
GNU SPICE GUI
(gSpiceUI)

User Manual

M.S.Waters

Version 1.1.03 (2021-08-29)

1

Contents

Title Page . 1
Table of Contents . 2
List of Figures . 3

1 Introduction 4

2 Getting Started 6

3 Installation 9
3.1 Requirements . 9
3.2 wxWidgets Library . 9
3.3 Build System . 11
3.4 Installation . 11
3.5 Microsoft Windows Support . 12
3.6 Apple Mac OSX Support . 13

4 Command-Line 14

5 Graphical User Interface (GUI) 16
5.1 File Menu . 16
5.2 Simulate Menu . 17
5.3 Settings Menu . 21
5.4 Help Menu . 24
5.5 Tool Bar . 25
5.6 Node List . 25
5.7 Component List . 25
5.8 Analysis Notebook . 26
5.9 Console Notebook . 27
5.10 Status Bar . 28

6 Temporary Files 29

7 Demonstration Schematics 30

8 Design 33

2

List of Figures

1 gSpiceUI Main Window. 6
2 Gaw Main Window. 8
3 Overall gSpiceUI application object model. 34
4 Main application frame object model. 35
5 Analysis notebook object model. 36
6 Process object model (tasks gSpiceUI may envoke). 37
7 Value panel object model (displays data variables). 38

3

1 Introduction

If you are "of an impatient temper", you may stop reading now and go straight to section
2 Getting Started, it’s written with you in mind. For everyone else, read on.

The name gSpiceUI is an abbreviation of the project title GNU SPICE GUI, which is itself
an acronym standing for Gnu is Not Unix, Simulation Program with Integrated Circuit
Emphasis, Graphical User Interface.

This document has become a central repository for all things gSpiceUI. Primarily it is still
user documentation but it also includes material more appropriate to project design and
management. Rather having many documents, some of which get forgotten, I’m hoping by
using one document it will be easier for me to keep things more organised and up to date.

No GUI can encapsulate all the functionality of a non-trivial command-line application
and electronic simulation engines are definitely not trivial. gSpiceUI doesn’t attempt to
plumb anything like the depths of the simulation engines it interfaces to. Rather, applying
the Pareto principle (80/20 rule) to software, it’s been said that 20% of the available
functionality is used 80% of the time. The design of gSpiceUI attempts to encapsulate
as much of that 20% of simulation engine functionality as possible. Thereby delivering
as much high usage functionality as possible without making the development process too
onerous.

gSpiceUI is intended to provide a GUI front-end for freely available electronic circuit sim-
ulation engines ie. NG-SPICE and GNU-CAP. The user opens a schematic (which is
converted to a netlist) or netlist file, enters analysis information and gSpiceUI generates
the necessary simulation engine instructions and appends them to a netlist file. The netlist
file, now including the simulation instructions is then run by the simulation engine and a
results file is generated.

Basically, the only function gSpiceUI performs itself is to generate simulation engine in-
structions. All other functionality is provided by other freely available applications and
utilities written and supported by other authors. An EDA (ElectronicDesignAutomation)
tool suite, usually gEDA-gaf or Lepton-EDA takes care of schematic capture and netlisting.
Waveform data results can be displayed using Gaw, Gwave or Kst. PDF documentation
is viewed using one of many utilities eg. evince, xpdf, mupdf, etc., depending on what is
installed on your system.

gSpiceUI can also be used in conjunction with the KiCAD EDA tool suite. KiCAD doesn’t
expose it’s netlister utility like Lepton-EDA or gEDA-gaf so this step must be performed
by the user inside the schematic capture application eeschema. The import mechanism in
gSpiceUI cannot be used in this case and eeschema can’t be envoked inside gSpiceUI. Gaw,
Gwave or Kst are still used to display simulation results.

The gSpiceUI GUI is designed to be as consistant as possible between analysis types and
simulation engines. The intention is to abstract the technical particulars from the user so
that the focus may be on the simulation rather than the simulation engine or even the
analysis type.

Like all open source software gSpiceUI is a work in progress and probably always will be.
It has been developed over a long period of time (since 2003) and has reached a relatively
mature state. Experience in software development as well as using software in general has
taught me that it’s better to provide less functionality that works than more functionality
that just promises a lot. Consequently, as a generally rule, bugs fixes and improvements

4

to the underlying architecture will take precedence over new functionality. I believe this
approach pays off in the long term.

It is worth noting that NG-SPICE is derived from the SPICE code base, whereas GNU-
CAP is not. GNU-CAP is an independent implementation of the principals used to analyses
electronic circuits. Consequently analysis results can be generated using two independant
mechanisms and then compared. This is one of the reasons for supporting more than
one simulation engine; if the same or similar results can be achieved using two different
mechanisms then it’s highly likely that the results will bear some resemblence to what
actually happens in the real world.

It is important to realise that a simulation engine models the behaviour of a system and
therefore can never be 100% accurate. In addition the simulation engine itself is an im-
plementation in software of a mathematical model and so is also subject to bugs. As the
underlying mathematical model and software implementation improve, the simulation per-
formance improves. One of the reasons for the choice of simulation engines to support was
that they are both in constant development. Not to mention the inherent goodness and
righteousness of open source software (so I won’t mention it.)

The skills and judgement of the user have a profound impact on the usefulness of electronic
simulation. It can be a technically demanding process requiring considerable thought,
practice and persistence. The alternative is to go straight to building prototypes; in any
case, ultimately prototypes must be created to finalize a design. However simulation is
generally a rewarding step in the development process, even if it only provides a better
understanding of the internal workings of a design.

5

2 Getting Started

At first glance, I’m told gSpiceUI can appear unintuitive. This section is aimed at trying
to dispell some of the mystery. When first encountering gSpiceUI you might expect to see
a electronic circuit schematic and to be able to click on any component and see simulation
results displayed in a graph. This is what I would’ve liked before starting development of
gSpiceUI but there just wasn’t anything of the kind available for Linux.

What did exist, however, where simulation engine backends, schematic capture applications
and waveform data viewer utilities. What was missing was something to simplify the
interface to the simulation engine backend. That’s the function I intended gSpiceUI to
provide. However, over the years it has also evolved to become center point for tying
together useful functionality.

Basically, all gSpiceUI does is generate simulation engine instructions. All other function-
ality is provided by other applications and utilities. An EDA tool suite, usually gEDA-gaf
or Lepton-EDA takes care of schematic capture and netlisting. Waveform data results can
be displayed using Gaw, Gwave or Kst. PDF documentation is viewed using one of many
utilities eg. evince, xpdf, mupdf, etc., depending on what is installed on your system.

Like most applications gSpiceUI has the usual controls along with various application
specific regions. Refer to Figure 1 : gSpiceUI Main Window for an image of gSpiceUI with
the various regions of it’s main window explicitly labeled.

Figure 1: gSpiceUI Main Window.

6

The purpose for the different application specific regions is briefly describe below :

Node List : A list of node labels extracted from the netlist file. One or
more nodes may be selected (or deselected) by clicking on
them with the mouse. The probes for the selected nodes will
be calculated and included in the simulation results.

Component List : A list of components extracted from the netlist file. One or
more components may be selected (or deselected) by clicking
on them with the mouse. The probes for the selected compo-
nents will be calculated and included in the simulation results.
At present only two terminal components are included in this
list.

Analysis Notebook : The analysis notebook contains pages reflecting the various
analysis types supported by the chosen simulation engine.
Controls on each allow the entry of parameters such as sweep
range, steps size and signal source component.

Console Notebook : The console notebook contains various text controls which dis-
play text data generated by the different operations initiated
by gSpiceUI.

Now to try a simple example. As part of the gSpiceUI installation a number of demonstra-
tion schematics should have been included (usually in "/usr/share/gspiceui/sch/demos/").
We’ll open one and do a simple simulation to illustrate the basic functionality of gSpiceUI.
Follow the steps listed below :

1. Start gSpiceUI using the following command-line (to simplify these instruction use
the NG-SPICE simulation engine and Gaw as the waveform data viewer) :

gspiceui -s ngspice -w gaw

2. Import (create a netlist file) from the schematic file "bjt-amp-ce-1.sch" found amoung
the demo. schematics. The Import operation can be initiated from the File menu or
by clicking on the the tool bar icon with the tool tip "Import a schematic file". If all
goes well the file should load without errors.

3. View the schematic by selecting the Schematic item from the Simulate menu or
clicking on the tool bar icon with the tool tip "View / edit the schematic".

4. Prepare a simulation by first selecting the AC analysis page in the Analysis Notebook
and entering the sweep parameters : Start Frequency 100 Hz, Stop Frequency 500
kHz and 100 Steps/Decade. Select the Signal Source to be Vin and the output probe
Rout from the Components list.

5. Now run the simulation by selecting the Run item from the Simulate menu or clicking
on the tool bar icon having the tool tip "Run the simulation". If all goes well the
simulation will run without error and the message "Simulation ran successfully" will
appear in the left panel of the status bar.

6. To view the simulation results select the Results item from the Simulate menu or
click on the tool bar icon having the tool tip "View simulation results".

7. Gaw uses a MDI (Multiple Document Interface) comprised of a smaller window con-
taining a list parameters and a larger waveform display window. Select the parameter

7

VDB(Rout) and drag it to one of the waveform display regions. From the Prefer-
ences menu select Show Grid and log x scale. You should now see a bode plot of
the amplifier transfer function and be able to confirm the specifications given in the
schematic file. Refer to Figure 2 : Gaw Main Window.

Figure 2: Gaw Main Window.

The gSpiceUI Help menu contains links to user documentation for the simulation engines
(assuming it has been installed in the appropiate place on your system, refer to the Install
file).

8

3 Installation

These instructions provide information required to compile and install gSpiceUI. Many
operating systems have ready made packages for installing gSpiceUI, this is the preferred
option.

3.1 Requirements

There are various requirements for building gSpiceUI and running it in a meaningful way.
The different requirements are listed below :

• Compilation (Essential) : wxWidgets - C++ library

• Run time (Desirable) : GNU-CAP - electronic circuit simulation engine

• Run time (Desirable) : NG-SPICE - electronic circuit simulation engine

• Run time (Optional) : Gaw - analogue waveform data viewer

• Run time (Optional) : GWave - analogue waveform data viewer

• Run time (Optional) : Kst - analogue waveform data viewer

• EDA (Optional) : gEDA-gaf - EDA tool suite

• EDA (Optional) : Lepton-EDA - EDA tool suite

• Documentation (Optional) : NG-SPICE - user manual

• Documentation (Optional) : GNU-CAP - user manual

Notes :

• On Linux systems the NG-SPICE user manual is installed in :

/usr/share/doc/ngspice/manual.pdf

• On Linux systems the GNU-CAP user manual is installed in :

/usr/share/doc/gnucap/gnucap-man.pdf

3.2 wxWidgets Library

gSpiceUI is written in C++ and makes use of the wxWidgets library. The wxWidgets
library provides all the functionality required by gSpiceUI in one library, thereby reducing
external dependencies to one package. Is also possible to compile the same source code
under Linux/UNIX, MS Windows, OSX and various other platforms. This library must
be installed before gSpiceUI can be compiled.

Many systems now come with a version of wxWidgets pre-installed or provide it as a pre-
built package which can be installed using the systems packaging system, this is the pre-
ferred option. There are circumstances however where building and installing the wxWid-
gets library from it’s sources may be necessary. One such instance may be if the ABI
(Application Binary Interface) of the pre-built wxWidget library package differs from the
ABI used by the compiler used to build gSpiceUI. The ABI version using when building
gSpiceUI can also be set within the gSpiceUI file src/Makefile.

The wxWidgets library home page is :

http://www.wxWidgets.org/

9

http://www.wxWidgets.org/

The recommended version of the wxWidgets library to use is the v3.0.x series. The archive
file for a Linux based system is :

wxWidgets-3.0.x.tar.bz2

Untar the wxWidgets archive and change to the wxWidgets root directory using the fol-
lowing commands :

tar -jxvf wxWidgets-3.0.x.tar.bz2
cd wxWidgets-3.0.5

Installation of wxWidgets is based around autoconf and automake, so it should be straight
forward. If necessary refer to the installation instructions provided with the wxWidgets
sources (in the docs directory). Enter the following commands in the wxWidgets root
directory :

mkdir my-build
cd my-build
../configure --without-subdirs --disable-compat28
make
su
Password: <-- enter the root password
make install

Notes :

• To view all available options to the configure script enter :

../configure --help

• Some options to the configure script of particular interest are :

--prefix=<DIR> (Installation directory, default /usr/local)

--without-subdirs (Don’t generate makefiles for "samples/demos/...")

--disable-compat28 (Disable wxWidgets 2.8 compatibility)

--enable-debug (Build the library for debugging)

--enable-debug_info (Create code with debugging information)

--enable-debug_gdb (Create code with extra GDB debugging information)

--disable-debug_flag (Disable debugging support, unset __WXDEBUG__ flag)

--with-gtk[=VERSION] (Use GTK+, VERSION can be 3, 2 (default), 1 or "any")

At the time of writing there appears to be display problems when wxWidgets is
compiled against GTK3, so building against GTK2 is recommended. Alternatively
some distributions offer a compatibility layer, eg. for Fedora there is a package called
"compat-wxGTK3-gtk2".

• The wxWidgets library can be uninstalled as follows :

sudo make uninstall

10

3.3 Build System

After the wxWidgets library has been installed properly, go to the gSpiceUI root directory
and enter the following :

make (for Linux and Windows)
or

gmake (for FreeBSD)
or

make maccfg (for MAC OSX)
make

Note :

• Apple MAC OSX users are required to execute the extra target (ie. make maccfg)
to create some directories and copies some files specific to their system, it is only
required once per installation.

If all goes well the binary file "gspiceui" should have been generated in the directory
<ROOT>/bin.

3.4 Installation

After building gSpiceUI, it may be installed into the default directory /usr/local/ by
entering the following command as root :

make install
or

gmake install (for FreeBSD)

The application binary is intalled in /usr/local/bin/. The documentation and other
supporting files are installed in /usr/local/share/gspiceui/.

The application may be uninstalled by entering the following command as root :

make uninstall
or

gmake uninstall (for FreeBSD)

An alternative install path may be specified by manually changing the make variable
DESTDIR in the main Makefile or by specifying it on the command-line as the following
example illustrates :

make install DESTDIR=/alternative/install/directory

The same applies for the uninstall operation :

make uninstall DESTDIR=/alternative/install/directory

11

3.5 Microsoft Windows Support

This section provides a broad outline of how to build gSpiceUI on MS Windows. The
methodology has been developed and tested on Windows 7 and may work on other releases.
Detailed instructions are not provided since this information can change and so is best
sourced from the Web sites providing the required packages which are outline below :

• MinGW (Minimalist GNU for Windows) is a minimalist development environment
for native Microsoft Windows applications.

• MSYS (Minimal SYStem) is a Bourne Shell command line interpreter system. It’s
an alternative to Microsoft’s cmd.exe providing a general purpose command line
environment particularly suited to use with MinGW.

• wxWidgets is a C++ library that lets developers create applications for MS Windows,
Apple Mac OSX, Linux and other platforms with a single code base.

An article written by Oliver Kohl Using wxWidgets under Windows was very helpful in
formulating these instructions. The article can be found at :

http://www.codeproject.com/Tips/630542/Using-wxWidgets-under-Windows

Note : The MinGW environment can be accessed from Windows, outside of the MSYS
shell. Paths containing forward slashes (’/’) are from within MSYS and paths containing
backslashes (’\’) are from Windows. Eg. the path to my home directory within MSYS is
/home/msw, whereas from MS Windows it’s C:\MinGW\msys\1.0\home\msw.

The steps to building gSpiceUI for Windows are as follows :

1. Install MinGW and MSYS :

• Go to http://www.mingw.org/ and retrieve the MinGW installer :
mingw-get-setup.exe

• Run the installer and select at least the following packages : C & C++ compilers
and MSYS. If MinGW is installed in the root of your system drive (ie. C:\MinGW)
you’ll have no problems with navigation and paths.

• The installer will retrieve the selected packages from the Web and install them.

• Ensure that the file C:\MinGW\msys\1.0\etc\fstab exists and contains at least the
following line, followed by an empty line :

C:\MinGW /mingw

• Now navigate to the directory C:\mingw\msys\1.0 and run msys.bat, this creates
your home folder.

• It is worth creating a start menu item and/or a desktop icon for msys.bat.

2. Install the wxWidgets sources :

• Go to the web site http://www.wxwidgets.org/ and retrieve the wxWidgets sources
eg. wxWidgets-3.0.5.zip.

• Create a folder (eg. C:\wxWidgets) and unpack the wxWidgets sources archive into
it.

3. Build wxWidgets using MinGW :

12

http://www.codeproject.com/Tips/630542/Using-wxWidgets-under-Windows
http://www.mingw.org/
http://www.wxwidgets.org/

• Open MSYS and go to the wxWidgets sources root directory eg. :
cd /c/wxWidgets/wxWidgets-3.0.5

• Create the build folder and navigate into it eg. :
mkdir build-msw
cd build-msw

• Run the wxWidgets configure script which creates the make files and sets system
dependent variables :
../configure --build=x86-winnt-mingw32 --disable-shared --disable-threads

Notes :

– My AVG virus scanner breaks the configuration process when the TIFF library
is processed. There are two solutions : disable the TIFF library by adding the
option "–without-libtiff" to the above command line or temporarily disable
the AVG Resident Shield component.

– The build process can be sped up if the wxWidgets samples and demos are
skipped. Add the option "–without-subdirs" to the above command line.

• Build wxWidgets :
make MONOLITHIC=1 SHARED=0 UNICODE=1 BUILD=release DEBUG_FLAG=0

• Install the wxWidgets libraries :
make install

4. Build gSpiceUI using MinGW :

• Retrieve the gSpiceUI sources and store them in eg. your MinGW home directory.

• Open MSYS and unpack the gSpiceUI sources eg. :
tar -zxvf gspiceui-v1.2.00.tar.gz

• Enter to the wxWidgets sources root directory eg. :
cd ~/gspiceui-v1.2.00

• Build the gSpiceUI sources (the same as for Linux) :
make GSPICEUI_MSWIN=1

• If all goes well you can now run gSpiceUI under Windows :
bin/gspiceui.exe

Note : There will be things that don’t work in gSpiceUI under Windows eg. opening the
online manual. The Windows setup seems to be a bit different from Linux but it’s a start
(for someone else to build on).

3.6 Apple Mac OSX Support

There is good and bad news for Mac users. The good news is that gSpiceUI can be
installed and run under OSX (based on user reports). The bad news is that I don’t have
any instructions on how to do it, since I don’t have access to an OSX system. I’ve added
patches to the code base provided by Mac user who are running gSpiceUI on OSX. I’ve
tried to run a OSX client under Qemu but without success so far. If anyone wants to
provide some instructions I’m happy to insert them here.

13

4 Command-Line

Generally, envoking gSpiceUI simple requires entering the binary name (eg. gspiceui) at the
command prompt. Various options and/or arguments may also be passed to gSpiceUI via
the command-line. Configuration settings are recorded in a configuration file so preference
entered in previous invocations are carried over to future sessions. Options entered via the
command-line over-ride configuration file settings. What follows if the output generated
by entering the "-h" option :

$ gspiceui -h

Analyse a electronic circuit using a GUI front-end to numerical simulation
engines

USAGE : gspiceui [-OPTION [ARG]] [FILE/S]

OPTIONS : -h : Print usage (this message) and quit
-v : Print version information and quit
-c : Rebuild/clean the configuration file and quit
-d : Enable debug mode (generate console spew on stderr)
-r <RCFILE> : Specify a configuration file

<RCFILE> = ~/.gspiceui.conf (default)
-s <SIMENG> : Specify the simulation engine to be used

<SIMENG> = ngspice or gnucap
-e <EDA> : Specify the EDA tool suite to be used

<EDA> = lepton (Lepton-EDA) or geda (gEDA-gaf)
-w <WAVWR> : Specify the waveform data viewer to be used

<WAVWR> = gaw, gwave or kst
-g [<PROC>] : Import schematic file/s and (optionally) specify the

Guile procedure to use
<PROC> = spice-sdb (default), protelii, verilog, etc.

-a <PAGE> : Specify the analysis page to be displayed
<PAGE> = op (default), dc, ac, tr

FILE/S : Load a circuit description (netlist) file or import schematic file/s

The available command-line options are explained in further detail below :

-h Print the usage message (as shown above) to the console and quit.

-v Print the application version information to the console and quit.

-c Clear disused configuration items from the configuration file and quit. As gSpiceUI
is developed the format of the configuration file (ie. /.gspiceui.conf) may change.
Over time it can become cluttered with superseded variable and/or group names.
Although it is not essential, rebuilding the configuration file occasionally is a good
idea, eg. whenever gSpiceUI is updated to a newer version.

-d Enable debug mode. As the application runs debug messages will be printed to the
console. This is mainly used as development tool, it will generally not be of interest
to the normal user.

-r Specify a alternative configuration file other than the default.

-s Specify the simulation engine to be used. This option can only work if the chosen
simulation engine is installed on the system.

14

-e Specify the EDA tool suite to be used. This option can only work if the chosen EDA
tool suite is installed on the system.

-w Specify the waveform data viewer application to be used. This option can only work
if the chosen application is installed on the system.

-g Import schematic file/s and optionally specify the Guile procedure to be used. Im-
porting schematic file/s means converting them to a single netlist file. The netlist
conversion utility uses a Guile procedure to do the actual conversion. Different
schematic file formats (eg. Protel or gEDA) require different processes to generate
the netlist file. (If no Guile procedure is specified a default is used.)

-a Specify the analysis page to be displayed at startup.

There are two types of file which may be passed to gSpiceUI via the command-line (these
file types cannot be mixed) :

Netlist : A single netlist file may be specified by placing it at the end of the
command-line.

Schematic : One or more related schematic files may be specified at the end of the
command-line. In addition the -g must be given to indicate that files
are schematic. The file/s are converted to a single netlist file as part of
gSpiceUI startup process.

Notes :

• The default configuration file is called ".gspiceui.conf" and is stored in the user’s
home directory. The configuration file is intended to be human readable although
under normal circumstances it shouldn’t be necessary to do so.

• Schematic file/s cannot be imported with the KiCAD EDA tool suite since it has no
command-line netlister utility. A netlist file must be manually generate from within
the KiCAD schematic capture application eeschema and then loaded / reloaded into
gSpiceUI.

15

5 Graphical User Interface (GUI)

The main window is made up of various display objects which are described in detail in
the following sub-sections. The GUI design attempts to facilitate the electronic circuit
analysis work flow. There are two list boxes on the left containing possible test points,
either electronic circuit nodes or single port components. To the right are analysis panels
which each define a type of analysis which may be performed and allowing the user to
enter parameters defining the analysis itself. The lower section of the GUI contains the
text input and output of the various stages of the simulation. From the netlist created
from the circuit schematic to the results generated by the simulation engine.

The main window title bar always contains at least the application name. If a file is open,
whether it be a netlist or schematic file/s, the name of a netlist file will be appended to
the normal window title banner. Keep in mind that this netlist file is the main file that
gSpiceUI operates on.

5.1 File Menu

The file menu contains options associated with handling netlist and schematic files.

5.1.1 File Ý Open Netlist

This option opens a file dialogue allowing the user to choose a netlist (circuit description)
file to open. The components and circuit nodes are loaded into the associated list controls
and the netlist file contents are also loaded into the NetList text control in the Console
notebook. If the netlist file contains simulation instructions gSpiceUI attempts to parse
them and the settings are displayed in the appropriate page of the Analysis notebook.

Notes :

• Be aware, gSpiceUI is very likely to modify the netlist file. It will change file the
formatting and remove things it doesn’t understand. If this isn’t OK, create a copy
of the netlist file and open the copy with gSpiceUI.

• When using the gEDA tool set the netlist file extension is ".ckt". For the KiCAD tool
suite the netlist extension is "cir". Be sure to specify the appropriate file extension
for the EDA tool suite you are using.

• There is an upper limit to the number of lines which may be displayed in any text
control (although the underlying file isn’t truncated). This setting maybe adjusted
by the user, refer to 5.3.4 Preferences.

5.1.2 File Ý Import Schematic/s

This option opens a file dialogue allowing the user to choose one or more related schematic
files to import. A utility provided by the EDA tool suite (eg. for gEDA-gaf it’s gnetlist) is
used to convert schematic file/s to a single netlist file. The netlist file name is automatically
derived from the first schematic file name in the list with the file extension changed to
".ckt". Eg. if the schematic files schem1.sch, schem2.sch, schem3.sch were specified to be
imported the netlist file name would be schem1.ckt.

Notes :

• If you are using the KiCAD tool suite the Import option won’t work. The netlister
utility associated with KiCAD is built into the schematic capture application eeshema

16

so gSpiceUI can’t envoke it. The netlist file must be created or updated from within
eeshema by the user and the netlist file must be updated in gSpiceUI using the Reload
operation.

5.1.3 File Ý Reload

This option reloads the netlist file. If the netlist was imported from one or more schematic
files, the import operation is repeated and then the resulting netlist file is reloaded. As
far as possible the simulation settings shown in the currently displayed analysis notebook
page are retained.

When gSpiceUI is used to create a netlist file from schematic file/s it inserts a reference
to the schematic file/s near the beginning of the netlist file. If a netlist file is opened
and has this schematic reference, the reload operation performs an import operation first
before reloading the netlist file, otherwise the netlist is simply reloaded. In either case the
simulation settings shown in the currently displayed analysis notebook page are retained
as far as possible.

Notes :

• There is a preference which enables automatic re-generation of the netlist file from
the schematic file/s if the modification timestamp of the netlist file is older than that
of a schematic file/s. Refer to Section 5.3.4 Preferences.

5.1.4 File Ý Close

Close any/all open schematic and/or netlist file and resets all GUI parameters to default
values.

5.1.5 File Ý Quit

Close all files and child processes (eg. Gaw), delete temporary files if required and exit the
application.

5.2 Simulate Menu

The simulate menu contains options associated with circuit simulation operations and
provides access to schematic capture and waveform data viewing applications.

5.2.1 Simulate Ý Create Simulation

The Create Simulation operation tranforms the netlist file (displayed in the Netlist page
of the Console notebook) into a simulation file (displayed in the Simulation page of the
Console notebook).

The Create Simulation operation has some subtleties which are worth noting. The simplist
way to use it is to enter your preferences into the GUI, Create Simulation then parses the
netlist file, creates the appropriate simulation engine commands and then generates the
simulation file. The simulation file can then be passed directly to the simulation engine to
be executed.

Prior to running the simulation, there is a extra step possible that often proves useful.
The simulation file, once created, can be edited by the user, eg. to temporarily change a
component value. It is important to note however that the simulation file should only be

17

edited after the Create Simulation operation or the edits will be lost when the simulation
file is recreated.

If a problem is encountered during the Create Simulation operation a message box is dis-
played giving a brief explanation as to why the operation could not be completed. The raw
console spew generated by the process is sent to the Console page of the Console notebook;
a careful perusal of this output generally helps to reveal the cause of the problem/s.

5.2.2 Simulate Ý Run Simulation

The Run Simulation operation creates a new simulation engine process and passes the
simulation file (displayed in the Simulation page of the Console notebook) to the new
process for execution.

The Run Simulation operation has some subtleties which are worth noting. If the analysis
parameters entering in the GUI have changed since the simulation file was last created
a Create Simulation operation is initiated automatically before creating the simulation
process. Refer to the section 5.2.1 Create Simulation.

If the simulation runs successfully then the results are formatted and written to a data
file (refer to section 6 Temporary Files) and are displayed in the appropriate simulation
results page of the Console notebook.

If a problem is encountered during the Run Simulation operation a message box is displayed
giving a brief explanation as to why the operation could not be completed. The raw console
spew generated by the process is sent to the Console page of the Console notebook; a careful
perusal of this output generally helps to reveal the cause of the problem/s.

5.2.3 Simulate Ý Stop Simulation

The Stop Simulation operation stops a running simulation immediately. This option only
works if a simulation is actually running. This is a useful option if a simulation is running
too long or appears not to be converging.

5.2.4 Simulate Ý Schematic Capture

The Schematic Capture operation starts a schematic capture application where the schematic
can be viewed and/or edited. If there is a schematic file associated with an open netlist
file it is opened using the EDA tool suite schematic capture application (eg. gschem or
lepton-schem). It is very useful (almost essential) to view a schematic file whilst simulating
a circuit. It provides a context for the various components and circuit nodes. Values in the
circuit can be adjusted as the simulation process reveals new knowledge and understanding.
Such changes are not, however, automatically reflected in gSpiceUI.

Remember that the schematic capture program and gSpiceUI are separate applications.
Communication between the two happens via file/s on a storage device. When a schematic
is changed, the associated file has to be updated and gSpiceUI told to re-read the file and
updates it’s GUI. This is a very simple but important process to keep in mind. Save your
schematic to file and then reload it in gSpiceUI. Refer to section 5.1.3 File Reload.

It’s important to be aware that gSpiceUI cannot just run a simulation based on "any old"
schematic file. In fact, the simulation will probably fail unless the schematic is trivial or
you’re just lucky. Certain prerequisites must be met before a schematic can be simulated.
It must be possible to translated it into a form which can be interpreted by the simulation
engine, by the EDA tool suite’s netlist conversion utility (eg. gnetlist or lepton-netlist).

18

The extra information that must be explicitly defined in the schematic over that sufficient
for human readability is :

• All power supply sources must be explicitly defined.

• All signal sources must be explicitly defined.

• Components not already defined in the simulation environment must be defined using
models.

• Component labels must adhere to the rules specified for the simulation engine eg.
resistor names always start with the letter ’R’. In particular be aware that often a
model file contains a sub-circuit which must have a name starting with the character
’X’.

• Net labels must adhere to the rules specified for the simulation engine eg. they can’t
start with a digit. Refer to the specific simulation engine documentation.

Notes :

• In gschem and lepton-schem, models may be included by setting the component’s
file attribute or by use of a SPICE Model object. Either way the component value is
set to the model or sub-circuit label. Check the example schematics that come with
gSpiceUI to see how it’s done eg. the LM555 or operational amplifier examples.

• gSpiceUI recognizes a component type by the first letter of the component name eg.
an inductor name is expected to start with the letter ’L’. The following is list of the
first letter of various component types (this format is derived from NG-SPICE) :

19

B - Non-Linear Dependent Source

C - Capacitor

D - Diode

E - Voltage Controlled Voltage Source

F - Current Controlled Current Source

G - Voltage Controlled Current Source

H - Current Controlled Voltage Source

I - Independent Current Source

J - JFET (Junction Field-Effect Transistor)

K - Coupled (Mutual) Inductors

L - Inductor

M - MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor)

O - Lossy Transmission Line (LTRA)

P - Coupled Multi-conductor Transmission Line (CPL)

Q - BJT (Bipolar Junction Transistor)

R - Resistor

S - Voltage Controlled Switch

T - Lossless Transmission Line

U - Uniform Distributed RC Transmission Line (URC)

V - Independent Voltage Source

W - Current Controlled Switch

X - Sub-circuit

Y - Single Lossy Transmission Line (TXL)

Z - MESFET (Metal-Semiconductor Field Effect Transistor)

• If the KiCAD EDA tool suite is used the View Schematic function will not work.
The KiCAD schematic capture application eeschema must be manually started by
the user and the netlist file updated by the user from within eeschema whenever the
schematic is changed. Perform a Reload operation and then proceed as normal.

5.2.5 Simulate Ý View Results

The View Results operation starts a waveform data viewing application (ie. Gaw, Gwave
or Kst) where the simulation results can be viewed and analysed. In the majority of cases,
the first operation following a simulation run is to view the waveform data results. The run
simulation tool bar button is pressed followed immediately by the view simulation results
button. In these instances everything happens seemlessly, the results are generated and
then viewed. However, gSpiceUI can generate a number of different data files any of which
you may wish to view. Refer to section 6 Temporary Files. You can load the desired results
file manually into the waveform data viewer or configure gSpiceUI so that the desired data
will be displayed when the waveform data viewer is started by gSpiceUI.

For this reason there is a mechanism for deciding which data file is opened by the waveform
data viewer. The choice is made according to the following criteria in descending priority :

20

1. The currently selected page in the Analysis Notebook.

Eg. if the Quiescent analysis page is selected in the Analysis Notebook then gSpiceUI
will only attempt to display operating point data, if none has been generated an error
message is displayed.

2. The currently selected results page in the Console Notebook.

Eg. if the AC analysis page is selected in the Analysis Notebook and data for NG-
SPICE has been generated but the GNU-CAP result page is selected in the Console
Notebook an error message will be displayed re no GNU-CAP result existing.

3. The currently selected Simulation Engine.

Eg. if the Transient analysis page is selected in the Analysis Notebook and data
has been generated by both simulation engines and the Netlist page in the Console
Notebook is selected then the data for the currently select simulation engine will be
displayed.

5.2.6 Simulate Ý Calculator

The Calculator operation starts a calculator application (eg. Xcalc). This calculator
application is not part of gSpiceUI but is one of many freely available applications which
can be downloaded and installed from the Web. A calculator is frequently a useful tool
when simulating electronic circuits. The particular application to be launched can be
configured in 5.3.4 Preferences.

5.3 Settings Menu

The settings menu contains application configuration options. This menu begins with three
blocks of radio buttons which allow easy access to options that are used frequently. Less
often accessed options are contained in a preferences dialogue.

5.3.1 Settings Ý Simulation Engine Selection

The first pair of radio buttons allow the selection of the electronic circuit simulation engine
to be used (assuming it has been installed). The analysis notebook is updated based on the
chosen simulation engine, the selected simulation engine name is displayed in the second
status bar pane and, when simulation results are generated, they are sent to the appropriate
console tab.

When the simulation engine is changed gSpiceUI attempts to transfer simulation informa-
tion to the new simulator environment. The information is tranferred via the simulation
file so if information entered on the GUI is not in the simulation file it will be lost. If this
is a problem create a fresh simulation file prior to changing the simulation engine.

5.3.2 Settings Ý EDA Tool Suite Selection

The second pair of radio buttons allow the selection of the EDA (Electronic Design Automa-
tion) tool suite to be used (assuming it has been installed). This specifies the schematic
capture / edit application and the netlister utility to be used. The currently selected EDA
tool suite name is displayed in second last pane of the status bar.

21

5.3.3 Settings Ý Waveform Data Viewer Selection

The third block of radio buttons allow the selection of the waveform data viewer application
to be used (assuming it has been installed). The currently selected waveform data viewer
application name is displayed in last pane of the status bar.

5.3.4 Settings Ý Preferences

The preferences dialog allows the user to configure gSpiceUI and contains the following
settings :

• Simulation engine :

A choice box containing the available simulation engines (assuming they have been
installed). The currently selected simulation engine name is displayed in second pane
of the status bar.

• EDA tool suite :

A choice box containing the available EDA (Electronic Design Automation) tool
suites (assuming they have been installed). The currently selected EDA tool suite
name is displayed in second last pane of the status bar.

• Waveform data viewer :

A choice box containing the available waveform data viewer applications (only appli-
cations which are currently installed will be listed). The currently selected waveform
data viewer application name is displayed in last pane of the status bar.

• Calculator :

A choice box containing the available calculator applications currently installed on
your system.

• PDF viewer :

A choice box containing the available PDF viewer applications currently installed
on your system. The PDF viewer is used to display PDF documentation, eg. this
gSpiceUI User Manual.

• Temporary files :

A choice box containing the available temporary file management strategies, ie. auto-
matically delete temporary files, prompt the user for permission or keep all temporary
files. Most of the files in question contain simulation results data and may be useful
outside gSpiceUI. Refer to section 6 Temporary Files for more details.

• Main frame layout :

A choice box containing the available main frame layout schemes. There are two
schemes to choose from : longer probes (Nodes and Component list) controls or a
wider console notebook control.

• Phase / angle units :

A choice box containing the available phase / angle units, ie. degrees or radians.

• Results precision :

A choice box allowing the precision of the simulation results to be specified. The
data are rounded to the chosen precision, not truncated.

22

• Netlister Guile backend :

A choice box containing the available netlist conversion utility Guile backend proce-
dures. This list of Guile backends is derived by querying the netlister utility directly
so whatever procedures are listed are available.

• Max. text control size :

A value control which sets the maximum number of lines which may be displayed
in any of the Console Notebook pages (text controls). Simulation results files can,
potentially, be very big; this value places an upper limit on how many lines are loaded
into any text control. The files themselves are not changed in any way, ie. truncated.

• Spin control period :

A value control which sets the period (in msec) between successive spin button up-
dates.

• Tool tip delay :

A value control which sets the delay (in msec) before a tool tip is displayed.

• Show tool tips :

A check box which enables or disables tool tips.

• Auto. config. file clean :

A check box which enables or disables automatic configuration file clean / rebuild. As
gSpiceUI is developed the configuration file format may change (ie. /.gspiceui.conf).
Over time it can become cluttered with superseded variable and/or group names.
Although it is not essential, rebuilding the configuration file occasionally is a good
idea, if nothing else it helps with human readability. If this option is enabled and
the application is updated to a newer version, on first startup the configuration file
is automatically rebuilt.

• Sync. sweep sources :

A check box which enables or disables synchronization of the sweep sources. If a
sweep source name is selected in one analysis page of the Analysis Notebook, where
possible the same source name will appear in other analysis pages. Note : the sweep
source value is not carried over between pages.

• Sync. temperatures :

A check box which enables or disables synchronization of the ambient temperature
values between analysis pages of the Analysis Notebook and the OPTIONS dialogue.

• Keep the netlist file :

A check box which controls whether netlist files are included in the list of temporary
files and therefore the temporary file management strategy.

• Netlister verbose mode :

A check box which enables or disables the netlist conversion utility (eg. gnetlist)
verbose mode. With this enabled the netlister generates lots of console spew which
appears in the Console tab of the Console Notebook. It’s useful for debugging when
the netlister is having problems importing schematic file/s.

• Include model defs. :

23

A check box which controls whether .INCLUDE directives are used for model files or
the model file contents are inserted in the netlist file by the netlister (eg. gnetlist).
(This option controls the the SPICE Guile backend option "include_mode".)

• Embed include files :

A check box which controls how the netlister (eg. gnetlist) behaves when it encounters
a .INCLUDE directive. With this option checked the netlister embeds (inserts) the
file model contents into the netlist file. (This option controls the netlister SPICE
backend option "embedd_mode".)

• Fix component prefixes :

A check box which controls whether component label prefixes are automatically
tested and modified if the incorrect prefix is used. SPICE simulation engines recog-
nizes different components based on the first character of the component label (eg.
R1 would be identified as a resistor). When this option is checked, if an incorrect pre-
fix is detected the correct prefix is prepended to the component label. (This option
controls the netlister (eg. gnetlist) SPICE backend option "nomunge_mode".)

• Auto. regenerate netlist :

A check box to control whether the netlist is automatically regenerationed from the
associated schematic file/s. If this option is checked, before each simulation run the
schematic file modification timestamp/s are compared to that of the netlist file. If a
schematic file is newer than the netlist a reload operation is automatically executed
(ie. the netlist file is regenerated from the schematic file/s).

5.4 Help Menu

The Help Menu contains the options to display various user manuals (assuming they are
installed properly) as well as gSpiceUI "About" information. These options are described
in the following sections.

5.4.1 Help Ý gSpiceUI Manual

Open the gSpiceUI HTML documentation (ie. this document) in a HTML viewer window.
The HTML viewer is part of the wxWidgets library and only provides basic browser func-
tionality however it is quite adequate for the purpose. This document can, of course, also
be opened in any web browser outside of gSpiceUI. This options is included for convience.

5.4.2 Help Ý NG-SPICE Manual

Open a PDF viewer application to read the NG-SPICE user manual. The NG-SPICE user
manual must be installed on the system. Refer to the gSpiceUI install instructions for the
location gSpiceUI expects to find the PDF file.

5.4.3 Help Ý GNU-CAP Manual

Open a PDF viewer application to read the GNU-CAP user manual. The GNU-CAP user
manual must be installed on the system. Refer to the gSpiceUI install instructions for the
location gSpiceUI expects to find the PDF file.

24

5.4.4 Help Ý About

Open a dialogue containing application "About" information, including gSpiceUI version
details, the version of wxWidgets library gSpiceUI is built against, supported external
applications and warranty / copyright information.

5.5 Tool Bar

The tool bar contains buttons which give easy access to the most used functions. The
buttons are presented in groups associated with the different types of activities. The
following table shows the button icon with a brief explanation of it purpose and a link to
the section dealing with it’s function in detail :

Ý Open a netlist file (refer to section 5.1.1 File Open)

Ý Import schematic file/s (refer to section 5.1.2 File Import)

Ý Reload netlist/schematic file/s (refer to section 5.1.3 File Reload)

Ý Close netlist/schematic file/s (refer to section 5.1.4 File Close)

Ý Create simulation file (refer to section 5.2.1 Create Simulation)

Ý Run simulation (refer to section 5.2.2 Run Simulation)

Ý Stop simulation (refer to section 5.2.3 Stop Simulation)

Ý Schematic capture (refer to section 5.2.4 Schematic Capture)

Ý View simulation results (refer to section 5.2.5 View Results)

Ý Calculator (refer to section 5.2.6 Calculator)

Ý Preferences (refer to section 5.3.4 Preferences)

Ý View gSpiceUI user manual (refer to section 5.4.1 gSpiceUI Manual)

5.6 Node List

The Node List contains node labels extracted from the netlist file. These labels can be used
as probes into the circuit being simulated. A probe is a point where electrical parameters
(eg. voltage) are calculated by the simulation engine. One or more nodes may be selected
(or deselected) by clicking on them with the mouse. The probes for the selected nodes will
be calculated and included in the simulation results.

A single node may be selected from the list by left clicking on it with the mouse. To select
multiple nodes, press the control key and left click on the desired nodes with the mouse.
To select a range of nodes left click on the desired range with the mouse while holding
down the shift key.

5.7 Component List

The Component List contains component labels extracted from the netlist file. These labels
can be used as probes into the circuit being simulated. A probe is a point where electrical

25

parameters (eg. voltage) are calculated by the simulation engine. One or more components
may be selected (or deselected) by clicking on them with the mouse. The probes for the
selected components will be calculated and included in the simulation results. At present
only two terminal components are included in this list.

A single component may be selected from the list by left clicking on it with the mouse. To
select multiple components press the control key and left click on the desired components
with the mouse. To select a range of components left click on the desired range with the
mouse while holding down the shift key.

5.8 Analysis Notebook

The Analysis Notebook contains analyis pages, each page reflects the a different analysis
type supported by the associated simulation engine. There are two slightly different anal-
ysis notebooks associated with the two different simulation engines supported by gSpiceUI
ie. GNU-CAP or NG-SPICE. The following sections briefly outline the analysis types
supported by gSpiceUI. For more information refer to the user documentation for the
appropriate simulation engine (much of what follows is taken from this documentation).
Refer to section 5.4 Help Menu.

5.8.1 Operating Point Analysis

NG-SPICE : This analysis type is supported using the DC command in NG-SPICE.
The DC analysis determines the DC operating point of the circuit with inductors
shorted and capacitors opened. In this instance the DC analysis is used to generate
DC transfer curves for temperature stepped over a user-specified range and the DC
output variables are stored for each sequential temperature value.

GNU-CAP : Performs a nonlinear DC steady state analysis. If a temperature range is
given, it sweeps the temperature. If there are numeric arguments, they represent a
temperature sweep. They are the start and stop temperatures in degrees Celsius, and
the step size, in order. This command also sets up the quiescent point for subsequent
AC analysis. It is necessary to do this for nonlinear circuits. The last step in the
sweep determines the quiescent point for the AC analysis.

5.8.2 DC Analysis

NG-SPICE : The DC analysis determines the DC operating point of the circuit with
inductors shorted and capacitors opened. A DC analysis is automatically performed
prior to a Transient analysis to determine the transient initial conditions, and prior
to an AC small-signal analysis to determine the linearized, small-signal models for
nonlinear devices. The DC analysis can also be used to generate DC transfer curves
: a specified independent voltage, current source, resistor or temperature is stepped
over a user-specified range and the DC output variables are stored for each sequential
source value.

GNU-CAP : Performs a nonlinear DC steady state analysis, and sweeps the signal input,
or a component value. If there are numeric arguments, without a part label, they
represent a ramp from the generator function. They are the start value, stop value
and step size, in order. In some cases, you will get one more step outside the specified
range of inputs due to internal rounding errors. The last input may be beyond the end

26

point. The program will sweep any simple component, including resistors, capacitors,
and controlled sources.

5.8.3 AC Analysis

NG-SPICE : The AC small-signal analysis determines the output variables as a function
of frequency. The DC operating point of the circuit is first determined and used to
generate linearized, small-signal models for all of the nonlinear devices in the circuit.
The resultant linearized version of the circuit is then analyzed over a user-specified
range of frequencies. The desired output of an AC small-signal analysis is usually
a transfer function (trans-impedance, voltage gain, etc.). If the circuit has only one
AC input, it is convenient to set that input to unity and zero phase, so that output
variables have the same value as the transfer function of the output variable with
respect to the input.

GNU-CAP : Performs a small signal, steady state, AC analysis. Sweeps frequency. The
AC command does a linear analysis about an operating point. It is absolutely nec-
essary to do an OP analysis first on any nonlinear circuit. Not doing this is the
equivalent of testing it with the power off. If the start frequency is zero, the program
will still do an AC analysis. The actual frequency can be considered to be the limit
as the frequency approaches zero. It is, therefore, still possible to have a non-zero
phase angle, but delays are not shown because they may be infinite.

5.8.4 Transient Analysis

NG-SPICE : The Transient analysis determines the transient output variables as a func-
tion of time over a user-specified time interval. The initial conditions are automat-
ically determined by a DC analysis. All sources which are not time dependent (for
example, power supplies) are set to their DC value.

GNU-CAP : Performs a nonlinear time domain (transient) analysis. Do not use a step
size too large as this will result in errors in the results. If you suspect that the results
are not accurate, try a larger argument to skip. This will force a smaller internal
step size. If the results are close to the same, they can be trusted. If not, try a still
larger skip argument until they appear to match close enough. The most obvious
error of this type is aliasing. You must select sample frequency at least twice the
highest signal frequency that exists anywhere in the circuit. This frequency can be
very high, when you use the default step function as input. The signal generator
does not have any filtering.

5.9 Console Notebook

As a normal part of gSpiceUI operations, alot of text output is generated (eg. by command-
line utilities like gnetlist) and collected by gSpiceUI. This text may be in the form of
file contents or output sent to standard out. (Like many UNIX applications gSpiceUI
mostly communicates with the outside world via files.) It collects the console output of the
processes it runs for debugging purposes but mostly gSpiceUI depends on files. These files
are human readable and can be of use to the user. The Console Notebook is the repository
for this text output. It is divided into various pages (described below) according to category
of the text output.

27

5.9.1 Console

Display the console input/output for the last process executed by gSpiceUI. This includes
the command-line used by gSpiceUI followed by all text output sent to stdout and stderr.
If an error occurs this is a good place to look for indications of what has gone wrong.

5.9.2 Netlist

Display the raw contents of a netlist file. The variables and values contained in the netlist
file are displayed in the GUI objects. In particular the Node and Component Lists are
derived from the netlist file.

5.9.3 Simulation

Display the contents of the simulation file. This is the file sented to the simulation engine
when a run operation is intiated. It is the netlist file (as displayed in the Netlist tab of the
Console Notebook) plus simulator commands generated by gSpiceUI based on user input.
The simulation file can be manually edited by the user before executing a simulation.
NOTE : if Create Simulation operation is initiated, the contents of this tab will be over-
written, destroying any user input.

5.9.4 NG-SPICE Results

Display the results from the last run of the NG-SPICE simulation engine. The raw results
data is reformatted to aid readability; non-data records are removed and the precision is
set according to the value set in the Preferences dialog. If required the raw output from
the simulation engine may also be viewed in the Console tab.

5.9.5 GNU-CAP Results

Display the results from the last run of the GNU-CAP simulation engine. The raw results
data is reformatted to aid readability; non-data records are removed and the precision is
set according to the value set in the Preferences dialog. If required the raw output from
the simulation engine may also be viewed in the Console tab.

5.10 Status Bar

The status bar is located at the bottom of the gSpiceUI main frame. It consists of four
panes which contain text messages showing the current state of gSpiceUI. From left to
right the panes contain :

1. The last application status or error message (abbreviated to fit if necessary).

2. The currently selected simulation engine.

3. The currently selected EDA tool suite.

4. The currently selected waveform viewer application.

28

6 Temporary Files

As part of normal operations gSpiceUI can generate various temporary files in the directory
occupied by the schematic and netlist files. To illustrate, consider the situation where the
schematic file "test-circuit.sch" is imported and every possible analysis type is run, using
both NG-SPICE and GNU-CAP. Along with the schematic file (also listed below) the
following temporary files which would be created :

<path>/sch/test-circuit.sch (The schematic file to be analysed)

<path>/sch/test-circuit.ckt (Netlist file with simulation commands)

<path>/sch/test-circuit.sch∼ (Backup file to the schematic file)

<path>/sch/gspiceui.log (Temporary file for raw process output)

<path>/sch/test-circuit.ngspice.op (Results file - operating point analysis)

<path>/sch/test-circuit.ngspice.dc (Results file - DC analysis)

<path>/sch/test-circuit.ngspice.ac (Results file - AC analysis)

<path>/sch/test-circuit.ngspice.tr (Results file - transient response analysis)

<path>/sch/test-circuit.gnucap.op (Results file - operating point analysis)

<path>/sch/test-circuit.gnucap.dc (Results file - DC analysis)

<path>/sch/test-circuit.gnucap.ac (Results file - AC analysis)

<path>/sch/test-circuit.gnucap.tr (Results file - transient response analysis)

All file names begin with the schematic file name less the file extension, in this example
"test-circuit". File name extensions are then generated depending on the file type. In
particular, files containing simulation results have two extension, the first based on the the
simulation engine used to generate the data, the second is an abbreviation indicating the
analysis type.

These temporary files can quickly proliferate and clutter your file system. As a consequence
gSpiceUI offers several ways to manager these temporary files. The simplest methods is to
allow gSpiceUI to delete them when they no longer required. If a schematic file is closed or
gSpiceUI is exited then any temporary files are deleted. The second option is for gSpiceUI
to prompt the user prior to deleting temporary files asking for permission. The last option
is to just do nothing and not delete anything. There are occasions where you may wish to
retain results data to be view later perhaps.

Notes :

• For details on how to set the temporary file for management scheme refer to section
5.3.4 Preferences.

• If temporary files are deleted this also includes the schematic backup file.

29

7 Demonstration Schematics

This section is intended to serve the dual purpose of providing user documentation for
the demonstration schematics that come with gSpiceUI, and to help me (the developer)
keep track of them (ie. try to make ensure that they work). The directory <install-
dir>/sch/demos/ contains the demostration schematic files. They are intended to illustrate
the simulation of specific circuit elements eg. a diode.

In addition, the directory <install-dir>/sch also contains various schematic files which may
be used to experiment with gSpiceUI. These examples show how to prepare a schematic
for simulation, which is not always a trivial task. These files are a collection of things that
have taken my interest over the years, some work and some don’t. It’s worth noting that
although these schematics are definitely circuit designs, they may not be good designs, so
use them in the real world at your own risk.

The directory <install-dir>/lib/symbols/ contains various circuit element symbol that I’ve
developed over the years. They may also be of use.

Below is a list of the available demonstration schematics and a brief description of what
each is intended to accomplish :

amp-bjt-ce-1.sch : BJT Common Emitter Amplifier

Demo. circuit showing how to simulate a NPN BJT in it’s linear mode using AC
analysis.

NG-SPICE (v32.1) Û (2020-08-22) OK

GNU-CAP (v20171003) Û (2020-08-22) Fault

amp-bjt-ce-2.sch : BJT Common Emitter Amplifier

Demo. circuit showing how to simulate a NPN BJT in it’s linear mode using AC
analysis (an alternative implementation of the previous example).

NG-SPICE (v32.1) Û (2020-08-22) OK

GNU-CAP (v20171003) Û (2020-08-22) Fault

amp-bjt-diff.sch : Audio Amplifier Differential Input Stage

Demo. circuit showing a common audio amplifier input stage topology using NPN
BJTs.

NG-SPICE (v32.1) Û (2020-08-23) OK

GNU-CAP (v20171003) Û (2020-08-23) Fault

amp-jfet-cs-1.sch : N-Channel JFET Common Source Amplifier

Demo. circuit showing how to simulate a N-Channel JFET using either DC or AC
analysis.

NG-SPICE (v32.1) Û (2020-08-23) OK

GNU-CAP (v20171003) Û (2020-08-23) Fault

amp-mosfet-cs-1.sch : N-Channel MOSFET Common Source Amplifier

Demo. circuit showing how to simulate a N-Channel MOSFET using either DC or
AC analysis.

30

NG-SPICE (v32.1) Û (2020-09-06) OK

GNU-CAP (v20171003) Û (2020-09-06) Fault

astable-bjt-npn.sch : NPN BJT Astable Multivibrator

Demo. circuit showing how to simulate a NPN BJT when operated as a switch using
Transient analysis.

NG-SPICE (v32.1) Û (2020-08-22) OK

GNU-CAP (v20171003) Û (2020-08-22) OK

astable-bjt-pnp.sch : PNP BJT Astable Multivibrator

Demo. circuit showing how to simulate a PNP BJT when operated as a switch using
Transient analysis.

NG-SPICE (v32.1) Û (2020-08-22) OK

GNU-CAP (v20171003) Û (2020-08-22) Fault

diode-led-1.sch : Light Emitting Diode

Demo. circuit showing how to simulate a LED using DC analysis.

NG-SPICE (v32.1) Û (2020-09-08) OK

GNU-CAP (v20200806dev) Û (2020-09-08) OK

diode-signal-1.sch : Signal Diode

Demo. circuit showing how to simulate a signal diode using DC analysis.

NG-SPICE (v32.1) Û (2020-09-08) OK

GNU-CAP (v20200806dev) Û (2020-09-08) OK

diode-zener-1.sch : Zener Diode

Demo. circuit showing how to simulate a zener diode using DC analysis.

NG-SPICE (v32.1) Û (2020-09-08) OK

GNU-CAP (v20200806dev) Û (2020-09-18) Fault

filter-bp-1.sch : Series Resonant Band Pass Filter

Demo. circuit showing how to simulate a simple series resonant band pass filter
using AC analysis.

NG-SPICE (v32.1) Û (2020-09-20) OK

GNU-CAP (v20200806dev) Û (2020-09-20) OK

filter-bp-2.sch : T-Section Resonant Band Pass Filter

Demo. circuit showing how to simulate a T-section resonant band pass filter using
AC analsis.

NG-SPICE (v32.1) Û (2020-09-20) OK

GNU-CAP (v20200806dev) Û (2020-09-20) OK

filter-lp-1.sch : Single Pole Low Pass Filter

Demo. circuit showing how to simulate a simple single pole low pass filter using AC

31

analsis.

NG-SPICE (v32.1) Û (2020-09-20) OK

GNU-CAP (v20200806dev) Û (2020-09-20) OK

lm555-timer.sch : LM555 Timer

Demo. circuit showing how to simulate using a model based on a sub-circuit.

NG-SPICE (v32.1) Û (2020-09-23) OK

GNU-CAP (v20200806dev) Û (2020-09-23) OK

lvl-shftr-bjt.sch : ???

lvl-shftr-opamp.sch : ???

subckt-1.sch : MOSFET Switch Circuit

Demo. circuit showing how to simulate using a model based on a sub-circuit.

NG-SPICE (v32.1) Û (2020-09-23) OK

GNU-CAP (v20200806dev) Û (2020-09-23) Fault

tline-1.sch : Loss-Less Transmission Line

Demo. circuit showing how to simulate a loss-less transmission line.

NG-SPICE (v32.1) Û (2020-09-20) Fault

GNU-CAP (v20200806dev) Û (2020-09-20) OK

32

8 Design

This section provides information related to the design of gSpiceUI. In reality, this appli-
cation was designed in my head as it went along. A fair amount of it has been re-written
as I found better ways of doing things. The design methodology would be best described
as prototyping.

The following object models where developed to help provide a better picture of how things
went together (as the project got to the point where I couldn’t remember how it all worked).
The object models also depict how wxWidgets binds into gSpiceUI.

Figure 3 : gSpiceUI Application Object Model depicts the top level application architecture.
The class App_gSpiceUI inherits from the wxWidgets library wxApp class which is the
entry point to the application (ie. it contains main()).

Figure 4 : Main Frame Class Object Model depicts the top level of the GUI architecture.
The FrmMain class inherits from the wxWidgets library wxFrame class which contains all
display objects within this class hierarchy.

Figure 5 : Analysis Class Object Model depicts the class structure of the objects which
fill the analysis notebook (the notebook with the analysis tabs). It inherits from the
wxWidgets library wxNotebook class.

Figure 6 : Process Class Object Model depicts the class structure of the objects which maybe
executed as tasks by the application. It inherits from the wxWidgets library wxProcess
class.

Figure 7 : PnlValue Class Object Model depicts the class structure of the display control
used to contain numeric values. It combines wxWidgets library text, spin and choice
controls so that numeric values (either integer or floating point) can be set using the
mouse or keyboard.

Notes :

• The GNU SPICE GUI project is comprised of many C++ classes, more than are
depicted in the object models shown here. However, all the major classes have been
depicted giving a good idea of the overall application architecture.

• The object models depicted here largely show the actual application architecture.
However, the software is under development and is often in a state of flux, it will not
always exactly match the information shown in the object models.

The source code is heavily commented and has been designed and written so that it may
be maintained (or reused) by myself or anyone else for that matter. The project has well
and truely got to the stage where it can no longer be maintained simply from memory.

33

g
S

p
ic

e
U

I
A

p
p

lic
a
tio

n
 O

b
je

c
t
M

o
d

e
l

L
a

st
 U

p
d

a
te

 :
 2

0
2

0
-1

0
-0

8

R
e
fe

r
to

C
m

d
L
in

e
P

c
r.
h

p
p

C
m

d
L
in

e
P

cr

R
e
fe

r
to

P
rc

S
ch

e
m

.h
p
p

P
rc

S
c
h
e

m

R
e
fe

r
to

P
rc

N
e
tL

st
r.
h

p
p

P
rc

N
e
tL

st
r

R
e
fe

r
to

P
rc

N
g

S
p

ic
e
.h

p
p

P
rc

N
g

S
p

ic
e

R
e
fe

r
to

P
rc

G
n

u
C

a
p

.h
p

p

P
rc

G
n

u
C

a
p

R
e
fe

r
to

P
rc

D
a
ta

V
w

r.
h

p
p

P
rc

D
a
ta

V
rw

R
e
fe

r
to

P
rc

C
a
lc

.h
p
p

P
rc

C
a
lc

R
e
fe

r
to

P
rc

P
d
fV

w
r.
h
p

p

P
rc

P
d

fV
rw

R
e
fe

r
to

w
xW

id
g
e
ts

 li
b
.

w
xA

p
p

A
p

p
_

g
S

p
ic

e
U

I

A
p

p
_

g
S

p
ic

e
U

I.
h

p
p

R
e
fe

r
to

m
a

in
(

)

R
e
fe

r
to

F
rm

M
a

in
.h

p
p

F
rm

M
a

in

R
e
fe

r
to

S
im

u
la

tio
n

.h
p

p

S
im

u
la

tio
n

N
e
tL

is
t.
h

p
p

R
e
fe

r
toN
e
tL

is
t

R
e
fe

r
to

D
lg

P
re

fs
.h

p
p

D
lg

P
re

fs

R
e
fe

r
to

F
ile

T
a

sk
s.

h
p

p

F
ile

T
a

sk
s

Figure 3: Overall gSpiceUI application object model.

34

2

5

Main Frame Class Hierarchy Object Model
Last Update : 2020-10-06

Refer to
wxWidget lib.

wxMenuBar

Refer to
wxWidget lib.

wxToolBar

Refer to
FrmMain.hpp

FrmMain

Refer to
wxWidget lib.

wxNotebook

Refer to
wxWidget lib.

wxTextCtrl

Refer to
TextCtr.hpp.

TextCtrl

Refer to
wxWidget lib.

wxListBox

Refer to
wxWidgets lib.

wxFrame

Refer to
wxWidget lib.

NbkTxtCtls

Refer to
wxWidget lib.

wxStatusBar

Refer to
NbkSimEngBase.hpp

NbkSimEngBase

Figure 4: Main application frame object model.

35

Refer to
wxWidgets lib.

wxNotebook

Refer to
NbkSimrBase.hpp

NbkSimrBase

Analysis Class Hierarchy Object Model
Last Update : 2020-10-06

Refer to
wxWidgets lib.

wxPanel

Refer to
PnlNgSpiceTR.hpp

PnlNgSpiceTR

Refer to
PnlGnuCapTR.hpp

PnlGnuCapTR

Refer to
NbkGnuCap.hpp

NbkGnuCap

Refer to
PnlNgSpiceAC.hpp

PnlNgSpiceAC

Refer to
PnlAnaBase.hpp

PnlAnaBase

Refer to
PnlNgSpiceDC.hpp

PnlNgSpiceDC

Refer to
NbkNgSpice.hpp

NbkNgSpice

PnlGnuCapOP.hpp
Refer to

PnlGnuCapOP

Refer to
PnlGnuCapDC.hpp

PnlGnuCapDC

Refer to
PnlGnuCapFO.hpp

PnlGnuCapOP

Refer to
PnlGnuCapAC.hpp

PnlGnuCapAC

Figure 5: Analysis notebook object model.

36

Process Class Hierarchy Object Model
Last Update : 2020-10-06

Refer to
PrcDataVwr.hpp

PrcDataVwr PrcCalc

Refer to
PrcCalc.hpp

Refer to
PrcSimrBase.hpp

PrcSimrBase

Refer to
PrcGnuCap.hpp

PrcGnuCap

Refer to
PrcBase.hpp

PrcBase

Refer to
PrcNetLstr.hpp

PrcNetLstr

Refer to
wxWidgets lib.

wxProcess

Refer to
PrcNgSpice.hpp

PrcNgSpice

Refer to
PrcSchem.hpp

PrcSchemPrcPdfVwr

Refer to
PrcPdfVwr.hpp

Figure 6: Process object model (tasks gSpiceUI may envoke).

37

PnlValue Class Hierarchy Object Model
Last Update : 2020-10-06

Refer to
wxWidgets lib.

wxPanel

Refer to
UnitsBase.hpp

UnitsBase

Refer to
PnlValue.hpp

PnlValue

SpinCtrl.hpp
Refer to

SpinCtrl

Refer to
wxWidgets lib.

wxSpinButton

Refer to
ChoUnits.hpp

ChoUnits

Refer to
wxWidgets lib.

wxChoice

Refer to
LblUnits.hpp

LblUnits

Refer to
wxWidgets lib.

wxTextCtrl

Refer to
wxWidgets lib.

wxStaticText

Figure 7: Value panel object model (displays data variables).

38

	Title Page
	Table of Contents
	List of Figures
	Introduction
	Getting Started
	Installation
	Requirements
	wxWidgets Library
	Build System
	Installation
	Microsoft Windows Support
	Apple Mac OSX Support

	Command-Line
	Graphical User Interface (GUI)
	File Menu
	Simulate Menu
	Settings Menu
	Help Menu
	Tool Bar
	Node List
	Component List
	Analysis Notebook
	Console Notebook
	Status Bar

	Temporary Files
	Demonstration Schematics
	Design

