January 1982 Vol IV Wo I
Australian UNIX Users Group

NEWSLETPTER

o e o - A |
PO BA L INg €.ttt it iatostnsnooraueoonseaesnensonsnnoneensnenns
4.1bzd has virtually everything — can you afford it?............185
Take the determinizs out Of FoUTL BOEAS. . v vt en e v nrnnnoaneneee 22
Some propo3ad Changes B0 €. .ttt vineeoensososesenssosesnesess28
msﬁﬁg—mﬁgn £ime in PrOFile........ovverennnnnnnnnnnn 27
E =+ R .
Zen and the art of software 2aintenance. .. vttt ien vetrvnnenns. 348

How products and Dyl mlB . o v v v s s s s ot ntoneesaseonnenenenns ce .35

- T P 1

This is the first issue of Volume 4 of AUUGN. It is also the first
igsue edited by Bob Kummerfeld and Chris Rowles of Sydney University.
The subscription rate has been doubled to $24, this change has allowed
us to turn AUUGN into a journal rather than a newsletter (but we will
keep the o0ld namel). Many issues of AUUGN have been over 50 pages and
most readers wish to keep and refer to old AUUGN's. The newsletter
format (photocopied sheets with a single staple) was not sturdy enough
and so has been changed. The AUUGN "year" has been changed to coincide
with the calendar year, partly because the change in editorship caused
a delay and partly because we felt it made more sense.

This edition of AUUGN marks the introduction of a number of regular
departments. Contributions for each of these sections are solicited
from our readers. If we don't receive contributed items AUUGN will
shrink and die so please send us info on what YOU are doing with UNIX.

This issue was really produced by Tim Long, Jason Catlett, Chris Maltby
and Bruce Ellis. I am just the front man!

Bob Kummerfeld

Chris: Hi Bob, whats new?

Bob: . . . groan . . . I just realized we have to produce our
first issue of AUUGN . . .

C: It was your idea that we become AUUGN editors, you think of
something. Besides, I'm getting married next week and going to
the UK for six months!

B: If Piers were here now he would cry "J¥*¥* gGxxx{®
pause
B: . . . Hey! why not call in that group of hackers from
Basser to help . . . what do they call themselves . . . I know,

the "Conceptual Integrity Agency"” they should be able to give
some ideas.

C: Hold on. That bunch is pretty way out, won't the regular
readers of AUUGN be offended?

B: No! As long as there are plenty of interesting articles about
Unix I think most people will be happy. Besides, it should be
very entertaining.

C: I'm not so sure. The last time I went past the room where they
hangout I heard someone singing "Hello Unix" to the backing of
a synthesiser playing "Hello Dolly”.

B: Relax! Let's go and talk to them . . .
some time later

rhubarb . . . rhubarb . . . mumble

. . . hmmmmm . . . yeh, what about a giant christmas edition
in the shape of a christmas tree . . . how about a Denis
Ritchie centrefold . . . rhubarb . . .

B: all right, come back to earth, we've got to get something out
that has good material on Unix, so please tone it down.

CI people:
Yeah sure Bob. Leave it to us . .

AUUGN Vol IV No I

Formatting C

Tim Long
Basser Department of Computer Science

University of Sydney
(timl:basservax)

1. Introduction

Every C programmer has strong views on idiom, style and formating.
Unfortunately these views are as idiosyncratic as they are inflexible.
In C many semantically distinct constructs have only minor syntactic
differences. For human beings formatting is often the only reasonable

method of distinguishing them.

2. Object and type declarationsg

To establish some terminology we present the following example:

static unsigned int stab_segs, stab_size = 1109, ref_ _counts[MAX_N];
<-———base type-——-> <——item—-> <——item—> < item >
<———=first part——> < second part >
< declaration >

A declaration usually has two parts. The first part, which we will
call the base type, is a list of gtorage clags specifiers, basic type
specifiers and adjectival modifiers of basic types. Some examples of
storage classes are gtatic and register. The term storage class has
lost much of its original intuitive meaning. For instance the modifier
typedef is considered a storage class, but it clearly has nothing to do
with storage. Examples of basic types are int, float and enum. Exam-—
ples of adjectives are long and short.

The second part is a comma separated list of items to be declared
and their initialisations. Each of these items includes an identifier,
possibly surrounded by *, () or []. Any item may be followed by an =
and an initial value.

AUUGN Vol IV No I

2.1. Formatting simple declarations

Only one item should be declared per declaration: there should be
no comma separated lists. For example:

char *p, C; /* WRONG */
char *p; /* RIGHT */
char c; /* RIGHT */

The reasons for this are

(a) all but the first identifier in the WRONG case are hidden and often
missed in a quick glance;

(b) the mixture of types (pointer to character and character in the
above example) can cause confusion;

(¢) it is harder to add a comment or initialisation to an item in the
WRONG case.

All base types, items and initialisations within a group of
declarations should be verticaly aligned. For example:

char *tape_name = "/dev/rht0” /* WRONG */
unsigned long offset; /* WRONG */
int state = st_idle; /* WRONG */

char *tape_name = "/dev/rhto"; /* RIGHT */
unsigned long offset; /* RIGHT */
int state = gt_idle; /* RIGHT */

We can now consider a declaration to have three parts.
(a) The base type, which is never omitted.

(b) The item being declared, which may be omitted.

(c¢) The initialisation, which will probably be omitted.

It is this three part nature which dominates the layout of simple
declarations.

2.2. Complex type definitions

The definition of complex types such as sgtructs, unions and enums
should be isolated and typedefed. The definition of a complex type in C
is a side effect of its appearance in the base type part of a declara-
tion. To make this clearer, consider the following declarations:

enum states state;
struct point where;

Clearly the enum states and the struct point are base types and state

AUUGN Vol IV No I

and where are items. Now consider this (badly formatted) example.

enum states ({st_idle, st_active} state;
struct point (int x; int y;} where;

This is equivalent to the first example except that definitions are
bound to the identifiers sgtates and point. Notice that the definition
of the members of the complex type is part of the base type. Finally it
should be noted that it is not necessary to bind the complex type defin—
ition to an identifer, as the following example shows:

enum {st_idle, st_active} state;
struct {int x; int y} where;

2.3. Formatting complex type definitons

The complex type declarations in the previous section were in poor
style: a new type name should be created for each complex type genera-
ted. There are two ways of doing this. This example demonstrates one:

typedef enum /* RIGHT */
{

st_idle,

st_active,
}

states;
typedef struct /* RIGHT */
{

int X

int ¥
}

range;

Much of the above formatting will be explained latter. The main point
ies that the enum and struct are not bound to any identifier. A new type
name is created to refer to the types as a whole. The declaration of
the objects gstate and where becomes:

states state; /* RIGHT */
point where; /* RIGHT */

Unfortunately this method cannot always be used. When a struct or
union references itself (in the form of a pointer) the type of the poin-
ter can not be named because its declaration is not complete. In this
situation the following variation can be used.

AUUGN Vol IV No I

typedef struct struct_node node;
struct struct_node
{

int node_value;

node *node_link;

)i

This binds the definition of the structure to the identifier struct_ node
in order to achieve a forward reference. But the following declaration
is also valid (and preferable):

typedef struct node node; /* RIGHT */
struct node
{

int node_value;

node *node_link;

}:

Notice that this binds the definition of a structure and a new type to
two identifiers, both of which are called node. These identifiers come
from logically distinct symbol tables. The structure binding is
irrevelant and serves only as a mechanism for the forward definition of

the type.

Formatting the member list of a complex type is straightforward.
The on curly brace should be placed on a new line directly under the
base type. The elements of the member list are indented one tab stop,
and the formatting rules are applied recursively. The off curly brace
is aligned with its matching one. In the second variation this is fol-
lowed by the semicolon. But if a type name is being defined, the name
is placed on a new line indented one tab stop from the off brace, fol-
lowed by the semicolon.

There are several justifications for this layout.

(a) The conceptually independent acts of type definition and storage
allocation are separated.

(b) The indenting and positioning of brackets serves to surround the
memberlist declaration with white space, separating it from peri-—
pheral activity and placing it where it can be seen and modified.
The same arguments apply here as for simple declarations.

(c) The use of a typedef makes the programmer's intention clear.

(d) Subsequent declarations become clean and narrow enough for the
author to be consistent with vertical alignment.

The following is a trimmed example of large structure declaration.

The source fragments comes from an include file. Near the top of this
file is found the following block of typedefs:

AUUGN Vol IV No I

/*

* Forward declarations of general purpose data types.
*
/

typedef struct cfrag cfrag;

typedef struct cnode cnode;

typedef struct ident ident;

typedef struct xnode xnode;

typedef union data data;

Although not all of these forward refrences were necessary all stuctures
and uniong were given them in this case for consistency.

The following structure definition was found further down the file

along with all the other complex type definitions.

struct xnode

{

union

{
xnode
ident

}
x_left;

union

{
xnode
cnode

}
x_right;

xnode *x_type;
xnodes x_what;

data x_value;
short x_£flags;

3}

Typical declarations involving this and related

like:
register xnode *x;

register ident *id;
place where;

3. Function definitions

char *
strcpy(sl, s2)
char *g1;
char *g82;

{

AUUGN Vol IV No I

*xu_xnd;
*xu_id;

*xu_xnd;
*xu_cnd;

types look something

The above function definition has a useful characteristic.
Although the function returns a non int object, its name appears at the
start of a line. This both improves readability and lends itself to
automated searching methods. The alternative

char *strcpy(sl, s2)
char *g1;
char *S2;

{

is readable but does not allow an easy distinction between invocations
and the definiton in an editor search. In general the same rules apply
to a function definition as a simple type except that a new line is
taken immediately before the identifier.

The leading bracket of the formal parameter list should be placed
immediately after the function name. The formal parameters themselves
should be placed on the same line with a space after each comma. The
closing bracket should be placed hard against the last formal parameter
(or the opening bracket if there are no formals). For example:

main(argc, argv, env)
main()

Declaration of the formal parameters follows, hard against the left
margin and obeying the rules of simple declarations.

4. Formatting blocks

Blocks have two parts, surrounded by curly braces. These parts are
(a) declarations local to this block;

(b) executable statements.

Where the block is the body of a function the on curly brace is
placed on a line of its own, hard against the left margin. Each time a
sub-block is opened the on curly brace is indented one further tab stop
from the level of the enclosing block. The brace always appears on a
line of its own. For example:

while (i < n)

{
dothis(

)i
dothat();

This positioning of the opening curly bracket is important to

AUUGN Vol IV No I

(a) visualy seperate the body of the block from surrounding peripheral
acitivity;

(b) act as a pointer to any flow control construct controlling the
block;

(c¢) allow a similar visual clue to any controling expression.

Placing the opening curly brace on the end of the previous line
both embedes any controlling expression in blocks of text and leads to
special cases when blocks are opened to gain local variables.

The local declarations are started on a new line indented one tab
stop from the initial brace. Formatting is as described above. One
blank line should be left between the local declarations and the execu-—
table statements. If there are no declarations the code should start on
a new line immediately after the on brace. For example:

{
char *p;
int i;
p = "this is a demo”;
{
i=0;
return i;
}

The occasional blank line between executable statements is accepta-
ble but should be not be over—indulged. The significance of such blank
lines is easily lost. Often a block comment is more appropriate (see

"Comments").

5. Formatting executable statements

Statements are placed on new lines indented one tab stop from the
level of the on and off braces of their surrounding block. Its is unac-—
ceptable to have more than one statement on one line.

i=0; j=10; /* WRONG */
return; /* WRONG */
i= 0; /* RIGHT */
j = 0; /* RIGHT */
return; /* RIGHT */

Placing many statements on one line banishes all but the first to
oblivion. Although it may be argued that some statements are logically
related this is not sufficient justification for the devaluation of sta-
tements tacked onto the end of another.

AUUGN Vol IV No I

6. Formatting expressions

When an expression forms a complete statement, it should, like any
other statement, occupy one or more lines of its own and be indented to
the current level. Binary operators should be surrounded by spaces.
Unary operators should be placed hard against their operand.

* p ++; /* WRONG */
i=i*10+c~'0"; /* WRONG */
pt+; / RIGHT */
i=41i*10+c¢c - '0"; /* RIGHT */

The ternary operators ? and : should also be surrounded by spaces.

When a sub—expression is enclosed in brackets, the first symbol of
the sub-expression should be placed hard against the opening bracket.
The closing bracket should be placed immediately after the last charac-—
ter of the sub—expression.

a b* (c-4d); /* WRONG */

b * (c — d); /* RIGHT */

a

Note that the symbols -»>, ., and [] which build up primaries (factors)
are not considered binary operators in this context. They should not be
surrounded by spaces. For example:

addr = addrxs[(d >> 3) & 037 }; /* WRONG */
addr -»> csr = 0; /* WRONG */
addr = addrs{(d >> 3) & 037]; /* RIGHT */
addr-s>csr = 0; /* RIGHT */

The round brackets which surround the arguments of a function call
attract no spaces.

puts ("hi\n"); /¥ WRONG */
putg("hi\n"); /* RIGHT */

Commas, whether used as operators or separators, should be placed hard
against the previous symbol and followed by a space.

write(2, "whoops\n",7); /* WRONG */
write(2, "whoops\n", 7); /* RIGHT */
White space in expressions is useful as much by its lack as its
presence. For instance placing spaces in the inside edges of brackets

merely spreads out the expression and loses the suggestion of binding.
Excessive white space causes inflation and promotes devaluation.

AUUGN Vol IV No I

10

Occasionally expressions become too large to fit on a single line.
Breaking at an arbitrary column is distasteful and often unreadable.
Rewriting the expression as two, possibly using a temporary, may destroy
its conceptual integrity and efficiency. The solution is to reformat
the expression over several lines. Consider the following:

fprintf
(
stderr,
"%8: Could not open %s for reading. %s\n",
my__name,
tape_name,
errno > sys_nerr ? "" : sys_errlist{errno]

)

This demonstrates the formatting of the most common cause of long lines,
the function call with many arguments. Notice the position of the open-
ing and closing brackets. The actual parameters are aligned vertically
one tab stop in from the current level. Each actual parameter occupies
a line of its own.

if
(
(id->id_type == NULL)
i
(
(id->id_type->x_what == xt_arrayof)
&&
(item—->x_left->x _what == xt_arrayof)
&&
(id->id_type->x_subtype == item—>x_left->x_subtype)
&&

(id->id_type->x_flags & XIS_DIMLESS)

Here we see another common line length transgressor put in its
place. Notice the placement of binary operators and brackets on lines
of their own.

The basic message in the above exmaples is don't be afraid of using
more lines to make the expression clear.

7. Formatting flow control constructs

In order to give visual distinction between flow control constructs
(such as for and while) and function calls, a small variation in format—
ting is introduced. A space is used to seperate a flow control keyword
from any controlling expression. For example:

AUUGN Vol IV No I

if (p != NULL)

{
dothis();
dothat();
}
return p;

The space seperates the keyword in order to emphasise the flow con-—
trol dominating the following statement or block.

In view of the above the formatting of for and while statementsg is
straightforward:

for (p = root; p l= NULL; p = p—>next)
process(p->data);

while ((c = getchar()) != EOF)
putchar(c);

When formatting if statements several alternatives are possible.
The simple if statement is again straightforward:

if ((£id = open(name, O_READ)) == SYSERROR)
perror(name);

In a simple if-else combination the else keyword should be placed on a
line of its own at the same indentation as the if:

if (c == "\\")

Although these are the only variations of if statements distinguished in
the language the author feels that it is often desirable to consider an
if-elgse chain as a flow control construct in its own right. 1In this
case the following layout is acceptable:

AUUGN Vol IV No I 11

12

if (¢ == *\\')
{

}

else if (¢ == '"')

{
}

else if (c

60 o

s e e

'\Il)

The formatting of gwitch statements is simple:

switch (pid = fork())
{

}

However the placement of cagse labels and labels in general often gives
trouble. The keyword case should be pPlaced on a line of its own at the
same indent level as the controlling switch keyword. A space should
separate the word case from the constant expression which is immediately
followed by the colon. A blank line should be left above a case label
if program flow does not fall through it. For example:

switch (pid = fork())

{

case SYSERROR:
fprintf(stderr, "%s: Could not fork.\n", my_name) ;
exit(1l);

case O:

}

Ordinary labels and defaults follow the same rules.,

Placing executable statements on the same line as a label (of any
sort) is unacceptable since

(a) the statement is visualy hidden by the label;

(b) it isgs impossible to be consistent with indenting, there will always
be some constant expression too long.

The formatting of do statements is difficult. The intuitive method

AUUGN Vol IV No I

isg:

do
{

e e 0

}
while (...):

However the duality of the while keyword often leads to confusion,
especially if the preceeding block is large. To avoid this an arbitary
convention is adopted (as in the case of flow control keywords and func-
tion calls). The while keyword should be indented one tab stop from the
level of the closing brace:

while (...):

8. Comments

Much of this document has concerned itself with formatting aimed at
improving readability. The tacit assumption is that readable code is
easier to understand than unreadable code. Comments do not improve
readability but attempt to directly aid understanding and maintenance.

Comments embedded in code tend to create a dense mass of text.
Ccomments which begin and end on the same line, intermixed with code,
should be avoided. It is better to use a few large comments than many
smaller ones distributed through the text.

/*
* This demongstates the layout of a "block comment”. One
* comment such as this at the head of a hundred line
* function is often more useful than hundreds of two or
* three worders.
*/

main(argc, argv)

int argce;

char *argv([];

{

AUUGN Vol IV No I

13

/*

* Block comments such a this and the above should follow
* the level of the code they refer to.
¥/
if (...)
{
/%
* Indented when the code is indented.
*/

¢ o0

One of the most important aspects of comments is their semantic
content. Crxyptic references should be avoided, "in" jokes should be
obviously irrelevant. Comments should contain either

(a) complete english sentences, with capital letters and full stops
(periods);

(b) some sort of well defined logical symbolism;
(c) diagrams.

For example:

/ *
* Warning!

* i + strlen(str) + base - p <= BUFSIZ
* or else.

*/
/ *

* The shape of the file is thus:

*

*

* { header |

* ! :

* { hashtable }

* ! (hashgize * |

* ! TABENTLEN) |

* ! !

* | table !

* ! (tabsize * |

* ! TABENTLEN) |

* ’ — '

* ! entries !

* \ /

* @

*® / . \

* ! eof !

*

*

* I hope this is a little clearer now.

AUUGN Vol IV No I

The costs and benefits of moving to Berkeley
virtual memory UNIX* (4.1 bsd).

Doug Richardson
Chris Maltby
Tim Long

Basser Department of Computer Science
University of Sydney

This report summarises the results of two sets of
benchmarks that we ran for comparison between 4.1 bsd UNIX
(a paging system) and the AUSAM enhanced version of UNIX 32V
(a swapping system) called unix/aug that we run at the
University of Sydney.

In an attempt to estimate the consequences of using the Berkeley
4,1 bsd UNIX system it was decided to benchmark the two systems with
some existing tools, deemed to be representative of typical student
workloads. These tests were a quick and easy comparison between the two
systems, but may not be truly representative of real workloads. The 4.1
bsd version of UNIX was run as supplied, configured for 80 users. There
was no attempt to tune 4.1 bsd for this kind of workload (if possible).
The unix/aus system used was the current production system, which
generally supports 60-75 simultaneous users. Our hardware configuration
is given in appendix 1.

We lack sufficient familiarity with the internal workings of 4.1
bsd UNIX to estimate how much it could be optimised for our load
characteristics. The Berkeley system is already highly optimised, in
fact many of the performance enhancements in unix/aus are descended from
it. There are certain overheads associated with any demand paging
system for the VAX. For instance, there is no way to record a page as
having been recently accessed, except by taking a trap.

We selected two of the original UNIX performance scripts which were
part of the our VAX acceptance tests. One script consists of a single
student Pascal compilation. The other simulates a student session
including editing, compilation and execution of a Pascal program (see
appendix 2). Sprinkled throughout this typical session were random
sleeps that served to simulate the time the user spent thinking (oxr
whatever students do when not typing).

* UNIX is a Trademark of Bell Laboratories.

AUUGN Vol IV No I

15

16

By choosing a particular script and running many copies of it
simultaneously we can test our system under simulated student load.
Also, a CPU-bound idle process is run with a high ‘nice’, so that
remaining CPU time can be accounted for. However, these scripts differ
from a real load: there is no terminal I/O associated with running them,
the job mix is highly artificial, the random sleeps and script timing
spawn extraneoug procegses, and the jobs all require the same resources.
We nevertheless feel that these scripts give a good indication of system
performance under our workloads.

Results

The results for the first script, the Pascal compilation, are shown
in figure 1. This summarises the results for 4.1 bsd and unix/aus. Each
run of N gsimultaneous compilations is depicted in three points connected
by a vertical bar. The 1lowest point is the minimum time, i.e. the
compilation that completed first. The highest point of the vertical bar
ig the maximum time, and the remaining points, which are joined to form
the graph, represent the average time for all the compilations.

Two anomalies in the graph deserve explanation. The results for 30
simultaneous compilations under unix/aus appear to be worse than those
for 40. We believe that this is because our disk i-node free 1list
emptied during this run and the system consumed an extra 10 seconds or
so searching for more. We suspect that an analogous gituation occurred
during the run of 55 simultaneous compilations under 4.1 bsd unix. Some
individual scripts on 4.1 bsd unix finished much more quickly than the
average. This seems to be an artefact of the paging algorithms. As
memory becomes overcommitted in this system, some processes get swapped
out, and do not return to memory until the demand has lowered. Unix/aus
may show similar behaviour with 75 scripts.

Figure 2 summarises the results from the runs with the second
script. This script is a rough approximation to a typical student
compile and execute cycle. In an attempt to simulate the 'thinking' time
of a user, this script included many calls to a program that would sleep
for a random amount of time. We kept track of the time each script spent
sleeping, and the time plotted is the elapsed time minus the sleep time.
The resulting time figure is roughly proportional to the response time
of the gystem. However, it must be kept in mind that each run is simply
one run in a sample space; it is possible to have a set of sleeps that
make the response appear better or worse than the results we obtained.
We confined ourselves to one run of each set of N simultaneous scripts,
The point for unix/aus with 20 scripts (note 1 on graph) is probably due
to similar system behaviour as noted above,

The 1last four runs, those for 60, 65, 70 and 75 simultaneous
scripts (note 2) under unix/aus, were different from the others. This is
because our system process tables were not large enough to handle the 5
processes per script that we had been using. We changed the script
slightly to make it use only three processes, so that we could make
these final measurements. By retaining the slope, and transferring the
curve upward, we believe we have a fair prediction of how unix/aus would
have performed had we increased the size of the system process tables.

AUUGN Vol IV No I

We mention in passing that this test revealed a bug in 4.1 bsd
unix: one gcript behaved incorrectly in each of the runs for 55, 60, 65,
and 70 scripts; two scripts failed in the test of 75 scripts. We made
no attempt to find the cause.

Figure 3 shows the overall times (including the random sleeps) for
both systems as well as CPU time not consumed by the idle process. This
non-idle time shows the increasing system overheads. The 4.1 bsd non-—
idle graph has an increasing gradient for larger numbers of scripts.
This extra time must be increased overhead. Figure 4 shows disk page
traffic generated by running the scripts (divided by 10). This seems
fairly linear, indicating that neither disk saturation nor thrashing has
set in. The number of swaps (abandonment of the process®’ page table)
seems to be correlated with the average real time for the scripts. It
would seem from this that bad swapping decisions are being made, or that
swap-in overhead is particularly high; as mentioned above, processes
which escape this swapping appear to finish much more quickly.

Conclusions

From the above graphs, it would seem that the paging UNIX is 50%
slower in real time when under heavy loads. At about 70 users our
current system is saturated; we expect that 4.1 bsd would be saturated
at something less than 45 users. This roughly agrees with the stated
maximum configurations recomended in the installation documents for 4.1
bsd, where the maximum is said to be 32 to 40 users. Of course, these
users can run much larger programs than they could under unix/aus.
However very few of our students feel handicapped by memory limits (we
have 3.25 megabytes). Separate tests showed that the presence of a few
large, low prioxity background processes do not significantly affect the
performance of the 4.1 bsd system. However, such tasks would receive
very little CPU attention during heavily loaded periods.

Appendix 1 - Hardware Configuration

VAX 11/780 CPU with Floating Point Accelerator

3.25 Megabytes of memory
1 TEl6 45ips tape drive on MASSBUS

3 RMO3 67 Megabyte disk drives on MASSBUS
1 CDC9766 256 Megabyte disk drive on EMULEX SC21V UNIBUS controller

7 DZ11lE 16 line terminal multiplexors.
4 KMC11l2 UNIBUS microprocessor (for controlling DZlls)

UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation.

AUUGN Vol IV No I

Appendix 2 - Script details

p-script

ed - errors.p <:errorsl
rs 30 1

pi errors.p

¥rs 30 1

ed - errors.p <:errors2
rs 30 1

pi errors.p

px obj <postfix.data
times

'rs 30 1' sleeps for a time between 1 and 31 seconds (1 + r(30)).
terroxrsl

irg 30 5

/program postfix/s/$/;:/
irg 30 5
/prosedure/s//procedure/
Irgs 30 5

/op;/s//op:/

Irs 30 5

/{ begin/s//begin {/
irs 30 5

/end./s//end/

irs 30 5

/~end/s//&./

Irs 30 5

W

q

terroxrs2

Irs 30 5
/i:.*reals/d
irs 30 5
/fudge/d
irs 30 5

w

q

18 AUUGN Vol IV No I

F\ﬂme 4 COMPCU';_SOA & Lime dakean for Samullanecws pascal
CO“PL‘ ahon s
—
1 i 1 i 1 i T
10 20 30 fo 134 o 70
. < .t
g0l cumber of Smulancous pL S F i YN QlaPSQIL
_ Aime
pops Sconds
B e <t— 4 bs
mlta f/
’
,
. [~ I
min
120 = - /| - o
: ’
’
/
- r
([um'x /uus
/‘/ —to
A - -
1 L
Average time taken for pi conpilations 6 ~x— €6 @ -y- 200
Figute 2 Pseudo ‘response hime T s aumber of seripls
300 T T T T T T T 3004verage
to 20 Jo 40 So Go 10 feal Lime
T daken r
S‘u‘ur't P?n
ma Seconds
lﬁor 290
A\if) 4
/I (((a.(-‘(:«c ot -
min ,l Sleap time b
10 |~ / -~ I¥o
- 7
I -
/
/
,/
A
o |- . ¢ o
| Yt bt
e
/
p L.
,
ok . peejecied. |
aole 8! ,/" mote) to
_ ~ wnix/aus
R —%" v ; 7y ¥5 25 =z numben
o [N ° © o — 8o of
Average performance uf scripts @ -x~ 80 6 ~y— 300 Simulbareou s
sceipis

Ry pelnt belongs 40 uAA faus ,
iy fwo:\n—&& yor real polian ppadured
wite R Aewer procesden per sceph

BB

BARUUGN Vol IV No I 19

20

1] . ’ o N
J’:('f)u\re 30 Real dime ard ‘fon Mo dme Vs fumbes of Scr:fﬁs
oo T T T T T T T oo
1o Qo 30 4o so 6o 10)
S0 - - Ste |
p<7? A
4o |- A0 e seconds
S
#,7
f20 |~ ,'L_-..J"::*. ~ 420
s
~F ,
3o - ’i__...«—- W ~ 3o
~ Z e neriz@aus real time
oo |- P ¥ 300
e 44" bsd real time P
ol
4
%0 | ’ -, . -
’ a,ﬁ€1 bsd non idle ti /9’/,0 290
g0 180
x/aus non idle time
e ~1 Ro
co ~{ Lo
o i 4 1 o
Time in seconds vs pumber of scripts ¢ ~x~ 80 0 ~-y- 600
P)
F«'qum 4 ?«3«3\3 4 S“"U"ﬁ ¥E Aundber ok Scm'P’rs
4 bsd. ot\“_ﬁ
400 T 1 T T T T T 400
10 Qe 3o 40 so €o 70 +371%
Awsnbe r ot Sce iph
Fotall number of
1 Pfoceobel. SwaF?e&-
Jool. ~1300
total nunber of
Rayes moved o &
—((ow\ &\.S,t. a (o
2000 =10
(00 = -l loo
trafficxi@
0 It it 1 1 1 0

Paging and swapping uctivity on 4.1 bsd

AUUGN Vol IV No I

0 ~x— 86 0 -y— 400

Take the determinism out of your motds

Tired of that old
WELCOME TO LEVEL 7 UNIX

motdl? Or perhaps you're frightened that they've stopped reading those
important messages about disk space. With little effort you can intro-
duce variety, local content and spice into your motds.

A selection of motds and a crontab entry to cycle them is all it
takes. Now it's safe to use jokes that would otherwise become stale and
jaded through overexposure. Your users get into the habit of reading
the damm thing and get the message when its important.

The shell script2 cycle-motd given at the end of this note will
copy the next motd in a sequence given in /etc/motds/motd* to /etc/motd.
Place any really important messages in /etc/motds/motd. If this file is
greater than O length it will overide the normal cycling mechanism.

Just make the directory /etc/motds. Put your motds in
/etc/motds/motdo, /etc/motds/motdl etc. Finally, add a crontab entry to
run cycle-motd every hour say. It's nice if you keep the number of
motds co-prime to the number of cycles per day to avoid boring those who
log in at regular hours.

We started this at basservax after our 1247 students went on holi-
days and we could afford to be a bit frivolous. We like to give a new
batch every week. The following are the motds we started with. The
first set is from "The hitchhiker's guide to the galaxy" by Douglas
Adams (Pan Books, stocks currently exhausted but expected in February).
The speaker is, of course, Eddie, the Heart of Gold's shipboard compu-
ter. He was part of the Sirius Cybernetics Corporation's series of
automata which featured GPP (Genuine People Personalities).

Why hello there.
Hi gang! This is getting real sociable isn't it?

I want you to know that whatever your problem, I am here to help you
solve it.

1 Message Of The Day, as found in /etc/motd and printed by getty
at login.
2 Level 7 sh version.

AUUGN Vol IV No I

21

22

Hi there! This is Eddie your shipboard computer, and I'm feeling just
great guys, and I know I'm just going to get a bundle of kicks out of
any program you care to run through me.

Impact minus twenty seconds, guys.
Please call me Eddie if it will help you to relax.
When you walk through the storm, hold your head up high...

Now this is going to be your first day on a strange new planet, so I
want you all wrapped up snug and warm, and no playing with any naughty
bug—eyed monsters.

I can see this relationship is something we're all going to have to
work at.

I can even work out your personality prolems to ten decimal places
if it will help.

All I want to do is make your day nicer and nicer and nicer...

The next week we went on in a slightly more serious vain, quoting
from "The Mythical Man-month" by F. P. Brooks, Jr. (Addison-Wesley).

"It is a very humbling experience to make a multimillion-dollar
mistake, . . . I vividly recall the night we decided how to organize [
the writing of external specifications for 0S/360."

"All programmers are optimists.”
"Add one component at a time.”

"To write a useful prose description, stand way back and come in
slowly."™

"I will contend that conceptual integrity is THE most important
consideration in system design.”
From "The Mythical Man-month” by F. P. Brooks, Jr.
Who learnt about conceptual integrity the hard way.

"Simplicity and straightforwardness proceed from conceptual integrity.
Every part must reflect the same philosphies and the same balancing of

degiderata."”

". . . one finds that debugging has a linear convergence, or worse,
where one expects a quadratic sort of approach to the end.”

"Beyond craftmanship lies invention, and it is here that lean,
spare, fast programs are born."”

"Representation is the essence of programming."

"Show me your flowcharts and conceal your tables, and I shall continue
to be mystified. Show me your tables, and I won't usually need your
flowcharts; they'll be obvious.”

"Plan to throw one away; you will, anyhow.”

AUUGN Vol IV No I

The following is the shell script used to crank onto the next motd:

mpath=/etc/motds

if [| -4 Smpath]
then

exit 1
fi

if [—s $Smpath/motd]

then
cp $mpath/motd /etc/motd
exit O

fi

if [-s Smpath/motd_number]
then
motd_number=‘cat $mpath/motd_number'
else
motd_number=0
f£i

motd_number=‘expr S$motd_number + 1°
if [| —s $mpath/motd$motd_number]
then

motd_number=0
fi

cp Smpath/motd$motd_number /etc/motd
echo $motd_number > S$Smpath/motd_number

AUUGN Vol IV No I

24

Proposed Changes to C
Tim Long
(timl:basservax)

October 23, 1981

Work on C at the Basser Department of Computer Science has spawned
some ideas on possible improvements to the language's definition. These
are our proposals. We solicit reader's thoughts on this matter.

1. Maxima and minima for arithmetic types

It is proposed that two unary operators be introduced. Their syn—
tax is given by the following addenda to the definition of expression.
To section 18.1 of The C Programming Language — Reference Manual add:

maxof expression
maxof (type-name)
minof expression
minof (type-name)

The syntax is identical to that of gizeof, but the type of the
argument must be arithmetic. These expression elements are resolved at
compile time into the maximum/minimum value attainable by the type of
the argument. The type of this value is the same as the type of the

argument.

2. Bit stream type

It is proposed that a new data type called bits be added, to super-
cede bit fields. It can also act as a representation for sets. To the
type—specifiers in the syntax in section 18.2 of The C Programming

Language Reference Manual add:

bits—-gpecifiex

with syntax

bits—-gpecifier:
bits { bits-decl-list }
bits identifier { bits-decl-list }
bits identifiex

bits—decl-list:
bits—-declaration
bits—~declaration bits—-decl-list

bits—declaration:

range ;
range identifier ;

range:
congtant—-expression

constant—-expresgsion .. congtant-expression

AUUGN Vol IV No I

The syntax of the bits-specifier and the bits-decl-list are analo-—
gous to the equivalent sections of struct, union and enum declarations.
The declaration of a bit stream defines a type which is seen as a stream
of at least as many bits as the maximum value found in the bits-

declaration. Foxr example:

bits charset

{
'\O’ null;
'0'..'9' numbers;
'‘a'..'z' lowers;
*A',..'Z2' uppers;
maxof(char);

}:

LECERY

bits charset a, *p;

Unlike Pascal, bit streams can not be operated on as a unit. There
are two ways to reference the components of a bit stream. The first is
the extraction into a long or an int (whichever is appropriate) of a
named field of a bit stream. This is done in the same manner as struct,
union and bitfield member references. For example:

a.null /* will be 1 iff the '\0'th bit of a is set*/
p—>numbers /* will be non-zero iff *p has bits representing*/
/* numbers set */

The second is the treatment of a bit stream as an array of bits
with reference by an index., For example:

a.[ch] /* will be 1 iff the ch’'th bit of a is set*/
p->[ch]

3. Random initialisation

An additional form of compile time initialisation is proposed to
allow the random initialisation of arrays and bit streams. To the ini-
tialisers in section 18.2 of The C Programming Language - Reference

Manual add:

= get (random-init-list }

and to the initialiser-list add:

set { random-init-list)

where

AUUGN Vol IV No I

25

26

random—-init—list:
random-initialiser
random-initialiser , random-init-list

random—-initialiser:

range
range <— constant-expression

@ range is described as part of the syntax of a bits-specifier.

A random initialisation must apply to a type which can be indexed,
such as an array or bit stream. Such an initialisation will cause all
elements in the ranges given to be set to the coresponding constant
expression, one if no expression if given. For example:

bits { maxof(char); } white_space =

set
{
', "A\n', '\t', '\f',
)i
int afio] =
set
{
1..3 <— 5;
0 <= 1;
4..9 <= 10;

AUUGN Vol IV No I

Profiling the VAX UNIX* kernel

Tim Long
Chris Maltby

This paper summarises some recent work done at the
Basser Department of Computer Science in the tuning of our
student UNIX system. Profiling of the operating system was
carried out and some improvements have been made.

Introduction

When hardware for kernel profiling became available at Basser, we
decided to investigate kernel CPU usage. Under heavy loads, our VAX-
11/780 is CPU bound. We hoped to improve our machine's performance by
channelling our efforts to trimming any overweight routines we might
uncover. :

Technique

The method and code were taken from work done by Ian Johnstone,
Chris Maltby and Greg Rose . A KW1l-P real time clock was installed on
the VAX UNIBUS. This clock was used as the system clock while the VAX
interval clock was reassigned to produce profiling interrupts every 781
microseconds. Upon receipt of an interrupt from the VAX interval clock
the PC is sampled and used as an index into a map of kernel code space.
This is the same mechanism used by the profil system call. Interrupts
taken while the processor was in user mode were counted on a global

basis.

Results

The study was not intended as a formal evaluation of system perfor-
mance but as a guide for improvement. The following table gives the top
ten users of kernel CPU time measured over a period of several days.
Unfortunately the machine load was lighter than normal during this
period but steps were taken to simulate our normal heavy student load.

* UNIX is a Trademark of Bell Laboratories.
+ "A brief note on UNIX system performance” AUUGN Volume 1 number

4, May 1979.

AUUGN Vol IV No I

27

28

% of all % of kernel function

CPU time CPU time

1.77 9.22 —iget
1.01 5.25 _dzrint
1.00 5.21 _dzscan
0.91 4,75 _clock
0.91 4.71 ~Syscall
0.78 4,07 _resume
0.77 3.99 _mxstart
0.54 2.82 -copyout
0.53 2.78 _mxscan
0.44 2.29 _swtch

The three heavily used routines dzrint dzscan, and clock are
invoked at regular intervals. They were found to consume about one per-
cent of total CPU time each, independent of the system load. Another
heavy consumer of CPU time was syscall, but this is because it is fre-—
quently used.

The most suitable case for treatment was the routine iget. This
routine maps a device/i-number pair into the address of an in—-core
structure, fetching a disk i-node if necessary. This is clearly a com—
mon operation, performed at least once for each segment of every path-
name scanned by the system.

0l1d trouble spots diagnosed in "A brief note on UNIX system perfor—
mance"”, such as getblk, swtch and wakeup have already been under the
knives of the authors.

Our response

The function iget linear seached the i-node table to determine if
the desired i-node had to be fetched into core. Our i-node table had
500 entries. To reduce the time taken to find an i-node, we added a
hash table indexed by a hash of device and i-number. The i-nodes were
chained in doubly linked lists hanging off the table. A doubly linked
free list is maintained by sewing a thread through the free i-nodes. As
shown in the following table, this produced a significant improvement in
the performance of iget.

AUUGN Vol IV No I

% of all
CPU time

1.45
1.24
1.17
1.15
1.08
1.03
0.97
0.85
0.81
0.73

0.10

% of kernel
CPU time

5.32
4,55
4.28
4.22
3.94
3.77
3.57
3.12
2.96
2.67

e ¢ 0

0.37

function

_dzrint
_syscall
_resume
_putc
_clock
_dzscan
_getc
_mxstart
_ttyinput
_swtch

_liget

No attempt was made to reproduce the system activity of the first
test; this table merely shows the dramatic drop in the time consumed by
iget. Resume is now scheduled for treatment.

AUUGN Vol IV No I

29

30

Proposals for a new UNIX* shell

Chris Berry
Basser Department of Computer Science

University of Sydney
(chrisb:graphics)

1. Introduction

This article outlines the reasons why a new shell should be writ-
ten, and some details of the current proposal.

2. A nevw syntax

The main problem with the existing shells is that the shell pro-
grammer has difficulty remembering all the command structures. Those who
do manage to write complex shell scripts are hindered by the fact that
many commands are special cases. Most UNIX users never start to program
in shell because the command language is too complex and hard to under-
stand. There is no reason why the shell syntax on Level 6 UNIX systems
should be totally different from that on Level 7. 1In fact, the syntax
should be identical to minimise the trauma of a change to Level 7. A
shell syntax should be consistent, with no special cases, enabling the
user to easily remember the command syntax and thus manage to program in

shell.

3. Small and efficient

The shell is probably the most commonly used program on UNIX sys—
tems, so its size and efficiency are important. As the shell has evolved
it has grown in size, complexity and inefficiency. Existing Level 7
shells are too large to run on many small machines. The same shell
should be able to run on any UNIX system no matter what the host
machine.

4. Features

It is important to be able to fix up mistakes quickly in program
development. This is especially true when programming in shell. 1In
cshell a record or history of the previous commands is kept and the
user can edit and run them selectively. Although there are problems in
the use of history in cshell it is a useful tool and should be included

* UNIX is a Trademark of Bell Laboratories.
‘An introduction to cshell' - Bill Joy

AUUGN Vol IV No I

in the UNIX shell., Another thing which should be included is a con-
sistent mechanism for manipulating both shell and environment variables.
No existing shell has the facility to remove anything from the environ-
ment. This is definitely needed. The alias facility (also introduced in
cshell) enables the user to define and redefine his commands so that he
can easily remember them and often do less typing.

5. Let's hear it for a new shell

A new shell is being written by Chris Berry and a host of others at
the University of Sydney. Further documentation on syntax and semantics
will be available when they are finished. Mail chrisb:graphics for
developments. All criticisms of the existing shells and suggestions for
the new shell are welcome. Speak now or forever hold your peace.

6. Shell proposed

The proposed shell flow control constructs are similar to C, such
as for, while, if, else, switch. For consistency everything surrounded
by '{' and '}' is considered to be a command, and everything surrounded
by ‘(' and *)* is considered to be an expression. A sample command:

if (1 > 2)

{
echo "(1 > 2)"

}
else
{
echo “(1 > 2) is false"”
echo "try (2 > 1)"
}
A '{' *'}*' pair inside an expression has the value of the exit code of

the command. For example

if ({mkdir fred)} I= 0)

{
echo "Could not mkdir fred"

}

Expressions operate on strings, although some operators require that
their arquments can be interpreted as integers.

7. Intrinsic functions

The following are functions being considered for addition in the
new shell:

o string

The "o" command allows em style open mode operations on the previous
command “!string"” (as per history facility). The finished product is

executed on exit.

AUUGN Vol IV No I

31

32

nice —num command

The "nice" command executes the command at a lower priority. Nice with
no command changes the priority of the shell.

time command
The "time" command executes the given command, and when it finishes a
list of the usger, system and real time used is listed. If no command is
given the times for the shell are given.
set
The "set" command lists all the shell variables along with their value.
unset var
The "unset"” command removes the variable from the shell variable list.

unenv var

The "unenv” command removes the variable from the environment (Level 7
only).

expoxrt var

The "export"” command adds the variable to the environment (Level 7
only).

wait proc

The "wait"” command waits for a particular process to finish. If no pro-—
cess number is given it waits until all the immediate children of the

current shell have terminated.

alias

The "alias” command sets its first argument to be an alias for the rest.
i.e. "alias 1 1ls -1". If no arguments are given a list of all aliases

is given.
unalias

The "unalias” command removes its first argument from the alias list.
history

The "history"” command lists the currently saved history.
exit num

The "exit" command forces the shell to exit with the status num.

AUUGN Vol IV No I

pushd word

popd
swapd word

The above commands maintain a stack of directory path-names. The "pushd”
command, if word is present, pushes word onto the stack, otherwise it
pushes the current directory on the stack. The current directory is kept
in the shell variable "S$Splace". The "popd"” command pops the directory
off the stack and ‘cd's to it. The "swapd” command interchanges the

current directory with the top of the stack.
signal val command

The "signal" command controls what happens when the shell receives sig-
nal wval. val may be either an integer or the strings "SIGINT",
"SIGQUIT" etc, The command is executed every time the shell receives
signal val. "SIGIGN” and "SIGDFL" can replace command resulting in the
signal being ignored or default respectively.

timeout command

The “"timeout" command causes the command to be executed when the shell
times out.

8. This is the first and final call for. . .

We want to hear your ideas on the new proposals and any needs you
have perceived. But hurry! Implementation will commence soon.

AUUGN Vol IV No I

33

34

Book review:
"Zen and the art of
software maintenance”

Jason Catlett

Basser Department of Computer Science
University of Sydney
Australia 2006
(on SUN: jason:basservax)

(in USA: mhtsalaustralialjason)

After the familiar, dry textbooks on programming by Europeans such
as Wirth and Dijkstra, "Zen and the art of software maintenance”
provides a refreshing insight into the minds of Californian programmers.
Instead of dull, technical chapters like "Euclid's algorithm revigited®,
we find titles such as "I/0O: random, sequential and oral"”, "Gestalt
modularization”, and "Relationships”. The work is procbably the first to
relate the Californian life-style and leisure ethic to the creative
process, treating areas including “"Interrupt awareness levels"”, "Primal
scream debug output” and "Cosmic design methodologies”,

Australian gurus who maintain Berkeley programs will be relieved to
find out that many routines were placed in programs as koans, those
thought-provoking, often totally pointless Zen stories through which one
attains divine enlightenment ("What is the sound of one hand coding?”).
The book reveals certain inconsistencies in Californian tastes; their
passion for organic data structures contrasts with the fast food
compiler—compiler output which they seem to relish. One of the more
extreme theses of the book argues that a perception of the infinite can
only be obtained with virtual memory, and that nirvana can be achieved
by "thrashing”, apparently some form of flagellation practiced by truly
hermetic system supervisors. Two appendices, "Cocaine coding: a user's
guide" and "Hot tub program verification" end a very worthwhile text.

P.S. This book has not yet been written. The title and chapter

headings are copyright by Jason Catlett,. Anyone interested in
contributing material should mail the author at the above address.

AUUGN Vol IV No I

New product release - tpr

tpr is really ‘roff’' rewritten in C. Those of you who remember this
fast, no-frills formatter may also realise that as it was written in
PDP-11 assembler, it was not portable to the VAX, and modifications were
not viable. Most of the familiar roff directives are supported with the
major exception of hyphenation. (Hackers take note.) A few experimental
directives have been added. No guarantee is made that they will perform
exactly as they did in roff (the roff manual was not sufficiently lucid
as to the effects of some).

Since this formatter runs much faster than nroff/troff, the
edit/format cycle becomes more bearable for small jobs, e.g. letters to
officialdom. For more details, man tpr.

The name? Just wanted to get away from dogged names.
Ken Yap

AS you like it.

Haven't you sometimes thought the software you use is perhaps sub-
standard? Do you wonder about those long-winded compilations, those
mega—-makes which go on, and on, and on like a member of the Conservative

Party? I know I have.

Well, I wondered about the VAX assembler, that long known trusted

friend 'as'. Back in level 6 days on our PDP-11 there was this really
fast program called 'as'. Now we have a VAX, a much faster machine, and
everything seemed a lot quicker... or did it? as seemed to be pretty

slow, quite a significant part of the big 'cc's that make up those
mega-makes .

So I got in boots and all.

Arrgghhhhh! That codel Those kludges! Those contorted curly
brackets! Why do people write code like that? How can they write such
compiler dependent code? Why can't these people adopt the Australian C
Formatting Standard (AS-1756B)? Those error diagnosticsi!! What does
"RP expected” mean? And a couple of instructions are left out (in
particular the exotic REMQTI - pronounced rem—cutie).

So I profiled it. Some things stuck out like a 1 in a MBZ field.
Over 20% of the assembler's time is spent in the symbol table lookup
routine. Oh dear, it's the ‘linked list of half-full hash tables’
againl I ripped that out and replaced it with the standard horrendously
efficient hash table of binary trees.

Things were a bit better now. That squeezed 10% out of it.
Another profile revealed sorting of the symbol table was causing
infringements of the NSW electricity restrictions. The sorting was done
so that the neat Unix pseudo-branches (JBR, JEQL etc) could be resolved.

AUUGN Vol IV No I

35

36

Rather than just sorting the branches and their targets the silly thing
sorted the whole table!

Things were looking a bit confusing at this stage so I applied
cosmetic surgery to the source, bringing it in line with ACFS and fixed
lots of inefficiencies along the way. The pseudo—diagnostics (like "RpP
expected”) were replaced by diagnostics in English, and miscellaneous
other vermin were removed.

I then fixed the symbol table sorting, and SHAZAM, another 10%
shaved off.

A further profile revealed a bottleneck in writing out the symbol
table. Those keen programmers at UCB had discovered this too and had
replaced "stdio" calls with their own I/O routines. Unfortunately they
had underestimated function call overhead. I wrote some buffering
macros for this I/O0 with quite a substantial CPU saving. We were now
saving from 25% for small files to well over 30% for bigguns.

Well, I was happy now. I could see that the code could still be
improved (for example lexical analysis buffering is really absurd) but I
think it deserves a rewrite rather than another patchl

Fortune tells me now and then not to patch bad code but to rewrite
it - one of those silly textbook writers said that.

My mega-makes are now a bit quicker. Except for that horrible ccom
thing... but there is no hope for that. :

Bruce Ellig
brucee:basservax

AUUGN Vol IV No I

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

From Datamation November 1981

The system design is elegant but the user interface is not.

by Donald A. Norman

UNIX is a highly touted operating system. De-
veloped at the Bell Telephone Laboratories
and distributed by Western Electric, it has
become a standard operating system in uni-
versities, and it promises to become a stan-
dard for micro and mini systems in homes,
small businesses, and schools. But for all of
its virtues as a system—and it is indeed an
elegant system—UNIX is a disaster for the
casual user, It fails both on the scientific prin-
ciples of human engineering and even in just
plain common sense.

If UNIX is really to become a general
system, then it has got to be fixed. I urge
correction to make the elegance of the system
design be reflected as friendliness towards the
user, especially the casual user. Although 1
have learned to get along with the vagaries of
UNIX s user interface, our secretarial staff per-
sists only because we insist.

And even I, a heavy user of computer
systems for 20 years, have had difficulties:
copying the old file over the new, transferring
a file into itself until the system collapsed,
and removing all the files from a directory
simply because an extra space was typed in
the argument string. The problem is that UNIX
fails several simple tests.

Consistency: Command names, lan-
guage, functions, and syntax are inconsistent.

Functionality: The command names,
formats, and syntax seem to have no relation-
ship to their functions.

Friendliness: UNIX is a recluse, hid-
den from the user, silent in operation. The
lack of interaction makes it hard to tell what
state the system is in, and the absence of
mnemonic structures puts a burden on the
user’s memory.

What is good about UNIX? The system
design, the generality of programs, the file
structure, the job structure, the powerful op-
erating system command language (the
“‘shell'). Too bad the concern for system
design was not matched by an equal concern
for the human interface.

One of the first things you learn when
you start to decipher UNIX is how to list the
contents of a file onto your terminal. Now this
sounds straight-forward enough, but in UNIX

ILLUSTRATION BY CHRIS SPOLLEN

AUUGN Vol IV No I 37

SNIPPETS SNIPPETS SNIPPETS

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

WHAT IS UNIX?

UNIX is an operating system developed by
Dennis Ritchie and Ken Thompson of Bell
Laboratories. UNIX is trademarked by Bell
Labs and is available under license from
Western Electric. Although UNIX is a rela-
tively small operating system, it is quite
powerful and general. It has found consider-
able favor among programming groups, €s-
pecially in universities, where it is primarily
used with DEC computers—various versions
of the DEC PDP-11 and the VAX. The operat-
ing system and its software are written in a
high level programming language called C,
and most of the source code and documenta-
tion is available on-line. For programmers,
UNIX is easy to understand and to modify.

For the nonexpert programmer, the
important aspect of UNIX is that it is con-
structed out of a small, basic set of concepts
and programming modules, with a flexible
method for interconnecting existing mod-
ules to make new functions. All system ob-
jects—including all Vo channels—Ilook like
files. Thus, it is possible to cause input and
output for almost any program to be taken
from or to go to files, terminals, or other
devices, at any time, without any particular
planning on the part of the module writer.
UNIX has a hierarchical file structure. Users
can add and delete file directories at will and
then *‘position’’ themselves at different lo-
cations in the resulting hierarchy to make it
easy to manipulate the files in the neighbor-
hood.

The command interpreter of the op-
erating system interface (called the
“‘shell’’) can take its input from a file,
which means that it is possible to put fre-
quently used sequences of commands into a
file and then invoke that file (just by typing
its name), thereby executing the command
strings. In this way, the user can extend the
range of commands that are readily availa-
ble. Many users end up with a large set of
specialized shell command files. Because
the shell includes facilities for passing argu-
ments, for iterations, and for conditional
operations, these ‘‘shell programs’’ can do
quite a lot, essentially calling upon all sys-
tem resources (including the editors) as sub-
routines. Many nonprogrammers have dis-
covered that they can write powerful shell

programs, thus significantly enhancing the
power of the overall system.

By means of acommunication chan-
nel known as a pipe, the output from one
program can easily be directed (piped) to the
input of another, allowing a sequence of
programming modules to be strung together
to do some task that in other systems would
have to be done by a special purpose pro-
gram. UNIX does not provide special pur-
pose programs. Instead, it attempts to pro-
vide a set of basic software tools that can be
strung together in flexible ways using 1O
redirection, pipes, and shell programs.
Technically, UNIX is just the operating sys-
tem. However, because of the way the sys-
tem has been packaged, many people use
the name to include all of the programs that
come on the distribution tape. Many people
have found it easy to modify the UNIX sys-
tem and have done so, which has resulted in
hordes of variations on various kinds of
computers. The ‘‘standard UNIX"’ discussed
in the article is BTL UNIX Version 6 (May
1975). The Fourth Berkeley Edition of UNIX
is more or less derived from BTL UNIX Ver-
sion 7 (September 1978), with considerable
parallel development at the University of
California, Berkeley and some input from
other BTL UNIX versions. I am told that some
of the complaints in the article have been
fixed; however, Version 6 is still used by
many people.

The accompanying article is written
with heavy hand, and it may be difficult to
discern that I am a friend of UNIX. The nega-
tive tone should not obscure the beauty and
power of the operating system, file struc-
ture, and the shell. UNIX is indeed a superior
operating system. I would not use any other.
Some of the difficulties detailed result from
the fact that many of the system modules
were written by the early users of UNIX, not
by the system designers; a lot of individual
idiosyncrasies have gotten into the system.
It is my hope that the positive aspects of the
article will not be overlooked. They can be
used by all system designers, not just by
those working on UNIX. Some other systems
need these comments a lot more than does

UNIX.
—D.AN.

even this simple operation has its drawbacks.
Suppose [have a file called *‘testfile.”” I want
to see what is inside of it. How would you
design a system to do it? I would have written
a program that listed the contents onto the
terminal, perhaps stopping every 24 lines if
you had signified that you were on a display
terminal with only a 24-line display. UNIX,
however, has no basic listing command, and
instead uses a program meant to do something
else.

Thus if you want to list the contents of
a file called **HappyDays,"’ you use the com-
mand named ‘‘cat’’:

cat HappyDays

Why cat? Why not? After all, as Humpty
Dumpty said to Alice, who is to be the boss,

38

words or us? **Cat,”’ short for ‘‘concatenate’’
as in, take filel and concatenate it with file2
(yielding one file, with the first part filel, the
second file2) and put the result on the *‘stan-
dard output’’ (which is usually the terminal):
cat filel file2

Obvious, right? And if you have only one file,
why cat will put it on the standard output—the
terminal—and that accomplishes the goal
(except for those of us with video terminals,
who watch helplessly as the text goes stream-
ing off the display).

The UNIX designers believe in the
principle that special-purpose functions can
be avoided by clever use of a small set of
system primitives. Why make a special func-
tion when the side effects of other functions

AUUGN Vol IV No I

will do what you want? Well, for several
reasons: ’

® Meaningful terms are considerably easier
to learn than nonmeaningful ones. In comput-
er systems, this means that names should re-
flect function, else the names for the function
will be difficult to recall.

® Making use of the side effects of system
primitives can be risky. If cat is used unwise-
ly, it will destroy files (more on this in a
moment).

® Special functions can do nice things for
users, such as stop at the end of screens, or put
on page headings, or transform nonprinting
characters into printing ones, or get rid of
underlines for terminals that can’t do that.
Cat, of course, won’t stop at terminal or page
boundaries, because doing so would disrupt
the concatenation feature. But still, isn’t it
elegant to use cat for listing? Who needs a
print or a list command? You mean ‘‘cat’
isn’t how you would abbreviate concatenate?
It seems so obvious, just like:

FUNCTION UNIX COMMAND NAME
¢ compiler cc
change working
" directory chdir
change password passwd
concatenate cat
copy cp
date date
echo echo
editor ed
link In
move my
remove m
search file for

pattern grep

Notice the lack of consistency in forming the
command name from the function. Somc
narnes are formed by using the first two con-
sonants of the function name. Editor, howev-
er, is ‘‘ed,”’ concatenate is ‘‘cat,”’ and
“‘date’’ and ‘‘echo’’ are not abbreviated at
all. Note how useful those two-letter abbre-
viations are. They save almost 400 millisec-
onds per command.

Similar problems exist with the names
of the file directories. UNIX is a file-oriented
system, with hierarchical directory struc-
tures, so the directory names are very impor-
tant. Thus, this paper is being written on u file
named ‘‘unix’’ and whose ‘‘path’’ is /csl/
norman/papers/CogEngineering/unix. The
name of the top directory ts **/"", and csl,
norman, papers, and CogEngineering are the
names of directories hierarchically placed be-
neath ‘*/*'. Note that the symbol **/"" has two
meanings: the name of the top level directory
and the symbol that separates levels of the
directories. This is very difficult to justify to
new users. And those names: the directory for
““users’’ and ‘*mount’* are called, of course,

After all, as Humpty Dumpty said to Alice, who is
to be the boss, words or us?

“‘usr’” and ‘‘mnt.”’ And there are ‘‘bin,”’
*‘lib,”” and ‘‘tmp’’ (binary, library, and
temp). UNIX loves abbreviations, even when
the original name is already very short. To
write ‘‘user’’ as ‘‘usr’’ or ‘‘temp’’ as ‘‘tmp”’
saves an entire letter: a letter a day must keep
the service person away. But UNIX is inconsis-
tent; it keeps ‘‘grep’’ at its full four letters,
when it could have been abbreviated as ‘‘gr’’
or “‘gp.”” (What does grep mean? ‘‘Global
REgular expression, Print’’—at least that’s
the best we can invent; the manual doesn’t
even try. The name wouldn’t matter if grep
were something obscure, hardly ever used,
but in fact it is one of the more powerful,
frequently used string processing com-
mands.)

LIKE CAT? Another important routine
THEN goes by the name of

‘‘dsw.’’ Suppose you acci-
TRY DSW

dentally create a file whose
name has a nonprinting character in it. How
can youremove it? The command thatlists the
files on yourdirectory won’tshow nonprinting
characters. And if the character is a space (or
worse, a “‘*”’), *‘rm’’ (the program that re-
moves files) won’tacceptit. Thename *‘dsw’’
was evidently written by someone at Bell Labs
who felt frustrated by this problem and hacked
up a quick solution. Dsw goes to each file in
your directory and asks you to respond ‘‘yes”’
or ‘‘no,’’ whether to delete the file or keep it.

How do you remember dsw? What on
earth does the name stand for? The UNIX peo-
ple won’t tell; the manual smiles the wry
smile of the professional programmer and
says, ‘“The name dsw is a carryover from the
ancient past. Its etymology is amusing.”
Which operation takes place if you say
‘‘yes’’? Why, the file is deleted of course. So
if you go through your files and see impor-
tant-file, you nod to yourself and say, yes, I
had better keep that one. You type in ‘‘yes,”’
and destroy it forever. There’s no warning;
dsw doesn’t even document itself when it
starts, to remind you of which way is which,
Berkeley UNIX has finally killed dsw, saying
*“This little known, but indispensable facility
has been taken over . . .”’ That is a fitting
commentary on standard UNIX: a system that
allows an *‘indispensable facility'’ to be *‘lit-
tle known."’

The symbol “**"’ means ‘‘glob” (a
typical UNIX name: the name tells you just
what it does, right?). Let me illustrate with
our friend, ‘‘cat.”” Suppose I want to collect a
set of files named paper.] paper.2 paper.3
and paper.4 into one file. I can do this with
cat:
cat paper.] paper.2 paper.3 paper.4>
newfilename
UNIX provides ‘‘glob’’ to make the job even
easier. Glob means to expand the filename by
examining all files in the directory to find all

that fit. Thus, I can redo my commard cs
cat paper®>newfilename
where paper# expands to {paper.l peoper.2
paper.3 paper.4}. This is one of the typic:l
virtues of UNIX; there are a number cf quite
helpful functions. But suppose I had decided
to name this new file ‘‘paper.all’’—prctty
logical name.
cat paper*>paper.all
Disaster. In this case, paper* expands to pa-
per.1 paper.2 paper.3 paper.4 paper.all, and
so I am filling up a file from itself:
cat paper.! paper.2 paper.3 paper.4
paper.all>paper.all

Eventually the file will burst. Does UNIX
check against this, or at least give a warning?
No such luck. The manual doesn’t alert users
to this either, although it does warn of anoth-
er, related infelicity: ‘‘Beware of ‘catab > a’
and ‘catba > a’, which destroy the input files
before reading them.’’ Nice of them to tell us.

The command to remove all files that
start with the word ‘‘paper”’

rm paper*
becomes a disaster if a space gets inserted by
accident:
rm paper *

for now the file ‘‘paper’’ is removed, as well
as every file in the entire directory (the power
of glob). Why is there not a check against
such things? I finally had to alter my version
of rm so that when I said to remove files, they
were moved to a special directory named
‘‘deleted’’ and preserved there until I logged
off, leaving me lots of time for second
thoughts and catching errors. This illustrates
the power of UNIX: what other operating sys-
tem would make it so easy for someone to
completely change the operation of a system
command? It also illustrates the trouble with
UNtX: what other operating system would
make it so necessary to do so? (This is no
longer necessary now that we use Berkeley
UNIX—more on this in 2 moment.)

THE SHY lhuc Z!aé\g.ar;i text fdi[or is
called Ed. T spert 2 yeor
EED)!(;UR eeing it as an experimentz)

vehivle to gee how peoplz
deal with such corfusing things. Ed's mujor
property is his shyness: he doesn’t like to talk.
You invoke Ed by saying, reasonably
enough, ‘‘ed.”” The result is silence: no re-
sponse, no prompt, no message, just silence.
Novices are never sure what that silence
means. Ed would be a bit more likable if he
answered, ‘‘thank you, here [am,” or at least
produced a prompt character, but in UNIX
silence is golden. No response means that
everything is okuay; if something had gone
wrong, it would have to!ld you.

Then there is the famous append mode
error. To add text into the buffer, you have to
enter ‘‘append mode.”’ To do this, you sim-
ply type “'a,” followed by RETURN, Mow

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

cverything thot js typed on the thrmiral goes
intn the buffer, (Bd, tme to forn, does nnt
inferm you thnt it is now in apperd m-de
when you types “*a’’ followed by **RETURNY
the result is silence.) When you crc finiched
adding toxt, you are supposed to type a line
that “*contains only a . on it.”" This gets you
out of append mode.

Want to bet on how many cxtr2 peri-
ods got inserted into text files, or how many
commands got inserted into teXtd, because the
users thought that they were in commeand
mode and fcrgot that they had not left append
mode? Does Ed tell you when you have left
append mode? Hah! This problem is so obvi-
ous that even the designers recognized it, but
their reaction, in the tutorial introduction to
Ed, was merely to note wryly that even expe-
rienced programmers make this mistake.
While they may be able to see humor in the
problem, it is devastating to the beginning
secretary, research assistant or student trying
to use UNIX as a word processor . experi-
mental tool, or just to learn abou* . mputers.

How good is your sens¢ of humor?
Suppose you have been working on a file for
an hour and then decide to quit work, exiting
Ed by saying ‘‘q.”” The problem is that Ed
would promptly quit. Woof, there went your
last hour’s work. Gone forever. Why, if you
had wanted to save it you would have said so,
right? Thank goodness for all those other peo-
ple across the country who immediately re-
wrote the text editor so that we normal people
(who make errors) have some other choices
besides Ed, editors that tell you politely when
they are working, that tell you if they are in
append or command mode, and that don’t let
you quit without saving your file unless you
are first warned, and then only if you say you
really mean it.

As I wrote this paper I sent out a
message on our networked message system
and asked my colleagues to te!l me of their
favorite peeves. I got a lot of responscs, but
there is no necd to go into detoil ebout them;
they &'l bave much the some tlavor, mostly
commeznting about the lnck of consistency
and the lack of irteraciive feedback. Thus,
there is no standardization of means to exit
programs (and because the ‘‘shell” is just
another program as far as the system is con-
cerned, it is very easy to log yourself off the
system by accident). There are very useful
pattern matching features (such as the “*glob™
¢+ function), but the skell and the different
progroms vse the symbuls in inconsistent
ways. The uniX copy command (cp) and the
related C programming language *'string-
copy’’ (streny) reverce the meaning of their
arguments, ond UNIX move (mv) and copy
(cp) operations will destroy existing files
withaut any warning, Many pregrame ke
special **araument flags™ but the manner of
specifying the flags is inconsistent, varying

AUUGN Vol IV No I 39

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

40

Ed’s major property is his shyness; he doesn’t

like to talk.

ANOTHER VIEW

Prof. Norman praises the UNtX system de-
sign but makes a number of caustic remarks
about command names and other aspects of
the human interface. These might be ig-
nored, since he has no experimental tests to
justify them; or they might even be taken as
flattery of UNIX. since he does not name any
system he likes better; but some of his
comments are worth discussing. ‘
Most of the command names Nor-
man points to are indeed strange; some,
such as dsw, were removed several years
ago (by the way. to repair the discourtesy of
the manual, dsw meant ‘‘delete from
switches''). However, it is not clear that it
makes much difference what the command
names are. T. K. Landauer, K. Galotti, and

version of the editor in which ‘‘append,”’
‘‘delete,”” and ‘‘substitute’’ were called
‘‘allege,” ‘‘cypher,’’ and ‘‘deliberate.”’ It
didn’t seem to have much effect on learning
time, and afterwards the users would say
things like “'I alleged three lines and delib-
erated a comma on the last one’’ just like
subjects who had learned the ordinary ver-
sion of the editor (‘*A Computer Command
By Any Other Name: A Study of Text Edit-
ing Terms,”’ available from the authors at
Bell Labs.) ‘

In addition to the amusing but sec-
ondary discussion of command names,
Prof. Norman does raise some significant
issues: (1) whether systems should be ver-
bose or terse; (2) whether they should have a
few general commands or many special-
purpose ones; and (3) whether they should
try to anticipate typical mistakes. Experi-
mental results on these issues would be wel-
come; meanwhile, the armchair evidence is
not all on one side.

UNIX is undoubtedly near an extreme
of terseness, partly because it was originally
designed for slow hardcopy terminals.
However, the terseness is very valuable
when connecting processes. If the com-
mand that lists the logged-on users prints a

S. Hartwell recently tried teaching people a.

heading above the list, you can’t tell how
many users are on by feeding the command
output to a line counter. If the editor types
acknowledgments now and then, its output
may not be directly usable as input some-
where else. Of course, you could feed it
through something which strips off the extra
remarks, but presumably that program
would add its own chatty messages.

Prof. Norman complains about us-
ing ‘‘cat’’ for a command which prints files,
rather than having a special-purpose com-
mand for the purpose (there is one, by the
way: ‘‘pg’"). Having a few general-purpose
commands is a definite aid to system learn-
ing. In practice, it is not the novices who use
the alternatives to ‘‘cat’’; it is the experts,
who want something better adapted to their
special needs and are willing to learn anoth-
er command. In general, people are quite
good at recognizing special uses of com-
mands in context, probably because it is a
lot like things they have to do every day in
English. To take an analogy from program-

ming languages, one doubts that Prof. Nor-

man would advocate a separate operator for
““+’’ in integer arithmetic and ‘*+’" in
floating point arithmetic. There are many
advantages to a small, general-purpose set
of commands. Having only one way to do
any given task minimizes software mainte-
nance while maximizing the ability of two
users to help each other with advice. But
this implies that whenever a general com-
mand and a specific command do the same
thing, the specific command should be re-
moved. It would be a definite service if the
‘‘cognitive engineers'’ could tell us how
many commands are reasonable, to give
some guidance on, for example, whether
“‘merge’’ should be a separate command or
an option on ‘‘sort’’ (on UNIX it is a sort
option) and whether the terminal drivers
should be separate commands or options on
a graphics output command (on UNIX they
are separate). The best rule of thumb we
have today is that designing the system so

- thought of a UNIXx Command Standardiza-

that the manual will be as short as possible
minimizes learning effort.

Prof. Norman seems to think that the
computer should try to anticipate user prob-
lems, and refuse commands that appear
dangerous. The computer world is undoubt-
edly moving in this direction; strong typing
in programming languages is a good exam-
ple. The ‘‘ed”’ editor has warned for some
years if the user tries to quit without writing
a file. The *‘vi"’ editor has an ‘‘undo’’ fea-
ture, regardless of the complexity of the
command which has been executed. Such a
facility is undoubtedly the best solution. It
lets the user recognize his mistakes and back
out of them, rather than expecting the sys-
tem to foresee them. It is really not possible
to anticipate the infinite variety of possible
user mistakes; as every programmer who
has ever debugged anything knows, it is
hard enough to deal with the correct inputs
to a program. Human hindsight is undoubt-
edly better than machine foresight.

A large number of Prof. Norman’-
comments are pleas for consistency. UN
has grown more than it has been built, with
many people from many places tossing soft-
ware into the system. The ability of the
system to accept commands so easily is one
of its main strengths. However, it results in
command names like ‘‘finger’’ for what
Bell Labs called *‘whois’” (identify a user)
and ‘‘more,”” ‘“‘cat,” or ‘‘pg’’ for what
Prof. Norman would rather call *‘list.”” The

tion Committee trying to impose rules on
names is a frightening alternative. Much of
the attractiveness of UNIX derives from its
hospitality to new command: and features.
This has also meant a diversity of names and
styles. To some of us this diversity is attrac-
tive, while to others the diveisity is icustrat-
ing, but to hope for the hospitality without
the diversity is unrealistic.
—flichael Lesk
Bell Labs
Murray Hill, N.J.

from program to program.

The version of UNIX I now use is
called the Fourth Berkeley Edition for the
vaX, distributed by Joy, Babaoglu, Fabry,
and Sklower at the University of California,
Berkeley (henceforth, Berkeley UNIX). This
is both good and bad.

Among the advantages: History lists,
aliases. a richer and more intelligent set of
system programs (including a list program, an
intelligent screen editor, an intelligent set of
routines for interacting with terminals accord-
ing to their capabilities), and a job control that
allows one to stop jobs right in the middle,
start up new ones, move things from back-

AUUGN Vol 1V No I

ground to foreground (and vice versa), exam-
ine files, and then resume jobs. The shell has
been amplified to be a more powerful pro-
gramming language, complete with file han-
dling capabilities, if—then—else statements,
while, case, and other goodies of structured
programming (see box, p. 00).

Aliases are worthy of special com-
ment. Aliases let users tailor the system to
their own needs, naming things in ways they
can remember; names you devise yourself are
easier to recall than names provided to you.
And aliases allow abbreviations that are
meaningful to the individual, without burden-
ing everyone else with your cleverness or

difficulties.

To work on this paper, I need only
type the word ‘‘unix,”’ for I have set up an
alias called ‘*unix’’ that is defined to be equal
to the correct command to change directorics,
combined with a call to the editor (called
**vi’’ for **visual’’ on this system) on the {)’

alias unix *‘chdir /cs}/norman/paperss
CogEngineering; vi unix"’
These Berkeley UNix features have proven to
be indispensable: the people in my laboratory
would probably refuse to go back to standard
UNIX.

The bad news is that Berkeley uNiX is

jury-rigged on top of regular UNIX. s0 it can

There are lots of aids to memory that can be
provided, but the most powerful of all is understanding.

only patch up the faults: it can’t remedy them.
Grep is not only still grep, but there is an
egrep and an fgrep.

And the generators of Berkeley UNIX
have their problems: if Bell Labs people are
smug and lean, Berkeley people are cute and
overweight, Programs are wordy. Special
features proliferate. The system is now so
large that it no longer fits on the smaller
machines: our laboratory machine, a DEC 11/
45, cannot hold the latest release of Berkeley
UNIX (even with a full complement of mem-
ory and a reasonable amount of disk). I wrote
this paper on a VAX.

LEARNING Learning the system for
IS NOT setting up aliases is not
EASY easy for beginners, who

may be the people who
need them most. You have to set themup in a
file called .cshrc, not a name that inspires
confidence. The ‘‘period’’ in the filename
means that it is invisible—the normal method
of directory listing programs won’t show it.
The directory listing program, 1s, comes with
19 possible argument flags, which can be
used singly or in combinations. The number
of special files that must be set up to use all the
facilities is horrendous, and they get more
complex with each new release from Berke-
ley.

It is very difficult for new users. The
program names are cute rather than systemat-
ic. Cuteness is probably better than standard
UNIX's lack of meaning, but there are limits.
The listing program is called ‘*more’’ (as in,
‘‘give me more’’), the program that tells you
who is on the system is called ‘‘finger,”’ and a
keyword help file—most helpful, by the
way-—is called ‘‘apropos.’’ I used the alias
feature to rename it ‘‘help.”’

One reader of a draft of this paper—a
systems programmer—complained bitterly:
“*Such whining, hand-wringing, and general
bitchiness will cause most people to dismiss it
as over-emotional nonsense. . . . The UNIX
system was originally designed by systems
programmers for their own use and with no
intention for others using it. Other hackers
liked it so much that eventually a lot of them
started using it. Word spread about this won-
derful system, and the rest you probably
know. I think that Ken Thompson and Dennis
Ritchie could easily shrug their shoulders and
say ‘But we never intended it for other than
our personal use.’ ”’

This complaint was unique, and I
sympathize with its spirit. It should be re-
membered, though, that UNIX is nationally
distributed under strict licensing agreements.
Western Electric’s motives are not altogether
altruistic. If UNIX had remained a simple ex-
periment on the development of operating
systems, then complaints could be made in a
more friendly, constructive manner. But UNIX

is more than that. It is taken as the very model
of a proper operating system. And that is
exactly what it is not.

In the development of the system as-
pects of UNIX, the designers have done a mag-
nificent job. They have been creative, and
systematic. A common theme runs through
the development of programs, and by means
of their file structure, the development of
‘‘pipes’’ and ‘‘redirection’’ of both input and
output, plus the power of the iterative ‘‘shell’’
system-level commands, one can easily com-
bine system level programs into self-tailored
systems of remarkable power. For system
programmers, UNIX is a delight. It is well
structured, with a consistent, powerful phi-
losophy of control and structure.

Why was the same effort not put into
the design at the level of the user? The answer
is complex, but one reason is the fact that
there really are no well known principles of
design at the level of the user interface. So, to
remedy the harm I may have caused with my
heavy-handed sarcasm, let me attempt to pro-
vide some positive suggestions based upon
research conducted by myself and others into
the principles of the human information pro-
cessing system. .

Cognitive engineering is a new disci-
pline, so new that it doesn’t exist, but it ought
to. Quite a bit is known about the human
information processing system, enough that
we can specify some basic principles for de-
signers. People are complex entities and can
adapt to almost anything. As a result, design-
ers often design for themselves, without re-
gard for other kinds of users.

The three most important concepts for
system design are these:

1. Be consistent. A fundamental set
of principles ought to be evolved and fol-
lowed consistently throughout all phases of
the design.

2. Provide the user with an explicit
model. Users develop mental models of the
devices with which they interact. If you do
not provide them with one, they will make
one up themselves, and the one they create is
apt to be wrong.

Do not count on the user fully under-
standing the mechanics of the device. Both
secretaries and scientists may be ignorant of
the difference between the buffer, the work-
ing memory, the working files, and the per-
manent files of a text editor. They are apt to
believe that once they have typed something
into the system, it is permanently in their
files. They are apt to expect more intelligence
from the system than the designer knows is
there. And they are apt to read into comments
(or the lack of comments) more than you have
intended.

Feedback is of critical importance in
helping establish the appropriate mental mod-
el and in letting the user keep its current state

AUUGN Vol IV No I

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

in synchrony with the actual system.

3. Provide mnemonic aids. For most
purposes it is convenient to think of human
memory as consisting of two parts: a short-
term memory and a long-term memory (mod-
ern cognitive psychology is developing more
sophisticated notions, but this is still a valid
approximation). Five to seven items is about
the limit for short-term memory. Thus, do not
expect a user to remember the contents of a
message for much longer than it is visible on
the terminal. Long-term memory is robust,
but it faces two difficulties: getting stuff in so
that it is properly organized, and getting stuff
out when it is needed. Learning is difficult,
unless there is a good structure and it is visible
to the learner.

There are lots of sensible memory aids
that can be provided, but the most powerful
and sensible of all is understanding. Make the
command names describe the function that is
desired. If abbreviations must be used, adopt
a consistent policy of forming them. Do not
deviate from the policy, even when it appears
that a particular command warrants doing so.

System designers take note. Design
the system for the person, not for the comput-
er, not even for yourself. People are also
information processing systems, with varying
degrees of knowledge and experience.
Friendly systems treat users as normal, intel-
ligent adults who are sometimes forgetful and
are rarely as knowledgeable about the world
as they would like to be. There is no need to
talk down to the user, nor to explain every-
thing. But give the users a share in under-
standing by presenting a consistent view of
the system. Their response will be your re-
ward. 3%
Partial research support was provided by
Contract N0O00{4-79-C-0323, NR 157-437
with the Personnel and Training Research
Programs of the Office of Naval Research,
and was sponsored by the Office of Naval
Research and the Air Force Office of Scientif-
ic Research. I thank the members of the LNR
research group for their helpful suggestions
and descriptions of misery. In particular, I
wish to thank Phil Cohen, Tom Erickson,
Jonathan Grudin, Henry Halff, Gary Perl-
man, and Mark Wallen for their analysis of
UNIX. Gary Perliman and Mark Wallen pro-
vided a number of useful suggestions.

Donald A. Norman is professor of psy-
chology and director of the program in
cognitive science at the University of
California, San Diego. He has degrees
in electrical engineering from MIT and
the University of Pennsylvania, and a
doctorate in psychology from the Uni-
versity of Pennsylvania. He is the au-
thor of seven books, including Human
Information Processing, Academic
Press, N.Y., 1977.

41

SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS SNIPPETS

There are few things in this business that are more fun than design-
ing a new computer language, and the very latest is Ada—the
Department of Defense’s new supertoy. Ada, as you know, has
been designed to replace outmoded and obsolete languages such as
COBOL and FORTRAN.

The problem is that this cycle takes 20 to 30 years and
doesn’t start until we’re really convinced present languages are no
good. We can short-circuit this process by starting on Ada’s re-
placement right now. Then, by the time we decide Ada is obsolete,
its replacemem will be ready.

The new generation of language desngners has taken to
naming its brainchildren after real people rather than resorting to the
usual acronyms. Pascal is named after the first person to build a
calculating machine and Ada is named after the first computer
programmer. As our namesake, we chose Charles Babbage, who
died in poverty while trying to finish building the first computer.
The new language is thus named after the first systems designer to
go over budget and behind schedule.

Babbage is based on language elements that were discov-
ered after the design of Ada was completed. For instance. C.A.R.
Hoare, in his 1980 acM Turing Award lecture, told of two ways of
constructing a software design: ‘*‘One way is to make it so simple
that there are obviously no deficiencies and the other way is to make
it so complicated that there are no obvious deficiencies.”” The
designers of Babbage have chosen a third alternative—a language
that has only obvious deficiencies. Babbage programs are so unre-
liable that maintenance can begin before system integration is
completed. This guarantees a steady increase in the dp job market-
place.

Like Pascal, Ada uses ‘‘strong typing’’ to avoid errors
caused by mixing data types. The designers of Babbage advocate
**good typing'’ to avoid errors caused by misspelling the words in
your program. Later versions of Babbage will also allow *‘touch
typing,”’ which will fill a long-felt need.

A hotly contested issue among language designers is the
method for passing parameters to subfunctions. Some advocate
“*call by name,"’ others prefer “*call by value. ' Babbage uses a new
method—‘call by telephone.”” This is especially effective for long-
distance parameter passing.

Ada stresses the concept of software portability. Babbage
encourages hardware portability. After all, what good is a computer
if you can’t take it with you?

It’s a good sign if your language is sponsored by the govern-
ment. COBOL had government backing, and Ada is being funded by
the Department of Defense. After much negotiation, the Depart-
ment of Sanitation has agreed to sponsor Babbage.

No subsets of Ada are allowed. Babbage is just the opposite.
None of Babbage is defined except its extensibility—each user must
define his own version. To end the debate of large languages versus
small, Babbage allows each user to make the language any size he
wants. Babbage is the ideal language for the **me’’ generation. The
examples that follow will give some idea of what Babbage looks
like. A

Structured languages banned GoTos and multiway condi-
tional branches by replacing them with the simpler IF-THEN-ELSE
structure. Babbage has a number of new conditional statements that
act like termites in the structure of your program:

WHAT IF—Used in simulation languages. Branches before evaluat-
ing test conditions.

42 AUUGN Vol IV No I

OR ELSE—Conditional threat, as in: ‘‘Add these two numbers OR
ELSE!"’)

WHY NOT?—Executes the code that follows in a dev1] -may-care
fashion.

WHO ELSE?—Used for polling during 10 operatlons
ELSEWHERE—This is where your program really is when you think '
it’s here.

GOING GOING GONE—For writing unstructured programs. Takes a
random branch to another part of your program. Does the work of 10
GOTOs.

For years, programming languages have used ‘‘FOR,”’ *'DO
UNTIL,” **DO WHILE,”’ etc. to mean *‘LOOP.’ > Continuing with this
trend, Babbage offers the following loop statements:

DON'T DO WHILE NOT—This loop is not executed if the test condition
is not false (or if it's Friday afternoon).

DIDN'T DO—The loop executes once and hides all traces.

CAN'T DO—The loop is pooped.

WON'T DO—The cpu halts because it doesn’t like the code inside the
loop. Execution can be resumed by typing ‘‘May I’" at the console.

MIGHT DO—Depends on how the cpu is feeling. Executed if the cpu
is “‘up,’” not executed if the cpu is ‘*down’’ or if its feelings have
been hurt.

DO UNTO OTHERS—Used to write the main loop for timesharing
systems so that they will antagonize the users in a uniform manner.
DO-wAH—Used to write timing loops for computer-generated music
(Rag Timing).

- Every self-respecting structured language has a case state-
ment to implement multiway branching. ALGOL offers an indexed
case statement and Pascal has a labeled case statement. Not much of
a choice. Babbage offers a variety of case statements:

The JUST-IN-CASE Statement—For handling afterthoughts and fudge
factors. Allows you to multiply by zero to correct for accidentally
dividing by zero.

The BRIEF CASE Statement—To encourage portable software.

The OPEN-AND-SHUT CASE Statement—No proof of correctness is
necessary with this one.

The IN-ANY-CASE Statement—This one always works.

The HOPELESS CASE Statement—This one never works.

The BASKET CASE Statement—A really hopeless case.

The Babbage Language Design Group is continuously eval-
uating new features that will keep its users from reaching any level
of effectiveness. For instance, Babbage’s designers are now consid-
ering the ALMOST EQUALS SIGN, used for comparing two floating
point numbers. This new feature ‘‘takes the worry out of being
close.” . .
No language, no matter how bad, can stand on its own. We
need a really state-of-the-art operating system to support Babbage.
After trying several commercial systems, we decided to write a
‘‘virtual’’ operating system. Everybody has a virtual memory oper-
ating system so we decided to try something a little different. Our
new operating system is called the Virtual Time Operating System
(vT0S). While virtual memory systems make the computer’s mem-
ory the virtual resource, VTOS does the same thing witn cpu process-
ing time.

The result is that the computer can run an unlnmnted number
of jobs at the same time. Like the virtual memory system, which
actually keeps part of the memory on disk, VTos has to play tricks to
achieve its goals. Although all of your jobs seem to be running right
now, some of them are actually running next week.

As you can see, Babbage is still in its infancy. The Babbage
Language Design Group is seeking suggestions for this powerful
new language and as the sole member of this group (all applications
for membership will be accepted), I call on the data processing
community for help in making this dream a reality.

—Tony Karp
Jamaica, New York

DATAMATION OCTOBER 1981

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL

({flhd
raphics
(¢chemeng SYscon
asservax
45 |
gsm | _ JINSWpouar
siro
lpsgch44 gnaths
£lec4l £ivil
ISsWesy
ec7 o smech
etecvax wsu/50
2 lec3S Lomm40
omm34

From mhtsalianj Thu Dec 3 16:39 EST 1981 netmail from usa
echo HOO : : :
IANJ

Gooday, Goodevenin, bonjour and Welcome
Break out the champagne
Lite up the Barbee

ie NI NI NI

This is the first try of the French UNIX link via SydneyNet at
LERS, Transpac (the French packet switching network, Oh la la), and TELENET.

We don't have an auto dialler, so I have to do that bit by hand. I
have the CSIRO source to 'tm'. The only problem to solve now is the
re—distribution. I remember clearly your explanation of how this was
done. All I need is the details of what to put in the telemail and a
copy of the shell scripts you used would be handy.

Useful LERS logins include 'adrian’', 'ian' (the boss)
Note: FROGXMIT is "#to.france”
I hope all goes well with you, as it were. How was the champagne??

I await excitedly, the first reply
* (hoping that this message didn't stuff things up too much)

ADrian F

echo YIIIIIIIIIIIIIIIIIIIIIIIPPEEE

AUUGN Vol IV No I 43

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL

44

From peteri Sat Jan 9 14:55:35 1982 netmail from elecvax
To: auugn:basservax
Subject: of interest to our readers?

From mhtsa!dukeldecvax!peter Tue Dec 29 19:;37:20 1981 netmail from usa

hello peter: :
Here is a short summary of the /usr/group meeting held in Boston on

the 10th and 11th of December:

~ usr/group will hold its next meeting in Boston, this summer with
Usenix (in July?) by popular demand from members.

The usr/group part of the meeting should occupy the beginning of
the week, with Wednesday as a possible overlapping day.

~ usr/group has produced a Unix software/services/hardware
catalogue that costs $50 for non—members.

- as of 7 Dec 81, usr/group has 519 members.

- the standards committee will attempt to put together a minimal
Unix—-compatible standard by 12/82 that will at least be V7
and possibly System 3, There may be a couple of enhancements, with
the most probable being a file locking sys call, according to one
of the steering committee members.

~ Doug McIlroy of Bell Labs spoke about getting a ANSI standard
committee for C started.

- the summer conference will have considerably more space devoted to
exhibitors' booths and could have around a thousand people attending
it and Usenix.

- the licensing committee reports that AT&T will now be responsible
for Unix licensing, but that the same people will do the job.

- a technical talk was given by Prof. Robert Fabry, of UC Berkeley, about
the work they did with Unix; Steve Saperstein of Amdahl talked about
Unix on the Amdahl (saying there was a 3 fold productivity increase
for programmers who use Unix, using a lines of code per year metric)

- Prof. Fabry also said that they(Berkeley) would be coming out with
a distribution based on System 3 fairly soon (implying that they
had a prerelease?)

- representatives from Charles River Data Systems, Whitesmiths, and
Mark Williams Co., selling ?, Idris, and Coherent, respectively
as Unix—-compatible products gave technical detail talks about their
productg. (aside, the Charles River Data Systems product is MC68000
based)

~ there were also talks given by people about Ethernet, Office Automation,
Networking, and Source Code Control products for Unix.

~ the Hilton in Boston is a pretty good hotell

In other news, Lucasfilm (of Star Wars fame) has a version of

Unix running on the MC68000 based sun workstation (from Stanford Uni)
and couple of hardware firms have contracted to get themselves
versions of Unix for the sun based systems they will sell.

The Lucasfilm system was demonstrated at the Comdex show in

November .

If you need the technical and licensing details for System 3 Unix
let me know and I'1ll send them along.

Regards to you and your family ... Peter
PS ... we finally got our Berkeley tape ... I got running yesterday with no
problems ... half our hardware is still missing! DEC hardware deliveries
have promised us the whole thing 3 times and nothing new has arrived since
October.
ttfn

AUUGN Vol IV No I

NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIL NETMAIIL, NETMAIL NETMAIL

Date: Mon Nov 23 10:52:26 1981

From: peteri at elecvax

To: Bob Kummerfeld <bob at basser40>
Subject: some funny mail

From mhtsalikeyalalice!dmr Wed Nov 18 02:47 EST 1981 netmail from usa
r a AM-Brights 11-17 0662

?~AM-Brights,650¢

“Bright and Brief«

LIVERPOOL, England (AP) _ Tarquin Fintimlinbinwhinbimlim Bus
Stop-F'Tang-F'Tang-Ole-Biscuit-Barrel is causing headaches for
polling officials at Crosby in Liverpool in a vital special
parliamentary election.

The 22-year-old student was John Desmond Lewis until he legally
changed his name for 50 pence (96 cents) _ as all Britons are
entitled _ to run in the election as a joke candidate representing
the pranksters of Cambridge University Raving Looney Society.

There are eight other candidates in the Nov. 26 election, which
has attracted nationwide attention because the favorite to take the
seat from the ruling Conservatives is Shirley Williams, joint
leader of Britain's new Social Democratic Party.

But Tarquin said: ‘*I am a non-political candidate. I am,
simply, very silly.''

Mayor William Bullen, who will have to read the full election
results before millions of televigion viewers, said, ‘‘This is
ridiculous. He may think it's a joke but an election is a very
serious matter.'’

Polling officials, who already have had to use gspecial small
print to squeeze Tarquin's name on the ballot, are now scanning
election rules to see if there is any way Bullen can avoid having
to read out the candidate's full name.

EASTON, Md. (AP) _ Kemal Cem Sekip Deniz isn't happy with his
name, so the 2l1-year—old plastics worker at the local Black and
Decker manufacturing plant is seeking to change it to Turkmenogluen
Yilmaz Barburoglu Saras Deniz.

And he says he's not worried that few people will be able to
pronounce it, just so long as the new name reflects his cultural
heritage.

Deniz was born in Seaford, Del., in 1960, of a Turkish
neurosurgeon now living in Turkey and a Russian woman who now is a
housewife in New York City.

Deniz said his current name, which is Turkish, does not reflect
his Russian heritage, so he filed a petition in Talbot County
Circuit Court last week asking to drop all but his last name and
add four new ones, two of which are Russian.

The petition said Deniz wants the change ' ‘because he favors the
policies of the Soviet Union,'' but he said his heritage was really
the issue.

‘\I take pride in my mother's side of the family,’' he said,
‘‘and I take pride in my father's side of the family.'’

Turkmenogluen Yilmaz, the first two names he wants to adopt, are
Turkish, Deniz said, and the next two are Russian. They are first
and middle names used by aunts and uncles, he said.

AUUGN Vol IV No I

45

DEAR ABBY DEAR ABBY DﬁAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY

From keith Wed Dec 16 10:21:12 1981
To: abby
Subject: Unix Counsellor

From abby Tue Dec 15 21:12:40 1981
To: paul keith doug paull judy agb
Subject: Unix Counsellor

I am Abby, of "Dear Abbey" fame, instituted to provide

an interesting column in this month's AUUGN (Unix

Users Group newsletter). I would be pleased to receive any
letters from you, or from anyone you may care to direct

to write to me. Emotional letters prefered. Please

include some reference to Unix. Mail abby:basservax.

Dear Abby,
I received your system wide message yesterday, and now today a

personal letter! What prompted such a well known media personality such
as yourself to write to little ol' me? Not that I'm not grateful, mind
you — I haven't received much mail since all our darling students left
us for the long vacation,

regards, keith.
PS. Is it true that daylight saving fades curtains?
PPS. This letter was prepared on a VAX-11/780 under Unix Level 7.

PPPS. Unix is a trade mark of Bell Laboratories, Murray Hill, N.J.

Dear Keith,

Firstly, on the most important part of your letter. Daylight
saving does NOT fade curtains. University tests have proved this
conclusively, and researchers are now working on the problem of whether
it increases the metabolic rate of suburban grasses. The system wide
message was an administrative error, but-I hoped to increase my chances
of getting a letter from you by addressing you personally. I was
disappointed to find the references to Unix in your letter nothing more
than cursory. Please check your address and Mail again, this time
including some of the outstanding questions received from your hoards

of students.
Abby

46 . AUUGN Vol IV No I

DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY DEAR ABBY

From doug Thu Dec 17 00:06:45 1981
To: abby
Subject: my life

My life has become an empty shell since I met Unix,
please what can I do?

Dear Doug,

I know a lot of system programmers who would give their
flowchart templates to be in your place. You should realise that a
user/machine interface is a relationship which both parties have to
continuously work at. There's more to command languages than the glossy
illustrations in the VMS manual. Sure, you might have started off
attracted by Shell's trim, elegant 20 page figure, but even as she aged
and started to tend towards 0S/360's proportions you must surely be
aware that there was some greater commitment, as you together increased
your software investment in shell scripts. Doug, why not try harder
next time you log in., Use new features, add different options. Go over
a few history files together. But remember, operating systems aren't
built on REMQTIs or ADAWIs., It's the simple, daily autoincrement MOVLsS
and SOBGTRs that keep the disks turning. So don't yearn for TOPS-10 or
mope around until the level 8 shell is released, try going back home
and make the partnership work.

Yours Truly,
Abby

From chris Tue Dec 15 20:38:23 1981

To: abby
Subject: Share and share alike...

From abby Tue Dec 15 20:09:27 1981
To: judy chris
Subject: Share and share alike...

From richardg Tue Dec 15 17:35:59 1981
Dear Abby,

Prove the correctness of the Share scheduling algorithm. In
your proof, outline any assumptions you make, in particular
detail the metric of fairness used. Also indicate what
relationship the percentage share figure has with the real
proportion of the machine you are using. For the sake of
brevity, could you limit the answer to 20000 words please? I
await your pearls pregnantly...

Richard.

Dear Richard, It's perfectly normal at your age to be worried by
questions such as the division of wealth, social justice, and the
correctness of programs from other universities. I have relayed
your question to responsible people. I hope to be able to publish
a fuller answer in the next issue of AUUGN.

Abby

Could I just say that this is the first time I've ever been
called a responsible person?

Chris

No, I'm sorry, there isn't space.

AUUGN Vol IV No I

47

AUUGN is produced by volunteers from the Australian Unix Users
Group. To sustain the fine standard of Jjournalism which our
discriminating clientele have come to expect (or will soon, anyway), we
solicit material from readers. This means YOU! Yes YOU! Send your
material to the editors at the addresses given below. We prefer to be
netsent the unformatted file, but hard copies are gratefully accepted
and reproduced intact. Also, material should be in the public domain.

Now about that other thing. Money. We need to increase our
readership, so get anyone you can to join the Australian Unix Users
Group. For a mere $24 you will receive six issues of AUUGN over a
period of one year. Please send your cheques in Australian currency.
Do not send purchase orders. So mail your subscription fee to this

address:

AUUGN

c/0 Bob Kummerfeld

Basser Department of Computer Science
Madsen Building FO09

University of Sydney

NSW 2006

Australia

Electronic corresponence should be addressed to:

auugn:basservax (on the SUN)
mhtsalaustralialauugn (in USA)

