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Computer programs are portable to the extent that they can be moved

to new computing environments with much less effort than it would take

to rewrite them. In the limit, a program is perfectly portable if it can be

moved at will with no change whatsoever. Recent C language extensions

have made it easier to write portable programs. Some tools have also

been developed that aid in the detection of nonportable constructions.

With these tools many programs have been moved from the PDP-11 on

which they were developed to other machines. In particular, the UNIX*

operating system and most of its software have been transported to the

Interdata 8/32. The source- language representation of most of the code

involved is identical in all environments.

I. INTRODUCTION

A program is portable to the extent that it can be easily moved to

a new computing environment with much less effort than would be

required to write it afresh. It may not be immediately obvious that

lack of portability is, or needs to be, a problem. Of course, practi-

cally no assembly-language programs are portable. The fact is, how-

ever, that most programs, even in high-level languages, depend

explicitly or implicitly on assumptions about such machine-

* unix is a trademark of Bell Laboratories.

2021



dependent features as word and character sizes, character set, file

system structure and organization, peripheral device handling, and

many others. Moreover, few computer languages are understood by

more than a handful of kinds of machines, and those that are (for

example, Fortran and Cobol) tend to be rather limited in their

scope, and, despite strong standards efforts, still differ considerably

from one machine to another.

The economic advantages of portability are very great. In many
segments of the computer industry, the dominant cost is develop-

ment and maintenance of software. Any large organization, cer-

tainly including the Bell System, will have a variety of computers

and will want to run the same program at many locations. If the

program must be rewritten for each machine and maintained for

each, software costs must increase. Moreover, the most effective

hardware for a given job is not constant as time passes. If a non-

portable program remains tied to obsolete hardware to avoid the

expense of moving it, the costs are equally real even if less obvious.

Finally, there can be considerable benefit in using machines from

several manufacturers simply to avoid being utterly dependent on a

single supplier.

Most large computer systems spend most of their time executing

application programs; circuit design and analysis, network routing,

simulation, data base applications, and text processing are particu-

larly important at Bell Laboratories. For years, application programs

have been written in high-level languages, but the programs that

provide the basic software environment of computers (for example,

operating systems, compilers, text editors, etc.) are still usually

coded in assembly language. When the costs of hardware were large

relative to the costs of software, there was perhaps some justification

for this approach; perhaps an equally important reason was the lack

of appropriate, adequately supported languages. Today hardware is

relatively cheap, software is expensive, and any number of

languages are capable of expressing well the algorithms required for

basic system software. It is a mystery why the vast majority of com-
puter manufacturers continue to generate so much assembly-

language software.

The benefits of writing software in a well-designed language far

exceed the costs. Aside from potential portability, these benefits

include much smaller development and maintenance costs. It is true

that a penalty must be paid for using a high-level language, particu-

larly in memory space occupied. The cost in time can usually be

controlled: experience shows that the time-critical part of most
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programs is only a few percent of the total code. Careful design

allows this part to be efficient, while the remainder of the program is

unimportant.

Thus, we take the position that essentially all programs should be

written in a language well above the level of machine instructions.

While many of the arguments for this position are independent of

portability, portability is itself a very important goal; we will try to

show how it can be achieved almost as a by-product of the use of a

suitable language.

We have recently moved the UNIX system kernel, together with

much of its software, from its original host machine (dec PDP-11) to

a very different machine (Interdata 8/32). Almost all the programs

involved are written in the C language, 1 ' 2 and almost all are identi-

cal on the two systems. This paper discusses some of the problems

encountered, and how they were solved by changing the language

itself and by developing tools to detect and resolve nonportable con-

structions. The major lessons we have learned, and that we hope to

teach, are that portable programs are good programs for more rea-

sons than that they are portable, and that making programs portable

costs some intellectual effort but need not degrade their perfor-

mance.

II. HISTORY

The Computing Science Research Center at Bell Laboratories has

been interested in the problems and technologies of program porta-

bility for over a decade. Altran 3
is a substantial (25,000 lines) com-

puter algebra system, written in Fortran, which was developed with

portability as one of its primary goals. Altran has been moved to

many incompatible computer systems; the effort involved for each

move is quite moderate. Out of the Altran effort grew a tool, the

pfort verifier, 4 that checks Fortran programs for adherence to a

strict set of programming conventions. Most importantly, it detects

(where possible) whether the program conforms to the ANSI stan-

dard for Fortran, 5 but because many compilers fail to accept even

standard-conforming programs, it also remarks upon several con-

structions that are legal but nevertheless nonportable. Successful

passage of a program through pfort is an important step in assuring

that it is portable. More recently, members of the Computer Sci-

ence Research Center and the Computing Technology Center jointly

created the PORT library of mathematical software. 6 Implementation

of PORT required research not merely into the language issues, but
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also into deeper questions of the model of floating point computa-

tions on the various target machines.

In parallel with this work, the development at Bell Laboratories of

Snobol4 7 marks one of the first attempts at making a significant

compiler portable. Snobol4 was successfully moved to a large

number of machines, and, while the implementation was sometimes

inefficient, the techniques made the language widely available and

stimulated additional work leading to more efficient implementa-

tions.

III. PORTABILITY OF C PROGRAMS - INITIAL EXPERIENCES

C was developed for the PDP-11 on the UNIX system in 1972. Por-

tability was not an explicit goal in its design, even though limitations

in the underlying machine model assumed by the predecessors of C
made us well aware that not all machines were the same. 2 Less than

a year later, C was also running on the Honeywell 6000 system at

Murray Hill. Shortly thereafter, it was made available on the IBM

370 series machines as well. The compiler for the Honeywell was a

new product, 8 but the IBM compiler was adapted from the PDP-11

version, as were compilers for several other machines.

As soon as C compilers were available on other machines, a

number of programs, some of them quite substantial, were moved

from UNIX to the new environments. In general, we were quite

pleased with the ease with which programs could be transferred

between machines. Still, a number of problem areas were evident.

To begin with, the C language was growing and developing as

experience suggested new and desirable features. It proved to be

quite painful to keep the various C compilers compatible; the

Honeywell version was entirely distinct from the PDP-11 version,

and the IBM version had been adapted, with many changes, from a

by-then obsolete version of the PDP-11 compiler. Most seriously,

the operating system interface caused far more trouble for portability

than the actual hardware or language differences themselves. Many
of the UNIX primitives were impossible to imitate on other operating

systems; moreover, some conventions on these other operating sys-

tems (for example, strange file formats and record-oriented I/O)

were difficult to deal with while retaining compatibility with UNIX.

Conversely, the I/O library commonly used sometimes made UNIX

conventions excessively visible— for example, the number 518 often

found its way into user programs as the size, in bytes, of a particu-

larly efficient I/O buffer structure.
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Additional problems in the compilers arose from the decision to

use the local assemblers, loaders, and library editors on the host

operating systems. Surprisingly often, they were unable to handle

the code most naturally produced by the C compilers. For example,

the semantics of possibly initialized external variables in C was quite

consciously designed to be implementable in a way identical to

Fortran's COMMON blocks to guarantee its portability. It was an

unpleasant surprise to discover that the Honeywell assembler would

allow at most 61 such blocks (and hence external variables) and that

the IBM link-editor preferred to start external variables on even

4096-byte boundaries. Software limitations in the target systems

complicated the compilers and, in one case, the problems with

external variables just mentioned, forced changes in the C language

itself.

IV. THE UNIX PORTABILITY PROJECT

The realization that the operating systems of the target machines

were as great an obstacle to portability as their hardware architecture

led us to a seemingly radical suggestion: to evade that part of the

problem altogether by moving the operating system itself.

Transportation of an operating system and its software between

non-trivially different machines is rare, but not unprecedented. 9 " 13

Our own situation was a bit different in that we already had a

moderately large, complete, and mature system in wide use at many
installations. We could not (or at any rate did not want to) start

afresh and redesign the language, the operating system interfaces,

and the software. It seemed, though, that despite some problems in

each we had a good base to build on.

Our project had three major goals:

(/) To write a compiler for C that could be changed without grave

difficulty to generate code for a variety of machines.

(/'/') To refine and extend the C language to make most C pro-

grams portable to a wide variety of machines, mechanically

identifying non-portable constructions where possible.

(///) To revise or recode a substantial portion of UNIX in portable

C, detecting and isolating machine dependencies, and demon-
strate its portability by moving it to another machine.

By pursuing each goal, we hoped to attain a corresponding benefit:

(/') AC compiler adaptable to other machines (independently of

Unix), that puts into practice some recent developments in

the theory of code generation.
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(//) Improved understanding of the proper design of languages

that, like C, operate on a level close to that of real machines

but that can be made largely machine-independent.

(///') A relatively complete and usable implementation of UNIX on

at least one other machine, with the hope that subsequent

implementations would be fairly straightforward.

We selected the Interdata 8/32 computer to serve as the initial

target for the system portability research. It is a 32-bit computer

whose design resembles that of the IBM System/360 and /370 series

machines, although its addressing structure is rather different; in

particular, it is possible to address any byte in virtual memory
without use of a base register. For the portability research, of

course, its major feature is that it is not a PDP-11. In the longer

term, we expect to find it especially useful for solving problems,

often drawn from numerical analysis, that cannot be handled on the

PDP-11 because of its limited address space.

Two portability projects besides those referred to above are partic-

ularly interesting. In the period 1976-1977, T. L. Lyon and his asso-

ciates at Princeton adapted the unix kernel to run in a virtual-

machine partition under vm/370 on an IBM System/370. 14 Enough
software was also moved to demonstrate the feasibility of the effort,

though no attempt was made to produce a complete, working sys-

tem. In the midst of our own work on the Interdata 8/32, we
learned that a unix portability project, for the similar Interdata 7/32,

was under way at the University of Wollongong in Australia. 15 Since

everything we know of this effort was discovered in discussion with

its major participant, Richard Miller, 16 we will remark only that the

transportation route chosen was markedly different from ours. In

particular, an Interdata C compiler was adapted from the PDP-11

compiler, and was moved as soon as possible to the Interdata, where

it ran under the manufacturer's operating system. Then the UNIX

kernel was moved in pieces, first running with dummy device

drivers as a task under the Interdata system, and only at the later

stages independently. This approach, the success of which must be

scored as a real tour deforce, was made necessary by the 100 kilome-

ters separating the PDP-11 in Sydney from the Interdata in Wol-

longong.

4.1 Project chronology

Work began in the early months of 1977 on the compiler, assem-

bler, and loader for the Interdata machine. Soon after its delivery at
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the end of April 1977, we were ready to check out the compiler. At

about the same time, the operating system was being scrutinized for

nonportable constructions. During May, the Interdata-specific code

in the kernel was written, and by June, it was working well enough

to begin moving large amounts of software; T. L. Lyon aided us

greatly by tackling the bulk of this work. By August, the system was

unmistakably UNIX, and it was clear that, as a research project, the

portability effort had succeeded, although there were still programs

to be moved and bugs to be stamped out. From late summer until

October 1977, work proceeded more slowly, owing to a combination

of hardware difficulties and other claims on our time; by the spring

of 1978 the portability work as such was complete. The remainder

of this paper discusses how success was achieved.

V. SOME NON-GOALS

It was and is clear that the portability achievable cannot approach

that of Altran, for example, which can be brought up with a fort-

night of effort by someone skilled in local conditions but ignorant of

Altran itself. In principle, all one needs to implement Altran is a

computer with a standard Fortran compiler and a copy of the Altran

system tape; to get it running involves only defining of some con-

stants characterizing the machine and writing a few primitive opera-

tions in assembly language.

In view of the intrinsic difficulties of our own project, we did not

feel constrained to insist that the system be so easily portable. For

example, the C compiler is not bootstrapped by means of a simple

interpreter for an intermediate language; instead, an acceptably

efficient code generator must be written. The compiler is indeed

designed carefully so as to make changes easy, but for each new
machine it inevitably demands considerable skill even to decide on

data representations and run-time conventions, let alone the code

sequences to be produced. Likewise, in the operating system, there

are many difficult and inevitably machine-dependent issues, includ-

ing especially the treatment of interrupts and faults, memory
management, and device handling. Thus, although we took some

care to isolate the machine-dependent portions of the operating sys-

tem into a set of primitive routines, implementation of these primi-

tives involves deep knowledge of the most recondite aspects of the

target machine.

Moreover, we could not attempt to make the portable UNIX sys-

tem compatible with software, file formats, or inadequate character
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sets already existing on the machine to which it is moved; to prom-

ise to do so would impossibly complicate the project and, in fact,

might destroy the usefulness of the result. If UNIX is to be installed

on a machine, its way of doing business must be accepted as the

right way; afterwards, perhaps, other software can be made to work.

VI. THE PORTABLE C COMPILER

The original C compiler for the PDP-11 was not designed to be

easy to adapt for other machines. Although successful compilers for

the IBM System/370 and other machines were based on it, much of

the modification effort in each case, particularly in the early stages,

was concerned with ridding it of assumptions about the PDP-11.

Even before the idea of moving UNIX occurred to us, it was clear

that C was successful enough to warrant production of compilers for

an increasing variety of machines. Therefore, one of the authors

(SCJ) undertook to produce a new compiler intended from the start

to be easily modified. This new compiler is now in use on the IBM

System/370 under both OS and tss, the Honeywell 6000, the Inter-

data 8/32, the sel86, the Data General Nova and Eclipse, the dec
vax- 11/780, and a Bell System processor. Versions are in progress

for the Intel 8086 microprocessor and other machines.

The degree of portability achieved by this compiler is satisfying.

In the Interdata 8/32 version, there are roughly 8,000 lines of

source code. The first pass, which does syntax and lexical analysis

and symbol table management, builds expression trees, and gen-

erates a bit of machine-dependent code such as subroutine prologues

and epilogues, consists of 4,600 lines of code, of which 600 are

machine-dependent. In the second pass, which does the bulk of the

code generation, 1,000 out of 3,400 lines are machine-dependent.

Thus, out of a total of 8,000 lines, 1,600, or 20 percent, are

machine-dependent; the remaining 80 percent are shared with the

Honeywell, IBM, and other compilers. As the Interdata compiler

becomes more carefully tuned, the machine-dependent figures will

rise somewhat; for the IBM, the machine-dependent fraction is 22

percent; for the Honeywell, 25 percent.

These figures both overstate and understate the true difficulty of

moving the compiler. They represent the size of those source files

that contain machine-dependent code; only a half or a third of the

lines in many machine-dependent functions actually differ from

machine to machine, because most of the routines involved remain

similar in structure. As an example, routines to output branches,
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align location counters, and produce function prologues and epilo-

gues have a clear machine-dependent component, but nevertheless

are logically very similar for all the compilers. On the other hand,

as we discuss below, the hardest part of moving the compiler is not

reflected in the number of lines changed, but is instead concerned

with understanding the code generation issues, the C language, and

the target machine well enough to make the modifications

effectively.

The new compiler is not only easily adapted to a new machine, it

has other virtues as well. Chief among these is that all versions

share so much code that maintenance of all versions simultaneously

involves much less work than would maintaining each individually.

For example, if a bug is discovered in the machine-independent por-

tion, the repair can be made to all versions almost mechanically.

Even if the language itself is changed, it is often the case that most

of the job of installing the change is machine-independent and

usable for all versions. This has allowed the compilers for all

machines to remain compatible with a minimum of effort.

The interface between the two passes of the portable C compiler

consists of an intermediate file containing mostly representations of

expression trees together with character representations of stereo-

typed code for subroutine prologues and epilogues. Thus a different

first pass can be substituted provided it conforms to the interface

specifications. This possibility allowed S. I. Feldman to write a first

pass that accepts the Fortran 77 language instead of C. At the

moment, the Fortran front-end has two versions (which differ by

about as much as do the corresponding first passes for C) that feed

the code generators for the PDP-11 and the Interdata machines.

Thus we apparently have not only the first, but the first two imple-

mentations of Fortran 77.

6.1 Design of the portable compiler

Most machine-dependent portions of a C compiler fall into three

categories.

(/) Storage allocation.

(/'/) Rather stereotyped code sequences for subroutine entry points

and exits, switches, labels, and the like.

(///) Code generation for expressions.

For the most part, storage allocation issues are easily parameter-

ized in terms of the number of bits required for objects of the
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various types and their alignment requirements. Some issues, like

addressability on the IBM 360 and 370 series, cause annoyance, but

generally there are few problems in this area.

The calling sequence is very important to the efficiency of the

result and takes considerable knowledge and imagination to design

properly. However, once designed, the calling sequence code and

the related issue of stack frame layout are easy to cope with in the

compiler.

Generating optimal code for arithmetic expressions, even on

idealized machines, can be shown theoretically to be a nearly intract-

able problem. For the machines we are given in real life, the prob-

lem is even harder. Thus, all compilers have to compromise a bit

with optimality and engage in heuristic algorithms to some extent, in

order to get acceptably efficient code generated in a reasonable

amount of time.

The design of the code generator was influenced by a number of

goals, which in turn were influenced by recent theoretical work in

code generation. It was recognized that there was a premium in

being able to get the compiler up and working quickly; it was also

felt, however, that this was in many ways less important than being

able to evolve and tune the compiler into a high-quality product as

time went on. Particularly with operating system code, a "quick and

dirty" implementation is simply unacceptable. It was also recog-

nized that the compiler was likely to be applied to machines not well

understood by the compiler writer that might have inadequate or

nonexistent debugging facilities. Therefore, one goal of the com-

piler was to permit it to be largely self-checking. Rather than pro-

duce incorrect code, we felt it far preferable for the compiler to

detect its own inadequacies and reject the input program.

This goal was largely met. The compiler for the Interdata 8/32

was working within a couple of weeks after the machine arrived;

subsequently, several months went by with very little time lost due

to compiler bugs. The bug level has remained low, even as the

compiler has begun to be more carefully tuned; many of the bugs

have resulted from human error (e.g., misreading the machine

manual) rather than actual compiler failure.

Several techniques contribute considerably to the general reliabil-

ity of the compiler. First, a conscious attempt was made to separate

information about the machine (e.g., facts such as "there is an add

instruction that adds a constant to a register and sets the condition

code") from the strategy, often heuristic, that makes use of these

facts (e.g., if an addition is to be done, first compute the left-hand
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operand into a register). Thus, as the compiler evolves, more effort

can be put into improving the heuristics and the recognition of

important special cases, while the underlying knowledge about the

machine operations need not be altered. This approach also

improves portability, since the heuristic programs often remain

largely unchanged among similar machines, while only the detailed

knowledge about the format of the instructions (encoded in a table)

changes.

During compilation of expressions, a model of the state of the

compilation process, including the tree representing the expression

being compiled and the status of the machine registers, is main-

tained by the compiler. As instructions are emitted, the expression

tree is simplified. For example, the expression a = b+ c might first

be transformed into a = register+b as a load instruction for a is

generated, then into a = register when an add is produced. The
possible transformations constitute the "facts" about the machine;

the order in which they are applied correspond to the heuristics.

When the input expression has been completely transformed into

nothing, the expression is compiled. Thus, a good portion of the

initial design of a new version of the compiler is concerned with

making the model within the compiler agree with the actual machine

by building a table of machine operations and their effects on the

model. When this is done correctly, one has a great deal of

confidence that the compiler will produce correct code, if it produces

any at all.

Another useful technique is to partition the code generation job

into pieces that interact only through well-defined paths. One
module worries about breaking up large expressions into manageable

pieces, and allocating temporary storage locations when needed.

Another module worries about register allocation. Finally, a third

module takes each "manageable" piece and the register allocation

information, and generates the code. The division between these

pieces is strict; if the third module discovers that an expression is

"unmanageable," or a needed register is busy, it rejects the compila-

tion. The division enforces a discipline on the compiler which,

while not really restricting its power, allows for fairly rapid debug-

ging of the compiler output.

The most serious drawback of the entire approach is the difficulty

of proving any form of "completeness" property for the compiler—

of demonstrating that the compiler will in fact successfully generate

code for all legal C programs. Thus, for example, a needed

transformation might simply be missing, so that there might be no
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way to further simplify some expression. Alternatively, some

sequence of transformations might result in a loop, so that the same

expression keeps reappearing in a chain of transformations. The

compiler detects these situations by realizing that too many passes

are being made over the expression tree, and the input is rejected.

Unfortunately, detection of these possibilities is difficult to do in

advance because of the use of heuristics in the compiler algorithms.

Currently, the best way of ensuring that the compiler is acceptably

complete is by extensive testing.

6.2 Testing the compiler

We ordered the Interdata 8/32 without any software at all, so we

first created a very crude environment that allowed stand-alone pro-

grams to be run; all interrupts, memory mapping, etc., were turned

off. The compiler, assembler, and loader ran on the PDP-11, and the

resulting executable files were transferred to the Interdata for test-

ing. Primitive routines permitted individual characters to be written

on the console. In this environment, the basic stack management of

the compiler was debugged, in some cases by single-stepping the

machine. This was a painful but short period.

After the function call mechanism was working, other short tests

established the basic sanity of simple conditionals, assignments, and

computations. At this point, the stand-alone environment could be

enriched to permit input from the console and more informative

output such as numbers and character strings, so ordinary C pro-

grams could be run. We solicited such programs, but found few

that did not depend on the file system or other operating system

features. Some of the most useful programs at this stage were sim-

ple games that pitted the computer against a human; they frequently

did a large amount of computing, often with quite complicated logic,

and yet restricted themselves to simple input and output. A number

of compiler bugs were found and fixed by running games. After

these tests, the compiler ceased to be an explicit object of testing,

and became instead a tool by which we could move and test the

operating system.

Some of the most subtle problems with compiler testing come in

the maintenance phase of the compiler, when it has been tested,

declared to work, and installed. At this stage, there may be some

interest in improving the code quality as well as fixing the occasional

bug. An important tool here is regression testing; a collection of

test programs are saved, together with the previous compiler output.
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Before a new compiler is installed, the new compiler is fed these test

programs, the new output is compared with the saved output, and
differences are noted. If no differences are seen, and a compiler bug
has been fixed or improvement made, the testing process is incom-
plete, and one or more test programs are added. If differences are

detected, they are carefully examined. The basic problem is that

frequently, in attempting to fix a bug, the most obvious repair can

give rise to other bugs, frequently breaking code that used to work.

These other bugs can go undetected for some time, and are very

painful both to the users and the compiler writer. Thus, regression

tests attempt to guard against introducing new bugs while fixing old

ones.

The portable compiler is sufficiently self-checked that many poten-

tial compiler bugs were detected before the compiler was installed by

the simple expedient of turning the compiler loose on a large

amount (tens of thousands of lines) of C source code. Many con-

structions turned up there that were undreamed of by the compiler

writer, and often mishandled by the compiler.

It is worth mentioning that this kind of testing is easily carried out

by means of the standard commands and features in the UNIX sys-

tem. In particular, C source programs are easily identified by their

names, and the UNIX shell provides features for applying command
sequences automatically to each of a list of files in turn. Moreover,
powerful utilities exist to compare two similar text files and produce

a minimal list of differences. Finally, the compiler produces assem-

bly code that is an ordinary text file readable by all of the usual utili-

ties. Taken together, these features make it very simple to invent

test drivers. For example, it takes only a half-dozen lines of input

to request a list of differences between the outputs of two versions

of the compiler applied to tens (or hundreds) of source files.

Perhaps even more important, there is little or no output when the

compilers compare exactly. On many systems, the "job control

language" required to do this would be so unpleasant as to insure

that it would not be done. Even if it were, the resulting hundreds

of pages of output could make it very difficult to see the places

where the compiler needed attention.

The design of the portable C compiler is discussed more
thoroughly in Ref. 17.

VII. LANGUAGE AND COMPILER ISSUES

We were favorably impressed, even in the early stages, by the
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general ease with which C programs could be moved to other

machines. Some problems we did encounter were related to

weaknesses in the C language itself, so we undertook to make a few

extensions.

C had no way of accounting in a machine-independent way for the

overlaying of data. Most frequently, this need comes up in large

tables that contain some parts having variable structure. As an

invented example, a compiler's table of constants appearing in a

source program might have a flag indicating the type of each con-

stant followed by the constant's value, which is either integer or

floating. The C language as it existed allowed sufficient cheating to

express the fact that the possible integer and floating value might be

overlaid (both would not exist at once), but it could not be

expressed portably because of the inability to express the relative

sizes of integers and floating-point data in a machine-independent

way. Therefore, the union declaration was added; it permits such a

construction to be expressed in a natural and portable manner.

Declaring a union of an integer and a floating point number reserves

enough storage to hold either, and forces such alignment properties

as may be required to make this storage useful as both an integer

and a floating point number. This storage may be explicitly used as

either integer or floating point by accessing it with the appropriate

descriptor tag.

Another addition was the typedef facility, which in effect allows

the types of objects to be easily parameterized, typedef is used

quite heavily in the operating system kernel, where the types of a

number of different kinds of objects, for example, disk addresses,

file offsets, device numbers, and times of day, are specified only

once in a header file and assigned to a specific name; this name is

then used throughout. Unlike some languages, C does not permit

definition of new operations on these new types; the intent was

increased parameterization rather than true extensibility.

Although the C language did benefit from these extensions, the

portability of the average C program is improved more by restricting

the language than by extending it. Because it descended from type-

less languages, C has traditionally been rather permissive in allowing

dubious mixtures of various types; the most flagrant violations of

good practice involved the confusion of pointers and integers. Some

programs explicitly used character pointers to simulate unsigned

integers; on the PDP-11 the two have the same arithmetic properties.

Type unsigned was introduced into the language to eliminate the

need for this subterfuge.
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More often, type errors occurred unconsciously. For example, a

function whose only use of an argument is to pass it to a subfunc-

tion might allow the argument to be taken to be an integer by

default. If the top-level actual argument is a pointer, the usage is

harmless on many machines, but not type-correct and not, in gen-

eral, portable.

Violations of strict typing rules existed in many, perhaps most, of

the programs making up the entire stock of UNIX system software.

Yet these programs, representing many tens of thousands of lines of

source code, all worked correctly on the PDP-11 and in fact would

work on many other machines, because the assumptions they made
were generally, though not universally, satisfied. It was not feasible

simply to declare all the suspect constructions illegal. Instead, a

separate program was written to detect as many dubious coding prac-

tices as possible. This program, called lint, picks bits of fluff from

programs in much the same way as the pfort verifier mentioned

above. C programs acceptable to lint are guaranteed to be free from

most common type errors; lint also checks syntax and detects some
logical errors, such as uninitialized variables, unused variables, and

unreachable code.

There are definite advantages in separating program-checking

from compilation. First, lint was easy to produce, because it is

based on the portable compiler and thus shares the machine-

independent code of the first pass with the other versions of the

compiler. More important, the compilers, large programs anyway,

are not burdened with a great deal of checking code which does not

necessarily apply to the machine for which they are running. A
good example of extra capability feasible in lint but probably not in

the compilers themselves is checking for inter-program consistency.

The C compilers all permit separate compilation of programs in

several files, followed by linking together of the results, lint

(uniquely) checks consistency of declarations of external variables,

functions, and function arguments among a set of files and libraries.

Finally, lint itself is a portable program, identical on all machines.

Although care was taken to make it easy to propagate changes in the

machine-independent parts of the compilers with a minimum of

fuss, it has proved useful for the sometimes complicated logic of lint

to be totally decoupled from the compilers, lint cannot possibly

affect their ability to produce code; if a bug in lint turns up, its out-

put can be ignored and work can continue simply by ignoring the

spurious complaints. This kind of separation of function is charac-

teristic of unix programs in general. The compiler's one important
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job is to generate code; it is left to other programs to print listings,

generate cross-reference tables, and enforce style rules.

VIII. THE PORTABILITY OF THE UNIX KERNEL

The unix operating system kernel, or briefly the operating system,

is the permanently resident program that provides the basic software

environment for all other programs running on the machine. It

implements the "system calls" by which user's programs interact

with the file system and request other services, and arranges for

several programs to share the machine without interference. The
structure of the UNIX operating system kernel is discussed elsewhere

in this issue. 18 ' 19

To many people, an operating system may seem the very model

of a nonportable program, but in fact a major portion of UNIX and

other well-written operating systems consists of machine-

independent algorithms: how to create, read, write, and delete files,

how to decide who to run and who to swap, and so forth. If the

operating system is viewed as a large C program, then it is reason-

able to hope to apply the same techniques and tools to it that we
apply to move more modest programs.

The UNIX kernel can be roughly divided into three sections

according to their degree of portability.

8.1 Assembly-language primitives

At the lowest level, and least portable, is a set of basic hardware

interface routines. These are written in assembly language, and con-

sist of about 800 lines of code on the Interdata 8/32. Some of them

are callable directly from the rest of the system, and provide ser-

vices such as enabling and disabling interrupts, invoking the basic

I/O operations, changing the memory map so as to switch execution

from one process to another, and transmitting information between

a user process's address space and that of the system. Most of them

are machine-independent in specification, although not implementa-

tion. Other assembly-language routines are not called explicitly but

instead intercept interrupts, traps, and system calls and turn them

into C-style calls on the routines in the rest of the operating system.

Each time UNIX is moved to a new machine, the assembly-

language portion of the system must be rewritten. Not only is the

assembly code itself machine-specific, but the particular features
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provided for memory mapping, protection, and interrupt handling

and masking differ greatly from machine to machine. In moving

from the PDP-11 to the Interdata 8/32, a huge preponderance of the

bugs occurred in this section. One reason for this is certainly the

usual sorts of difficulties found in assembly-language programming:

we wrote loops that did not loop or looped forever, garbled critical

constants, and wrote plausible-looking but utterly incorrect address

constructions. Lack of familiarity with the machine led us to

incorrect assumptions about how the hardware worked, and to

inefficient use of available status information when things went

wrong.

Finally, the most basic routines for multi-programming, those that

pass control from one process to another, turned out (after causing

months of nagging problems) to be incorrectly specified and actually

unimplementable correctly on the Interdata, because they depended

improperly on details of the register-saving mechanism of the calling

sequence generated by the compiler. These primitives had to be

redesigned; they are of special interest not only because of the prob-

lems they caused, but because they represent the only part of the

system that had to be significantly changed, as distinct from

expressed properly, to achieve portability.

8.2 Device drivers

The second section of the kernel consists of device drivers, the

programs that provide the interrupt handling, I/O command process-

ing, and error recovery for the various peripheral devices connected

to the machine. On the Interdata 8/32 the total size of drivers for

the disk, magnetic tape, console typewriter, and remote typewriters

is about 1100 lines of code, all in C. These programs are, of course,

machine-dependent, since the devices are.

The drivers caused far fewer problems than did the assembly-

language programs. Of course, they already had working models on

the PDP-11, and we had faced the need to write new drivers several

times in the past (there are half a dozen disk drivers for various

kinds of hardware attached to the PDP-11). In adapting to the Inter-

data, the interface to the rest of the system survived unchanged,

and the drivers themselves shared their general structure, and even

much code, with their PDP-11 counterparts. The problems that

occurred seem more related to the general difficulty of dealing with

the particular devices than in expressing what had to be done.
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8.3 The remainder of the system

The third and remaining section of the kernel is the largest. It is

all written in C, and for the Interdata 8/32 contains about 7,000

lines of code. This is the operating system proper, and clearly

represents the bulk of the code. We hoped that it would be largely

portable, and as it turned out our hopes were justified. A certain

amount of work had to be done to achieve portability. Most of it

was concerned with making sure that everything was declared prop-

erly, so as to satisfy lint, and with replacing constants by parameters.

For example, macros were written to perform various unit conver-

sions previously written out explicitly: byte counts to memory seg-

mentation units and to disk blocks, etc. The important data types

used within the system were identified and specified using typedef:

disk offsets, absolute times, internal device names, and the like.

This effort was carried out by K. Thompson.

Of the 7,000 lines in this portion of the operating system, only

about 350 are different in the Interdata and PDP-11 versions; that is,

they are 95 percent identical. Most of the differences are traceable

to one of three areas.

(/) On the PDP-11, the subroutine call stack grows towards

smaller addresses, while on the Interdata it grows upwards.

This leads to different code when increasing the size of a user

stack, and especially when creating the argument list for an

inter-program transfer (exec system call) because the argu-

ments are placed on the stack.

(//) The details of the memory management hardware on the two

machines are different, although they share the same general

scheme.
(/'/'/) The routine that handles processor traps (memory faults, etc.)

and system calls is rather different in detail on the two

machines because the set of faults is not identical, and

because the method of argument transmission in system calls

differs as well.

We are extremely gratified by the ease with which this portion of

the system was transferred. Only a few problems showed up in the

code that was not changed; most were in the new code written

specifically for the Interdata. In other words, what we thought

would be portable did in fact move without trouble.

Not everything went perfectly smoothly, of course. Our first set

of major problems involved the mechanics of transferring test
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systems and other programs from the PDP-11 to the Interdata 8/32

and debugging the result. Better communications between the

machines would have helped considerably. For a period, installing a

new Interdata system meant creating an 800 bpi tape on the sixth-

floor PDP-11, carrying the tape to another PDP-11 on the first floor to

generate a 1600 BPI version, and finally lugging the result to the

fifth-floor Interdata. For debugging, we would have been much
aided by a hardware interface between the PDP-11 and the front

panel of the Interdata to allow remote rebooting. This class of prob-

lems is basically our own fault, in that we traded the momentary
ease of not having to write communications software or build

hardware for the continuing annoyance of carrying tapes and hands-

on debugging.

Another class of problems seems impossible to avoid, since it

stems from the basic differences in the representation of informa-

tion on the two machines. In the machines at issue, only one

difference is important: the PDP-11 addresses the two bytes in a 16-

bit word with the first byte as the least significant 8 bits, while on

the Interdata the first byte in a 16-bit half-word is the most

significant 8 bits. Since all the interfaces between the two machines

are byte-serial, the effect is best described by saying that when a

true character stream is transmitted between them, all is well; but if

integers are sent, the bytes in each half-word must be swapped.

Notice that this problem does not involve portability in the sense in

which it has been used throughout this paper; very few C programs

are sensitive to the order in which bytes are stored on the machine

on which they are running. Instead it complicates "portability" in its

root meaning wherein files are carried from one machine to the

other. Thus, for example, during the initial creation of the Interdata

system we were obliged to create, on the PDP-11, an image of a file

system disk volume that would be copied to tape and thence to the

Interdata disk, where it would serve as an actual file system for the

latter machine. It required a certain amount of cleverness to declare

the data structures appropriately and to decide which bytes to swap.

The ordering of bytes in a word on the PDP-11 is somewhat
unusual, but the problem it poses is quite representative of the

difficulties of transferring encoded information from machine to

machine. Another example is the difference in representation of

floating-point numbers between the PDP-11 and the Interdata. The
assembler for the Interdata, when it runs on the PDP-11, must
invoke a routine to convert the "natural" PDP-11 notation to the

foreign notation, but of course this conversion must not be done
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when the assembler is run on the Interdata itself. This makes the

assembler necessarily non-portable, in the sense that it must execute

different code sequences on the two machines. However, it can

have a single source representation by taking advantage of condi-

tional compilation depending on where it will run.

This kind of problem can get much worse: how are we to move
UNIX to a target machine with a 36-bit word length, whose machine

word cannot even be represented by long integers on the PDP-11?

Nevertheless, it is worth emphasizing that the problem is really

vicious only during the initial bootstrapping phase; all the software

should run properly if only it can be moved once!

IX. TRANSPORTATION OF THE SOFTWARE

Most UNIX code is in neither the operating system itself nor the

compiler, but in the many user-level utilities implementing various

commands and in subroutine libraries. The sheer bulk of the pro-

grams involved (about 50,000 lines of source) meant that the

amount of work in transportation might be considerable, but our

early experience, together with the small average size of each indivi-

dual program, convinced us that it would be manageable. This

proved to be the case.

Even before the advent of the Interdata machine, it was realized,

as mentioned above, that many programs depended to an undesir-

able degree not only on UNIX I/O conventions but on details of par-

ticularly favorable buffering strategies for the PDP-11. A package of

routines, called the "portable I/O library," was written by M. E.

Lesk20 and implemented on the Honeywell and IBM machines as

well as the PDP-11 in a generally successful effort to overcome the

deficiencies of earlier packages. This library too proved to have

some difficulties, not in portability, but in time efficiency and space

required. Therefore a new package of routines, dubbed the "stan-

dard I/O library," was prepared. Similar in spirit to the portable

library, it is somewhat smaller and much faster. Thus, part of the

effort in moving programs to the Interdata machine was devoted to

making programs use the new standard I/O library. In the simplest

cases, the effort involved was nil, since the fundamental character

I/O functions have the same names in all libraries.

Next, each program had to be examined for visible lack of porta-

bility. Of course, lint was a valuable tool here. Programs were also

scrutinized by eye to detect dubious constructions. Often these

involved constants. For example, on the 16-bit PDP-11 the
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expression

x & 0177770

masks off all but the last three bits of x, since 0177770 is an octal

constant. This is almost certainly better expressed

x & —07

(where — is the ones-complement operator) because the latter

expression actually does yield the last three bits of x independently

of the word length of the machine. Better yet, the constant should

be a parameter with a meaningful name.

UNIX software has a number of conventional data structures, rang-

ing from objects returned or accepted by the operating system kernel

(such as status information for a named file) to the structure of the

header of an executable file. Programs often had a private copy of

the declaration for each such structure they used, and often the

declaration was nonportable. For example, an encoded file mode
might be declared int on the 16-bit PDP-11, but on the 32-bit Inter-

data machine, it should be specified as short, which is unambigu-

ously 16 bits. Therefore, another major task in making the software

portable was to collect declarations of all structures common to

several routines, to put the declarations in a standard place, and to

use the include facility of the C preprocessor to insert them in the

source program. The compiler for the PDP-11 and the cross-

compiler for the Interdata 8/32 were adjusted to search a different

standard directory to find the canned declarations appropriate to

each.

Finally, an effort was made to seek out frequently occurring

patches of code and replace them by standard subroutines, or create

new subroutines where appropriate. It turned out, for example, that

several programs had built-in subroutines to find the printable user

name corresponding to a numerical user ID. Although in each case

the subroutine as written was acceptably portable to other machines,

the function it performed was not portable in time across changes in

the format of the file describing the name-number correspondence;

encapsulating the translation function insulated the program against

possible changes in a data base.

X. THE MACHINE MODEL FOR C

One of the hardest parts of designing a language in which to write

portable programs is deciding which properties are guaranteed to
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remain invariant. Likewise, in trying to develop a portable operating

system, it is very hard to decide just what properties of the underly-

ing machine can be depended on. The design questions in each case

are many in number; moreover, the answer to each individual ques-

tion may involve tradeoffs that are difficult to evaluate in advance.

Here we try to show the nature of these tradeoffs and what sort of

compromises are required.

Designing a language in which every program is portable is actu-

ally quite simple: specify precisely the meaning of every legal pro-

gram, as well as what programs are legal. Then the portability prob-

lem does not exist: by definition, if a correct program fails on some
machine, the language has not been implemented properly. Unfor-

tunately, a language like C that is intended to be used for system

programming is not very adaptable to such a Procrustean approach,

mainly because reasonable efficiency is required. Any well-defined

language can be implemented precisely on any general-purpose com-
puter, but the implementation may not be usable in practice if it

implies use of an interpreter rather than machine instructions.

Thus, with both language and operating system design, one must
strike a balance between convenient and powerful features and the

ease of implementing them efficiently on a variety of machines. At

any point, some machine may be found on which some feature is

very expensive to provide, and a decision must be made whether to

modify the feature, and thus compromise the portability of programs

that use it, or to insist that the meaning is immutable and must be

preserved. In the latter case portability is also compromised since

the cost of using the feature may be so high that no one can afford

the programs that use it, or the people attempting to implement the

feature on the new machine give up in despair.

Thus a language definition implies a model of the machine on
which programs in the language will run. If a real machine con-

forms well to the model, then an implementation on that machine is

likely to be efficient and easily written; if not, the implementation

will be painful to provide and costly to use. Here we shall consider

the major features of the abstract C machine that have turned out to

be most relevant so far.

10.1 Integers

Probably the most frequent operations are on integers consisting

of various numbers of bits. Variables declared short are at least 16

bits in length; those declared long are at least 32 bits. Most are
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declared int, and must be at least as precise as short integers, but

may be long if accessing them as such is more efficient. It is

interesting that the word length, which is one of the machine

differences that springs first to mind, has caused rather little trouble.

A small amount of code (mostly concerned with output conversion)

assumes a twos complement representation.

10.2 Unsigned integers

Unsigned integers corresponding to short and int must be pro-

vided. The most relevant properties of unsigned integers appear

when they are compared or serve as numerators in division and

remaindering. Unsigned arithmetic may be somewhat expensive to

implement on some machines, particularly if the number representa-

tion is sign-magnitude or ones complement. No use is made of

unsigned long integers.

1 0.3 Characters

A representation of characters (bytes) must be provided with at

least 8 bits per byte. It is irrelevant whether bytes are signed, as in

the PDP-11, or not, as in all other known machines. It is moderately

important that an integer of any kind be divisible evenly into bytes.

Most programs make no explicit use of this fact, but the I/O system

uses it heavily. (This tends to rule out one plausible representation

of characters on the dec pdp-10, which is able to access five 7-bit

characters in a 36-bit word with one bit left over. Fortunately, that

machine can access four 9-bit characters equally well.) Almost all

programs are independent of the order in which the bytes making up

an integer are stored, but see the discussion above on this issue.

A fair number of programs assume that the character set is ASCII.

Usually the dependence is relatively minor, as when a character is

tested for being a lower case letter by asking if it is between a and z

(which is not a correct test in EBCDIC). Here the test could be easily

replaced by a call to a standard macro. Other programs that use

characters to index a table would be much more difficult to render

insensitive to the character set. ASCII is, after all, a U. S. national

standard; we are inclined to make it a UNIX standard as well, while

not ruling out C compilers for other systems based on other charac-

ter sets (in fact the current IBM System/370 compiler uses EBCDIC).

C PROGRAM PORTABILITY 2043



10.4 Pointers

Pointers to objects of the various basic types are used very

heavily. Frequent operations on pointers include assignment, com-
parison, addition and subtraction of an integer, and dereferencing to

yield the object to which the pointer points. It was frequently

assumed in earlier UNIX code that pointers and integers had a similar

representation (for example, that they occupied the same space).

Now this assumption is no longer made in the programs that have

been moved. Nevertheless, the representation of pointers remains

very important, particularly in regard to character pointers, which

are used freely. A word-addressed machine that lacks any natural

representation of a character pointer may suffer serious inefficiency

for some programs.

10.5 Functions and the calling sequence

UNIX programs tend to be built out of many small, frequently

called functions. It is not unusual to find a program that spends 20

percent of its time in the function prologue and epilogue sequence,

nor one in which 20 percent of the code is concerned with preparing

function argument lists. On the pdp-11/70 the calling sequence is

relatively efficient (it costs about 20 microseconds to call and return

from a function) so it is clear that a less efficient calling sequence

will be quite expensive. Any function in C may be recursive

(without special declaration) and most possess several "automatic"

variables local to each invocation. These characteristics suggest

strongly that a stack must be used to store the automatic variables,

caller's return point, and saved registers lqcal to each function; in

turn, the attractiveness of an implementation will depend heavily on

the ease with which a stack can be maintained. Machines with too

few index or base registers may not be able to support the language

well.

Efficiency is important in designing a calling sequence; moreover,

decisions made here tend to have wide implications. For example,

some machines have a preferred direction of growth for the stack.

On the PDP-11, the stack is practically forced to grow towards

smaller addresses; on the Interdata the stack prefers (somewhat

more weakly) to grow upwards. Differences in the direction of stack

growth leads to differences in the operating system, as has already

been mentioned.
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XI. THE MACHINE MODEL OF UNIX

The definition of C suggests that some machines are more suitable

for C implementations than others; likewise, the design of the UNIX

kernel fits in well with some machine architectures and poorly with

others. Once again, the requirements are not absolute, but a serious

enough mismatch may make an implementation unattractive.

Because the system is written in C, of course, a (perhaps neces-

sarily) slow or bulky implementation of the language will lead to a

slow or bulky operating system, so the remarks in the previous sec-

tion apply. But other aspects of machine design are especially

relevant to the operating system.

1 1.1 Mapping and the user program

As discussed in other papers, 18 ' 21 the system provides user pro-

grams with an address space consisting of up to three logical seg-

ments containing the program text, an extensible data region, and a

stack. Since the stack and the data are both allowed to grow at one

edge, it is desirable (especially where the virtual address space is

limited) that one grow in the negative direction, towards the other,

so as to optimize the use of the address space. A few programs still

assume that the data space grows in the positive direction (so that

an array at its end can grow contiguously), although we have tried to

minimize this usage. If the virtual address space is large, there is

little loss in allowing both the data and stack areas to grow upwards.

The PDP-11 and the Interdata provide examples of what can be

done. On the former machine, the data area begins at the end of

the program text and grows upwards, while the stack begins at the

end of the virtual address space and grows downwards; this is, hap-

pily, the natural direction of growth for the stack. On the Interdata

the data space begins after the program and grows upwards; the

stack begins at a fixed location and also grows upwards. The layout

provides for a stack of at most 128K bytes and a data area of 852K

bytes less the program size, as compared to the total data and stack

space of 64K bytes possible on the PDP-11.

It is hard to characterize precisely what is required of a memory

mapping scheme except by discussing, as we do here, the uses to

which it is put. In general, paging or segmentation schemes seem to

offer sufficient generality to make implementation simple; a single

base and limit register (or even dual registers, if it is desired to
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write-protect the program text) are marginal, because of the

difficulty of providing independently growable data and stack areas.

11.2 Mapping and the kernel

When a process is running in the UNIX kernel, a fixed region of

the kernel's address space contains data specific to that process,

including its kernel stack. Switching processes essentially involves

changing the address map so that the same fixed range of virtual

addresses refers to the data area and stack of the new process. This

implies, of course, that the kernel runs in mapped mode, so that

mapping should not be tied to operating in user mode. It also

means that if the machine has but a single set of mapping
specification registers, these registers will have to be reloaded on

each system call and certain interrupts, for example from the clock.

This causes no logical problems but may affect efficiency.

1 1 .3 Other considerations

Many other aspects of machine design are relevant to implementa-

tion of the operating system but are probably less important,

because on most machines they are likely to cause no difficulty.

Still, it is worthwhile to attempt a list.

(/) The machine must have a clock capable of generating inter-

rupts at a rate not far from 50 or 60 Hz. The interrupts are

used to schedule internal events such as delays for mechanical

motion on typewriters. As written, the system uses clock

interrupts to maintain absolute time, so the interrupt rate

should be accurate in the long run. However, changes to con-

sult a separate time-of-day clock would be minimal.

(//) All disk devices should be able to handle the same, relatively

small, block sizes. The current system usually reads and

writes 512-byte blocks. This number is easy to change, but if

it is made much larger, the efficacy of the system's cache

scheme will degrade seriously unless a large amount of

memory is devoted to buffers.

XII. WHAT HAS BEEN ACCOMPLISHED?

In about six months, we have been able to move the UNIX operat-

ing system and much of its software from its original host, the pdp-

11, to another, rather different machine, the Interdata 8/32. The
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standard of portability achieved is fairly high for such an ambitious

project: the operating system (outside of device drivers and assem-

bly language primitives) is about 95 percent unchanged between the

two systems; inherently machine-dependent software such as the

compiler, assembler, loader, and debugger are 75 to 80 percent

unchanged; other user-level software (amounting to about 20,000

lines so far) is identical, with few exceptions, on the two machines.

It is true that moving a program from one machine to another

does not guarantee that it can be moved to a third. There are many

issues in portability about which we worried in a theoretical way

without having to face them in fact. It would be interesting, for

example, to tackle a machine in which pointers were a different size

from integers, or in which character pointers were fundamentally

different in structure from integer pointers, or with a different char-

acter set. There are probably even issues in portability that we

failed to consider at all. Nevertheless, moving UNIX to a third new

machine, or a fourth, will be easier than it was to the second. The

operating system and the software have been carefully parameter-

ized, and this will not have to be done again. We have also learned

a great deal about the critical issues (the "hard parts").

There are deeper limitations to the generality of what we have

done. Consider the use of memory mapping: if the hardware cannot

support the model assumed by the code as it is written, the code

must be changed. This may not be difficult, but it does represent a

loss of portability. Correspondingly, the system as written does not

take advantage of extra capability beyond its model, so it does not

support (for example) demand paging. Again, this would require

new code. More generally, algorithms do not always scale well; the

optimal methods of sorting files of ten, a thousand, and a million

elements do not much resemble one another. Likewise, some of

the design of the system as it exists may have to be reworked to

take full advantage of machines much more powerful (along many
possible dimensions) than those for which it was designed. This

seems to be an inherent limit to portability; it can only be handled

by making the system easy to change, rather than easily portable

unchanged. Although we believe UNIX possesses both virtues, only

the latter is the subject of this paper.
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