file
is already available.) More often useful is its ability to count and
report the number of occurrences of each of the output lines (uniq
-c).

A very generally useful tool is the program wc. It simply counts
the number of lines, words, and characters in a file. Throughout
any investigation of text statistics, the question arises again and
again: How many? Either as a command itself or as the last filter in
a chain of pipes, wc is invaluable for answering these questions.

2.4 Searching and pattern-matching

A program of common use for several purposes is grep. grep
searches through a file or files for the occurrence of strings of char-
acters which match a pattern. (The patterns are essentially the same

STATISTICAL TEXT PROCESSING 2139

as the editor’s patterns and, indeed, the etymology of the name is
from the editor command g/r.e./p where r.e. stands for regular
expression.) It will print out all matching lines, or, optionally, a
count of all matching lines. For example,

prep document | grep ""...$" | sort | uniq —c >fours

will find all of the four-letter words in document and create a file
named fours which contains each such different word along with its
frequency of occurrence.

sed, the stream editor, is a program which will not only search for
patterns (like grep), but also modify the line before writing it out.
So, for example, the following command (using the file fours
created by the previous example) will print only the four-letter
words which appear exactly once in the document (without the fre-
quency count):

sed —n "s/" 1 //p" fours

This ability to search for a given pattern, but to write out the
selected information in a different format (e. g., without including
the search key), makes sed a useful adhesive to glue together pro-
grams which make slightly different assumptions about the format of
input and output files.

lll. CHARACTER LEVEL

Frequency statistics of English text at the character level have
proved useful in the areas of text compression and typographical
error correction.

3.1 Compression

Techniques for text compression capitalize on statistical regularity
of the text to be compressed, or rather its predictability. The statis-
tical text-processing programs on UNIX have found use in the design
and implementation of text-compression routines for a variety of
applications.

Suppose that a file of text has been properly formatted so that it
does not contain unnecessary leading zeros and trailing blanks and
the like, and that it does not devote fixed-length fields to variable-
length quantities. Then the most elementary observation that leads
to reducing the size of the file is that the possible characters of the
character set do not all occur with equal frequency in the text. Most

2140 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

text uses ASCII or other 8-bit representation for its characters and
typically one of these eight bits is never used at all, but one can go
much further. If we take as a measure of the information content
of a string of characters

H=Y —p;log,p;

where p; is the probability of occurrence of the character x; and the
sum is taken over the whole character set, then it is theoretically
possible to recode the text so that it requires only H bits per charac-
ter for its representation. It is possible to find practical methods
which come close to but do not attain the value of H. Of course, in
deriving this estimate of information content, we have ignored any
regularity of the text which extends over more than one character,
like digram statistics or words.

It is a simple matter to compute the value of H for any file
whether it is a text file or not. The value of H turns out to be very
nearly equal to 4.5 for ordinary technical or non-technical English
text. This leads immediately to the possibility of recoding the text
from ASCII to a variable-length encoding so as to approach a
compression to 56 percent of the original length.

Data files other than English text usually have quite different
statistics from English text. For example, telephone service orders,
parts lists, and telephone directories all have character statistics
which are quite different from those of English and different from
each other. In general, data files have values of H smaller than 4.5;
when they contain a great deal of numerical information, the values
of H are often less than 4.

Programs have been written on UNIX to count the occurrences of
single letters, digrams and trigrams in text. Single-letter frequencies
are kept for all 128 possible Ascll characters. For the digram and tri-
gram statistics, only the 26 letters, the blank, and the newline char-
acters are used, and upper-case letters are mapped to lower case.

The result of running this program on a rather large body of text
is shown in Table I. The input was nine separate documents with a
total of 213,553 characters and 36,237 words. The documents con-
sisted of three of the Federalist Papers, each by a different author,
an article from this journal, a technical paper, a sample from Mark
Twain, and three samples of graded text on different topics.

Some interesting (but not novel) observations about the nature of
English text can be made from these results. At the single-character
level, some characters appear in text far more often than others. In
fact, the 10 most frequent characters constitute 70.6 percent of the

STATISTICAL TEXT PROCESSING 2141

Table |—English text statistics

Sample character, digram, and trigram counts for a sample of English text. The
counts are truncated after the first 25 entries. 012 is the newline character. [J in the
character column is a space character; in the digram and trigram columns, it is any
word separation character.

count character cum. % count digram count trigram
33310 O 15.5 6156 el 3661 Oth
21590 e 25.7 5364 Ot 3617 the
16080 t 33.2 4998 th 2504 heO
13260 a 39.4 4099 he 1416 Oof
12584 4] 453 3801 Oa 1353 ofxJ
12347 n 51.1 3748 s 1301 Oin
12200 i 56.8 3367 in 1249 and
10997 s 61.9 2780 er 1225 Oan
10640 r 66.9 2757 0 1144 nd(]
7930 h 70.6 2738 dd 1088 Oto
6622 1 73.7 2708 re 1027 to]
5929 d 76.5 2666 an 1025 ion
5409 c 79.0 2572 ai 1003 ed
4524 012 81.2 2517 nO] 946 ing
4508 u 83.3 2506 Oo 875 ent
4152 m 85.2 2244 on 854 is0)
4080 f 87.1 2047 es 851 in(J
3649 p 88.8 2025 at 830 tio
3090 g 90.3 1990 en 805 Oco
2851 y 91.6 1912 Os 779 re(d
2654 w 92.9 1840 yO 747 Oa0
2483 b 94.0 1835 ti 734 ngd
1984 , 94.9 1799 nd 709 onJ
1884 v 95.8 1723 nt 702 Obe
1824 . 96.7 1681 te 701 esO]

text and the 20 most frequent characters make up 91.6 percent of
the text. At the digram level, of the 784 possible 2-letter combina-
tions, only 70 percent actually occur in the text. More dramatically,
at the trigram level, of the 21952 possible combinations, only 4923,
or 22.4 percent, occur in the text. One implication is that, instead
of the 24 bits used to represent a trigram with an 8-bit character set,
a scheme using 13 bits would do, a compression to 54 percent of the
original length, using only the fact that less than 2! different tri-
grams occur in the text. Noting the widely varying frequencies of
the trigrams in the text, we can obtain a considerably better
compression rate by using a variable-length encoding scheme.

3.2 Spelling error detection

The observation that English text largely consists of a relatively
small proportion of the possible trigrams led to the development of
a program typo which is used to find typographical errors in docu-
ments. A single erroneous keystroke on a typewriter, for example,
changes the three trigrams in which it occurs; more often than not,

2142 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

at least one of the erroneous trigrams will be otherwise extremely
rare or nonexistent in English text. The same thing happens in the
case of an erroneously omitted or repeated letter. Better perfor-
mance is obtained when the comparison statistics are taken from the
document itself rather than using some set of trigram statistics from
English text in general.

typo accumulates the digram and trigram frequencies for a docu-
ment and uses them to calculate an index of peculiarity for each
word in the document.! This index reflects the likelihood that the
trigrams in the word are from the same source as the trigrams in the
document. Words with rare trigrams tend to have higher indexes
and are at the top of the list.

On systems large enough and rich enough to keep a large English
dictionary on line, the same function of finding likely candidates for
spelling correction is performed by a nonstatistical program, spell,
which looks up every word in the dictionary. Of course, suffixes
like -ing and -ed must be recognized and properly stripped before
the lookup can be done. What is more, very large dictionaries per-
form poorly because so many misspelled words turn out to be names
of Chinese coins or obsolete Russian units of distance. Not surpris-
ingly, the statistically based typo requires little storage and runs con-
siderably faster. Moreover, not all systems have such resources, and
typo has proven useful for authors and secretaries in proofreading.
A sample of output from the typo program is included as Table II.

IV. STATISTICS OF CHARACTER STRINGS

In this section we consider statistics which take character strings
as atomic units, without any reference to the string’s use or function
as an English word.

4.1 Word-frequency counts

A set of statistics from a text that is frequently collected (often as
a base for further work) is a word-frequency count. A list is made
of all the different words in the text, together with the number of
times each occurs.2 With the UNIX tools, it is quite convenient to
make such a count:

prep text—files | sort | uniq —c¢

This command line produces a frequency count sorted in

STATISTICAL TEXT PROCESSING 2143

Table Il—Typo output
A portion of the output of the typo program from a 108-page technical document. A
total of 30 misspelled words were found, of which 23 occurred in this portion. The
misspelled words identified by the author of the document upon scanning the list
have been marked by hand.

Apr 12 22:32:11 Possible typo’s and spelling errors Page 1

w 17 nd 14 flexible w5 pesudonym

17 heretofore 14 flags w5 neames
w17 erroronously 14 conceptually M 5 namees
w16 suer w14 bwaite 5 multiplied

16 seized 14 broadly 5 interrelationship
w16 poiter w14 amy 5 inefficient

16 lengthy 14 adds 5 icalc

16 inaccessible 14 accompanying S handler

16 disagreement 13 overwritten 5 flag
w16 bwirte 13 occupying 5 exercised

15 violating 13 lookup w5 erroreous

15 unaffected 13 flagged 5 dumped

15 tape w9 jin 5 dump

15 swapped w8 subrouutine 5 deficiency

15 shortly 8 adjunct 5 controller
w15 mutiliated 7 drawbacks 5 contiguous

15 multiprogramming w6 thee 5 changing

15 likewise wr 6 odification 5 bottoms

15 datum w6 od wr 5 bitis
w15 dapt 6 indicator 5 ascertain

15 cumulatively 6 imminent w5 accomodate

15 consulted 6 formats 4 unnecessarily

15 consolidation 6 cetera 4 traversing

15 checking 5 zeros 4 tracing
w15 accordinng 5 virtually 4 totally
w14 typpical 5 ultimately 4 tops

14 tabular 5 truncate 4 thirteen

14 supplying 5 therewith w4 tallyed

14 subtle 5 thereafter ‘ 4 summarized

14 shortcoming 5 spectre 4 strictly

14 pivotal 5 rewritten 4 simultaneous

14 invalid 5 raises 4 retrieval

14 infrequently 5 prefix 4 quotient

alphabetical order, as in Table IIla. To obtain the count in numeri-
cal order (largest first):

prep text—files | sort | uniq —c | sort —n —r

This is illustrated in Table IIIb.

4.2 Dictionary compression

A more complex but considerably more profitable approach to text
compression is based on word frequencies. Text consists in large
part of words; these words are easy to find in the text; the total
number of different words in a text is several orders of magnitude

2144 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table Ill—Word frequency counts

The beginning of (a) alphabetically sorted and (b) numerically sorted word frequency
counts for an early draft of this paper.

(a) (b)

124 a 321 the
3 ability 212 of
3 about 124 a
3 above 114 in
1 abrupt 105 to
1 abstract 80 is
1 accidental 78 and
1 according 65 words
1 accordingly 63 text
1 account 50 for

less than the total possible number of arbitrary character strings of
the same length. The approach can best be visualized by supposing
that a file of text consists entirely of a sequence of English words.
Then we can look up each word in a dictionary and replace each
word in the text by the serial number of the word in the dictionary.
Since a dictionary of reasonable size contains only about 2'¢ words,
we have found an immediate and trivial method to recode English
text so as to occupy 16 bits per word. Since the average length of a
word in text, including the blank after it, is 6 characters, we have a
representation that requires only about 2.7 bits per character. This
implies a compression to 37 percent of original length. Some
details, of course, could not be neglected in actual practice, like cap-
italization, punctuation, and the occurrence of names, abbreviations,
and the like. It turns out, however, that these are sufficiently rare
in ordinary running text that only about two or three extra bits per
word are required, on the average, to handle them and it is possible
to attain a representation requiring only about 3 bits per original
character.

In the case of technical text, it is profitable to find the words from
the text itself, and store them, each word once, in the compressed
file. When this is done, the total number of different words is
rather small and because of the tendency of technical authors to use
a small technical vocabulary very heavily, the performance is very
good. If the dictionary is stored in the file, then the compression
performance depends on the number of times each word is used in
the text. Suppose there is a word in the text which is m characters
long and occurs # times. Then, the occurrences of that word occupy
m X n characters in the original text, whereas in the compressed text,
m characters are used for the one dictionary entry and n Xk bits are
used as a dictionary pointer each time the word occurs in the text,

STATISTICAL TEXT PROCESSING 2145

where k is the logarithm (base 2) of the number of dictionary
entries.

Of course, words in a text do not occur with equal frequency and
it is possible, just as was done with letter statistics, to use a
variable-length encoding scheme for the words. The information
content of the words in a text can be found by passing the word-
frequency count found in the previous section through one more
filter:

prep file—name | sort | uniq —c | entropy

It turns out that, for nontechnical English text, the information con-
tent of the words is between 8 and 9 bits per word when it is
estimated from the text itself. This implies that a text consisting
entirely of a string of English words can generally be compressed to
occupy only about 1.5 bits per original character. Needless to say,
the amount of processing required to compress and expand text in
such a way is usually prohibitively high.

4.3 Specialized vocabulary

A practical application of word-frequency counts arose when col-
leagues became interested in devising vocabulary tests for Bell Sys-
tem personnel to determine their familiarity with the vocabulary
used in Bell System Practices (BSPs) in various areas. It is intui-
tively clear that the vocabulary used in Bell System Practices differs
from the general English vocabulary in several details. Some words,
like the, of, an, etc., are common in the language in general and in
specialized writing; others, like democracy, love, mother would be
found much more frequently in the language in general than in
BSPs; others, like line, circuit, TTY would be more frequent in BSPs
than in the language generally. What was desired was an automatic
procedure which would identify such words without relying on intui-
tion. The general problem proposed was to identify the specialized
vocabulary of a specific field; the immediate interest was in words
with moderate frequencies in BSPs dealing with a certain area, and
which are much less frequent in the language as a whole. It was
hoped that familiarity with such words would indicate familiarity
with the field.

A word-frequency count of approximately one million words of
English text was available. It was made from the text of the Brown
Corpus? and closely resembles the published frequency count of that
corpus. It differs in detail only because we used prep’s definition of

2146 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

Table IV—Indexes (see text) of specialization
Frequency of words in a half-million words of Bsps, frequency in a million words of
general English, and the words for (a) words which occur too often in BsPs relative to
general English; and (b) words which appear too seldom.

(a) (b)

Index BSP English Word Index BSP English Word

Frequency Frequency Frequency Frequency
4362 2585 73 fig -1005 218 2670 their
4150 2334 8 trunk -1008 23 1909 what
3933 2643 233 control -1034 584 3941 have
3541 2216 120 test -1085 4 1961 said
3399 1950 25 circuit -1207 132 2719 would
3277 2326 266 b -1212 18 2252 who
3106 2059 168 equipment | -1234 14439 36472 of
3094 1881 76 frame -1356 298 3617 they
2990 1684 7 cable -1395 34 2652 we
2828 1785 104 unit -1457 2 2619 him
2472 1940 315 line -1593 1 2858 she
2445 1367 1 ess -1658 71 3284 were
2418 1479 64 message -1696 0 3037 her
2213 10707 10098 is -1716 2389 10596 that
2190 1316 46 wire -1788 287 4381 but
2133 1892 418 system -1809 10 3285 you
2129 1443 133 list -2096 1439 8768 it
2117 1513 178 data -2502 177 5247 i
2018 2085 612 used -2797 27 5132 had
1936 1118 18 lamp -3839 27 6999 his

a word, which is slightly different from that of Kucera and Francis.
This frequency count was used as representative of English as a
whole.

Also available were approximately a half-million words of BSPs,
from plant, station, and ESS (Electronic Switching System) mainte-
nance areas. Frequency counts were made of these three areas
separately and of the BSP text as a whole.

An index of peculiarity was defined for each word as follows: The
two frequency distributions were considered as a single two-way
classification (source by word), and single-degree-of-freedom x2
statistics were computed for each word. To distinguish words that
appear too frequently in the BSPs from words that appear too sel-
dom, a minus sign was attached to the index when the word
appeared less often than might be expected in the BSPs (with refer-
ence to the English frequency count). This index has the advantage
of automatically taking into account differences in size of the two
frequency counts, and also de-emphasizing moderate differences in
frequency of words which occur rarely in either set of texts.

Samples of the output are shown in Table IV. The indexes and
frequencies are for the entire half million words of BSPs compared
with English. The first word in the table, “fig,” does not mean that

STATISTICAL TEXT PROCESSING 2147

the BSPs discussed tropical fruit to any extent; it is a sample of the
difficulties of defining words as character strings. The word is
prep’s version of Fig. (as in “Fig. 22”). The next several words
are, as expected, nouns which refer to objects prominent in
telephony. The occurrence of /s more frequently in BSPs than would
be expected seems to be a comment on the style of the writing, one
with many passive constructions and predicate noun or adjective
constructions—a quite abstract style.

The general method for comparing the vocabulary of specialized
texts with general English text worked well for the specific problem
proposed; it allowed our colleagues to choose words for their test
conveniently. It also shows promise as a more generally applicable
method.

4.4 Readability

The number of tokens (N) in a text is the number of running
words; the number of types (T) is the number of different words.
For example, the sentence

The man bit the dog.

contains five tokens, and only four types: the, man, bit, dog. For our
purposes, the number of tokens in a file is taken to be the number
of words in the output file of the prep command. We will call a
type which occurs exactly once in a text a hapax, from the Greek
hapax legomenon, meaning occurring only once. The number of
hapaxes in a text is H.

Two summary statistics often calculated from word-frequency
counts are the type/token ratio T/N and the hapax/type ratio H/T.
The T/N ratio gives the average repetition rate for words in a text;
its usefulness is limited by its erratic decrease with increasing iV.
The H/T ratio also varies with N, but more slowly and less errati-
cally. We have found it to be of interest in investigations of read-
ability.

Readability is an index which is calculated from various statistics
of a text, and is intended to vary inversely with the difficulty of the
text for reading. Several such indexes have been proposed; none is
universally satisfactory (see, for example, Ref. 4).

In the following discussion, the text used to measure the
effectiveness of proposed indexes of readability is taken from an
extensive study by Bormuth.* He gathered passages from published
works in several different fields, which were intended by the

2148 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

publisher to be appropriate for reading by students at various grade
levels. He carefully graded the difficulty of each text by an indepen-
dent psychological criterion and calculated an index of difficulty
from the results of the psychological tests. To judge the
effectiveness of indexes calculated from the statistics of the texts
themselves, we used two criteria: Bormuth’s psychological index and
the publishers’ assignment of the text to grade level. (The publish-
ers’ assignment is in general not based on empirical tests, but on
considerable experience and art. It correlates well with Bormuth’s
empirical measures; we use it simply as a check on oddities that
might arise from the specific nature of Bormuth’s index.)

One factor which, intuitively, makes some text more difficult to
read than other is the speed with which new ideas are introduced. A
passage which deals with several ideas in a few words tends to be
more difficult to comprehend than a passage of the same length
which spends more time developing a single idea. The computer,
which of course does not understand the text, cannot measure the
number of ideas in a passage. But several statistics regarding the
number of different words used, and the number of times they are
repeated, might plausibly be expected to vary with the number of
ideas in a passage.

Of the statistics related to the breadth of vocabulary in a passage,
the H/T ratio was found to correlate best with Bormuth’s empirical
measure of readability. Over twenty 275-word passages, the correla-
tion is —0.79 with Bormuth’s index, 0.77 with grade placement.
This correlation is high for a single statistic with an empirical meas-
ure of readability, and the correlation remains whether or not the
rationale given above is convincing for why there should be a corre-
lation.

We return to readability in the last section of this paper.

4.5 Dispersion of words

A final example of statistics based on words purely as character
strings concerns the dispersion of words in text. When an author
writes a passage, it is plausible to believe that he has an over-all
topic, which unites the passage as a whole. As he proceeds, how-
ever, he attends to first one aspect of the topic, then another. It
might be expected that as he concentrates on one aspect he would
use words from one part of his vocabulary, and when he shifts to
another aspect, the vocabulary would also change somewhat. (See
Ref. 5, pp. 22-35.) This tendency might be measured by observing

STATISTICAL TEXT PROCESSING 2149

Table V—Separation between words

Mean and standard deviation for the separation (as fractions of the document)
between words that occurred exactly twice in documents. N is the number of words
on which the mean and S.D. are based. The 275 word entries are averages for 4 pas-
sages from different sources; the mixed entries are for a concatenation of the four
passages; matched entries are for a continuous 1,200-word passage; expected entries
are on the hypothesis of random placement of words.

N Mean S.D.

275 word 21 0.26 0.20
mixed 62 0.15 0.16
matched 62 0.32 0.23
expected 0.33 0.24

the distance between repeated occurrences of words. If the ten-
dency to change vocabulary is strong, repeated instances of the same
word would be closer together than when the topic and therefore the
vocabulary is uniform over an entire passage. In any case, since an
English text is presumably an organized sequence of words, the
dispersion of words should be less than would be expected for a ran-
dom placement of the words in a passage.

To gather statistics on the dispersion of words, an option of prep
will write the sequence number of each word (in the input stream)
on the same line as the word. By using this option together with the
-0 (only) option, the position in the input text of each occurrence of
each word that appears twice, three times, etc. can be written into a
file. This file, sorted on the word field, provides input to a simple
special-purpose program to calculate the distances between repeated
occurrences of the same word. The entire process required writing
only one very simple special-purpose program to find the differences
between sets of numbers in a file.

Sample results to illustrate the behavior of the statistic are
displayed in Table V. The observed and expected means and stan-
dard deviations for the separation of words that occurred exactly
twice in a text are given as fractions of the length of the text. (The
expected fractions are calculated on the hypothesis of random place-
ment of the words in the text.) The line labeled 275 word gives the
average statistics for four passages of about 275 words each, drawn
from different biology texts, each on a separate topic. The mixed
line is statistics from the concatenation of the four texts; the
matched line gives statistics from a text of the same length as the
concatenation, but drawn from a continuous, coherent text. The
expected line gives the expected separations on the hypothesis of
random placement of the words in the text.

As can be seen in Table V, the mean dispersion behaves as

2150 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

expected; it is smaller than random placement for all texts, but
larger for coherent texts than for samples constructed to have abrupt
changes of topic. The large standard deviation relative to the mean
makes it a difficult statistic to work with, but it shows promise as a
measure of uniformity of topic in a passage.

V. ENGLISH WORDS

In this section, we go a short step beyond the character-string
orientation of the last section and consider different functional uses
of our character strings as English words. Words will still be defined
by prep as character strings separated by space or punctuation, but
we attend to the way these character strings are used as English
words.

5.1 Readability revisited

In the previous section, we considered the correlation of a statistic
based on breadth of vocabulary with readability. Another way in
which English text can become difficult to read is for an author to
use long, complicated constructions which require the reader to fol-
low tortuously through the maze of what is a single sentence, and,
therefore, presumably a single thought. (The preceding sentence is
offered as a rather modest example of its own referent.) English
sentences become long and complicated usually by use of connective
words like prepositions (of, from, to, etc.) and conjunctions (and,
when, if, although, etc.). Therefore, a list was drawn up of connec-
tive words (prepositions and conjunctions), and another list of other
function words (auxiliary verbs, articles, demonstratives, etc.).
Using prep -0 through wc, the number of connectives and the
number of other function words in each of twenty graded passages*
were counted. As expected, reading difficulty as measured both by
Bormuth’s psychological index and by publishers’ grade placement
was correlated with both indexes. Number of connectives per token
was correlated —0.72 with Bormuth’s index score; 0.69 with grade
placement. Number of other function words per token was corre-
lated 0.57 with Bormuth’s index; —0.50 with grade placement.

The two best predictors considered, H/T ratio and density of con-
nective words, are, alas, highly correlated with each other, so that
the multiple correlation of the two predictors is only 0.80 with
Bormuth’s index and 0.78 with grade placement. This finding that
predictors of readability are highly correlated among themselves is

STATISTICAL TEXT PROCESSING 2151

common.* It is probably unavoidable when the passages used to
validate a readability index are taken from text intended for
different audiences. An author, knowing that his audience is less
skilled in reading, makes his text simpler in every respect: vocabu-
lary, sentence structure, etc. At present, however, no reliably
graded text is available to the authors which is intended for our tar-
get audience.

5.2 Word class assignment in English text

Several of the statistics described in Section II were collected,
Jaute de mieux, on all words in the text. The work on vocabulary
differences, for instance, would have profited from being done only
on the nouns in the text, since the differences in concepts between
specialized fields should show up especially in the nouns used to
refer to the concepts. When the work described in Section IV was
done, there was no automatic way to classify the words in a text as
nouns, verbs, adjectives, etc.

Recently, a set of programs has been written to automatically
assign word classes (parts of speech) to words. The system operates
on the principle that, if word classes can be assigned or partially
assigned to many of the words in a sentence, the word classes of the
remaining words can be deduced. There are 38 internal word classes
that are collapsed to 14 on final output. Many of the internal classes
are combinations of the 14 final classes with the last program mak-
ing the final decision as to what class to assign. Examples of the
internal classes are plural noun-verb, singular noun-verb, noun-
adjective, ed, ing. The system consists of three programs written in
Lex and C.

The first program looks each word up in a dictionary of 210 func-
tional words and 140 irregular verbs. This phase assigns classes to
the common articles, pronouns, auxiliary verbs, etc.

The second program uses word endings in an attempt to assign
word classes. Each word not assigned a word class by the first pro-
gram is compared with 49 word endings. If a match is found, the
word is checked with a list of words that are exceptions to the end-
ing rule and a class assignment is made accordingly. (The list of
exceptions was made automatically using an on-line dictionary con-
taining part-of-speech information.) After phase 2, 55 percent of the
words have unique class assignments, 29 percent have partial assign-
ments, and 16 percent are still totally unassigned.

The third program does most of the work. Basically, it scans a

2152 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

sentence looking for a verb. Having found either a verb or an indi-
cation to stop scanning, it returns to the beginning of the sentence
and starts assigning word classes, looking for a subject. The pro-
gram assumes sentences to be either declarative or interrogative; it
has no way of detecting an imperative sentence.

A sample sentence is presented below. The first line is the sen-
tence, the second the results after the dictionary and endings phases
are complete, and the last line the final output.

The diffusion of formal political controls in the
art noun prep unk adj pl-n-v prep art
art noun prep adj noun noun prep art

national government serves to magnify the influence of
noun-adj noun pl-n-v to verb art n-v prep
noun noun verb verb verb art noun prep

organized private groups in public affairs .
ed unk pl-n-v prep noun-adj pl-n-v
adj noun noun prep adj noun

The system was run on several samples of graded English text
containing a total of 11,705 words. Word class assignments were
assigned independently by hand and the program results were com-
pared to those of the human coder. A total of 588 errors were made
by the program, a 5 percent error rate. Of these errors, 34 percent
were mistaken verbs, both false positives and missed cases. The
greatest number of errors were noun-adjective confusions.

Even though the program is not perfect, it is very good in match-
ing human-assigned classes, and should be useful in extending the
statistical projects described above.

VI. CONCLUSION

This paper has illustrated a variety of the uses to which the UNIX
system and UNIX tools have been put in describing English text sta-
tistically. The basic concepts of UNIX programming, like standard
input and output, pipes, filters, etc., which make all programming
convenient, are especially useful for collecting statistics, where a
small number of operations (like counting) are applied to a wide
variety of inputs. The C language is also very convenient for text,
because of its good character manipulation facilities. Finally, the
fact that UNIX is so much used for document preparation has

STATISTICAL TEXT PROCESSING 2153

ensured that a large body of text is always at hand for practicing and
sharpening tools.

REFERENCES

1. R. Morris and L. L. Cherry, “Computer Detection of Typographical Errors,” IEEE
Trans. on Professional Communication, PC-18 (March 1975), pp. 54-56.

2. G.U. Yu]el,gxre Statistical Study of Literary Vocabulary, Cambridge: The University
Press, 3

3. H. Kucera and W. Francis, Computational Analysis of Present-Day American English,
Providence: Brown Univ. Press, 1967.

4. 1. C. Bormuth, “Development of Readability Analyses,” U. S. Dept. HEW Final
Report, Project 7-0052, Contract EC-3-7-070052 0325, Chicago University
Press (1969).

5. F. Mosteller and D. L. Wallace, Inference and Disputed Authorship: The Federalist,
Reading, Mass.: Addison-Wesley, 1964.

2154 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

