
i

OCI Flexvolumes Driver HowTo

Oracle Container Services for use with Kubernetes® (OCSK) provides a certified version of
Kubernetes to users of Oracle Linux. To further enhance the offering and continue integration
with the Oracle Cloud Infrastructure (OCI), the Oracle Linux team are providing access to pre-
built RPMs containing the OCI Flexvolume Driver. Fully tested on OCSK version 1.1.9 this
technical preview of the OCI Flexvolume Driver packages is available from the Oracle Linux
yum server and Oracle ULN developer channels.

Although Kubernetes already provides support for multiple volume options, Flexvolumes were
introduced in the Kubernetes 1.8 release to enable users to write their own drivers and add
support for their own volumes. Oracle provides a Flexvolume driver for Kubernetes clusters
running on Oracle Cloud Infrastructure (OCI). The driver facilitates mounting OCI block storage
volumes to Kubernetes Pods via the Flexvolume plugin interface.

The Oracle Cloud Infrastructure Block Volume service lets you dynamically provision and
manage block storage volumes. You can create, attach, connect and move volumes as needed to
meet your storage and application requirements. Once attached and connected to an instance, you
can use a volume like a regular hard drive. Volumes can also be disconnected and attached to
another instance without the loss of data.

Pre-requisite: The instructions below assume the user has already configured a Block Volume
in Oracle Cloud. For information on how to create a Block Volume please refer to
the documentation. In addition, if you OCI networking behind a firewall, then you must add a
proxy variable to your kube-controller-manager:

Modify /etc/kubernetes/manifests/kube-controller-manager.yaml and add the
following env variable (OCI_PROXY):

Example:

name: kube-controller-manager
env:
 - name: OCI_PROXY
 value: http://www-proxy.org:8080

Install / Setup
Follow the instructions here to set up Oracle Container Services for use with Kubernetes (OCSK)
in your OCI environment, make sure to pay particular attention to the section about
"Requirements to Use Oracle Container Services for use with Kubernetes on Oracle Cloud
Infrastructure"

The OCI Flexvolume driver binary must be installed on every node in your Kubernetes
cluster. The OCI Flexvolume driver (oci-flexvolume-driver-0.6.2-2.0.2.el7.x86_64.rpm) is
available in the Oracle Linux 7 developer channel on Oracle Yum and Unbreakable Enterprise
Network (ULN).

If your environment uses the Oracle Linux yum servers, you must enable the ol7_developer
repository on each node in the cluster. For example, you can run the following command on each
node:

yum-config-manager --enable ol7_developer

Alternatively, edit the /etc/yum.repos.d/public-yum-ol7.repo

[ol7_developer]
name=Oracle Linux $releasever Development Packages ($basearch)
baseurl=https://yum.oracle.com/repo/OracleLinux/OL7/developer/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

If your environment uses the Unbreakable Linux Network (ULN), you must first subscribe your
systems to the ol7_x86_64_developer channel on each node in the cluster. For example, you
can run the following command on each node:

uln-channel -a -c ol7_x86_64_developer

Alternately:

1. Log in to http://linux.oracle.com with your ULN user name and password.
2. On the Systems tab, click the link named for the system in the list of registered machines.
3. On the System Details page, click Manage Subscriptions.
4. On the System Summary page, select each required channel from the list of available

channels and click the right arrow to move the channel to the list of subscribed channels.

Subscribe the system to the ol7_x86_64_developer channel.

5. Click Save Subscriptions.

Now install the package

yum install oci-flexvolume-driver

The driver is installed in the volume plugin path on every node in your Kubernetes cluster at the
following location:/usr/libexec/kubernetes/kubelet-
plugins/volume/exec/oracle~oci/oci.

NOTE: If running kube-controller-managers in a container you must ensure that the plugin
directory is mounted into the container.

Configuration

The driver requires API credentials for a OCI account with the ability to attach and detach OCI
block storage volumes from to/from the appropriate nodes in the cluster. For more information
please refer to this page.

Provide these credentials in a YAML file on the master nodes in the cluster
at /usr/libexec/kubernetes/kubelet-
plugins/volume/exec/oracle~oci/config.yaml in the following format:

auth:
 tenancy: <tenancy>
 compartment: <compartment>
 user: <user>
 region: <region>
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 <snip>
 -----END RSA PRIVATE KEY-----
 passphrase: <passphrase>
 fingerprint: 11:22:33:44:55:66:77:88:99:10
 vcn: <vcn>

Copy the config.yaml file to the remaining nodes in the cluster (every node in the cluster will use
this config file). Make sure the file is placed in the same location on all
clusters: /usr/libexec/kubernetes/kubelet-plugins/volume/exec/oracle~oci/config.yaml

<note: if using Kubernetes version 1.10 (OCSK 1.1.10) - this is the final step and you can
proceed to the Example section>

Make Flexvolume plugin available in kube-controller-manager (this step is required if
using Kubernetes 1.9 (OCSK 1.1.9)
Modify /etc/kubernetes/manifests/kube-controller-manager.yaml

1. Add the following under volumeMounts:

 - mountPath: /usr/libexec/kubernetes/kubelet-plugins/volume/exec
 name: flexvolume-dir

Example:

 volumeMounts:
 - mountPath: /etc/kubernetes/pki
 name: k8s-certs
 readOnly: true
 - mountPath: /etc/ssl/certs
 name: ca-certs
 readOnly: true
 - mountPath: /etc/kubernetes/controller-manager.conf
 name: kubeconfig
 readOnly: true
 - mountPath: /usr/libexec/kubernetes/kubelet-plugins/volume/exec
 name: flexvolume-dir
 - mountPath: /etc/pki
 name: ca-certs-etc-pki
 readOnly: true

 2. Add the following hostPath statement under volumes:

 - hostPath:
 path: /usr/libexec/kubernetes/kubelet-plugins/volume/exec
 type: DirectoryOrCreate
 name: flexvolume-dir

Example :

 volumes:
 - hostPath:
 path: /etc/kubernetes/pki
 type: DirectoryOrCreate
 name: k8s-certs
 - hostPath:
 path: /etc/ssl/certs
 type: DirectoryOrCreate
 name: ca-certs
 - hostPath:
 path: /etc/kubernetes/controller-manager.conf
 type: FileOrCreate
 name: kubeconfig
 - hostPath:
 path: /usr/libexec/kubernetes/kubelet-plugins/volume/exec
 type: DirectoryOrCreate
 name: flexvolume-dir
 - hostPath:
 path: /etc/pki
 type: DirectoryOrCreate

 3. Restart the kubeadm service by issuing the following command on the master node:

 kubeadm-setup.sh restart

 4. The OCI Flexvolume driver setup is complete. The following sample will walk through
how to create a pod using the block volume. This requires the OCID for the target block
volume.

Note The OCID for block volumes can be found by logging into your OCI console,
selecting Menu → Block Storage → Block Volumes and selecting the Volume name.

Example: Creating a pod hosting a Nginx service using an OCI volume

Step 1. Create a nginx.yaml file using the following

[root@kubemaster system]# cat /root/flexvol/config/nginx.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flexnginx
 labels:
 app: flexnginx
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: "abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq"
 mountPath: /usr/share/nginx/html
 #nodeSelector:
 # node.info/availability.domain: 'OBfV-US-ASHBURN-AD-2'
 volumes:
 # The volume name must be the last section of the OCID of the volume
being
 # attached (. separated). e.g. if the volume ocid was
 #
"ocid1.volume.oc1.phx.aa
aaaaaaaa"
 # the volume name would be
"aa"
 - name: "abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq"
 flexVolume:
 driver: "oracle/oci"
 fsType: "ext4"

NOTE 1: Here the
name "abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq" is the last '.'
separated section of the volume OCID
NOTE 2: Make sure to create your block volume in the same availability domain as your nodes

Step 2. Create the pods

Create pod
[root@kubemaster config]# kubectl create -f nginx.yaml

pod "flexnginx" created

Check if pod is running or not
[root@kubemaster config]# kubectl get po -l app=flexnginx
NAME READY STATUS RESTARTS AGE
flexnginx 1/1 Running 0 11m

Check pod details
[root@kubemaster config]# kubectl describe po flexnginx
Name: flexnginx
Namespace: default
Node: kubeworker2/10.0.1.128
Start Time: Thu, 12 Apr 2018 06:38:55 +0000
Labels: app=flexnginx
Annotations: <none>
Status: Running
IP: 10.244.2.36
Containers:
 nginx:
 Container
ID: docker://f5892e1084febf44b3fde81ae663f3495f1378e84b287958271a174
683bc846c
 Image: nginx
 Image ID: docker-
pullable://nginx@sha256:37350fbb4afbb1c01b6e542fe1537dd701e4430983d6d9
c673cbb5eccdbec357
 Port: 80/TCP
 State: Running
 Started: Thu, 12 Apr 2018 06:39:15 +0000
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from
abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-xkljq (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 PodScheduled True
Volumes:
 abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq:
 Type: FlexVolume (a generic volume resource that is

provisioned/attached using an exec based plugin)
 Driver: Options: %v

 FSType: oracle/oci
 SecretRef: ext4
 ReadOnly: <nil>
%!(EXTRA bool=false, map[string]string=map[]) default-token-xkljq:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-xkljq
 Optional: false

QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 50s default-
scheduler Successfully assigned flexnginx to kubeworker2
 Normal SuccessfulMountVolume 49s kubelet,

kubeworker2 MountVolume.SetUp succeeded for volume "default-token-
xkljq"
 Normal SuccessfulMountVolume 33s kubelet,
kubeworker2 MountVolume.SetUp

succeeded for volume "abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pz
vbpsfb3f5ibq"
 Normal Pulling 32s kubelet, kubeworker2 pulling
image "nginx"
 Normal Pulled 30s kubelet,
kubeworker2 Successfully pulled image "nginx"
 Normal Created 30s kubelet, kubeworker2 Created
container
 Normal Started 30s kubelet, kubeworker2 Started
container

Step 3. On the worker node where pod was created, verify the volume is mounted

[root@kubeworker2 ~]# mount | grep
abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq
/dev/sdc on /var/lib/kubelet/plugins/kubernetes.io/flexvolume/oracle/o
ci/mounts/abuwcljrnuyj67r7xgtfryj6yqps47tgze3k753f5ljlj5pzvbpsfb3f5ibq

 type ext4 (rw,relatime,seclabel,stripe=256,data=ordered)
/dev/sdc on /var/lib/kubelet/pods/2c47bc42-3e1c-11e8-be77-
020017004126/volumes/oracle~oci/abuwcljrnuyj67r7xgtfryj6yqps47tgze3k75

3f5ljlj5pzvbpsfb3f5ibq type ext4
(rw,relatime,seclabel,stripe=256,data=ordered)

Tutorial
This guide will walk you through creating a Pod with persistent storage. It assumes that you have
already installed the Flexvolume driver in your cluster.

See example/nginx.yaml for a finished Kubernetes manifest that ties all these concepts together.

1. Create a block storage volume. This can be done using the oci CLI as follows:

$ oci bv volume create \
 --availability-domain="aaaa:PHX-AD-1" \

 --compartment-id
"ocid1.compartment.oc1..aaa
aaaaaaa"

1. Add a volume to your pod.yml in the format below and named with the last section of
your volume's OCID (see limitations). E.g. a volume with the OCID

ocid1.volume.oc1.phx.aa
aaaa

Would be named aa in
the pod.yml as shown below.

volumes:
 - name: "aa"
 flexVolume:
 driver: "oracle/oci"
 fsType: "ext4"

1. Add volume mount(s) in the appropriate container(s) in your as follows:

volumeMounts:
 - name: "aa"
 mountPath: /usr/share/nginx/html

(Where "aa" is the last
'.' separated section of the volume OCID.)

Debugging
The Flexvolume driver writes logs to /usr/libexec/kubernetes/kubelet-
plugins/volume/exec/oracle~oci/oci_flexvolume_driver.log by default.

Assumptions
• If a Flexvolume is specified for a Pod, it will only work with a single replica. (or if there

is more than one replica for a Pod, they will all have to run on the same Kubernetes
Node). This is because a volume can only be attached to one instance at any one time.
Note: This is in common with both the Amazon and Google persistent volume
implementations, which also have the same constraint.

• If nodes in the cluster span availability domain you must make sure your Pods are
scheduled in the correct availability domain. This can be achieved using the label
selectors with the zone/region.

Using the oci-volume-provisioner makes this much easier.

• For all nodes in the cluster, the instance display name in the OCI API must match with
the instance hostname, start with the vnic hostnamelabel or match the public IP. This
relies on the requirement that the nodename must be resolvable.

Limitations
Due to kubernetes/kubernetes#44737 ("Flex volumes which implement getvolumename API are
getting unmounted during run time") we cannot implement getvolumename. From the issue:

Detach call uses volume name, so the plugin detach has to work with PV Name

This means that the Persistent Volume (PV) name in the pod.yml must be the last part of the
block volume OCID ('.' separated). Otherwise, we would have no way of determining which
volume to detach from which worker node. Even if we were to store state at the time of volume
attachment PV names would have to be unique across the cluster which is an unreasonable
constraint.

The full OCID cannot be used because the PV name must be shorter than 63 characters and
cannot contain '.'s. To reconstruct the OCID we use the region of the master on
which Detach() is executed so this blocks support for cross region clusters.

i Kubernetes® is a registered trademark of The Linux Foundation in the United States and other
countries, and is used pursuant to a license from The Linux Foundation.

